海洋沉积物分析的主要方法

合集下载

海洋地质学中的海洋沉积物分析方法探索

海洋地质学中的海洋沉积物分析方法探索

海洋地质学中的海洋沉积物分析方法探索引言海洋是地球上最大的生态系统之一,其底部覆盖着厚厚的海洋沉积物。

这些沉积物蕴含着丰富的信息,可以帮助我们了解地球历史、气候变化以及生物演化等重要问题。

因此,海洋沉积物的分析方法在海洋地质学中扮演着至关重要的角色。

本文将探讨一些常用的海洋沉积物分析方法,并介绍其在研究中的应用。

一、物理性质分析1. 颗粒分析颗粒分析是研究海洋沉积物中颗粒粒径、形状和组成的重要方法。

通过使用激光粒度仪等设备,可以快速准确地测量沉积物中颗粒的大小分布,从而了解沉积物的沉积环境和物源特征。

2. 密度分析密度分析是研究海洋沉积物中物质密度变化的方法。

通过测量沉积物样品的湿重和干重,可以计算出其密度。

密度分析可以帮助我们了解沉积物的成分和沉积环境,例如在冰期期间,冰川融化导致的淡水输入会降低海水的密度,从而影响沉积物的密度分布。

二、化学性质分析1. 元素分析元素分析是研究海洋沉积物中元素含量和分布的方法。

通过使用电感耦合等离子体质谱仪等设备,可以测量沉积物中各种元素的含量,从而了解沉积物的来源和古环境变化。

例如,高浓度的有机碳含量可能意味着富营养化的海洋环境。

2. 同位素分析同位素分析是研究海洋沉积物中同位素比例的方法。

通过测量沉积物中同位素的比例,可以推断出古环境的变化。

例如,氧同位素分析可以帮助我们了解过去海洋温度的变化,碳同位素分析可以揭示古生物的生态系统演化。

三、生物学性质分析1. 微化石分析微化石分析是研究海洋沉积物中微小化石的方法。

通过观察和鉴定沉积物中的微化石,可以了解古生物的演化和古环境的变化。

例如,有孔虫的化石可以帮助我们了解过去海洋的温度和盐度变化。

2. DNA分析DNA分析是研究海洋沉积物中DNA序列的方法。

通过提取沉积物中的DNA,可以了解古生物的遗传信息,揭示生物演化的过程。

DNA分析在研究海洋生态系统的多样性和演化方面具有重要意义。

结论海洋沉积物的分析方法在海洋地质学中具有重要的应用价值。

海洋沉积物粒度分析与计算课件

海洋沉积物粒度分析与计算课件

粒度参数的统计特征
平均粒径
对所有颗粒的粒径进行加权平均, 得到平均粒径值。平均粒径是反
映颗粒群整体粒径大小的重要参数。
中值粒径
将颗粒群按照粒径大小进行排序, 取中间位置的粒径作为中值粒径。 中值粒径可以反映颗粒群中中等粒 径颗粒的数值。
有效粒径范围
指颗粒群中含量超过一定比例(如 50%)的粒径范围。有效粒径范围 可以反映颗粒群中主要粒径范围的 分布情况。
海洋沉积物粒度分析的意义
环境监测
粒度分析结果可以用于监测海 洋环境的演变,如悬浮物浓度、
泥沙输运等。
古海洋学研究
通过对沉积物粒度的分析,可 以推断古海洋环境、海流状况 等信息,有助于古海洋学的研究。
资源开发
粒度分析在海底资源开发中也 有重要应用,如海底矿产、油 气资源的勘探和开发。
数值模型验证
粒度分析结果可以为海洋数值 模型提供验证数据,提高模型
海洋沉物粒度分析与 件
• 引言 • 海洋沉积物粒度分析方法 • 粒度数据的处理与计算 • 粒度数据的统计分析 • 粒度数据的解释与应用 • 案例分析
引言
01
目的和背景
目的
本课件旨在介绍海洋沉积物粒度分析的基本原理、方法和技术,以及如何利用 计算技术进行数据处理和分析。
背景
随着海洋科学研究的深入,对海洋沉积物的认识越来越重要。粒度分析是研究 沉积物的重要手段,对于了解沉积物的来源、搬运过程、沉积环境等方面具有 重要意义。
根据粒度参数,结合其他沉积学 标志,如矿物组成、古生物等,
进行沉积环境判别。
判别结果
判断该海域的沉积环境类型,如 三角洲、河口、滨岸等。
应用价值
为该海域的资源开发、环境保护 和灾害防治提供科学依据。

