高中数学常用结论集锦
高中数学常用公式及常用结论-大全
高中数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.30.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 37. 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数., (2)当a b <时,在1(0,)a 和1(,)a+∞上l o g ()ax y bx=为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式(奇变偶不变,符号看象限)212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式 s i n ()s i n c o s c o s sαβαβαβ±=±; c o s ()c o s c o s s i n sαβαβαβ±=; t a n t a nt a n ()1t a n t a nαβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.s i n c o s a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,t a n baϕ= ). 48.二倍角公式s i n 2s i n c os ααα=. 2222c o s 2c o s s i n 2c o s 112s i n ααααα=-=-=-.22t a nt a n 21t a n ααα=-. 49. 三倍角公式3s i n 33s i n4s i n4s i n s i n ()s i n ()33ππθθθθθθ=-=-+. 3c o s 34c o s 3c o s4c o s c o s ()c o s ()33ππθθθθθθ=-=-+.323t a n t a nt a n 3t a nt a n ()t a n ()13t a n 33θθππθθθθθ-==-+-. 50.三角函数的周期公式函数s i n ()y x ωϕ=+,x ∈R 及函数c o s ()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.53.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b= a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a=11(,)x y ,b=22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b=|a ||b|cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积.62.平面向量的坐标运算(1)设a=11(,)x y ,b=22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a=11(,)x y ,b=22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a=(,),x y R λ∈,则λa=(,)x y λλ.(5)设a=11(,)x y ,b=22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b=22(,)x y ).64.平面两点间的距离公式 ,A B d=||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a=11(,)x y ,b=22(,)x y ,且b ≠0,则 A||b ⇔b=λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k . 69.“按向量平移”的几个结论(1)点(,)P x y 按向量a=(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a=(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+. (3) 图象'C 按向量a=(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a=(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m=(,)x y 按向量a=(,)h k 平移后得到的向量仍然为m=(,)x y . 70. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a xa x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f xg x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程 (1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.93.椭圆22221(0)x y a b a b+=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b ⇔+>. 95. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.96.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.97.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b -=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.100. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 101.抛物线px y 22=上的动点可设为P ),2(2 y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px =.102.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =1212||||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b=b +a .(2)加法结合律:(a +b)+c=a +(b +c). (3)数乘分配律:λ(a +b)=λa +λb .116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.||AB CD ⇔AB 、CD 共线且AB CD 、不共线⇔AB tCD =且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB 、AC 共面⇔AD x AB y AC =+⇔(1)OD x y OA xOB yOC =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.121.射影公式已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r教学资料(高中数学) 祝同学们学习进步(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB =⋅=135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ).136.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 137.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.',d EA AF =.d ='E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12a ,外接球的半径为4a .148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++. 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 151.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 152.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m -=-; (3)11m m n n A nA --=;(4)11n n nn n n nA A A ++=-; (5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.153.组合数公式m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质 (1)m n C =mn nC - ; (2) mn C +1-m nC =mn C 1+.注:规定10=n C .155.组合恒等式(1)11mm n n n m C C m --+=; (2)1m mn n n C C n m -=-;(3)11mm n n n C C m--=;(4)∑=nr r nC0=n2;(5)1121++++=++++r n r n r r r r r rC C C C C . (6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系m m n n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.158.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!!...21211m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无。
高中数学常用二级结论大全
高中数学常用二级结论大全一、基础常用结论1. 立方差公式:a³-b³=(a-b)(a²-ab+b²);立方和公式:a³+b³=(a+b)(a²-ab+b²).2. 任意的简单n 面体内切球半径为是简单n面体的体积,S 表是简单n 面体的表面积).3. 在Rt △ABC 中,C 为直角,内角A,B,C 所对的边分别是a,b,c, 则△ABC 的内切圆半径为4. 斜二测画法直观图面积为原图形面积的倍.5. 平行四边形对角线平方之和等于四条边平方之和.6. 函数ʃ(x)具有对称轴x= a,x=b(a≠b),则ʃ(x)为周期函数且一个正周期为2 |a-b|.7. 导数题常用放缩e'≥x+1,e^>ex(x>1).8. 点(x,y) 关于直线Ax+By+C=0 的对称点坐标9. 已知三角形三边x,y,z, 求面积可用下述方法(一些情况下比海伦公式更实用,如√27, √28, √29):,二、圆锥曲线相关结论10. 若圆的直径端点A(x₁,yi),B(x₂,y₂), 则圆的方程为 ( x - x ) ( x - x₂) + (y-y)(y-y₂)=0.11. 椭区的面积S 为S =πab.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导 . 推论:①过圆( x -a)²+(y-b)²=r²上任意一点P(xo,y。
) 的切线方程为 ( x o-a)(x-a)+(y 。
-b)(y-b)=r²;②过椭圆) 上任意一点P(xo,y。
) 的切线方程为③过双曲) 上任意一点P(x₀,y 。
) 的切线方程为 1.14. 任意满足ax"+by"=r 的二元方程,过曲线上一点 (x₂,y₁) 的切线方程为ax₁x"¹+by₂y"-1=r.15. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.①过圆 x ² +y²+Dx+Ey+F=0 外一点P(x₀,o) 的切点弦方程②过椭圆O) 外一点P(xo,y。
高中数学常见结论
高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。
即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。
高中数学公式大全(完整版)
高中数学常用公式及常用结论1.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=2.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n–2个.3.充要条件〔1〕充分条件:假设p q ⇒,那么p 是q 充分条件.〔2〕必要条件:假设q p ⇒,那么p 是q 必要条件.〔3〕充要条件:假设p q ⇒,且q p ⇒,那么p 是q 充要条件.注:如果甲是乙的充分条件,那么乙是甲的必要条件;反之亦然. 4.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,那么)(x f 为增函数;如果0)(<'x f ,那么)(x f 为减函数.5.如果函数)(x f 和)(x g 都是减函数,那么在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,那么复合函数)]([x g f y =是增函数.6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,那么函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 8.几个函数方程的周期(约定a>0)〔1〕)()(a x f x f +=,那么)(x f 的周期T=a ; 〔2〕,)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,那么)(x f 的周期T=2a ; 9.分数指数幂(1)mna=〔0,,a m n N *>∈,且1n >〕.(2)1mnm na a-=〔0,,a m n N *>∈,且1n >〕.10.根式的性质〔1〕n a =.〔2〕当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.11.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.12.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a ,④.积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=,幂的对数:M n M a n a log log =;b mnb a na m log log =13.对数的换底公式 log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 15.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).16.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 17.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.18.同角三角函数的根本关系式22sin cos 1θθ+=,tan θ=θθcos sin 19正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩20和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 21、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-〔21cos 2cos 2αα+=,21cos 2sin 2αα-=〕.⑶22tan tan 21tan ααα=-.22.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=. 23.正弦定理2sin sin sin a b cR A B C===. 24.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.25.面积定理111sin sin sin 222S ab C bc A ca B ===〔2〕.26.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 2设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb . 28.向量的数量积的运算律:(1) a ·b= b ·a 〔交换律〕;(2)〔λa 〕·b= λ〔a ·b 〕=λa ·b = a ·〔λb 〕;(3)〔a +b 〕·c= a ·c +b ·c. 30.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,那么a b(b ≠0)12210x y x y ⇔-=. 31. a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.32.数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.33.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,那么a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,那么a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,那么2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,那么λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,那么a ·b=1212()x x y y +. 34.两向量的夹角公式2222122cos y x yθ=+⋅+(a =11(,)x y ,b =22(,)x y ).35.平面两点间的距离公式 ,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).36.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,那么 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.37.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),那么△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,那么〔1〕O 为ABC ∆的外心222OA OB OC ⇔==.〔2〕O 为ABC ∆的重心0OA OB OC ⇔++=. 〔3〕O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. 38.常用不等式:〔1〕,a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=〞号).〔2〕,a b R +∈⇒2a b+≥当且仅当a =b 时取“=〞号). 〔3〕b a b a b a +≤+≤-.39y x ,都是正数,那么有〔1〕假设积xy 是定值p ,那么当y x =时和y x +有最小值p 2;〔2〕假设和y x +是定值s ,那么当y x =时积xy 有最大值241s . 40.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.41.斜率公式 2121y y k x x -=-〔111(,)P x y 、222(,)P x y 〕.42.直线的五种方程〔1〕点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).〔2〕斜截式 y kx b =+(b 为直线l 在y 轴上的截距).〔3〕两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)〔5〕一般式 0Ax By C ++=(其中A 、B 不同时为0).43.两条直线的平行和垂直(1)假设111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)假设1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.45.