向量减法运算及其几何意义(数学_优秀课件)
向量减法运算及其几何意义(数学优秀课件)
解析几何中的向量减法运算实例
要点一
总结词
要点二
详细描述
向量的模和向量的角度
在解析几何中,向量减法可以用于计算向量的模和向量的 角度。通过向量减法运算,我们可以得到一个新的向量, 这个向量的模等于原两个向量的模之差,而这个向量的方 向则与原两个向量的夹角有关。此外,向量的内积也可以 通过向量减法运算来计算,它等于两个向量的模之积乘以 两个向量之间的夹角的余弦值。
详细描述
平行四边形法则是一种直观的向量减法方法,通过构造一个平行四边形,将一个向量作为对角线,另 一个向量作为邻边。根据向量加法的平行四边形法则,可以推导出向量减法的平行四边形法则。
向量减法的向量分解法则
总结词
向量分解法则是基于向量的分解和合成,通过将一个向量分解为两个或多个分向量,然后利用向量加法和减法的 性质进行计算。
02
几何解释
在平面上,向量减法可以理解为将一个向量平移到另一个向量的起点,
然后连接终点,得到的结果向量就是两向量的差。
03
实例
假设有两个向量$vec{A}$和$vec{B}$,它们的起点重合。通过平移
$vec{A}$,使其起点与$vec{B}$的起点重合,然后连接$vec{A}$的终
点和$vec{B}$的终点,得到的结果向量$vec{C} = vec{A} - vec{B}$。
向量减法在实际问题中的应用
物理问题
在解决物理问题时,如力的合成与分解、速度和加速度的 计算等,都需要用到向量减法。通过向量减法可以确定一 个物体相对于另一个物体的位置和方向。
导航问题
在地理信息系统(GIS)中,利用向量减法可以计算两点 之间的位移或方向。例如,计算两点之间的最短路径、确 定物体的移动轨迹等。
向量减法运算及其几何意义PPT优秀课件
作业: P91习题2.2A组:4,6,7.
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值�
向量减法及其几何意义
设有两个向量 $vec{A} = (x_1, y_1, z_1)$ 和 $vec{B} = (x_2, y_2, z_2)$,则向量 $vec{A}$ 减去向量 $vec{B}$ 的结果是一个新的向量 $vec{C} = vec{A} - vec{B} = (x_1 - x_2, y_1 - y_2, z_1 - z_2)$。
几何意义
向量 $vec{C}$ 是由向量 $vec{A}$ 的终点指向向量 $vec{B}$ 的起点的向量。在平面直角坐标系中,这相当于从 点 $(x_1, y_1)$ 到点 $(x_2, y_2)$ 画一个有向线段,其方向由 $(x_1, y_1)$ 指向 $(x_2, y_2)$。
空间直角坐标系中向量减法
04 向量减法在物理问题中应 用
位移、速度、加速度等物理量计算
01
02
03
位移计算
向量减法可以应用于计算 物体在一段时间内的位移, 即末位置向量减去初位置 向量。
速度计算
通过位移向量与时间向量 的商,可以计算物体的平 均速度或瞬时速度。
加速度计算
加速度是速度向量的变化 率,可以通过相邻两个时 刻的速度向量相减并除以 时间间隔来计算。
向量减法及其几何意义
目录
• 向量减法基本概念 • 向量减法在坐标系中表示 • 向量减法几何意义探讨 • 向量减法在物理问题中应用 • 向量减法在数学问题中应用 • 总结与拓展
01 向量减法基本概念
定义与性质
定义
性质
结合律
交换律的逆
存在零元