海洋沉积物中有机碳几个主要测定方法的比较

海洋沉积物中有机碳几个主要测定方法的比较

海洋沉积物中有机碳几个主要测定方法的比较1.传统测量方法:传统的测量方法主要是采用湿燃烧法或干燥燃尽法。

湿燃烧法是将沉积物样品与氢氧化钠一起加热,使样品中的有机物燃烧生成CO2,通过测定CO2的体积或质量来计算有机碳的含量。

干燥燃尽法是将沉积物样品干燥,并在高温下燃尽有机物,从而得到有机物质的质量。

这两种方法在测定有机碳含量时都需要对样品进行预处理,并且操作比较繁琐,需要较长的时间。

2.气体分析法:气体分析法主要是利用气体分析仪器对样品中产生的气体进行测定,常用的方法有红外光谱法和气相色谱法。

红外光谱法是利用红外光谱仪测定CO2的吸收峰来计算有机碳含量。

气相色谱法是通过气相色谱仪分离和测定样品中的气相有机物,然后根据测得的相关峰面积来计算有机碳含量。

这两种方法操作简便,分析快速,但由于仪器的限制,无法测定样品中固相有机碳的含量。

3.光谱分析法:光谱分析法利用样品中有机物的吸收和发射特性来测定有机碳含量,常用的方法有紫外吸收光谱法和荧光光谱法。

紫外吸收光谱法是利用样品中有机物的紫外吸收特性来计算有机碳含量。

荧光光谱法是利用样品中有机物的荧光特性来计算有机碳含量。

这两种方法操作简便,无需样品的预处理,但对样品的适用性有一定的限制。

4.核磁共振法:核磁共振技术主要是利用核磁共振仪对样品中的有机物进行分析和测定,核磁共振法可以提供有机物的化学结构信息,对有机碳的测定准确度较高。

但由于核磁共振仪的高昂费用和对操作技术的要求较高,所以在实际应用中较少使用。

综上所述,不同的测定方法有各自的优势和适用性。

在选择测定方法时,需要考虑样品的性质、分析时间、精度要求以及实验条件等因素。

对于一般的常规分析,传统测量方法和气体分析法是较常用的方法;而对于复杂样品的分析,光谱分析法和核磁共振法则能提供更准确的结果。

在今后的研究中,随着仪器技术和方法的不断进步,我们可以期待更多先进的测定方法的出现,从而更好地揭示海洋中有机碳的含量和分布规律。

海洋沉积物粒度分析与计算课件

海洋沉积物粒度分析与计算课件
粒度分布曲线图
以粒度值为横坐标,以对数值为 纵坐标绘制的曲线图,展示颗粒 大小与出现频率的对数关系。
粒度分布参数计算
平均粒度
描述粒度分布的平均值,通常采用算术 平均值或几何平均值计算。
标准偏差
描述粒度分布的离散程度,即各粒度值 与平均粒度之间的偏差程度。
不均匀系数
描述粒度分布的不均匀程度,即最大粒 度值与最小粒度值之比。
分段模型是一种将粒度分布分为多个区段的方法。每个区段都可以用不同的理 论或经验模型进行描述,从而更准确地模拟沉积物的粒度分布。
05
海洋沉积物粒度分析在地 球科学中的应用
古环境与古气候重建
古海洋学研究
通过分析沉积物中的粒度、矿物 和化学成分等信息,可以推断古
海洋环境的气候和环境特征。
古气候变化
利用不同时间段的沉积物进行分析 ,可以了解过去气候变化的记录和 原因。
02
样品处理
将采集的沉积物进行筛选、清 洗和干燥处理,以便进行粒度
分析。
03
样品保存
将处理后的样品妥善保存,避 免样品变质或污染。
粒度测量方法与标准
01
02
03
筛分法
沉降法
图像分析法
使用不同孔径的筛子将沉积物样品分成不 同粒度的组分,测量各组分的重量和粒度 分布。
将沉积物样品制成悬浊液,通过测量不同 时间点的沉淀物体积和粒度分布,计算粒 度参数。
人工智能与机器学习在粒度分析中的应用
01
人工智能与机器学习概述
人工智能和机器学习是当前计算机科学的两个重要分支,涉及对数据的
自动处理和理解以及对规律的自动学习和发现。
02
在粒度分析中的应用
在海洋沉积物粒度分析中,人工智能和机器学习可以用于识别和分类粒

运用主成分分析评价海洋沉积物中重金属污染来源

运用主成分分析评价海洋沉积物中重金属污染来源

运用主成分分析评价海洋沉积物中重金属污染来源一、本文概述本文旨在运用主成分分析(PCA)这一统计工具,对海洋沉积物中的重金属污染来源进行评价。

随着工业化和城市化的快速发展,海洋环境面临着日益严重的重金属污染问题,这不仅对海洋生态系统构成威胁,还可能通过食物链对人类健康造成潜在影响。

因此,识别和评价重金属污染的来源对于制定有效的污染防治策略至关重要。

主成分分析作为一种多变量统计分析方法,能够通过降维处理,提取出数据中的主要信息,揭示隐藏在复杂数据背后的污染源信息。

本文首先将对主成分分析的基本原理进行介绍,然后详细阐述其在海洋沉积物重金属污染来源评价中的应用过程,包括数据收集、预处理、主成分提取与解释等步骤。

通过实例分析,展示主成分分析在海洋沉积物重金属污染来源评价中的实际应用效果,以期为相关研究和实践工作提供有益的参考。

二、研究区域与样品采集本研究选取位于中国东南沿海的某典型海域作为研究对象。

该海域受到人类活动影响显著,包括工业排放、农业活动、城市污水排放以及船舶运输等,使得该海域的海洋沉积物中可能含有多种重金属元素。

在研究区域内,我们选择了10个代表性站位进行沉积物样品的采集。

站位的选择考虑了海域内不同污染源的分布、水深、水流等因素,以确保采集到的样品能够全面反映研究区域的污染状况。

样品采集使用抓斗式采样器,在每个选定的站位采集表层沉积物样品,深度约为0-10厘米。

采样过程中,我们严格遵守了无污染的采样原则,确保采集到的样品不受外界因素的干扰。

同时,我们还对每个站位的水深、水温、盐度等环境参数进行了现场测量,以便后续分析。

采集到的沉积物样品被立即装入洁净的聚乙烯塑料袋中,密封后低温保存,以确保样品的原始状态不受破坏。

在实验室中,我们对每个样品进行了详细的记录,包括站位位置、采样日期、环境参数等信息,为后续的数据分析提供了基础数据。

通过本次采样工作,我们共获得了10个站位的海洋沉积物样品,这些样品将用于后续的主成分分析,以评价研究区域内重金属污染的来源。

海洋沉积物孔隙水中痕量金属元素的测试分析方法

海洋沉积物孔隙水中痕量金属元素的测试分析方法

海洋沉积物孔隙水中痕量金属元素的测试分析方法
海洋沉积物中痕量金属元素的测试分析方法:
一、实验准备
1.测试设备:用于测试痕量金属元素的分析仪也就是原子荧光光谱仪或离子色谱仪;
2.设备准备:确认实验仪器满足实验要求,并检查应用模式、仪器噪音、数据记录程序等;
3.试剂准备:确认所用的试剂制样完备、纯净;
4.样品准备:从抽取的沉积物中提取孔隙水,浓度最好符合实验室
MRL值,也可按要求根据实验室内部门进行抽样;
二、实验步骤
1.采样:根据要求取抽水样品,采用过滤抽吸器进行采集;
2.净化:根据实验要求,使用DOWEX系列的净化柱完成净化处理;
3.分析:根据实验室的技术要求,将比较浓的样品溶液比率值与该元素的标准曲线绘制出比率分析结果,从而计量出实验孔隙水中的任何金
属元素的痕量值;
4.数据处理:实验数据采集后,进行整理和核实,观察均值、标准差、变异系数等数据参数,从而确定测定结果。

三、实验结果解释
1.准确性:较同检测方法不同点,确认测试和分析结果的准确性;
2.可靠性:由于数据的差异性,可以看出该方法的可靠性;
3.可准确测定特征元素:可以准确测定各种痕量金属元素,如汞等,从而解决传统检测方法所存在的缺点;
4.更安全更方便:通过海洋沉积物中痕量金属元素的测试分析,不仅可以提高检测速度和准确性,也能保证实验安全性和可靠性。