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).46. 圆的四种方程〔1〕圆的标准方程 222()()x a y b r -+-=.〔2〕圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 47.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.48.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .49.圆的切线方程(1)圆220x y Dx Ey F ++++=.(2)圆222x y r +=. ①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;50.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.51.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21ca x e PF +=,)(22x c a e PF -=. 52.椭圆的的内外部〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.53.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.54.双曲线的方程与渐近线方程的关系(1〕假设双曲线方程为12222=-by a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)假设渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x .(3)假设双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x 〔0>λ,焦点在x 轴上,0<λ,焦点在y 轴上〕.55. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 56.直线与圆锥曲线相交的弦长公式AB =1212|||AB x x y y ==-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率〕.57(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)数乘分配律:λ(a +b )=λa +λb . 59共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =⇔(1)OP t OA tOB =-+.60.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 那么(1)a +b =112233(,,)a b a b a b +++;(2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;61.设A 111(,,)x y z ,B 222(,,)x y z ,那么AB OB OA =-= 212121(,,)x x y y z z ---. 62.空间的线线平行或垂直设111(,,)a x y z =,222(,,)b x y z =,那么a b ⊥⇔0a b ⋅=⇔1212120x x y y z z ++=. 63.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,那么cos 〈a ,b 〉a .64.异面直线所成角cos |cos ,|a b θ==21||||||a b a b x ⋅=⋅+〔其中θ〔090θ<≤〕为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量〕 65.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).66.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-〔m ,n 为平面α,β的法向量〕.134.空间两点间的距离公式假设A 111(,,)x y z ,B 222(,,)x y z ,那么 ,A B d =||AB AB AB =⋅=.67.球的半径是R ,那么 其体积343V R π=,其外表积24S R π=. (3) 球与正四面体的组合体:棱长为a的正四面体的内切球的半径为12a ,外接球的半径为4a . 6813V Sh =柱体〔S 是柱体的底面积、h 是柱体的高〕.13V Sh =锥体〔S 是锥体的底面积、h 是锥体的高〕.69.分类计数原理〔加法原理〕12n N m m m =+++.70.排列数公式 mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.71.组合数公式 m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 72.组合数的两个性质(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=n C .155.组合恒等式〔1〕11mm nn n m C C m --+=;〔2〕1m m n n n C C n m -=-;〔3〕11m m n n n C C m --=; 〔4〕∑=nr rn C 0=n 2; 73.排列数与组合数的关系m mn nA m C =⋅! . 74.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. 〔1〕“在位〞与“不在位〞①某〔特〕元必在某位有11--m n A 种;②某〔特〕元不在某位有11---m n m n A A 〔补集思想〕1111---=m n n A A 〔着眼位置〕11111----+=m n m m n A A A 〔着眼元素〕种.〔2〕紧贴与插空〔即相邻与不相邻〕①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个〔1+≤h k 〕,把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.〔3〕两组元素各一样的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.〔4〕两组一样元素的排列:两组元素有m 个和n 个,各组元素分别一样的排列数为nn m C +.75.分配问题〔1〕(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . 〔2〕(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.〔3〕(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,那么其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m=⋅⋅=-.76.二项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,,=. 77.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=- 78.离散型随机变量的分布列的两个性质〔1〕0(1,2,)i P i ≥=;〔2〕121P P ++=.79.数学期望1122n n E x P x P x P ξ=++++80..数学期望的性质〔1〕()()E a b aE b ξξ+=+.〔2〕假设ξ~(,)B n p ,那么E np ξ=.81.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+标准差σξ=ξD .82.方差的性质(1)()2D a b a D ξξ+=;(2〕假设ξ~(,)B n p ,那么(1)D np p ξ=-. 83..)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim lim x x y f x x f x x x∆→∆→∆+∆-==∆∆.84.. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.85..几种常见函数的导数(1) 0='C 〔C 为常数〕.(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -=' (5) x x 1)(ln =';ax a xln 1)(log ='(6) x x e e =')(; a a a x x ln )(='. 86..导数的运算法那么〔1〕'''()u v u v ±=±.〔2〕'''()uv u v uv =+.〔3〕'''2()(0)u u v uv v v v -=≠. 87..复合函数的求导法那么设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,那么复合函数(())y f x ϕ=在点x 处有导数,且'''x u xy y u =⋅,或写作'''(())()()x f x f u x ϕϕ=. 89.复数的相等,a bi c di a c b d +=+⇔==.〔,,,a b c d R ∈〕90.复数z a bi =+的模〔或绝对值〕||z =||a bi +91.复数的四那么运算法(1)()()()()a bi c di a c b d i +++=+++(2)()()()()a bi c di a c b d i +-+=-+-;(3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2222()()(0)ac bd bc ada bi c di i c di +-+÷+=++≠.sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】函 数 性质。
艾优数学 高中数学常考72结论
艾优数学高中数学常考72结论以下是一些高中数学常考72结论,供参考:1. 四个正弦的和为2倍根号2。
2. 两个正弦的和等于它们的余弦的和。
3. 正弦的平方等于它的余弦的平方和。
4. 正弦的平方等于正弦加2倍根号2,即 sin2θ = 1 + 2sin2θ/2。
5. 正弦的平方等于正弦乘以cosθ。
6. 两个三角函数的乘积等于它们的积的乘积。
7. 两个三角函数的和等于它们的差。
8. 正弦定理:sin2θ + cos2θ = 1,其中θ是任意角度。
9. 余弦定理:cos2θ = 1 - sin2θ。
10. 对任意实数 a、b,有 (a+b)2 = a2 + 2ab + b2。
11. 三角函数的模长公式:θ的模长 = 正弦值减两倍的余弦值。
12. 三角函数的周期公式:θ的周期等于两个正弦值的和除以商的最小正周期。
13. 三角函数的最大值和最小值:正弦值最大时为θ = 2nπ(其中 n 是任何整数),余弦值最小时为θ =π/2。
14. 三角函数的最大值和最小值可以通过对数函数的变换得到。
15. 两个函数的和差公式:a + b = (a-b) + (a+b)/2,2a - b = 2(a-b),(2a+b)/2 = 2(a+b)/2。
16. 三角函数的括号公式:(a + b)2 = a2 + 2ab + b2,(2a + b)2= 4a2 + 4ab + 2ab + 2b2。
17. 对数函数的变换公式:loga(x) = xlna,其中 x 是底数,lna 是指数。
18. 三角函数的图像特点:正弦函数图像是一条上凸的直线,余弦函数图像是一条下凸的直线。
19. 正切函数图像特点:正切函数值总是介于 0 和 1 之间,且正切函数的值等于函数值于θ轴的夹角范围内取到的最小值和最大值。
20. 用三角函数求解函数的最值问题,可以通过求导的方法解决。
21. 利用三角函数的图像和性质,可以画出很多几何图形的特征,比如对称轴、周期、极角等。
高中数学所有常用公式结论
高中数学所有常用公式结论高中数学中常用的公式和结论是指在课程中经常出现的公式和结论。
这些公式和结论在高中数学的学习和应用中起着重要的作用。
下面是一些高中数学中常用的公式和结论的例子:1.二项式定理:$(a+b)^n=C^n_0a^nb^0+C^n_1a^{n-1}b^1+C^n_2a^{n-2}b^2+...+C^n_na^0b^n$2.三角函数的和差公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$3.三角函数的倍角公式:$\sin 2A = 2 \sin A \cos A$$\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A - 1 = 1 - 2\sin^2 A$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$4.三角函数的半角公式:$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$\tan \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$5.三角函数的和化积公式:$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$6. 余弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$c^2 = a^2 + b^2 - 2ab \cos C$7. 正弦定理:在任意三角形ABC中,三边的长度分别为$a, b, c$,$\angle A, \angle B, \angle C$为对应的内角,则有$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$8.直角三角形中的勾股定理:在直角三角形ABC中,AB是斜边,AC和BC是两条直角边,则有$AB^2=AC^2+BC^2$9.关于数列和数列的常用公式:*等差数列的通项公式:$a_n=a_1+(n-1)d$*等差数列的前n项和公式:$S_n = \frac{n}{2}(a_1 + a_n)$*等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$*等比数列的前n项和公式(当$q \neq 1$):$S_n =\frac{a_1(q^n-1)}{q-1}$以上只是一些高中数学中常用的公式和结论的例子,还有很多其他的公式和结论没有一一列举。
高中数学常用结论及公式大全
高中数学常用结论及公式大全高中数学作为数学学科中的一个重要组成部分,涵盖的范围非常广泛,包括数学思维、数学方法、数学工具等多个方面。
在高中数学学习中,结论和公式都是必不可少的内容,可以说是数学知识的核心。
本文将为大家介绍一些高中数学中常用的结论及公式,希望对读者的数学学习有所帮助。
一、几何中的结论及公式1.1 三角形中位线定理:三角形中位线的交点是三角形重心,重心到顶点的距离是中位线长度的二分之一。
1.2 直角三角形斜边上的高:一个直角三角形中,斜边上的高等于两直角边的乘积除以斜边长。
1.3 圆周角定理:圆周角等于其所对的弧的一半。
1.4 相似三角形定理:两个三角形相似的条件为它们的对应角度相等,或者说,两三角形相似的充要条件是它们的对应角度相等。
1.5 三角形内角和定理:任意一个三角形的三个内角和等于180度。
1.6 圆的面积公式:一个半径为r的圆的面积等于πr的平方。
1.7 圆的周长公式:一个半径为r的圆的周长等于2πr。
二、代数中的结论及公式2.1 一次函数的斜率公式:一次函数y=kx+b中,k为斜率,等于任意两点的纵坐标之差与横坐标之差的比。
2.2 二次函数解析式:二次函数y=ax的平方+bx+c的解析式为:y=a(x-h)的平方+k,其中h=-b/2a,k=c-b的平方/4a。
2.3 勾股定理:勾股定理指的是直角三角形中,斜边上的平方等于另外两条直角边上的平方和。
即c的平方=a的平方+b的平方。
2.4 平方差公式:(a+b)(a-b)=a的平方-b的平方。
这个公式在化简代数式的时候非常有用。
2.5 解一元二次方程:若一元二次方程ax的平方+bx+c=0的判别式D=b 的平方-4ac>0,则方程的两个实根为:x1=(-b+√D)/2a,x2=(-b-√D)/2a。
2.6 二次函数的根与系数之间的关系:对于一个二次函数y=ax的平方+bx+c,其根的公式为x1,x2=(-b±√(b的平方-4ac))/2a,其中根的个数依靠判别式D=b的平方-4ac的正负来决定。
高中数学二级结论(经典实用)
高中数学二级结论(经典实用)1、余弦定理:在任何三角形中,$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。
2、正弦定理:在任何三角形中,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中$R$为该三角形的外接圆半径。
3、勾股定理:对于任意直角三角形,斜边的平方等于两条直角边平方和。
4、解二元一次方程组:当方程组$ax+by=c$,$dx+ey=f$的系数矩阵的行列式不为零时,解得$x=\frac{ce-bf}{ae-bd}$,$y=\frac{af-cd}{ae-bd}$。
5、解二次方程:对于方程$ax^2+bx+c=0$,当$\Delta=b^2-4ac>0$时,有两个不同实根$x_1=\frac{-b+\sqrt{\Delta}}{2a}$,$x_2=\frac{-b-\sqrt{\Delta}}{2a}$;当$\Delta=0$时,有一个实根$x=-\frac{b}{2a}$;当$\Delta<0$时,有两个虚根$x_1=\frac{-b+\sqrt{-\Delta}}{2a}i$,$x_2=\frac{-b-\sqrt{-\Delta}}{2a}i$。
6、二次函数的解析式:对于二次函数$y=ax^2+bx+c$,它的顶点坐标为$\left(-\frac{b}{2a},-\frac{\Delta}{4a}\right)$,其中$\Delta=b^2-4ac$;当$a>0$时,开口向上,当$a<0$时,开口向下。
7、解一元高次方程:对于方程$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$,如果存在有理根$p/q$,则必有$p\mid a_0$,$q\mid a_n$,且$p,q$互质。
高中高考数学所有二级结论《完整版》Word版
高中高考数学所有二级结论《完整版》Word版1. 余弦定理:对于任意三角形ABC,有$a^2=b^2+c^2-2bc\cos{A},b^2=a^2+c^2-2ac\cos{B}, c^2=a^2+b^2-2ab\cos{C}$2. 正弦定理:对于任意三角形ABC,有$\dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}$3. 高线定理:对于任意三角形ABC,设D为BC上的垂足,则AD为该三角形的高线,有$AD=\dfrac{2S}{a}, BD=\dfrac{2S}{c},CD=\dfrac{2S}{b}$,其中S为该三角形的面积。
4. 中线定理:对于任意三角形ABC,设E,F为AB,AC上的中点,则BE,CF为该三角形的中线,有$BE=\dfrac{1}{2}AC, CF=\dfrac{1}{2}AB$5. 角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A的平分线,则$\dfrac{BD}{CD}=\dfrac{AB}{AC}$。
6. 高尔夫球定理:一条直线与圆相切时,从切点到圆心的距离就是该直线的斜率。
7. 根号2定理(勾股定理):对于直角三角形ABC,设$\angle A=90^{\circ}$,BC 为斜边,则$AB^2+AC^2=BC^2$8. 等腰三角形的角平分线定理:对于等腰三角形ABC,设D为AB,AC的交点,则AD 为角A的平分线。
9. 任意三角形的角平分线定理:在任意三角形ABC中,设D为BC上一点,AD为角A 的平分线,则$\dfrac{AB}{AC}=\dfrac{BD}{CD}$。
10. 三角形内角和定理:在任意三角形ABC中,$\angle A+\angle B+\angleC=180^{\circ}$。
11. 垂直平分线定理:在平面上,对于任意两点A,B,所有到A,B的距离相等的点P 构成的直线为AB的垂直平分线。
高中数学公式结论大全
22.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
23.函数 的图象的对称性
(1)函数 的图象关于直线 对称
.