向量减法定义为加上一个 向量的相反向量。即对于 任意两个向量 A 和 B, 向量 A 减去向量 B 的结 果是一个新的向量,记作 C = A - B,其中 C 是 A 与 -B(B的相反向量)的 向量和。
向量减法运算及其几何意义优质课课件
根据向量减法的定义,$vec{a} - frac{vec{b}}{2}$ 等于$vec{a}$加上$-frac{vec{b}}{2}$,即$vec{a} frac{vec{b}}{2} = (2,3) + (-2,-2.5) = (0,0.5)$。
综合练习题
题目
已知点$A(1,2,3)$和点$B(4,5,6)$,求向量$overrightarrow{AB}$。
向量减法运算及其几何意义优 质课课件
目录
CONTENTS
• 向量减法的定义与性质 • 向量减法的运算规则 • 向量减法在物理中的应用 • 向量减法在数学中的拓展 • 向量减法的练习题与解析
01
CHAPTER
向量减法的定义与性质
向量减法的定义
总结词
向量减法是通过将一个向量的起点平移到另一个向量的终点,然后反向延长线段 得到的向量。
进阶练习题
题目
已知$vec{a} = (1,2,3)$,$vec{b} = (4,5,6)$,求 $vec{a} - 2vec{b}$。
题目
已知$vec{a} = (2,3)$,$vec{b} = (4,5)$,求 $vec{a} - frac{vec{b}}{2}$。
解析
根据向量减法的定义,$vec{a} - 2vec{b}$等于 $vec{a}$加上$-2vec{b}$,即$vec{a} - 2vec{b} = (1,2,3) + (-8,-10,-12) = (-7,-8,-9)$。
向量减法的几何意义
总结词
向量减法的几何意义是两个向量在平面上的相对位置关系。
详细描述
向量减法的几何意义是两个向量在平面上的相对位置关系。具体来说,如果$vec{A}$和$vec{B}$是两 个向量,那么$vec{A} - vec{B}$表示从点B出发沿与$vec{B}$相反方向移动到点A的向量。这个过程可 以通过平移和反向延长线段来实现。
2.2.2向量减法运算及其几何意义(共18张PPT)
2、向量加法的平行四边形法则 Db C
a a a a a a a a a a a+b
a
B
作法:
bb
b
O
b
b
((12))以在点平O面为内起任点取,一以点向O量a, b为邻边作平行四边形OB CD.
即OD BC a,OB DC b; (3)则以点O为起点的对角线OC a b.
注意起点相同.共线向量不适用
我们知道AC a b
uuur uuur uuur r r 同样,由向量的减法,知DB AB AD a b
练习1
1.如图,已知a,b,求作a b.
(a 1) b (3) a
b
(2)a
b
(4)a
b
练习2
(1)化简AB AC BDCD
解 : 原式 CB BD CD CD CD 0
2.2.2向量的减法运算 及其几何意义
三维目标: 1.通过探究活动,使学生掌握向量 减法概念,理解两个向量减法就是 转化为加法来进行,掌握相反向量。 2.启发学生能够发现问题和提出问 题,善于独立思考,学会分析问题 和创造地解决问题。能熟练地掌握 用三角形法则和平行四边形法则作 出两个向量的差向量。
有什么规律?
1.在平面内任取一点O, 作OA
a, OB
b(共起点)
2.连接两向量终点,方向由减向量指向被减向量。
即连接B, A,方向由点B指向点A。
B
b
rr ba
o a A
(1)如果从
a的终点到
b 的终点作向量,
那么Байду номын сангаас得向量是什么?
(作2出)改变aab,
b 的方向,使
呢?