海洋沉积物中重金属的来源分析与污染评估

海洋沉积物中重金属的来源分析与污染评估

海洋沉积物中重金属的来源分析与污染评估引言:海洋是地球上最大的生态系统之一,拥有着丰富的自然资源和生物多样性。

然而,随着工业化的快速发展和人类活动的增加,海洋环境也日渐受到重金属污染的威胁。

重金属是一类具有高毒性的有害物质,对生态系统和人类健康产生潜在的风险。

因此,准确分析海洋沉积物中重金属的来源,评估其污染程度,对于保护海洋环境具有重要意义。

一、重金属在海洋沉积物中的来源分析:1. 自然来源:(1)岩石风化:岩石中的矿物质在风化过程中释放出重金属元素,进入河流输送至海洋,沉积于海底形成沉积物。

(2)火山喷发:火山喷发释放出大量的气体和岩浆,其中包含着大量的重金属元素,随着气体和岩浆降落到海洋中,重金属沉积于海底沉积物中。

(3)地壳运动:地壳运动(如地震活动、板块运动)会使得地壳中富含的重金属元素进入海洋。

2. 人为来源:(1)工业排放:工业活动中产生的废水和废气中含有大量重金属元素,其中一部分通过河流和大气传输至海洋沉积物中。

(2)农业和畜牧业:农业和畜牧业使用的化肥和农药中含有重金属元素,通过农田和农产品的径流进入河流和海洋。

(3)城市污染:城市的废水和垃圾处理不当会导致重金属元素进入海洋环境。

(4)海洋交通:船只的废水和油污会污染海洋环境,其中也包括重金属元素的排放。

二、海洋沉积物中重金属的污染评估:1. 监测方法:(1)采样分析:通过在海洋沉积物中采集样本,并进行实验室分析,可以得到沉积物中重金属元素的含量和分布情况。

(2)遥感监测:利用卫星遥感技术,通过测量海洋表面的物理和光学特征,间接推断沉积物中重金属的存在与分布情况。

2. 评估标准:(1)国家标准:不同国家和地区制定了各自的海洋环境标准,对重金属元素的含量设有限制值和参考值,以评估海洋沉积物的污染程度。

(2)生态风险评估:通过研究重金属在海洋生态系统中的生物富集和生态效应,评估其对生态系统的风险影响。

3. 污染评估结果:(1)污染源定位:通过对重金属元素的分布和含量进行分析,可以确定主要的污染源,为制定污染治理策略提供依据。

海底沉积物化学分析方法

海底沉积物化学分析方法

海底沉积物化学分析方法
海底沉积物化学分析方法是在海底研究领域实现系统化的、高效地研究的核心方法之一。

它为科学家们提供了了解海底沉积物复合系统性质与演变的宝贵线索,为海底勘探与改善提供了重要参考。

在一般目的下,海底沉积物化学分析的主要方法有四大类:气象学样品分析,石油溶剂吸取法,水溶性有机物和无机元素分析。

气象学样品分析法以提取气溶物及其他大气物质的微粒为主,可以分析PM2.5和其他类型的微粒物质和气体,从而表征出“环境气溶物”在海底沉积物中的存在情况。

石油溶剂吸取法则是一种适用于海底土壤或悬浮沉积物的有机分析方法,通过石油溶剂吸取溶剂来提取测试样品中的有机物,从而获得有机化合物、有效烷烃和有机碳等物质的完整描述和物质含量数据。

水溶性有机物分析利用色谱等技术手段,采用液体样品的全分离技术,能够测定海底沉积物中的大量有机物及其组成结构,并获得其物质组成比例。

无机元素分析法主要分为原子吸收光谱分析,X射线荧光光谱分析,电感耦合等子,其中原子吸收光谱分析可以定量测定固体样品或液体样品中的重要无机元素及其元素浓度,从而给出海底沉积物中有害元素含量结构。

海底沉积物化学分析不仅可以提供海底地质形态及构造特征,而且还可以直接定量表征海底沉积物的性质和物质特征,对研究有害物质侵入海底沉积物,检测海洋生物分类学特征/多样性及沉积物源及质量追溯具有重要意义,受到高等学校及科研新人的热情持续关注。

最新沉积物粒度分析手册大全含详细说明

最新沉积物粒度分析手册大全含详细说明
一、对沉积物进行粒度分析早在本世纪初期就开始,人们利用粒度分析数据确定区分沉 积物名称,例如砂岩、粉砂岩、泥岩、泥质砂、砂质泥等。
二、到三十年代,由于温氏分类的推广和Φ标准及等比值粒级标准的采用,使单纯的 算术计算转换成对数的运算,使数理统计在粒度资料的处理中得到了应用。
三、到六、七十年代有较大的发展,由于石油资源和沉积矿产的勘探和开发迅猛发展 的结果。对石油来说,查明生油,储油的有利相带,研究沉积相有重要的理论和实际意义。 油田上岩相研究的重点是追索含油砂岩体的几何形态及划分成因类型,粒度数据是其中手段 之一。沉积物是一定环境的产物,它必然包含生成环境的某种信息。一当这种信息被找到, 沉积环境的研究就前进一步。
0.1)。这就破坏了其数学完整性。
2. 各部门对十进制的使用也未统一,多是各行其是。
(二)阿特贝尔格粒级标准 这种标准 1905 年为阿特贝尔格提出,在欧洲大多数国家比较习惯采用,他是以寻求沉
积物的物理性质为基础而进行粒级划分的,同时考虑了成果资料的图解表示和统计分析,该 粒级的基数为二,两个相邻粒级的比值为 10,这个分级标准 1927 年被国际土壤科学会议采 用作为土壤分析的标准,其分级名称如表 3。
Md(㎜)
砂质沉积
粉砂质沉积 粘土质沉积




粗粉砂
细粉砂质软泥
粉砂-粘土质软泥
粘土质软泥
1~0.5 0.5~0.25 0.25~0.1 0.1~0.05 0.05~0.01 <0.01(<70%) <0.01(>70%)
1~0.5 0.5~0.25 0.25~0.1 0.1~0.05 0.05~0.01 0.01~0.007 <0.007
表 4、 西德“土的工学分类”表