(2)函数 的图象关于直线 对称
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.
19.若函数 是偶函数,则 ;若函数 是偶函数,则 .
20.对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
;
.
74.含有绝对值的不等式
当a> 0时,有
.
或 .
75.无理不等式
(1) .
(2) .
(3) .
76.指数不等式与对数不等式
(1)当 时,
;
.
(2)当 时,
;
77.斜率公式
( 、 ).
78.直线的五种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(3)过圆 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.
88.点与圆的位置关系
点 与圆 的位置关系有三种
若 ,则
点 在圆外; 点 在圆上; 点 在圆内.
89.直线与圆的位置关系
直线 与圆 的位置关系有三种:
;
;
.
其中 .
高中数学结论
高中数学结论高中数学结论是数学学科的基础,是我们学习数学知识的框架。
在数学教育中,高中数学结论旨在帮助学生理解数学概念、运算方法和定理推导的逻辑思维。
下面将给出一些高中数学结论的相关参考内容,以供参考。
一、代数结论:1. 次数为n的多项式方程有n个根。
2. 有理数是整数的商的集合。
3. 平方根和多次方根不是有理数的是无理数。
4. 这两个无理数是相等的,当且仅当它们的小数部分都是无限循环小数。
5. 分母是质数的普通分数,无论如何约分都不能化为有限小数。
6. 两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积。
7. 若两个正整数的公约数只有1,则它们互质。
8. 若a和b为整数,则公式(a+b)^2=a^2+2ab+b^2成立。
二、几何结论:1. 两直线相交于一点,这两个角称为相交角,相交角互补。
2. 两垂直相交的直线,它们互为背街角,且每两条相邻角互补。
3. 两条相交线形成的两对内错角互补。
4. 直角三角形斜边的平方等于两个直角边的平方和。
5. 三角形两边之和大于第三边,两边之差小于第三边。
6. 两角的角和等于90°,则这两个角互余。
7. 直线和平面只有一个公共点的是垂足。
8. 平行线被截割后,对应角相等。
三、概率与统计结论:1. 所有概率的总和为1。
2. 独立事件的乘法原理成立。
3. 随机事件的概率等于事件发生的次数除以总的可能次数。
4. 形成互补事件的两个事件,它们概率之和为1。
5. 事件的必然发生与不可能发生的概率分别为1和0。
6. 样本空间包含了所有可能的基本事件。
以上是高中数学常见的一些结论,它们是数学知识体系中的基础,对于深入理解和应用数学知识非常重要。
希望以上内容对你有所帮助。
高中数学常用二级结论55条
5
⑬ cot A cot B cot C 3 3
2
2
2
(4)在任意锐角△ABC 中,有:
① tan A tan B tan C 3 3
⑭ cot A cot B cot C 3 ③ tan 2 A tan 2 B tan 2 C 9
② cot A cot B cot C 3 9
利用递推数列 f (x) 的不动点,可将某些递推关系 an f (an1 ) 所确定的数列化为等比数列或较 易求通项的数列,这种方法称为不动点法
定理 1:若 f (x) ax b(a 0, a 1), p 是 f (x) 的不动点, an 满足递推关系 an f (an1 ), (n 1) ,则 an p a(an1 p) ,即{an p} 是公比为 a 的等比数列.
3
28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例 角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边 对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点: 定义:方程 f (x) x 的根称为函数 f (x) 的不动点
19.函数 f(x)具有对称轴 x a , x b (a b) ,则 f(x)为周期函数且一个正周期为| 2a 2b |
2
20.y=kx+m
与椭圆
x a
2 2
y2 b2
1(a
b
0)
相交于两点,则纵坐标之和为
a
2mb 2 2k2 b
2
21.已知三角形三边 x,y,z,求面积可用下述方法(一些情况下比海伦公式更实用,如 27 , 28 , 29 )
yy0 b2
高中数学常用的42个结论
高中数学常用的42个结论1.并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.2.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.3.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A;∁U(A∩B)=(∁UA)∪(∁UB);∁U(A∪B)=(∁UA)∩(∁UB).4.改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.5.否定结论:对原命题的结论进行否定.6.倒数性质(1)a>b,ab>0⇒;(2)a<0<b⇒;(3)a>b>0,d>c>0⇒.7.有关分数的性质若a>b>0,m>0,则8.分式不等式的解法9.两个恒成立的充要条件(1)一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔(2)一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔10.几个重要的不等式(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.(2)(a,b∈R),当且仅当a=b时取等号.(3)(a,b∈R),当且仅当a=b时取等号.(4)(a,b同号),当且仅当a=b时取等号.11.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.12.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.13.函数单调性的两个等价结论设∀x1,x2∈D(x1≠x2),则(1)(或(x1-x2)[f(x1)-f(x2)]>0)⇔f(x)在D上单调递增.(2)(或(x1-x2)[f(x1)-f(x2)]<0)⇔f(x)在D上单调递减.14.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.15.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.16.函数周期性的常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=,则T=2a(a>0).(3)若f(x+a)=,则T=2a(a>0).17.幂函数的图象和性质指数函数图象的特点18.指数函数的图象恒过点(0,1),(1,a),,依据这三点的坐标可得到指数函数的大致图象.19.函数y=ax与y=(a>0,且a≠1)的图象关于y轴对称.20.指数函数y=ax与y=bx的图象特征:在第一象限内,图象越高,底数越大;在第二象限内,图象越高,底数越小.21.换底公式的三个重要结论①logab=;②logambn=logab;③logab·logbc·logcd=logad.22.对数函数图象的特点(1)对数函数y=logax(a>0且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象只在第一、四象限.(2)函数y=logax与y=log1ax(a>0且a≠1)的图象关于x轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.23.函数图象平移变换的八字方针(1)“左加右减”,要注意加减指的是自变量.(2)“上加下减”,要注意加减指的是函数值.24.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称.(2)函数y=f(x)的图象关于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x).(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=对称.25.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称.(2)函数y=f(x)的图象关于(a,0)对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x).(3)函数y=f(x)的图象关于点(a,b)成中心对称⇔f(a+x)=2b-f(a-x)⇔f(x)=2b-f(2a-x).26.两个函数图象之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图象关于直线x=对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称;(3)函数y=f(x)与y=2b-f(-x)的图象关于点(0,b)对称.27.有关函数零点的三个结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.28.“对勾”函数f(x)=x+(a>0)的性质(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0, ]上单调递减.(2)当x>0时,x=时取最小值2;当x<0时,x=-时取最大值-2.29.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.30.象限角31.轴线角32.三角函数定义的推广设点P(x,y)是角α终边上任意一点且不与原点重合,r=|OP|,则sin α=,cos α=,tan α=.33.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化.34.同角三角函数的基本关系式的几种变形(1)sin2α=1-cos2α=(1+cos α)(1-cos α);cos2α=1-sin2α=(1+sin α)(1-sin α);(sin α±cos α)2=1±2sin αcos α.(2)sin α=tan αcos α.35.四个必备结论(1)降幂公式:cos2α=,sin2α=.(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.(3)tan α±tan β=tan(α±β)(1∓tan αtan β),1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=.(4)辅助角公式asin x+bcos x=,其中tan φ=.36.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.37.与三角函数的奇偶性相关的结论(1)若y=Asin(ωx+φ)为偶函数,则有φ=kπ+(k∈Z);若为奇函数,则有φ=kπ(k∈Z).(2)若y=Acos(ωx+φ)为偶函数,则有φ=kπ(k∈Z);若为奇函数,则有φ=kπ+(k∈Z).(3)若y=Atan(ωx+φ)为奇函数,则有φ=kπ(k∈Z).38.对称中心与零点相联系,对称轴与最值点相联系.y=Asin(ωx+φ)的图象有无数条对称轴,可由方程ωx+φ=kπ+(k∈Z)解出;它还有无数个对称中心,即图象与x 轴的交点,可由ωx+φ=kπ(k∈Z)解出.39.相邻两条对称轴间的距离为,相邻两对称中心间的距离也为,函数的对称轴一定经过图象的最高点或最低点.40.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.41.三角形中的三角函数关系(1)sin(A+B)=sin C.(2)cos(A+B)=-cos C.(3)sin +B=cos.(4)cos=sin. 42.三角形中的射影定理在△ABC中,a=bcos C+ccos B;b=acos C+ccos A;c=bcos A+acos B.。