a // b ,怎样
2.2.2向量的减法运算及其几何意义
§2.2.2向量的减法运算及其几何意义【学习目标】1. 通过实例,掌握向量减法的运算,并理解其几何意义;2. 能运用向量减法的几何意义解决一些问题.【学习过程】一、自主学习(一)知识链接:复习:求作两个向量和的方法有 法则和 法则.(二)自主探究:(预习教材P85—P87) 探究:向量减法——三角形法则问题1:我们知道,在数的运算中,减去一个数等于加上这个数的相反数,向量的减法是否也有类似的法则?如何理解向量的减法呢? 1、相反向量:与a 的向量,叫做a 的相反向量,记作a - .零向量的相反向a 与其相反向量a - 的和是什么? 如果a 、b 是互为相反的向量,那么a = , b = ,a b += .2、向量的减法:我们定义,减去一个向量相当于加上这个向量的相反向量,即+a b 是互为相反的向量,那么 a =____________, b =____________,+ a b =____________。
问题3:请同学们利用相反向量的概念,思考()a b +- 的作图方法. 3、已知 a , b ,在平面内任取一点O ,作== ,OA a OB b ,则__________=- a b ,即- a b 可以表示为从向量_______的终点指向向量______的终点的向量,如果从向量 a 的终点到 b 的终点作向量,那么所得向量是________。
这就是向量减法的几何意义. 以上做法称为向量减法的三角形法则,可以归纳为“起点相接,连接两向量的终点,箭头指向被减数”.1例3和例4ABCD 中,下列结论中错误的是( )A. AB →=DC →B. AD →+AB →=AC →C. AB →-AD →=BD →D. AD →+CB →=2、在△ABC 中,O 是重心,D 、E 、F 分别是BC 、AC 、AB 的中点,化简下列两式: ⑴CB CE BA -+ ; ⑵OE OA EA -+ .变式:化简AB FE DC ++ .三、交流展示1、化简下列各式:①AB AC DB -- ; ②AB BC AD DB +-- .2、在平行四边形ABCD 中,BC CD AD +- 等于( )A .BAB .BDC .ACD .AB3、下列各式中结果为 O 的有( )①++ AB BC CA ②+++ OA OC BO CO ③-+- AB AC BD CD ④+-+ MN NQ MP QPA .①②B .①③C .①③④D .①②③ 4、下列四式中可以化简为 AB 的是( )①+ AC CB ②- AC CB ③+ OA OB ④- OB OAA .①④B .①②C .②③D .③④ 5、已知ABCDEF 是一个正六边形,O 是它的中心,其中=== ,,OA a OB b OC c 则 EF =( )A .a b +B .b a -C .- c bD .-b c 四、达标检测(A 组必做,B 组选做)A 组:1. 下列等式中正确的个数是( ). ①a o a -= ;②b a a b +=+ ;③()a a --= ; ④()0a a +-= ;⑤()a b a b +-=- A.2 B.3 C.4 D.5 2. 在△ABC 中,,BC a CA b == ,则AB 等于( ). A.a b + B.()a b -+- C.a b - D.a b -+3. 化简OP QP PS SP -++ 的结果等于( ). A.QP B.OQ C.SP D.SQ4. 在正六边形ABCDEF 中,AE m = ,AD n = ,则BA = .5. 已知a 、b 是非零向量,则a b a b -=+ 时,应满足条件 .B 组:1、化简:AB DA BD BC CA ++-- =_______________。
向量加减运算及几何意义
AE a (b) a b 又 b BC a 所以 BC a b
a b
b
A
a
D
C
b
a b
E
不借助向量的加法法则你能直接作出 a b 吗?
一般地
a
三、几何意义: 的终点的向量
O
a
a b
b
B
b
A
a b 可以表示为从向量 b 的终点指向向量 a
( 三 角 形 法 则 )
向量既有大小又有方向,如位移,速度,力等
2. 怎样来表示向量?
1)用有向线段来表示 2)用字母来表示 如
A B
a , AB
长度相等,方向相同的向量相等.
3. 什么叫相等向量?
正因为如此,任何向量可以在不改变它的大小和方向 的前提下,移到任何位置.即向量可以平移
4.平行向量:
方向相同或相反的向量叫做平行向量
| a + b |< =| a b |+ |a b|
判断 | a + b | 与 | a | + | b | 的大小 A 2、不共线 a o· b
a
a+ b
b
B
三角形的两边之和大于第三边
| a+ b|< | a|+ |b|
综合以上探究我们可得结论:
| a b || a | | b |
规定: 0a a0 a
解:(1 ) OA OC OB ;
E
D
(2) BC FE AD;
(3) OA FE 0.