海洋沉积物孔隙水总碱度的现场分析方法

海洋沉积物孔隙水总碱度的现场分析方法

2 % = 2. h to i be r ee ia o f lant r- ae f e r e e i ns nteso. 1)T e h d s ut lf tr n t no a l i i p ew t o t i dme to t me is a d m o i k iy n o r h ma n s h p
p r - t r a l n e 1 . 0 mL e tr o e wae mp ea d t 0 s h 0 s awa e o eak l i a e n d t r n d i r v o s p e e t d samo i r wh s l ai t h s e ee mi e p e iu , H l c o e a n t ny b n r o
为两项最为直接 的识别天然气水合物的地球化学 指 标 ,。大量研 究表 明 , 3 J 海洋 沉积 物孔 隙水 总碱度
异 常 往 往 伴 随 着 C- S 浓 度异 常 , 如在 1和 O 例 O 0 次 的调 查 中 , 14 位存 在天 然气水 DP24航 在 24站
3 0 5 5 0 5 4 0 5 0 1 2 3 0 0 0 0 4 8 2 0 O 10
海 洋 沉 积 物 孑 隙水 总碱 度 的现 场分 析 方 法 女 L
程 思海 , 李强
( 广州 海 洋 地质 调 查局 , 州 广 50 6 17 0)
摘 要 海 洋沉积物孔 隙水总碱度及其 分布对海洋天然 气水合物的调查研 究具 有重要意 义。孔 隙水总碱度异 常 对于判断天然气水合物 的存在具有重要 的指示作 用。建立 了利用微量水样品测试总碱 度的方法 , 20 将 . mL孔 隙水 0
mee , ea l i ftemitr sd tr ie ytet rt nwi te t l i t o xuewa ee n db tai t HC1s n ad slt n,h nak l i f h o e h ka ny h m h i o h -t d oui a r o te lai t o ep r- ny t

海洋地质学中的海底沉积物分析方法

海洋地质学中的海底沉积物分析方法

海洋地质学中的海底沉积物分析方法随着人类对海洋的认识不断加深,海洋地质学也越来越成为研究热点。

海底沉积物是研究海洋地质学的重要数据源,其组成、结构、地质年代等信息对研究海底地质过程、生态环境演变、气候变化等具有重要意义。

因此,海底沉积物的分析方法就显得尤为重要。

本文将介绍海洋地质学中常用的海底沉积物分析方法。

一、物理分析方法物理分析方法主要包括取样、筛分、重量测定等。

其中,取样是海底沉积物分析中的第一步,其目的是取得具有代表性的样品。

一般情况下,海底沉积物的取样需借助特殊的装置,如天线捕器、多功能采样器等。

筛分是将沉积物按颗粒大小分为不同的粗细度级,以便进一步分析样品的组成。

重量测定则是确定样品的干重、湿重和矿物质含量等。

二、化学分析方法化学分析方法主要包括常规化学分析和现代分析技术。

常规化学分析主要是利用化学反应,将各种元素和化合物分解成基本化学成分,并通过重量测定、电位滴定、光度分析、火焰原子吸收光谱等手段进行定量分析。

现代分析技术则包括同位素分析、微区化学分析、分子生物学分析等高灵敏度、高精度的分析方法。

三、岩相学分析方法岩相学分析方法将岩芯切片制成薄片,通过显微镜观察样品中的颗粒、矿物与结构,进而分析样品的岩石成分、沉积构造特征等。

四、地球物理学分析方法地球物理学分析方法利用电磁波、重力场、磁场等地球物理现象和物理量测量海底沉积物的特性和参数,推断其地质构造、厚度、密度、粘度等参数,进一步揭示海底地质过程。

五、地球化学分析方法地球化学分析方法包括高精度测量海水、沉积物中各种环境污染物、地球化学元素等,建立了基于化学元素组成的指示器、地球化学地幔地核模型等,并以此研究沉积与构造、沉积循环、沉积物源地、沉积物形成机制、古环境演化等问题。

总之,海洋地质学中的海底沉积物分析方法种类繁多,同时也在不断更新和完善。

这些分析方法作为了解海底沉积物的基础和工具,对研究和探索地球的海洋之谜有着无法替代的重要作用。

海洋地质学中的沉积物粒度分析

海洋地质学中的沉积物粒度分析

海洋地质学中的沉积物粒度分析在海洋地质学中,对于海洋沉积物的研究十分重要。

沉积物中的粒度分析是一项常见的技术手段,用于了解沉积物的组成、形成过程以及古环境演变等信息。

本文将介绍海洋地质学中的沉积物粒度分析方法及其应用。

一、概述沉积物是指在水体中悬浮物质沉积下来形成的物质堆积体,主要由颗粒物质组成。

沉积物的粒度特征反映了物质来源、古环境、运动力学过程等信息。

因此,粒度分析可以为我们提供海洋地质学研究的重要线索。

二、粒度分析方法1. 水下观测法水下观测法是通过使用声纳设备获取海底沉积物的粒度信息。

声纳设备可以通过测量声波在沉积物中的传播速度来确定粒度分布。

该方法适用于获取大范围的海底沉积物粒度数据,但对于细粒沉积物的分辨率较低。

2. 潜望镜法潜望镜法是将一个细长的透明玻璃板下垂至水中,观测沉积物的垂直分布。

通过观察沉积物在玻璃板上的沉积特征,可以初步判断出粒度的分布情况。

这种方法操作简单,适用于水浅、光线充足的场合,但对于深水区的应用有一定局限性。

3. 核心取样法核心取样法是目前应用最广泛的沉积物粒度分析方法。

通过使用大型钻探设备,将海底沉积物采集为长而细的圆柱形样本,即岩心。

然后对岩心进行切片处理,利用显微镜或颗粒度分析仪器对沉积物的颗粒大小进行测量。

该方法可以获取更详细、准确的粒度数据,并且可以进行多种细节分析。

三、沉积物粒度分析的应用1. 古环境演变研究沉积物粒度分析可以通过分析粒度信息的变化,推断海洋环境的演变过程。

例如,随着粒度的变细,可以推测为较低能量的环境,如湖泊或静态海湾。

而粒度变粗则可能表示较高能量的环境,如河口、海岸线附近等。

2. 沉积物来源研究粒度分析可以帮助科学家确定沉积物的物质来源。

通过与潜在来源地的物质进行对比,可以推测沉积物是否来自陆地、火山活动、生物残骸或气候变化等。

3. 地质灾害评估沉积物粒度分析还可以用于地质灾害的评估,如海啸、风暴潮等。

通过分析沉积物的中的粗粒含量和相对密度,可以估计灾害事件的规模和频率。

海洋沉积物粒度分析与计算

海洋沉积物粒度分析与计算

海洋沉积物粒度分析与计算概述:海洋沉积物粒度是指被海水运动沉降到海底的颗粒物在大小上的分布特征。

粒度分析与计算是研究海洋沉积物特性与环境演化的重要方法之一、通过对海洋沉积物样品进行粒度分析和计算,可以了解沉积物的颗粒大小分布、颗粒组成以及沉积环境的动力学特征。