高中数学常用结论
高中数学常用结论
一、根据相似三角形的等腰定理
(1)两腰的比等于对角的比;
(2)三边比例相等的三角形称相似;
(3)等腰三角形的面积等于其高度乘以两边中短边的一半;
二、根据勾股定理
(1)直角三角形的斜边的平方等于两条直角边的平方和;
(2)圆的周长等于1/4圆的圆周弧度乘以圆的半径;
(4)圆形的面积乘以其半径的平方等于圆的圆周长乘以其半径的一半。
三、根据贝塞尔定理
(1)二次曲线的曲率(即曲线弯曲度)与其对称轴对应点(对称中心)到纵轴之比等;
(2)二次曲线的弧长与其轴对称点所在位置的斜率成反比;
(3)二次曲线夹角随斜率增大而增大,随斜率减小而减小;
(4)弦长到圆心的比例等于圆曲线上对应点的切线与曲线的曲率的比值。
四、根据椭圆的定义
(1)椭圆的轴向等于其长轴乘以其短轴;
(2)椭圆的中心距等于其长轴的一半;
五、其他常用结论
(1)二元一次方程有无穷多个解;
(2)直线上垂线方程为y=mx+b;
(3)两圆的位置关系有位置外,内两个圆,一个圆在另一个圆的内部,内切外离三种;
(4)多重解的方程有至少重根两个解;
(5)当两条抛物线的焦点不相同时,它们有两种位置关系,分别为相交和不相交;
(6)方程求两个解时,一定存在最佳解,即有最大零点和最小零点;(7)多项式方程的根个数等于方程的次数减一;
(8)等比数列和等差数列有特定公式求和;
(9)三角形内角之和为180度。
高中数学常用二级结论大全衡水
高中数学常用二级结论大全衡水一:立体几何的基本结论1、直线的空间位置:在空间内任意两点间存在唯一条直线;2、空间中任意三点不共线:三点不共线,则在他们三点外必存在一个平面;3、平面的空间位置:在空间内任意三点不共线,则这三点所在平面与空间中其他任何平面都要存在一条公共直线,或能作无限多次交互,或仅有一次交互;4、直线和平面的位置关系:空间内任意一条直线要么与某一平面垂直、要么在平面上,要么与平面相交且只有一个交点;5、空间点的共线性:三空间点共线,当且仅当它们恰好在一条直线上;6、平面和直线的共线性:一条直线与一平面共线,当且仅当它们恰好有一个重合的直线;7、空间中任意四点不共面:四点不共面,则它们所在的平面唯一地确定,则这四点所在平面要么唯一确定,要么在空间中存在无穷多个;8、空间立体的位置:三平面相交,即在空间内存在一个空间立体;9、立体四面体:四个空间点不共面,则存在四面体,且当且仅当它们同时共线。
二:圆的基本结论1、圆的定义:由一点O和大于零的实数r组成的圆心O,其所有的点都离它距离为r的圆;2、圆的方程形式:圆心坐标(x0,y0),半径r,圆心到圆周上任意一点(x,y)满足如下公式:(x-x0 ) ^2+ (y-y0) ^2=r^2;3、圆的轨迹:圆的轨迹是圆心O与任意一点A之间的距离,总是大于等于圆的半径r;4、圆形外接矩形:以圆心O为中心,每边长为2r,角为90度的矩形,叫做圆形外接矩形;5、切线和切点:任意一点P在圆上,则有一条直线,将圆分为两个圆弧,这条直线叫做以点P为切点的切线;6、圆的面积:圆的面积S=π r^2;7、弦与圆心连线的圆角:弦是圆上任意两点组成的线段,与圆心连线的角称为圆角;8、圆的弧长:圆弧的长度=2πr;9、圆的切线和切点:任意一点P在圆上,则有一条直线,将圆分为两个圆弧,则这条直线叫做以点P为切点的切线,其交点称为切点。
最新超全高中数学精彩结论汇总(复习必备)
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”.
8.充要条件
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
).
辅助角公式中辅助角的确定: (其中 角所在的象限由a,b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项. 仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
高中数学小结论
1. 常见的数值:e ≈2.72,√2≈1.41,√3≈1.73ln2≈0.69,ln3≈1.102. 类似“√n +1-1”的式子都可以写成n 项和的形式,在一些证明题中会有应用: √n +1-1=(√n +1-√n )+( √n -√n −1)+...+( √2-√1)=∑(√k +1−√k n k=1)3. 几何平均不等式:∑a in i=1≥n √a 1a 2a 3…a n n 4. 组合数的性质:C n+1m =C n m +C n m−1组合数性质的推论:C n n +C n+1n +...+C n+m n=C n+m+1n+15. 正四面体中,外接球半径:内接球半径=3:16. 圆台的侧面积:S 侧=π(r+r 1)l (r 、r 1为上下底圆的半径,l 为母线长。
特殊的,当r 1=0时,即为圆锥时,有S 侧=πrl)7. 圆台的体积公式:V=13(S+√SS 1+S 1)h8. 矩形ABCD 的对角线AC 与BC 、CD 所成的角分别为α、β,则有sin 2α+sin 2β=1类比推理有长方体ABCD-A 1B 1C 1D 1中,体对角线BD 1与AB 、BB 1、BC 所成角分别为α、β、γ 则有cos 2α+cos 2β+cos 2γ=1 sin 2α+sin 2β+sin 2γ=29. a n+1=φa n +q γa n +h,一般为周期数列10. 重要不等式的推论:e x≥x+1,e x-1≥x ,e x≥ex 11. 发生的概率等于1的事件不一定为必然事件12. AB ⃗⃗⃗⃗⃗ =(x 1,y 1),AC ⃗⃗⃗⃗⃗ =(x 2,y 2),则S △ABC =12|x 1y 2−x 2y 1|13. 泰勒展开:e x=x 00!+x 11!+x 22!+x 33!+⋯,−∞<x <∞14. f(x)关于直线x=a 对称,则f(x+a)为偶函数 15. f(a+x)=-f(b-x),则f(x)关于(a+b 2,0)中心对称16. n 等分点公式:x 2=βx 1+(1-β)x 3x 1、x 2、x 3均为坐标,当β=12时,即为中点公式17. A 1(x 1,y 1)与A 关于直线l :y=x+a 的对称点A 2(x 2,y 2)的关系:{y 2=x 1+ax 2=y 1−a18. 在上方时是sin θ-cos θ>0在下方时是sin θ-cos θ<019. 在上方时sin θ+cos θ>0在下方时sin θ+cos θ<020. ○1对于阴影区域有: sin 2θ+cos 2θ=1,tan 2θ+1=1cos 2θ,cot 2θ+1=1sin 2θ○2对角线相乘等于1,如:sin θ×1sinθ=1○3相邻两边构成的三角形,底角相等等于顶角,比如cos θ×1sinθ=cot θ21. 若f(x)是[a ,b]上的凸函数,则对不相等的x 1,x 2,x 3,x 4∈[a ,b]则有: f(x 1+x 2+x 3+x 44)>14[f (x 1)+f (x 2)+f (x 3)+f(x 4)]22. (x-a)2+(lnx-2a)2具有几何意义:表示(x,lnx)与(a,2a)两点间的距离平方 23. 在证明题中,1+122+132+...+1n2通常进行裂项处理24. g(x)=e x −1e x +1为奇函数 25. sin2α=2t1+t²,cos2α=1−t²1+t²,tan2α=2t1−t², (t=tan α)26. tan α2=1−cosαsinα=sinα1+cosα27. 1±sin2α=(sin α±cos α)²28. 若α+β=45°,则有(1+tan α)(1+tan β)=229. 类似cos20°cos40°cos60°cos80°这样cos 连乘的式子,且角度为公比为2的等比数列,可采用同时乘除sin θ的形式,连续用倍角公式 30. 在△ABC 中,A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),则△ABC 的重心O 为(x 1+x 2+x 33,y 1+y 2+y33)31. 在△ABC 中,GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,则G 为△ABC 的重心 32. 在△ABC 中, OA ⃗⃗⃗⃗⃗ . OB ⃗⃗⃗⃗⃗ = OA ⃗⃗⃗⃗⃗ . OC ⃗⃗⃗⃗⃗ = OB⃗⃗⃗⃗⃗ . OC ⃗⃗⃗⃗⃗ ,则O 为△ABC 的垂心 33. 在△ABC 中,a 、b 、c 分别为三角形的三条边,若有a OA ⃗⃗⃗⃗⃗ +bOB ⃗⃗⃗⃗⃗⃗⃗⃗ +c OC⃗⃗⃗⃗⃗ =0,则O 为△ABC 的内心 34. 若G 是三角形的重心,有OG ⃗⃗⃗⃗⃗ =13(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ )35. 若P 、G 、Q 三点共线,则有OP ⃗⃗⃗⃗⃗ =μOG ⃗⃗⃗⃗⃗ +(1-μ) OQ ⃗⃗⃗⃗⃗ (即后面系数和要为1),其中μ=n n+m,1-μ=mn+m36. P 、A 、B 、C 四点满足,OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ + zOC ⃗⃗⃗⃗⃗ ,x+y+z=1,则P 、A 、B 、C 四点共面 37. 角平分线定理:DC 为∠BCA 的角平分线,则有BD AD=BCAC38. 在△OAB 中,OC 是∠AOB 的内角平分线,ON 是∠AOB 的外角平分线。
高中数学常用 结论 集锦
高中数学常用结论集锦数学是科学中最基本的一部分,它是世界上最伟大的思想体系之一,在高中学习数学可以培养学生对抽象思维的能力。
高中数学中的一些常用结论如下:一、元素概念:元素的概念指的是确定性的大小,如平面、直线、以及其他几何体的形状和组合而成的集合。
例如:正方形是由四条直线组成,这四条直线就是正方形的元素。
二、互斥原理:如果两个事件不存在同时发生的可能性,那么它们称为互斥事件。
例如:交叉相乘,也就是交叉乘法,它具有互斥性,即一个事件发生,另一个则不会发生。
三、等比例原理:如果两个直线平分得到的两部分等比例,则两个直线等比例,并且它们共线。
例如:如果AB//CD,那么AB/AC=E/ED.五、证明原理:数学证明是传统意义上的数学推理技术,它按照一系列推理过程,对数学结论进行证明判定。
例如:如果要证明函数f(x)的导数为2x,则可以使用定义导数的证明方法,通过应用极限理论来证明。
六、定义律原理:定义律是数学作为一门实践性学科中常用的一种工具语言,它是构建数学体系的基础。
例如:平行线定义:两条线段在平面上至少有两个点都在同一条直线上,则称这两条线段是平行的。
七、函数原理:函数是把定义域的每个元素映射为唯一的一个定义域成员的一种联系,它是数学中最重要的概念和工具,也是数学经典描述形式。
例如: y = ax+b 是一元函数,a和b分别为函数的系数。
八、应用结论:应用结论指的是应用某一原理,以解决某一实际问题的结果。
例如:应用勾股定理求三角形的斜边,若一个三角形的两条边分别为a和b,他们的和大于第三条边的长度c,那么斜边的长度就是根号下a2+b2-c2的结果。