F A
O
B
C
请选用合适符号连接:
a b ____ a b (<,>, ,, )
人教A版数学必修 向量减法运算及其几何意义 课件(共21)
B
a +(b)
b
b
O
a
A
a
b
a +(b)
C
D
作 图 方 法 : 已 知 a,b,在 平 面 内 任 取
一 点 O, 作 OA=a,OB=b,则 BA=a-b.
四、向量减法的几何意义:
a b 的 作 图 方 法 : ①将两向量平移,使它
们有相同的起点.
b a
B
ab
②连接两向量的终点.
b
O
a
A ③箭头点A为起点以向量a、b为邻边作平行
四边形ABCD.即AD=BC=a,AB=DC=b ;
(3)则以点A为起点的对角线AC=a+b.
注意共起点.共线向量不适用
3.向量加法的交换律 :
rr rr a + b = b + a.
4.向量加法的结合律 :
rr r r rr (a + b) + c = a + (b + c)
则BA=ab,DC=cd.
例 2 .已 知 平 行 四 边 形 A B C D ,A B =a ,A D =b ,
你 能 用 a ,b表 示 向 量 A C ,D B 吗 ? D C
b
解:由向量加法的平行四边形法则,
我们知道
AC=a+b;
Aa
B
同样,由向量的减法,知
D B = A B A D = a b .
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
2.2.2向量减法运算及其几何意义
a a
AB BA, 在计算中常用
结论: (1) (a)
a 0
(2)零向量的相反向量仍是零向量,
0 0
(3)a (a) (a) a
(4)如果是a,b互为相反的向量,那么
a b , b a, a b 0
二、向量减法: 定义: a b a ( b) 即:减去一个向量相当于加上这个向量的 相反向量。 把 a b 也叫做 也是一个向量。
解:(1) D
船实际航行速度
C
船速 A
B 水速
(2)在Rt ABC中, | AB | 2,| BC | 2 3
| AC | | AB |2 | BC |2
22 (2 3) 2 4
D C
2 3 tan CAB 3 2
CAB 60 .
A
B
答:船实际航行速度为4km/h,方向与水的流速间的夹角为60º 。
变式训练 四 如图,
你能用
ABCD 中, AO = a,OB = b,
D C
O
a ,b 表示向量AB和AD吗?
a
A
解:AB=a + b; AD=a - b.
b
B
练习2
填空:
重要提示
AB BA
DB AB AD _____; 你能将减法运 CA 算转化为加法 BA BC ______; 运算吗? AC BC BA ______;
AD OD OA ______;
BA OA OB ______ .
练习3
(1)化简AB AC BD CD 解 : 原式 CB BD CD CD CD 0
2.2.2向量减法运算及其几何意义
向量减法运算及其几何意义
班级:高一(1)班 制作:韦玉显
向量减法运算及其几何意义
1、相反向量:规定与a长度相等,方向相反的 向量,记作-a. a与-a互为相反向量,有 -(a)=a
(1)零向量的相反向量仍是零向量
(2)任一向量与其相反向量的和是零向量,即: a+(-a)=(-a)+a=0 如果a和b为相反向量 ,有a=-b,b=-a,a+b=0. 定义: a-b=a+(-b)
向量减法运算及其几何意义
几何意义
B
AE=a+(-b)=a-b a-b可以表示为从向量b的终点指向 向量a的终点的向量。 又 b+BC=a BC=a-b
b a a-b -b C
所以
A
D
E
向量减法运算及其几何意义
a
b b
a a-b
向量减法运算及其几何意义
例3 已知向量a、b、c、d,求向量a-b,c-d.
b a
c d
向量减法运算及其几何意义
例4 如图,平行四边行ABCD中,AB=a,AD=B,你能 用a,b表示向量AC,DB吗?