粒度分析方法:常见的粒度分析方法有激光颗粒分析法、筛分法、沉积柱分析法等。

其中,激光颗粒分析法是一种高效、准确的粒度分析方法。

利用激光器激发沉积物样品,通过对散射光的测量,可以确定颗粒物的大小和浓度。

此外,沉积物样品通常还需要进行预处理,如去除有机质、碳酸盐等杂质,以提高粒度分析的准确度。

粒度计算方法:1.极均值法:根据粒度曲线的形状,将其分为若干极均值段。

计算每段的灰度平均值和质量比例,进而得到每段的大、中、小类粒径。

2.统计指标法:通过计算统计指标,如平均粒径、分选系数、偏度、峰度等,从整体上描述粒度分布的特征。

3.图解法:将粒度曲线用直方图绘制出来,通过观察曲线形状和峰值位置等特征,初步判断沉积物粒度组成和沉积环境特征。

粒度分析结果的解释:1.粒度曲线:粒度曲线反映了沉积物中不同粒径颗粒的相对含量。

典型的粒度曲线形状可分为正态曲线、双峰曲线、倒“U”型曲线等。

不同的曲线形状对应不同的沉积环境和运动形式。

3.分选系数:分选系数反映了沉积物中颗粒的分选程度,值越大说明颗粒的分选越完善。

分选系数可以用来判断沉积物的运动方式。

4.偏度与峰度:偏度和峰度是统计指标,反映了沉积物粒度分布的偏斜和尖峰程度。

正偏度和负峰度的曲线表明颗粒分布向大颗粒倾斜;负偏度和正峰度的曲线则表明颗粒分布向小颗粒倾斜。

应用与意义:总结:海洋沉积物粒度分析与计算是研究沉积物特性与环境演化的重要方法。

通过粒度分析,可以了解海洋沉积物中颗粒的大小分布、颗粒组成以及沉积环境的动力学特征。

激光颗粒分析法是一种常用的粒度分析方法,可以提供高效、准确的颗粒大小和浓度信息。

粒度分析结果的解释需要结合统计指标、粒度曲线的形状等,从整体上了解沉积物粒度分布的特征。

海洋沉积物中有机碳几个主要测定方法的比较

海洋沉积物中有机碳几个主要测定方法的比较

海洋沉积物中有机碳几个主要测定方法的比较
海洋沉积物中的有机碳是沉积古代海洋生物活动与进化历史的重要记忆,也是
推断石油成因机理研究中不可或缺的核心指标之一。

因此,海洋沉积物有机碳含量的准确测定在沉积学、地球化学和油藏地质研究等领域具有重要意义。

目前,业界普遍采用的有机碳测定技术有:氯化氢解吸技术、溶剂提取法以及
在线氧化-化学发光(LODOX-CL)技术。

氯化氢解吸技术是测定海洋沉积物有机碳含量的著名、老牌方法,也称比色法,这种技术的测定结果准确、快速,但同时受有机碳种类的影响也较大,在某些类型的沉积物中,氯化氢解吸技术测定的有机碳含量会有一定偏差。

溶剂提取法是目前应用较为广泛测定海洋沉积物有机碳含量的方法,溶剂提取
容易、灵敏度高、结果准确,采用溶剂提取法测定海洋沉积物有机碳含量更精确反映沉积有机质的组成结构。

相比之下,LODOX-CL技术具有更好的灵敏度和自动化程度,适用于多种类型
的沉积物,可以以高精度快速测定沉积物中的有机碳含量。

总而言之,氯化氢解吸技术、溶剂提取法以及LODOX-CL技术均可用于测定海
洋沉积物中有机碳含量,但其准确性、灵敏度、自动化把控程度等也有所差异。

只有正确判断沉积物类型、样品大小以及测定任务的实际要求,才能选择合适的测定方法,以期获得准确可靠的海洋沉积物有机碳含量测定结果。

海洋沉积物全盐含量测定方法

海洋沉积物全盐含量测定方法

海洋沉积物全盐含量测定方法
1. 嘿,你知道吗,海洋沉积物全盐含量测定很重要呢!就像我们要知道一杯水里有多少盐一样。

可以用重量法呀,把沉积物烘干称重,然后溶解过滤,再称重,通过差值不就知道盐有多少啦!比如我们吃的盐,不也是这样称出来的嘛!
2. 哇塞,还有一种方法叫电导法呢!这就好比是通过电流来判断一样东西的特性。

把沉积物制成溶液,测一测电导数值,就能推算出全盐含量啦。

就像凭声音就能辨别出是哪位朋友一样神奇!
3. 嘿呀,离子选择电极法也不错哟!就好像有个超级聪明的探测器,专门去抓那些盐分离子。

把电极放进去,它就能告诉你盐含量咯。

这跟我们找东西一样,有了专门的工具就容易多啦,不是吗?
4. 哈哈,火焰光度法也能派上用场呢!它就像一束光,专门照亮盐分的存在。

点燃火焰,通过光的强度来判断盐含量呢。

这不就像舞台上的聚光灯,一下子就让主角显现出来啦!
5. 哦哟,比色法也很厉害呀!它就如同一个细心的调色师,能分辨出各种颜色的细微差别。

通过加入特定试剂后的颜色变化,就能知道全盐含量啦。

这跟我们挑衣服看颜色是否喜欢是一个道理呀!
6. 你想想看呀,滴定法也很管用呢!就好比一场较量,逐步逼近真实的盐含量。

不断滴加试剂,直到出现特定的反应为止。

这不就像我们追求目标一样,一步一步靠近嘛!
我觉得这些方法都各有特点,都值得我们去好好了解和掌握呀,这样才能更准确地测定海洋沉积物全盐含量!。

海洋沉积物ph标准方法

海洋沉积物ph标准方法

海洋沉积物ph标准方法
海洋沉积物pH标准方法是用于测量海洋沉积物酸碱度的一种规范方法。

pH值是衡量溶液酸碱性的指标,它反映了溶液中氢离子的浓度。

对于海洋沉积物的研究来说,pH值的测量对了解海洋环境中的化学反应和生物过程具有重要意义。

现在,我将向您介绍一种常用的海洋沉积物pH测量方法:玻璃电极法。

这种
方法是基于玻璃电极对溶液进行测量,并利用电池原理测量溶液中的氢离子浓度。

下面是该方法的步骤:
1. 首先,准备好需要测量的海洋沉积物样品。

确保样品干燥且没有明显的杂质。

2. 在准备好的样品中添加适量的去离子水,并搅拌均匀,使样品溶解。

3. 使用玻璃电极仪器,将电极插入样品中,确保电极与样品充分接触。

4. 等待一段时间直至电极读数稳定,记录下测得的pH值。

需要注意的是,为了确保测量的准确性,应该事先进行校准。

校准过程通常包
括在标准缓冲溶液中进行零点和斜率校准,以确保测量结果的精确性。

同时,在进行实际测量前,应定期检查和校准仪器,以保证测量结果的可靠性。

海洋沉积物pH的测量方法还有其他一些,如玛丽亚斯法等。

不同的方法在执
行步骤和仪器要求上可能有所差别,但原理基本相同。

综上所述,海洋沉积物pH标准方法是测量海洋沉积物酸碱度的一种常用方法。

通过准备样品、使用玻璃电极测量并记录pH值,可以了解海洋环境中的化学反应
和生物过程。

校准仪器以及定期检查和维护是确保测量结果准确可靠的关键步骤。

中华人民共和国海洋沉积物质量

中华人民共和国海洋沉积物质量

中华人民共和国海洋沉积物质量GB 18668-2002(国家质量监督检验检疫总局2002 年3月1日发布,自2002 年10 月1日起实施)前言本标准的全部技术内容为强制性。