高中数学常用结论
38个常用结论内容提要一些常用的结论,整理成到一起, 形成了这本常用结论小册子.把结论分成了两类:一类是重要结论, 这是必须掌握的;另一类是二级结论, 可以选择性地掌握.目录函数重要结论3:函数图象的对称轴和对称中心结论重要结论4:双对称的周期结论重要结论5:经典切线放缩不等式二级结论27:常用泰勒公式平面向量重要结论6:向量中线定理重要结论7:三点共线向量系数和结论重要结论8:投影向量计算公式重要结论9:重心坐标二级结论29:极化恒等式三角函数、解三角形重要结论10:角平分线性质定理重要结论11:三角形的内切圆半径公式二级结论28:万能公式数列重要结论12:等差、等比数列的片段和性质立体几何重要结论13:三垂线定理二级结论31:正四面体外接球、内切球半径解析几何重要结论14:椭圆通径公式重要结论15:双曲线通径公式重要结论17:弦长公式重要结论18:双曲线的焦点到渐近线距离结论重要结论19:切线、切点弦统一结论重要结论20:椭圆的中点弦斜率积结论重要结论21:双曲线的中点弦斜率积结论二级结论32:角版焦半径、焦点弦公式, 焦原三角形面积公式二级结论33:原点三角形面积公式二级结论34:椭圆的第三定义斜率积结论二级结论35:双曲线第三定义斜率积结论二级结论36:抛物线的垂直定点结论二级结论37:以抛物线的焦点弦为直径的圆与准线相切二级结论38:点乘双根法概率统计重要结论22:平均数、方差的性质重要结论23:期望、方差的性质重要结论24:超几何分布期望公式不等式二级结论25:糖水不等式二级结论26:三元均值不等式其它重要结论1:子集个数结论重要结论2:等比性质重要结论16:韦达定理推论二级结论30:重心等分面积结论38个常用结论重要结论1:(子集个数结论)设集合A有n n∈N*个元素,则A的子集有2n个, 非空子集有2n-1个,真子集有2n-1个,非空真子集有2n-2个.证明:设A的元素分别为x1,x2,⋯,x n,集合B是集合A的子集,则要分析集合B有几种情况,可分步考虑A中的每个元素是否在B中,因为x1,x2,⋯,x n均可能在或不在B中,所以每个元素都有2种情况,由分步乘法计数原理,集合B有2×2×⋯×2=2n种情况,故A的子集有2n个,去掉空集, A的非空子集有2n-1个,去掉A本身, A的真子集有2n-1个,去掉空集和A本身, A的非空真子集有2n-2个.重要结论2:(等比性质)设ab=cd,且b+d≠0,则ab=cd=a+cb+d .证明:设ab=cd=k,则a=bk,c=dk ,所以a+cb+d=bk+dkb+d=k b+db+d=k,故ab=cd=a+cb+d .重要结论3:(函数图象的对称轴和对称中心结论)(1)若f x 满足f a+x=f b-x,则f x 的图象关于直线x=a+b2对称.(2)若f x 满足f a+x+f b-x=c,则f x 的图象关于点a+b2,c2对称.(3)若将上述(1)(2)中的x全部换成2x(或3x等等),结论依然成立.例如,若f a+2x=f b-2x,则仍可得到f x 关于直线x=a+b2对称.证明:(1)设P x,f x是函数f x 图象上任意一点,则P关于直线x=a+b2的对称点为Pa+b-x,f x,如图1,要证结论成立,只需证P 也在f x 的图象上,即证f x =f a+b-x,在f a+x=f b-x中将x换成x-a可得f a+x-a=f b-x-a,所以f x =f a+b-x,故f x 的图象关于直线x=a+b2对称;(2)设P x,f x是函数f x 图象上任意一点,则P关于a+b2,c2的对称点为P a+b-x,c-f x,如图2,要证结论成立,只需证P 也在f x 的图象上,即证c -f x =f a +b -x ,也即证f x +f a +b -x =c ,在f a +x +f b -x =c 中将x 换成x -a 可得f a +x -a +f b -x -a =c ,所以f x +f a +b -x =c ,故f x 的图象关于a +b 2,c 2对称.(3)以f a +2x =f b -2x 为例,此式对任意的实数x 都成立,则将x 换成x 2可得f a +x =f b -x ,所以f x 的图象关于直线x =a +b 2对称.图1图2重要结论4:(双对称的周期结论, 可借助三角函数辅助理解)(1)若函数f x 有两条对称轴,则f x 一定是周期函数,周期为对称轴距离的2倍.(2)若函数f x 有一条对称轴,一个对称中心,则f x 一定是周期函数,周期为对称中心与对称轴之间距离的4倍.(3)若函数f x 有在同一水平线上的两个对称中心,则f x 一定是周期函数,周期为对称中心之间距离的2倍.证明:(1)设函数f x 的两条对称轴分别为x =a ,x =b ,不妨假设b >a ,则f 2a +x =f -x f 2b +x =f -x ,所以f 2a +x =f 2b +x ,在上式中将x 换成x -2a 可得f x =f x +2b -2a ,所以f x 一定是周期函数,周期T =2b -2a ,周期为对称轴之间距离的2倍.(2)设函数f x 的对称轴为x =a ,对称中心为b ,c ,则f 2a +x -f -x =0f 2b +x +f -x =2c所以f2a+x+f2b+x=2c,将x换成x-2a可得f x +f x+2b-2a=2c ,所以f x+2b-2a=-f x +2c(i),在式(i)中将x换成x+2b-2a可得f x+2b-2a+2b-2a=-f x+2b-2a+2c ,结合式(i)可得f x+4b-4a=--f x +2c+2c=f x ,所以函数f x 一定是周期函数,周期T=4b-4a ,周期为对称轴与对称中心之间距离的4倍.(3)设f x 的两个对称中心分别为a,m,b,m,不妨假设b>a ,则f2a+x+f-x=2mf2b+x+f-x=2m,两式作差得:f2a+x-f2b+x=0 ,所以f2a+x=f2b+x,将x换成x-2a可得f2a+x-2a=f2b+x-2a,所以f x =f x+2b-2a,故f x 为周期函数,周期为T=2b-2a ,周期为两对称中心之间距离的2倍.重要结论5:(经典切线放缩不等式)(1)e x≥x+1,当且仅当x=0时取等号.(2)e x≥ex,当且仅当x=1时取等号.(3)1-1x≤ln x≤x-1,当且仅当x=1时取等号.(4)ln x≤xe,当且仅当x=e时取等号.上述不等式的图象特征如下面的两个图:证明:(1)设f x =e x-x-1,x∈R,则f x =e x-1,所以f x <0⇔x<0 ,f x >0⇔x>0,故f x 在-∞,0上↘,在0,+∞上↗ ,所以f x ≥f0 =0,从而e x-x-1≥0,故e x≥x+1,取等条件是x=0 . (2)设g x =e x-ex, x∈R,则g x =e x-e,所以g x <0⇔x<1 ,g x >0⇔x >1,故g x 在-∞,1 上↘,在1,+∞ 上↗ ,所以g x ≥g 1 =0,从而e x -ex ≥0,故e x ≥ex ,取等条件是x =1 .(3)设h x =ln x -x +1,x >0,则h x =1x -1=1-x x,所以h x >0⇔0<x <1 ,h x <0⇔x >1,故h x 在0,1 上↗,在1,+∞ 上↘ ,所以h x ≤h 1 =0,从而ln x -x +1≤0,故ln x ≤x -1,取等条件是x =1 ,在上式中将x 换成1x 可得ln 1x ≤1x -1,所以-ln x ≤1x -1,故ln x ≥1-1x ,取等条件是1x =1,即x =1 .(4)设r x =ln x -x e ,x >0,则r x =1x -1e =e -x ex,所以r x >0⇔0<x <e ,r x <0⇔x >e ,故r x 在0,e 上↗,在e ,+∞ 上↘ ,所以r x ≤r e =0,从而ln x -x e ≤0,故ln x ≤x e,取等条件是x =e .重要结论6:(向量中线定理)如图,设D 是BC 中点,则AD =12AB +12AC .证明:AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +12AC .重要结论7:(三点共线向量系数和结论)如图,平面内A ,B ,C 三点不共线,点D 满足AD =λAB +μAC λ,μ∈R ,则B ,C ,D 三点共线的充要条件是λ+μ=1 .证明:先看充分性.当λ+μ=1时, μ=1-λ ,所以AD =λAB +μAC =λAB +1-λ AC =λAB -AC +AC =λCB +AC ,从而AD -AC =λCB ,故CD =λCB ,所以B ,C ,D 三点共线,充分性成立;再看必要性. 当B ,C ,D 三点共线时,可设BD =mBC ,所以AD =AB +BD =AB +mBC =AB +m AC -AB =1-m AB +mAC ,与AD =λAB +μAC 对比可得λ=1-m μ=m ,所以λ+μ=1-m +m =1,必要性成立;所以B ,C ,D 三点共线的充要条件是λ+μ=1 .重要结论8:(投影向量计算公式)向量b 在向量a 上的投影向量为a ⋅b a2a .证明:如图,设e 为与a 同向的单位向量,则b 在a 上的投影向量为b cos θ e ,由于e =a a ,所以b cos θ e =b cos θ a a =b cos θa a =a ⋅b cos θa 2a =a ⋅b a2a .重要结论9:(重心坐标)△ABC 的顶点分别为A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,则△ABC 的重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33. 这一结论可推广到空间中.证明:如图,设G x ,y 为△ABC 的重心,则AG :GD =2:1 ,所以AG =23AD =23×12AB +AC =13AB +AC (i ),又AG =x -x 1,y -y 1 ,AB =x 2-x 1,y 2-y 1 ,AC =x 3-x 1,y 3-y 1 ,所以由式(i )可得x -x 1=13x 2-x 1+x 3-x 1 y -y 1=13y 2-y 1+y 3-y 1 ,整理得:x =x 1+x 2+x 33y =y 1+y 2+y 33 ,故重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33.重要结论10:(角平分线性质定理)如图, △ABC 的内角A 的平分线与BC 交于点D ,则AB AC=BD CD .证明:设△ABC的BC边上的高为h,则S△ABDS△ACD=12BD⋅h12CD⋅h=BDCD(i),又AD是内角A的平分线,所以∠BAD=∠CAD ,故S△ABDS△ACD=12AB⋅AD⋅sin∠BAD12AC⋅AD⋅sin∠CAD=ABAC,结合式(i)可得ABAC=BDCD.重要结论11:(三角形的内切圆半径公式)设△ABC的面积为S,周长为L,内切圆半径为r,则r=2S L .证明:如图,设切点分别为D,E,F,则OD⊥AB,OE⊥BC,OF⊥AC ,所以S=S△OAB+S△OBC+S△OAC=12AB⋅OD+12BC⋅OE+12AC⋅OF=12AB⋅r+12BC⋅r+12AC⋅r=12AB+BC+ACr=12Lr,所以r=2SL .重要结论12:(等差、等比数列的片段和性质)(1)若a n是公差为d的等差数列,其前n项和为S n,则S m,S2m-S m,S3m-S2m,⋯也构成等差数列,公差为m2d .(2)若a n是公比为q的等比数列,其前n项和为S n,则当q≠-1或m为奇数时, S m,S2m-S m,S3m-S2m,⋯也构成等比数列,公比为q m .