解:由向量加法的平行四边形法则,有 AC=a+b 又由向量的减法,有 DB=AB-AD=a-b
b D C
ห้องสมุดไป่ตู้
A
a B
高一数学必修4课件:2-2-2向量减法运算及其几何意义
[例1]
如图所示的向量a,b,c是不共线的向量,求作
向量a+b-c. [分析] 向量(加)减法作图的依据是三角形法则,先观
察各向量的位置,再寻找或构造相应的平行四边形或三角 形,最后依据几何意义确定其图形表示.
第二章
2.2
2.2.2
成才之路 ·数学 ·人教A版 · 必修4
[解析]
→ → 作法一:在平面上任取一点O,作 OA =a, AB =
第二章 2.2 2.2.2
成才之路 ·数学 ·人教A版 · 必修4
建模应用引路
第二章
2.2
2.2.2
成才之路 ·数学 ·人教A版 · 必修4
命题方向
向量的表示
[例3]
如图所示,在五边形ABCDE中,若四边形ACDE
→ → → 是平行四边形,且 AB =a, AC =b, AE =c,试用向量a、 → → → → → b、c表示向量BD、BC、BE、CD及CE.
第二章
2.2
2.2.2
成才之路 ·数学 ·人教A版 · 必修4
[分析]
解答本题可先根据向量的加、减法运算法则,
→ 把易求的向量表示出来,再表示BD.
第二章
2.2
2.2.2
成才之路 ·数学 ·人教A版 · 必修4
[解析]
∵四边形ACDE是平行四边形,
→ → → → → ∴CD=AE=c,BC=AC-AB=b-a, → → → → → → BE=AE-AB=c-a,CE=AE-AC=c-b, → → → ∴BD=BC+CD=b-a+c.
第二章
2.2
2.2.2
成才之路 ·数学 ·人教A版 · 必修4
→ → 当两非零向量a与b不共线时,如在△ABC中,AC=a,AB → → → =b,则 BC = AC -AB =a-b,根据三角形中任意两边之差总 小于第三边,任意两边之和总大于第三边,可得||a|-|b||<|a- b|<|a|+|b|.综合可知,对任意的向量a与b都有||a|-|b||≤|a- b|≤|a|+|b|.只当a与b同向或a与b中至少有一个为零向量时,||a| -|b||≤|a-b|中的等号成立;当a与b反向或a与b中至少有一个 为零向量时,|a-b|≤|a|+|b|中的等号成立.
向量的减法及其几何意义课件
目 录
• 向量的概念 • 向量的减法 • 向量减法的应用 • 向量减法的扩展知识
01
向量的概念
向量的定义
总结词
向量是一个既有大小又有方向的量,通常用有向线段表示。
详细描述
向量是物理学、工程学和数学中常用的一种量,它由大小和方向两个要素组成。在二维平面上,向量通常表示为 一条有向线段,起点为原点,终点为任意点。在三维空间中,向量则表示为一个有向线段,其起点和终点都是空 间中的点。
向量的模
总结词
向量的模是衡量向量大小的一个量,用于描述向量在空间中的长度。
详细描述
向量的模定义为向量起点到终点的距离,即向量的长度。在二维平面上,向量的模可以通过勾股定理 计算得到;在三维空间中,向量的模则是通过欧几里得距离公式计算得到的。向量的模具有传递性、 非负性、齐次性和三角不等式等性质。
02
THANKS
感谢观看
如果有一个标量$k$和一个向量 $vec{A}$,则数乘后的向量是 $kvec{A}$。
向量减法与数乘的关系
向量$vec{A} - vec{B}$可以看作是标 量1与$vec{A}$的数乘减去标量1与 $vec{B}$的数乘,即$vec{A} - vec{B} = 1vec{A} - 1vec{B}$。
向量减法的几何意义
总结词
向量减法的几何意义是平移和反向延长。
详细描述
向量减法的几何意义可以通过平移和反向延长来解释。给定两个向量$vec{A}$和 $vec{B}$,向量$vec{A} - vec{B}$表示将向量$vec{B}$平移到向量$vec{A}$的终点,
然后反向延长至向量$vec{A}$的起点得到的向量。这个过程可以理解为将向量 $vec{B}$沿其方向相反的方向延长相同的长度,得到的结果就是$vec{A} - vec{B}$。
高中数学必修四 第2章 平面向量课件 2.2.2 向量减法运算及其几何意义
∴E→F+E→F=A→B+D→C.