为贯彻执行《中华人民共和国环境保护法》和《中华人民共和国海洋环境保护法》,防止和控制海洋沉积物污染,保护海洋生物资源和其他海洋资源,有利于海洋资源的可持续利用,维护海洋生态平衡,保障人体健康,特制定本标准。

本标准由国家海洋局提出并负责解释。

本标准由国家海洋标准计量中心归口。

本标准起草单位:国家海洋局国家海洋环境监测中心。

本标准主要起草人:马德毅、汤烈风、王菊英、阎启仑、马永安、关道明、王洪源。

1 范围本标准规定了海域各类使用功能的沉积物质量要求。

本标准适用于中华人民共和国管辖的海域。

2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。

本标准出版时,所示版本均为有效。

所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB17378.5-1998 海洋监测规范第5部分:沉积物分析GB17378.7-1998 海洋监测规范第7部分:近海污染生态调查和生物监测GBJ48-1983 医院污水排放标准3 海洋沉积物质量分类与指标3.1 海洋沉积物质量分类按照海域的不同使用功能和环境保护的目标,海洋沉积物质量分为三类。

第一类适用于海洋渔业水域,海洋自然保护区,珍稀与濒危生物自然保护区,海水养殖区,海水浴场,人体直接接触沉积物的海上运动或娱乐区,与人类食用直接有关的工业用水区。

第二类适用于一般工业用水区、滨海风景旅游区。

第三类适用于海洋港口水域,特殊用途的海洋开发作业区。

3.2 海洋沉积物质量分类指标各类沉积物质量标准列于表1。

4 海洋沉积物质量监测4.1 海洋沉积物样品的采集、预处理、制备及保存按G B 17378.5 的有关规定执行。

4.2 本标准各项目的测定,按表2的分析方法进行。

除大肠菌群及粪大肠菌群的测定方法所引用的标准为G B17378.7,病原体的测定方法所引用的标准为G BJ 48,其余项目的测定方法均引用G B 17378.5 标准,各项目的引用标准见表2。

南海表层沉积物的沉降法和激光法粒度分析结果对比和校正

南海表层沉积物的沉降法和激光法粒度分析结果对比和校正

南海表层沉积物的沉降法和激光法粒度分析结果对比和校正张富元;冯秀丽;章伟艳;林霖;张霄宇;姚旭莹【摘要】沉降法与激光法粒度分析的主要差异是黏土粒径,这个差异将直接影响到黏土、粉砂含量和沉积物类型。

本文对激光法黏土粒径和含量及沉积物类型进行系统校正。

南海东部水深〉2 000 m海域沉降法得出的砂、粉砂、黏土含量分别为3.66%、42.43%、53.91%,激光法砂、粉砂、黏土含量分别为9.26%、61.11%、29.64%,粉砂、黏土含量相差达约20%。

沉降法得出沉积物类型主要是粉砂质黏土(69.81%),其次是黏土质粉砂(19.81%),其他类型只占11.38%。

激光法主要是黏土质粉砂(89.62%),其次%Classically,the grain size of sediment samples is determined by the sieve method for the coarse fractions and by the pipette method,based on the Stokes' sedimentation rates,for the fine fractions.Results from the pipette method are compared with results from laser diffraction size analysis using a set of randomly selected 106 surface sediments which are collected from the Eastern South China Sea.The aim of this research is to calibrate systematically the grain size and content of clay fraction and sediment type achieved from laser diffractometry. The contents of sand,silt,and clay in sediments of eastern South China Sea with depth more than 2 000 m were 3.7%,42.4% and53.9%,respectively,obtained from standard sedimentation method,and9.3%,61.1%,29.6% respectively from laser diffractometry.The deviation of contents of silt and clay fraction obtained from the two methods is about 20%.The sediment types obtained from the eastern South China Sea obtained from sedimentation method are essentially silty clay of 69.8%,andsecondly is clay 19.8%.There is very small amount of other types,only 11.4%.The main sediment type based on laser diffractometry is clayey silt of 89.6%,and secondly is sandy silt of about 10.4%,there is no any other types obtained.The agreement of sediment type between the two methods is only 21.7%,which means there are significant discrepancies for the contents of clay fraction achieved from two different methods. Therefore,it is not possible to compare the contents of different grain size and sediment type obtained from the two methods without calibration.The grain size of clay fraction from laser method was calibrated to 0.01mm,and 0.063~0.01 mm for silt correspondingly.The contents of clay and silt fraction are 54.2% and 36.2%,respectively,after calibration,which is very close to the result of 52.1% for the clay fraction and 42.3% for the silt fraction from the sedimentation method.The agreement between sedimentation method and calibrated laser method is 91.5%.Most of clayey silt is calibrated to silty clay.The correlation coefficients are 0.3203 for the silt fraction and 0.3347 for the clay fraction after calibration.The relationship appears to be positively strong,indicating that the calibration for grain size and content of clay fraction is successful. However,there is no distinct improvement for the content of clay and silt fraction calibrated according to regressive equation.The contents are 29.1% and62.2%,respectively.The discrepancy between the content of clay and silt fraction from two methods is 20%,but there is lower amplitude of variation.The agreement of sediment type with regressive method is only 21.7%,which means the discrepancy arrives at 78.3%,indicating thatcalibration with regressive equation for content of clay and silt fraction and sediment type.The research suggested that after the grain size were calibrated to 0.01 mm for clay fraction and 0.063~0.01 mm for silt fraction,the contents of clay and silt fraction and sediment type agreed well with those from sedimentation method.There is almost no improvement using regressive calibration.【期刊名称】《沉积学报》【年(卷),期】2011(029)004【总页数】9页(P767-775)【关键词】南海表层沉积物;沉降法;激光法;粒度分析;对比和校正【作者】张富元;冯秀丽;章伟艳;林霖;张霄宇;姚旭莹【作者单位】国家海洋局海底科学重点实验室、国家海洋局第二海洋研究所,杭州310012;中国海洋大学,山东青岛266003;国家海洋局海底科学重点实验室、国家海洋局第二海洋研究所,杭州310012;中国海洋大学,山东青岛266003;浙江大学,杭州310012;国家海洋局海底科学重点实验室、国家海洋局第二海洋研究所,杭州310012【正文语种】中文【中图分类】P512.2;P736沉积物粒度分析方法很多,各种分析方法所依据的理论或原理不同,使测得的颗粒直径不相同。