证明:(1)S m=a1+a2+⋯+a m, S2m-S m=a m+1+a m+2+⋯+a2m ,因为a m+1-a1=md, a m+2-a2=md, ⋯, a2m-a m=md ,所以S2m-S m-S m=a m+1+a m+2+⋯+a2m-a1+a2+⋯+a m=a m+1-a1+a m+2-a2+⋯+a2m-a m=md+md+⋯+md=m2d,同理, S3m-S2m-S2m-S m=a2m+1+a2m+2+⋯+a3m-a m+1+a m+2+⋯+a2m=a2m+1-a m+1+a2m+2-a m+2+⋯+a3m-a2m=md+md+⋯+md=m2d,以此类推, S m,S2m-S m,S3m-S2m,⋯构成公差为m2d的等差数列.(2)当q≠-1或m为奇数时, S m,S2m-S m,S3m-S2m,⋯均不为0,且S2m-S mS m=a m+1+a m+2+⋯+a2ma1+a2+⋯+a m=a1q m+a2q m+⋯+a m q ma1+a2+⋯+a m=q m , S3m-S2mS2m-S m=a2m+1+a2m+2+⋯+a3ma m+1+a m+2+⋯+a2m=a m+1q m+a m+2q m+⋯+a2m q ma m+1+a m+2+⋯+a2m=q m,以此类推, S m,S2m-S m,S3m-S2m,⋯构成公比为q m的等比数列.重要结论13:(三垂线定理)如图, a⊂α,l在α内的射影是b,若a⊥b,则a⊥l , 此结论反过来也成立,即当a⊥l时,也有a⊥b .证明:因为c⊥αa⊂α,所以a⊥c,故a⊥b⇔a⊥图中的三角形所在平面⇔a⊥l重要结论14:(椭圆通径公式)对于椭圆, 过其焦点且垂直于长轴的弦叫做通径, 通径的长为2b2a,其中a,b分别为椭圆的长半轴长、短半轴长.证明:如图,不妨设椭圆的方程为x2a2+y2b2=1a>b>0,其焦点为±c,0,过其焦点且与长轴垂直的直线的方程为x=c或x=-c,以x=c为例,将x=c代入x2a2+y2b2=1可得c2a2+y2b2=1 ,解得:y=±b21-c2 a2=±b2⋅a2-c2a2=±b4a2=±b2a ,所以图中通径长AB=2b2a,由椭圆的对称性可知通径A B 的长也为2b2a .重要结论15:(双曲线通径公式)对于双曲线, 过其焦点且垂直于实轴的弦叫做通径,通径的长为2b 2a,其中a ,b 分别为双曲线的实半轴长、虚半轴长.证明:如图,不妨设双曲线的方程为x 2a 2-y 2b2=1a >0,b >0 ,其焦点为±c ,0 ,过其焦点且与实轴垂直的直线的方程为x =c 或x =-c ,以x =c 为例,将x =c 代入x 2a 2-y 2b 2=1可得c 2a 2-y 2b2=1 ,解得:y =±b 2c 2a 2-1=±b 2⋅c 2-a 2a 2=±b 4a 2=±b 2a ,所以图中通径长AB =2b 2a ,由双曲线的对称性可知通径A B 的长也为2b 2a .重要结论16:(韦达定理推论)设x 1,x 2是一元二次方程ax 2+bx +c =0a ≠0 的两根,则x 1-x 2 =Δa.证明:由韦达定理, x 1+x 2=-b a ,x 1x 2=c a,所以x 1-x 2 =x 1-x 2 2=x 1+x 2 2-4x 1x 2=-b a 2-4⋅c a =b 2a 2-4c a =b 2-4ac a 2=Δa.重要结论17:(弦长公式)设A x 1,y 1 ,B x 2,y 2 ,若A ,B 在直线y =kx +b 上,则AB =1+k 2⋅x 1-x 2 ;若A ,B 在直线x =my +t 上,则AB =1+m 2⋅y 1-y 2 .特别地,当A ,B 是直线与椭圆(或双曲线、抛物线)交点时,常联立直线与椭圆(或双曲线、抛物线)的方程,得到关于x 或y 的一元二次方程,则上述弦长公式中的x 1-x 2 ,y 1-y 2 可由韦达定理推论来算.以x 1-x 2 为例,假设联立直线与圆锥曲线得到的一元二次方程是ax 2+bx +c =0a ≠0 ,则x 1-x 2 =Δa,所以此时的弦长公式可写成AB =1+k 2⋅x 1-x 2 =1+k 2⋅Δa .证明:由两点间的距离公式, AB =x 1-x 2 2+y 1-y 2 2(i ),若A ,B 两点在直线y =kx +b 上,则y 1=kx 1+by 2=kx 2+b ,代入(i )得AB =x 1-x 22+kx 1+b -kx 2-b 2=x 1-x 22+k 2x 1-x 2 2=1+k 2x 1-x 2 2=1+k 2⋅x 1-x 2 ;若A ,B 两点在直线x =my +t 上,则x 1=my 1+tx 2=my 2+t ,代入(i )得AB =my 1+t -my 2-t 2+y 1-y 2 2=m 2y 1-y 2 2+y 1-y 2 2=m 2+1 y 1-y 2 2=1+m 2⋅y 1-y 2 .重要结论18:双曲线的焦点到其渐近线的距离等于虚半轴长b .证明:不妨设双曲线为x 2a 2-y 2b2=1a >0,b >0 ,则该双曲线的渐近线为y =±ba x , 即bx±ay =0,设双曲线的焦点为±c ,0 ,则焦点到渐近线的距离d =±cbb 2+±a 2=bc a 2+b 2=bcc =b .重要结论19:(切线、切点弦统一结论)设点P x 0,y 0 ,将圆的标准方程x -a 2+y -b 2=r 2变成x -a x 0-a +y -b y 0-b =r2,或在圆的一般式方程x 2+y 2+Dx +Ey +F =0中,用x 0x 替换x 2,用y 0y替换y 2,用x +x 02替换x ,用y +y 02替换y ,可以得到一个新方程,当P 在圆上时,如图1,该方程表示切线l ;当P 在圆外时,如图2,该方程表示切点弦AB 所在直线的方程. 本结论对椭圆、双曲线、抛物线也成立.图1图2证明:按圆、椭圆、双曲线、抛物线逐一论证上述统一结论较繁琐, 下面我们只证圆的切点弦方程.如下图,因为PA ,PB 是圆的切线,所以PA ⊥AC ,PB ⊥BC ,故P ,A ,C ,B 四点都在以PC 为直径的圆上, AB 即为该圆与圆C 的公共弦,由P x 0,y 0 ,C a ,b 可得PC 中点为x 0+a 2,y 0+b2,PC 2=x 0-a 2+y 0-b 2 ,故以PC 为直径的圆的方程为x -x 0+a 2 2+y -y 0+b 22=14x 0-a 2+y 0-b 2 ,展开整理得:x 2+y 2-x 0+a x -y 0+b y +ax 0+by 0=0(i ),圆C 的方程为x 2+y 2-2ax -2by+a 2+b 2=r 2(ii ),用方程(ii )减去方程(i )可得x 0-a x +y 0-b y -ax 0-by 0+a 2+b 2=r 2 ,整理得直线AB 的方程为x 0-a x -a +y 0-b y -b =r 2 .重要结论20:(椭圆的中点弦斜率积结论)如图, AB 是椭圆x 2a 2+y 2b 2=1a >b >0 的一条不与坐标轴垂直且不过原点的弦, M 为AB 中点,则k AB ⋅k OM =-b2a2 .注:对于焦点在y 轴上的椭圆y 2a 2+x 2b 2=1a >b >0 ,则上述斜率积为-a 2b2 .证明:设A x 1,y 1 ,B x 2,y 2 ,x 1≠x 2,y 1≠y 2 ,因为A ,B 都在椭圆上,所以x 21a 2+y 21b2=1x 22a 2+y 22b 2=1,两式作差得:x 21-x 22a 2+y 21-y 22b 2=0,整理得:y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=-b 2a2(i ),注意到y 1-y 2x 1-x 2=k AB ,y 1+y 2x 1+x 2=2y M 2x M =y M x M =k OM ,所以式(i )即为k AB ⋅k OM =-b 2a 2 ,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.重要结论21:(双曲线的中点弦斜率积结论)如图, AB 是双曲线x 2a 2-y 2b2=1(a >0 ,b >0)的一条不与坐标轴垂直且不过原点的弦, M为AB 中点,则k AB ⋅k OM =b2a2 .注:对于焦点在y 轴上的双曲线y 2a 2-x 2b 2=1a >0,b >0 ,则上述斜率积为a 2b2 .证明:设A x 1,y 1 ,B x 2,y 2 ,x 1≠x 2,y 1≠y 2 ,因为A ,B 都在双曲线上,所以x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式作差得:x 21-x 22a 2-y 21-y 22b 2=0,整理得:y 1-y 2x 1-x 2⋅y 1+y 2x 1+x 2=b 2a2(i ),注意到y 1-y 2x 1-x 2=k AB ,y 1+y 2x 1+x 2=2y M 2x M =y M x M =k OM ,所以式(i )即为k AB ⋅k OM =b 2a2 ,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.重要结论22:(平均数、方差的性质)设数据x 1,x 2,⋯,x n 的平均数为x,方差为s 2 , 标准差为s ,则数据ax 1+b ,ax 2+b ,⋯,ax n+b 的平均数为ax+b ,方差为a 2s 2,标准差为a s .证明:由题意, x =x 1+x 2+⋯+x n n ,s 2=1nx 1-x 2+x 2-x 2+⋯+x n -x2 ,所以y =y 1+y 2+⋯+y nn =ax 1+b +ax 2+b +⋯+ax n +b n=a x 1+x 2+⋯+x n +nb n =a ⋅x 1+x 2+⋯+x n n+b =ax +b ,故新数据的方差s 21=1ny 1-y 2+y 2-y 2+⋯+y n -y 2=1nax 1+b -ax -b 2+ax 2+b -ax -b 2+⋯+ax n +b -ax -b 2=1na 2x 1-x 2+a 2x 2-x 2+⋯+a 2x n -x 2 =a 2⋅1nx 1-x 2+x 2-x 2+⋯+x n -x 2 =a 2s 2 ,标准差s 1=a 2s 2=a s .重要结论23:(期望、方差的性质)设随机变量X 的期望为E X ,方差为D X ,标准差为D X ,若Y =aX +b ,则Y 的期望E Y =aE X +b ,方差D Y =a 2D X ,标准差为a D X .证明:设X 的分布列为X x 1x 2...x n Pp 1p 2...p n则E X =x 1p 1+x 2p 2+⋯+x n p n (i ),D X =x 1-E X 2p 1+x 2-E X 2p 2+⋯+x n -E X 2p n (ii ),因为Y =aX +b ,所以Y 的分布列为Y ax 1+b ax 2+b ...ax n +b Pp 1p 2...p n故E Y =ax 1+b p 1+ax 2+b p 2+⋯+ax n +b p n =a x 1p 1+x 2p 2+⋯+x n p n +b p 1+p 2+⋯+p n (iii ),将式(i )和p 1+p 2+⋯+p n =1代入式(iii )可得E Y =aE X +b ,D Y =ax 1+b -E Y 2p 1+ax 2+b -E Y 2p 2+⋯+ax n +b -E Y 2p n =ax 1+b -aE X -b 2p 1+ax 2+b -aE X -b 2p 2+⋯+ax n +b -aE X -b 2p n =a 2x 1-E X 2p 1+a 2x 2-E X 2p 2+⋯+a 2x n -E X 2p n=a 2x 1-E X 2p 1+x 2-E X 2p 2+⋯+x n -E X 2p n =a 2D X ,随机变量Y 的标准差为D Y =a 2D X =a D X .重要结论24:(超几何分布期望公式)设随机变量X 服从超几何分布,三个参数分别为N ,n ,M ,则E X =n ⋅MN.