法二 如图,在平面内取点 O,连接 AO、EO、DO、CO、FO、 BO,则 E→F=E→O+O→F=E→A+A→O+O→B+B→F,A→B=A→O +O→B, D→C=D→O+O→C =D→E+E→A+A→O+O→B+B→F+F→C. ∵E、F 是 AD、BC 的中点,
5.化简:(1)(B→A-B→C)-(E→D-E→C); (2)(A→C+B→O+O→A)-(D→C-D→O-O→B). 解 (1)(B→A-B→C)-(E→D-E→C)=C→A-C→D=D→A. (2)(A→C+B→O+O→A)-(D→C-D→O-O→B)=A→C+B→A-D→C+(D→O+ O→B)=A→C+B→A-D→C+D→B=B→C-D→C+D→B=B→C+C→B=0.
类型三 向量加、减法的综合应用 【例 3】 已知任意四边形 ABCD,E 为 AD 的中点,F 为 BC 的 中点,求证:E→F+E→F=A→B+D→C.
[思路探索] 本题主要考查向量加法与相反向量的知识,可以考 虑封闭图形中所有向量的和为 0 或把E→F用不同的向量形式表示 出来,然后相加,即可得证.
证明 法一 如图,在四边形 CDEF 中,
E→F+F→C+C→D+D→E=0,
∴ E→F
=-
→ FC
- C→D
- D→E =
→ CF
+ D→C
+
E→D.①
在四边形 ABFE 中,
E→F+F→B+B→A+A→E=0,
∴E→F=B→F+A→B+E→A.②
①+②得 E→F+E→F=C→F+D→C+E→D+B→F+A→B+E→A=(C→F+B→F)+(E→D+ E→A)+(A→B+D→C). ∵E、F 分别是 AD、BC 的中点,
向量的减法运算课件-高一数学人教A版(2019)必修第二册
D.不确定
Ԧ|的取值范围.
Ԧ|,则四边形
(1)答案 B
解析 ∵ Ԧ =
∵| Ԧ −
Ԧ ,∴四边形 ABCD 为平行四边形,
Ԧ|=| Ԧ −
Ԧ |,∴|
Ԧ|=| Ԧ|.
∴四边形 ABCD 为矩形.故选 B.
(2)解 ∵|| Ԧ |-| Ԧ||≤| Ԧ −
∴3≤| Ԧ −
Ԧ|≤| Ԧ|+| Ԧ|,且| Ԧ|=9,| Ԧ|=6,
本节课重点
向量减法的定义、向量减法的三角形法则
本 课 结 束
A
O
A
B
B
|a − b| = |a| + |b|
a b
||a| − |b|| < |a − b| < |a| + |b|
|||
Ԧ − ||| ≤ |Ԧ − | ≤ ||
Ԧ + ||
|a − b| = |a| + |b|成立的充要条件是与反向或
Ԧ
与中至少有一个为零向量;
Ԧ
|a − b| = ||a| − |b||成立的充要条件是与同向或
Ԧ − ≥ Ԧ − ,当且仅当 Ԧ 与同向时取等号,或至少有一个为零向量.
二、课堂练习
探究一
向量减法的几何意义
例 1.
(1)如图所示,四边形 ABCD 中,若 Ԧ=a, Ԧ=b, Ԧ =c,则 Ԧ=(
A.a-b+c
B.b-(a+c)
C.a+b+c
D.b-a+c
(2)如图所示,已知向量a,b,c不共线,求作向量a+b-c.
(2)起点相同且为差.