海洋沉积物中硫化物的测定

海洋沉积物中硫化物的测定

海洋沉积物中的硫化物可以通过化学分析来测定。

具体来说,可以采用以下步骤进行测定:
1.准备样品:将海洋沉积物样品经过适当的预处理,如筛选、研磨等,以
获得足够的样品量。

2.提取硫化物:将样品加入适当的溶剂,并经过若干步骤的提取和纯化,
使得样品中的硫化物被溶解到溶剂中。

3.测定硫化物含量:使用适当的分析方法,如原子吸收光谱法、红外光谱
法等,测定提取溶液中硫化物的含量。

需要注意的是,在进行硫化物测定时,需要使用纯净的试剂和仪器,以避免干扰测定结果。

此外,在测定过程中,也需要注意样品的保存和处理方式,以确保测定结果的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海洋沉积物分析的主要方法概述地质分析测试工作是地质科学研究和地质调查工作的重要技术手段之一。

其产生的数据是地质科学研究、矿产资源及地质环境评价的重要基础,是发展地质勘查事业和地质科学研究工作的重要技术支撑。

现代地球科学研究领域地不断拓展对地质分析测试技术的需要日益增强,迫切要求地质分析测试技术不断地创新和发展,以适应现代地球科学研究日益增长的需求。

海洋地质样品的分析测试是海洋地质工作的重要组成部分,无论是资源勘查还是环境评价均离不开相关样品的分析测试。

选择准确可靠的分析方法是保证分析测试质量的关键,也是进行质量监控的重要手段之一。

1.电子探针分析(EMPA)电子探针(EPMA),全名为电子探针X射线显微分析仪,又名微区X射线谱分析仪可对试样进行微小区域成分分析。

电子探针的大批量是利用经过加速和聚焦的极窄的电子束为探针,激发试样中某一微小区域,使其发出特征X射线,测定该X射线的波长和强度,即可对该微区的元素作定性或定量分析。

电子探针仪是X射线光谱学与电子光学技术相结合而产生的,1958年法国首先制造出商品仪器。

从Castaing奠定电子探针分析技术的仪器、原理、实验和定量计算的基础以来,电子探针分析(EPMA)作为一种微束、微区分析技术在50~60年代蓬勃发展,至70年代中期已比较成熟;近年来,由于计算机、网络技术的迅猛发展,相关应用软件的开发与使用的加快,使得装备有高精度的波谱仪的新一代电子探针仪具有数字化特征、人工智能和自动化的分析程序、网络功能以及高分辨率图象的采集、分析及处理能力。

EPMA技术具有高空间分辨率(约1μm)、简便快速、精度高、分析元素范围广(4Be~92U)、不破坏样品等特点,使其很快就在地学等研究领域得到应用。

电子探针分析(EPMA)主要用于矿物的主要元素分析,但也可用于熔融岩石(玻璃)样品的主要元素分析,但不用来分析微量元素。

它的主要优点是具有优良的空间分辨率,可以用电子束直径为1—2um进行分析。

这意味着可以分析极其小的样品面积。

岩石样品的常规分析局限于天然的和合成的玻璃样品。

在这种应用中,常用非聚焦的电子束,以减小玻璃非均匀性问题。

硅酸盐玻璃的电子探针分析在实验岩石学中具有特殊的重要性,但是很少利用电子探针进行岩石粉末的熔融片的主要元素分析。

下面简要介绍电子探针在系列矿物研究和蚀变矿物带研究中的运用。

1.1 系列矿物研究组成矿物的一些元素之间,由于其化学性质、原子半径键性等相似性,常常可互相取代,从而使自然界矿物中普遍存在类质同象而形成许多成分复杂的系列矿物。

通过系列矿物的研究可以了解矿物结构和物理性质与化学成分之间的关系,进而可为研究成矿环境的物理化学条件、元素赋存状态、稀有贵重元素和矿床综合评价等方面提供信息。

众所周知,在系列矿物中某种或某几种化学成分在一定范围内的变化并不一定总会引起其光学性质的明显变化,因此用传统的矿物鉴定和分析方法研究系列矿物就会显得极为困难。

而电子探针不仅能分别分析不同矿物颗粒的化学成分,还能检测同一颗粒内不同部位的成分差异,因此电子探针自然地就成为了研究系列矿物最有效的手段之一。

1.2 蚀变矿物带热液矿床的围岩蚀变,在蚀变类型、蚀变强度和蚀变规模等方面都有很大变化,这种变化常反映在岩石成分、结构构造、物理性质等在时空上的差异,从而形成蚀变矿物带。

蚀变矿物晕可看成是热液蚀变时,蚀变矿物的重新组合和分布,是元素“扩散”和“交代”的产物。

蚀变矿物组合的特征,随着矿床类型、热液性质、原岩组分及所处构造部位的不同而变化,如硅化、碳酸盐化、绿泥石化等蚀变类型的岩石,在空间上可单独存在,也可相互叠加呈明显或不明显的分带现象。

采用电子探针对岩石样品进行化学成分分析方法的试验研究结果表明,用电子探针对某些岩石定向光薄片直接测量,能达到与化学分析近似的结果,为研究蚀变矿物晕及矿物蚀变带的成分提供较为可信的依据。

2. 等离子光谱分析(ICP—AES)原子发射光谱是光谱分析法中发展较早的一种方法。

20世纪20年代,Gerlach 为了解决光源不稳定性问题,提出了内标法,为光谱定量分析提供了可行性。

到60年代电感耦合等离子体光源的引入,大大推动了发射光谱分析的发展。

等离子光谱(ICP)是一种火焰温度(6000K~10000K)技术,它同样也是溶液技术,其原理是原子处于基态,即能量最低态的原子,吸收特定能量,被激发到高能级后,激发态的电子不稳定,要返回基态或者较低能级时,将电子跃迁时吸收的特定能量以光的形式释放出来,其中每一种元素都会发出一定波长的谱线,即特征谱线。