二级结论25:(糖水不等式)设a >b >0,c >0,则b +c a +c >ba.证明:b +c a +c -ba =b +c a -a +c b a +c a =c a -b a +c a (i )因为a >b >0,c >0,所以a +c a >0,a -b >0 ,结合(i )可得b +c a +c -b a >0,故b +c a +c >ba.二级结论26:(三元均值不等式)设a ,b ,c 为正实数,则a +b +c3≥3abc ,当且仅当a =b =c 时取等号. 此不等式可变形成abc ≤a +b +c 33.二级结论27:(常用泰勒公式)(1)e x=1+x +x 22!+x 33!+⋯+x nn !+⋯;(2)ln 1+x =x -12x 2+13x 3-⋯+-1 n +1n x n +⋯;(3)1+x a =1+ax +a a -1 2!x 2+⋯+a a -1 a -2 ⋯a -n +1 n !x n+⋯;(4)sin x =x -x 33!+x 55!-⋯+-1 n -12n -1 !x 2n -1+⋯;(5)cos x =1-x 22!+x 44!-⋯+-1 n2n !x 2n +⋯ .二级结论28:(万能公式)设α≠2k π+π且α≠k π+π2,其中k ∈Z ,则(1)sin α=2tan α21+tan 2α2;(2)cos α=1-tan 2α21+tan 2α2;(3)tan α=2tan α21-tan 2α2 .证明:(1)sin α=2sinα2cos α2=2sin α2cos α2cos 2α2+sin 2α2=2tan α21+tan 2α2;(2)cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan 2α2;(3)tan α=tan 2×α2 =2tan α21-tan 2α2. 二级结论29:(极化恒等式)如图,设D 为BC 中点,则AB ⋅AC =AD 2-BD 2 .证明:AB ⋅AC =AD +DB ⋅AD +DC ,因为DC =-DB ,所以AB ⋅AC =AD +DB ⋅AD -DB =AD 2-BD 2 ,此结论虽然归为了二级结论, 但针对性较强(涉及中线或底边中点的数量积问题), 推荐掌握.二级结论30:(重心等分面积结论)设△ABC 的重心为G ,则S △GAB =S △GAC =S △GBC .证明:如图,因为G 是△ABC 的重心,所以D ,E ,F 分别为所在边的中点,且AG :GD =BG :GE =CG :GF =2:1,考虑△GAB 和△GBD 的面积,若都以B 为顶点,则它们的高相等,设为h ,则S △GAB S △GBD =12AG ⋅h 12GD ⋅h =AG GD =2 ,所以S △GAB =23S △ABD ,又D 为BC 中点,所以S △ABD =12S △ABC ,从而S △GAB =23×12S △ABC =13S △ABC ,同理, S △GAC =S △GBC =13S △ABC ,故结论成立.二级结论31:(正四面体外接球、内切球半径)设正四面体的棱长为a ,则其外接球半径R =64a ,内切球半径r =612a .证明:如图, 将正四面体放入正方体中, 二者有相同的外接球,由正四面体的棱长为a 可得正方体的棱长为22a ,所以正方体的外接球半径R =22a ×32=64a ,故正四面体的外接球半径R =64a ,内切球半径r 即为球心O 到正四面体的面的距离,如图,球心O 为正方体的中心,即CE 的中点,由图可知CE 在面AEBF 内的射影是EF ,因为AB ⊥EF ,所以由三垂线定理, AB ⊥CE ,又CE 在面BGDE 内的射影为EG ,且BD ⊥EG ,所以由三垂线定理, BD ⊥CE ,故CE ⊥平面ABD ,设OE 与平面ABD 交于点I ,则点O 到平面ABD 的距离OI =OE -IE =12CE -IE =32×22a -IE =64a -IE (i ),由三棱锥的等体积性, V E -ABD =V A -EBD ,所以13×12×a 2×32×IE =13×12×22a 2×22a ,解得:IE =66a ,代入(i )得OI =64a -66a =612a ,所以正四面体的内切球半径r =612a .二级结论32:(角版焦半径、焦点弦公式, 焦原三角形面积公式)设抛物线y 2=2px p >0 的焦点为F ,O 为原点.(1)焦半径公式:如图1,设A 为抛物线上任意一点,记∠AFO =α,则焦半径AF =p1+cos α.(2)焦点弦公式:如图2, AB 是抛物线的焦点弦,记∠AFO =α,则AB =2psin 2α.(3)焦原三角形面积公式:如图3,设AB 是抛物线的焦点弦,记∠AFO =α,则S △AOB =p 22sin α.图1图2图3证明:(1)作AM ⊥x 轴于M ,先考虑M 在F 右侧的情形,如图4,设A x 0,y 0 ,则FM =x 0-p2,又FM =AF cos ∠AFM =AF cos π-α =-AF cos α ,与上式比较可得:-AF cos α=x 0-p2,另一方面,由坐标版焦半径公式知AF =x 0+p2,与上式作差消去x 0整理得:AF =p1+cos α;同理可证当M 在F 左侧或恰好与F 重合时,都有AF =p1+cos α.(2)如图5, ∠BFO =π-α ,由(1)中的焦半径公式可得AF =p1+cos α,BF =p 1+cos π-α=p1-cos α ,所以AB =AF +BF =p 1+cos α+p1-cos α=p 1-cos α +p 1+cos α 1+cos α 1-cos α =2p 1-cos 2α=2p sin 2α.(3)如图6,作OD ⊥AB 于D ,则OD =OF sin ∠OFD=OF sin π-α =OF sin α=p2⋅sin α ,由(2)中的焦点弦公式可得AB =2psin 2α ,所以S △AOB =12AB ⋅OD =12⋅2p sin 2α⋅p 2⋅sin α=p 22sin α.图4图5图6二级结论33:(原点三角形面积公式)设O 为原点, A x 1,y 1 ,B x 2,y 2 ,则S △AOB =12x 1y 2-x 2y 1 .证明:如图,设∠AOB =θ,则cos θ=OA ⋅OBOA ⋅OB,所以S △AOB =12OA ⋅OB ⋅sin θ=12OA⋅OB ⋅1-cos 2θ=12OA⋅OB ⋅1-OA ⋅OBOA ⋅OB 2=12OA 2⋅OB 2-OA ⋅OB 2=12x 21+y 21 x 22+y 22 -x 1x 2+y 1y 2 2=12x 21x 22+x 21y 22+y 21x 22+y 21y 22-x 21x 22+y 21y 22+2x 1x 2y 1y 2=12x 21y 22+x 22y 21-2x 1x 2y 1y 2=12x 1y 2-x 2y 12=12x 1y 2-x 2y 1 .二级结论34:(椭圆的第三定义斜率积结论)如图1,设A ,B 分别是椭圆x 2a 2+y 2b2=1a >b >0 的左、右顶点, P 是椭圆上不与A ,B 重合的任意一点,则k PA ⋅k PB =-b 2a2.注:(1)上述结论中A ,B 是椭圆的左、右顶点,可将其推广为椭圆上关于原点对称的任意两点,如图2,只要直线PA ,PB 的斜率都存在,就仍然满足k PA ⋅k PB =-b 2a2 .(2)若是焦点在y 轴上的椭圆y 2a 2+x 2b 2=1a >b >0 ,则上述斜率积为-a 2b2 .图1图2证明:图1是图2的特殊情况, 故下面只证图2的一般性结论,设A x 1,y 1 ,P x 2,y 2 ,则B -x 1,-y 1 ,k PA ⋅k PB =y 2-y 1x 2-x 1⋅y 2+y 1x 2+x 1=y 22-y 21x 22-x 21(i ),因为点A 在椭圆上,所以x 21a 2+y 21b2=1 ,故y 21=b 21-x 21a 2=-b 2a2x 21-a 2 ,同理y 22=-b 2a2x 22-a 2 ,所以y 22-y 21=-b 2a 2x 22-a 2-x 21+a 2=-b 2a2x 22-x 21 ,代入(i )得:k PA ⋅k PB =-b 2a2;在上述条件中令A -a ,0 ,B a ,0 ,即得图1的特殊情况下的结论,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.此结论虽然归为了二级结论,但针对性较强(涉及椭圆上的点P 与椭圆上关于原点对称的A ,B 两点的连线斜率积问题),推荐掌握.二级结论35:(双曲线第三定义斜率积结论)如图1,设A ,B 分别是双曲线x 2a 2-y 2b2=1a >0,b >0 的左、右顶点, P 是双曲线上不与A ,B 重合的任意一点,则k PA ⋅k PB =b 2a2 .注:(1)上述结论中A ,B 是双曲线的左、右顶点,可将其推广为双曲线上关于原点对称的任意两点,如图2,只要直线PA ,PB 的斜率都存在,就仍满足k PA ⋅k PB =b 2a2 .(2)若是焦点在y 轴上的双曲线,则上述斜率积为a2b2 .图1图2证明:图1是图2的特殊情况, 故下面只证图2的一般性结论,设A x 1,y 1 ,P x 2,y 2 ,则B -x 1,-y 1 ,k PA ⋅k PB =y 2-y 1x 2-x 1,y 2+y 1x 2+x 1=y 22-y 21x 22-x 21(i ),因为点A 在双曲线上,所以x 21a 2-y 21b2=1 ,故y 21=b 2x 21a 2-1=b 2a 2x 21-a 2 ,同理, y 22=b 2a 2x 22-a 2,所以y 22-y 21=b 2a 2x 22-a 2-x 21+a 2 =b 2a2x 22-x 21 ,代入(i )得:k PA ⋅k PB =b 2a2;在上述条件中令A -a ,0 ,B a ,0 ,即得图1的特殊情况下的结论,对于焦点在y 轴上的情形,证法与上面相同,不再赘述.此结论虽然归为了二级结论,但针对性较强(涉及双曲线上的点P 与双曲线上关于原点对称的A ,B 两点的连线斜率积问题),推荐掌握.二级结论36:(抛物线的垂直定点结论)设A ,B 为抛物线y 2=2px p >0 上两点,O 为原点,若OA ⊥OB ,则直线AB 过定点M 2p ,0 .证明:设直线AB 的方程为x =my +t ,设A x 1,y 1 ,B x 2,y 2 ,因为OA ⊥OB ,所以OA ⋅OB =x 1x 2+y 1y 2=0(i ),联立x =my +t y 2=2px 消去x 整理得:y 2-2pmy -2pt =0(ii ),由韦达定理, y 1y 2=-2pt ,所以x 1x 2=y 212p ⋅y 222p =y 1y 22p 2=t 2 ,代入(i )得t 2-2pt =0,所以t =0或2p ,当t =0时, A ,B 中有一个与原点重合,不合题意,所以t =2p ,经检验,满足方程(ii )的判别式Δ>0 ,从而直线AB 的方程为x =my +2p ,故直线AB 过定点M 2p ,0 .二级结论37:(以抛物线的焦点弦为直径的圆与准线相切)证明:设以AB 为直径的圆的圆心为AB 中点P ,半径为r ,则r =12AB , 如图,作AM ⊥准线l 于点M ,BN ⊥l 于点N ,PQ ⊥l 于点Q ,则由抛物线定义, AM =AF ,BN =BF ,所以PQ=12AM+BN=12AF+BF=12AB,这说明点P到准线的距离等于r ,故准线与以AB为直径的圆相切.