做题时要注意观察是否有这两种形式,同时要注意逆向应用.
向量减法运算及其几何意义课件
【审题路线图】1.向量相等⇒对边平行且相等⇒平行四 边形⇒对角线相等⇒矩形. 2.化简等式左边的向量式⇒利用直角三角形的性质⇒向 量的模相等.
【解析】1.选B.由 AB=DC,可得四边形ABCD为平行四边 形,由 AD AB BC BA 可得, BD AC ,故平行四边形 ABCD为矩形.
类型三 利用向量证明简单的几何问题 【典例】1.(钦州高一检测)在四边形ABCD中, AB=DC,若 AD AB BC BA ,则四边形ABCD是 ( ) A.菱形 B.矩形 C.正方形 D.不确定
2.已知△ABC是等腰直角三角形,∠ACB=90°,M是斜边 AB的中点, CM a,CA b. 求证:
向量减法运算及其几何意义
1.相反向量
定 如果两个向量长度_相__等__,而方向_相__反__,那么称 义 这两个向量是相反向量
①对于相反向量有:a+(-a)=0
性 质
②若a,b互为相反向量,则a=-b,a+b=0
③零向量的相反向量仍是零向量
2.向量的减法
定 义 a-b=a+(-b) 减去一个向量等于加上这个向量的
A.0 B.BP C.PQ D.PC
ቤተ መጻሕፍቲ ባይዱ
2.化简: AD BM BC MC=________.
3.如图,已知O为平行四边形ABCD内一点, OA a,OB b, OC c, 则 OD =________.
【审题路线图】1.图形中的向量化简运算⇒图形的性
质⇒向量减法的运算⇒化简.
2.向量加减法的混合运算⇒向量运算的运算律⇒向量
类型一 向量减法的几何意义 【典例】1.如图, AB BC AD 等于 ( )
向量的减法运算(优秀经典公开课课件)
[素养聚焦] 利用向量减法的几何意义,把直观想象、逻辑推理等核心素养体现在解题过 程中.
[规律方法] 1.用向量法解决平面几何问题的步骤 (1)将平面几何问题中的量抽象成向量. (2)化归为向量问题,进行向量运算. (3)将向量问题还原为平面几何问题. 2.用向量法证明四边形为平行四边形的方法和解题关键 (1)利用向量证明线段平行且相等,从而证明四边形为平行四边形,只需证明 对应有向线段所表示的向量相等即可. (2)根据图形灵活应用向量的运算法则,找到向量之间的关系是解决此类问题 的关键.
(1)可以转化为向量的加法来进行,如 a-b,可以先作-b,然后作 a+(-b) 即可.
(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为 连接两个向量的终点,指向被减向量的终点的向量.
[触类旁通] 2.如图,已知向量 a,b,c,求作向量 a-b-c.
解析 在平面内任取一点 O,作向量O→A=a,O→B=b,则向量 a-b=B→A,再 作向量B→C=c,则向量C→A=a-b-c.
2.几何意义: 在平面内任取一点 O,作O→A=a,O→B=b,则向量 a-b=B→A,如图所示.
3.文字叙述:如果把两个向量的__起__点____放在一起,那么这两个向量的差 是以减向量的终点为__起__点____,被减向量的终点为__终__点____的向量.
[基础自测] 1.判断正误(正确的打“√”,错误的打“×”) (1)两个相等向量之差等于 0.( ) (2)两个相反向量之差等于 0.( ) (3)两个向量的差仍是一个向量.( ) (4)向量的减法实质上是向量的加法的逆运算.( ) 答案 (1)√ (2)× (3)√ (4)√
[答案] B
(2)[解析] ∵||A→B|-|A→D||≤|A→B-A→D|≤|A→B|+|A→D|, 且|A→D|=9,|A→B|=6,∴3≤|A→B-A→D|≤15. 当A→D与A→B同向时,|A→B-A→D|=3; 当A→D与A→B反向时,|A→B-A→D|=15. ∴|A→B-A→D|的取值范围为[3,15].