ICP—AES通过其特征谱线和该光的强度,测量待测元素的浓度。

ICP—AES具有灵敏度高、检出限低、选择性好、分析速度快特点,且能测定周期表中的大多数元素,此外还有所测样品用量小,能同时进行多元素的定性和定量分析,因此成为了元素分析最常用的手段之一。

高晶晶等[1]采用硝酸、氢氟酸和高氯酸溶样,用ICP—AES测定了海洋沉积物中18种常、微量元素,具有检出限低,精密度高,准确度好等优点,满足海洋沉积物分析测试要求,发现研究区内沉积物以SiO2和Al2O3为主,两者含量之和在70%左右,说明黄河口沉积物以硅酸盐和硅铝酸盐为主。

3. 等离子质谱分析(ICP—MS)电感耦合等离子体质谱技术是目前公认的较为强力的元素分析技术,随着基础研究和仪器的进步,该技术在同位素比值分析方面也显示出了巨大的优势。

ICP-MS的主要特点首先是灵敏度高,背景低。

大部分元素的检出限在0. 000X~0. 00X ng/ml范围,比电感耦合等离子体原子发射光谱( ICP-AES) 普遍低约2到3个数量级,因此非常适合于痕量、超痕量元素的测定。

其次,元素的质谱相对简单,干扰较少,周期表上的所有元素几乎都可以进行测定。

另外,ICPMS还具有快速进行同位素比值测定的能力。

由于ICP-MS技术不像其他质谱技术需要将样品封闭到检测系统内再抽真空,而是与ICP-AES一样在常压条件下方便地引入ICP,因而具有样品引入和更换方便的特点,便于与其他进样技术联用。

比如ICP-MS与激光烧蚀、电热蒸发、流动注射、液相/气相色谱等技术联用,以扩大其在微区原位分析、元素形态分析等方面的应用。

稀土元素具有独特的4f电子层结构、大的原子磁矩、很强的自旋轨道耦合等特性,与其他元素形成稀土配合物时,配位数可在6~12之间,并且稀土化合物晶体结构多种多样,使稀土在国民经济的各领域中有着广泛的用途。

而稀土元素因复杂的外层电子结构、独特的化学性质,给分析检测带来了较大的困难。

目前普遍采用的分析方法是发射光谱法。

电感耦合等离子体质谱法(ICP-MS)是20世纪80年代迅速发展起来的一种痕量、超痕量元素分析技术。

由于灵敏度高、检出限低,比一般ICP—AES低2~3个数量级,干扰少、精度高、线性范围宽、简便、快捷、能够同时快速测定多种元素,在稀土元素分析中被广泛应用。

如在单一稀土氧化物纯度分析、金属及合金中痕量稀土的检测、稀土生物效应研究、测定植物中痕量稀土元素等。

王彦美等[2]采用微波消解——电感耦合等离子体质谱( ICP—MS)法同时测定海洋沉积物中的C r 、Co、N i 、Cu、Zn、Cd 、P等7种微量元素。

对微波消解酸体系和微波程序进行了优化,结果表明:由4mL HNO3与2mL HF组成的混合酸对沉积物消解效果好;阶段升温,最高温度200,消解30 min有着最佳的消解效果。

采用本实验方法对7种不同类型的海洋沉积物标准物质进行了测定,测定结果与标准值一致。

该方法快速简便、准确度高,可用于海洋沉积物样品中多元素同时测定。

4. 原子吸收光谱分析(AAS)原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元素含量的一种仪器分析方法。

由于原子吸收光谱(AAS)基于观察原子对电磁辐射的吸收,每种元素发生原子化时,吸收的可见光的波长是一定的,所以原子吸收光谱仪由原子化设备、光源及探测器组成。

在样品发生原子化作用过程中,作为原子吸收的结果,探测器对光线的反映能够被校准,对ppm水平的元素含量是十分敏感的。

原子吸收光谱分析具有不少优点,如较高的灵敏度,火焰原子吸收分光光度法测定时相对灵敏度可达1.0×10-8~1.0×10-10g/ml;精密度好,性能好的仪器可达0.1%~0.5%;选择性好,方法简便,可不经分离在同一溶液中直接测定多种元素;准确定高,分析速度快,对痕量元素的相对误差可达0.1%~0.5%;应用广泛,可直接测定岩矿、土壤、植物、水等试样中的70多种微量金属元素,还能间接测定硫、氮、卤素等非金属元素及其化合物。

但此分析方法也有一些限制条件,如必须先制备样品溶液,通过喷雾器把溶液喷成雾状,在乙炔空气或者乙炔一氧化二氮火焰上发生原子化。

张成等[3]采用微波消解——原子吸收光谱法对近海沉积物标准物质中Cu、Pb、Zn、Cr等5种微量元素进行检测与分析,优化了微波消解的工作条件。

实验结果表明微波消解法与传统方法相比无显著性差异,但具有高效快速、试剂消耗量少和节约能源等特点。

该法对各元素的回收率在100%~105%之,相对标准偏差小于2.84%。

5. 中子活化分析(NAA)中子活化分析(NAA)是活化分析中最重要的一种方法,用反应堆、加速器或同位素中子源产生的中子作为轰击粒子的活化分析方法,是确定物质元素成份的定性和定量的分析方法。

它具有很高的灵敏度和准确性,对元素周期表中大多数元素的分析灵敏度可达10-6~10-13,因此在环境、生物、地学、材料、考古、法学等微量元素分析工作中得到广泛应用。

由于准确度高和精密度好,故常被用作仲裁分析方法。

中子活化分析具有显著的优点。

其一,灵敏度高,准确度、精确度高。

中子活化法对周期表中80%以上的元素的灵敏度都很高,一般可达10-6-10-12g,其精度一般在±5%。

其二,多元素分析,它可对一个样品同时给出几十种元素的含量,尤其是微量元素和痕量元素,能同时提供样品内部和表层的信息,突破了许多技术限于表面分析的缺点。

第三,样量少,属于非破坏性分析,不易沾污和不受试剂空白的影响。

此外还有仪器结构简单,操作方便,分析速度快。

周瑶琪等[4]将中子活化分析用于层序地层学的研究,通过对地层中宇宙化学元素(如Co,Ir等)及REE元素丰度值的测定,建立了一套计算海相地层的沉积速率、相对海平面变化、见断面的精细时间结构的定量计算方法,并成功地运用于贵州紫云海相地层的层序地层学研究,恢复了该地区晚二叠世具线性标的相对海平面变化定量曲线。

6. X射线荧光光谱分析(XRF)X射线荧光光谱分析法作为一种成熟的现代分析技术广泛地应用于众多研究领域,如地质、石油、生命科学领域等。

相关文档
最新文档