必修4课件2.2.2向量减法运算及其几何意义
2.
若 AB 8, AC 5, 则 BC的取值范围是_____.
解: BC AC AB , AC AB AC AB AC AB 3 BC 13
三 【应用】
你能用 a ,b 表示向量AC和DB吗? D C 解:AC=a + b; b DB=a - b.
三 【应用】
2.
类比
|| a | | b ||| a b || a | | b |
能得到其它结论?
|| a | | b ||| a b || a | | b |
(1)等号何时成立? (2)如何证明该结论?
三 【应用】
二 【新课】
1 在平面内任取一点O
2 作OA a,OB b
3.减法的三角形法则
A
3 则向量BA a b
O
.
a
a b
B
b
BA OA OB
注意: 1、两个向量相减,则表示两个向量起点的字母必须 相同 2、差向量的终点指向被减向量的终点
a
B
四
【课堂小结】Leabharlann (一).知识1.理解相反向量的概念 2. 理解向量减法的定义及其几何意义 3. 正确熟练地掌握向量减法的三角形法则: 1)共起点 2)连终点 3)方向指向被减向量的终点
(二)方法 类比,数形结合,几何作图,分类讨论等思想方法
2.2.2 向量减法运算及其几何意义
一 【复习回顾】
1、向量加法的三角形法则
A
a a a a a a a a a a b O
B
b b
b b
b a+b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:选择题
D
C
例3:如图,平行四边形ABCD,AB= ,
AD= ,用 、 表示向量AC、DB。
D
C
学案例2:
A
B
求:
D
C
b
c
O
A
a
B
证明:b c DA OC OC CB OB
b c a OB AB OB BA OA
学案例3:
C
O
D b
rr
rr r r
rr
若a,b方向相同,| a b || a | | b (| 或 | b | | a |)
rr
rr r r
若a,b不共线,则 | a b || a | | b |
rr
r r rr r r
任意向量a,b,有|| a | | b ||| a b || a | | b |
2.减法化加法
学案例1:
• 如图,已知向量a,b,c,d, 求作向量a-b,c-d.
bd
a
c
书本87 第1题
B
D r ur
A
d cd
b
C a
c
O
向量的减法 书本87 第2题
1.共线同向 a
2.共线反向 a
AC
B
B
AC
rr
rr r r
若a,b方向相反,| a b || a | | b |
3.向量加法满足交换律及结合律
bC
aBΒιβλιοθήκη 一架飞机由北京飞往香港,然后再由 香港返回北京,我们把北京记作A点,香港 记作B点,那么这辆飞机的位移是多少?怎样用向 量来表示呢?
北京A
B
香港
像上面例子一样,我们把与a长度相同, 方向相反的向量,叫做 a 的相反向量,记 作 –a。
其中a 和 – a 互为相反向量。
`
120o
a
B
A
D ab
C
ab
A
B
变式训练一:当a ,b满足什么条件时,
a +b与a b垂直?_____________
变式训练二:当a ,b满足什么条件时,
|a +b|=|a b|?_____________________
小结
1、向量减法的定义及运算 不共线
2、向量减法的作图 共线
2.2.2《向量减法运算 及其几何意义》
温故知新
1、向量加法的三角形法则
A
B
a a a a a a a a aa
注意:
b
b
b b bO b
b
bb
a+b
“首尾相连”(位移)
2、向量加法的平行四边形法则 D
a a a a a a a a a a a+b
注意:
bb
b
A
b
b
各向量“同一起点”(力的合成)
同向
不同向
做一做
1、若 a , b 是互为相反向量,那么
a =_–_b__, b =_–__a_, a + b =_0___
2 、– ( – a)=___a___
a + b 的相反向量是_–_(_a__+_b_) a +(– b)的相反向量是_–_[a__+_(_–__b_)_]
a
b
Oa A
b
a-b
B
特点:1.同一起点,向被减