二级结论38:(点乘双根法)若将直线与圆雉曲线方程联立,得到关于x的一元二次方程ax2+bx+c=0a≠0,设该方程的两根为x1,x2 ,现在要算x1-tx2-t, 将其展开为x1x2-t x1+x2+t2 ,结合韦达定理来算可行,但有时这样做计算量较大,更简单的方法是根据x1,x2是该方程的两根,将该方程左侧的ax2+bx+c化为两根式,得到ax2+bx+c=a x-x1x-x2,观察发现在两端同时令x=t ,即可得到at2+bt+c=a t-x1t-x2,从而x1-tx2-t=at2+bt+ca ,这样就快速求出了目标量x1-tx2-t,此法叫做“点乘双根法”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==.2U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.三次函数的解析式的三种形式①一般式32()(0)f x ax bx cx d a =+++≠ ②零点式123()()()()(0)f x a x x x x x x a =---≠5.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=②函数()y f x =的图象关于直2a bx +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=. ③函数()y f x =的图象关于点(,0)a 对称()(2)f x f a x ⇔=--函数()y f x =的图象关于点(,)a b 对称()2(2)f x b f a x ⇔=--7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. 特殊地: ()y f x a =-与函数()y f a x =-的图象关于直线x a =对称③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =-- ⑤函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.8.分数指数幂 m na=0,,a m n N *>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >).9. log (0,1,0)b a N b a N a a N =⇔=>≠>.log log log a a a M N MN +=(0.1,0,0)a a M N >≠>>log log log a a aMM N N-=(0.1,0,0)a a M N >≠>>10.对数的换底公式 log log log m a m N N a =.推论 log log m na a nb b m=.对数恒等式log a NaN =(0,1a a >≠)11.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).12.等差数列{}n a 的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;13.等差数列{}n a 的变通项公式d m n a a m n )(-+=对于等差数列{}n a ,若q p m n +=+,(m,n,p,q 为正整数)则q p m n a a a a +=+。
14.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 15.数列{}n a 是等差数列⇔n a kn b =+,数列{}n a 是等差数列⇔n S =2An Bn +16.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质: ○1前n 项的和偶奇S S S n +=○2当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差;○3当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n (其中中a 是等差数列的中间一项)。
17.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为'12-n S , 则'1212--=n n n n S S b a 。
18.等比数列{}n a 的通项公式1*11()n nn a a a qq n N q-==⋅∈; 等比数列{}n a 的变通项公式m n m n q a a -=其前n 项的和公式11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.19. 对于等比数列{}n a ,若v u m n +=+(n,m,u,v 为正整数),则v u m n a a a a ⋅=⋅也就是: =⋅=⋅=⋅--23121n n na a a a a a 。
如图所示:nn a a n a a n n a a a a a a ⋅⋅---112,,,,,,1232120. 数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列。
如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 21. 同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅= . 2211tan cos αα+=22. 正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数即:奇变偶不变,符号看象限,如cos()cos ,sin()sin 22sin()sin ,cos()cos ππααααπααπαα+=-+=-=-=-23. 和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 24. 二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.(升幂公式)221cos 21cos 2cos ,sin 22αααα+-==(降幂公式)22tan tan 21tan ααα=-. 25.万能公式:22tan sin 21tan ααα=+, 221tan cos 21tan ααα-=+ 26.半角公式:sin 1cos tan 21cos sin ααααα-==+27. 三函数的周期公式函数sin()y A x ωϕ=+,x ∈R 及函数cos()y A x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;若ω未说明大于0,则2||T πω=函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 28. sin y x =的单调递增区间为2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴为()2x k k Z ππ=+∈,对称中心为(),0k π()k Z ∈ 29. cos y x =的单调递增区间为[]2,2k k k Z πππ-∈单调递减区间为[]2,2k k k Z πππ+∈,对称轴为()x k k Z π=∈,对称中心为,02k ππ⎛⎫+ ⎪⎝⎭()k Z ∈ 30. tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为(,0)()2kk Z π∈ 31. 正弦定理2sin sin sin a b cR A B C === 32. 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.33.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)22(||||)()OAB S OA OB OA OB ∆=⋅-⋅=1tan 2OA OB θ(θ为,OA OB 的夹角)34.三角形内角和定理 在△ABC 中,有()222C A B A B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+. 35.平面两点间的距离公式,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).36.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ∥b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.37.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(11t λ=+). 38.若OA xOB yOB =+则A,B,C 共线的充要条件是x+y=139. 三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.40.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k ). 41.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)b a b a b a +≤+≤-注意等号成立的条件(5)10,0)112a b a b a b+≤≤≤>>+ 42.极值定理 已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s . 43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.45.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪≥⎨⎪>⎩(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 46.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩47.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y )直线的方向向量v=(a,b),则直线的斜率为k =(0)ba a≠ 48.直线方程的五种形式:(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1(,x ya b x y a b+=≠≠分别为轴轴上的截距,且a 0,b 0) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).49.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,①121221122100l l A B A B AC A C ⇔-=-≠且;②1212120l l A A B B ⊥⇔+=; 50.夹角公式 2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 直线l 1到l 2的角是2121tan 1k k k k α-=+(111:l y k x b =+,222:l y k x b =+,121k k ≠-)51.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).52.两条平行线的间距离d =直线l 1:122120,0,)Ax By C l Ax By C C C ++=++=≠).53. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ). 54.圆中有关重要结论:(1)若P(0x ,0y )是圆222x y r +=上的点,则过点P(0x ,0y )的切线方程为200xx yy r +=(2)若P(0x ,0y )是圆222()()x a y b r-+-=上的点,则过点P(0x ,0y )的切线方程为200()()()()x a x a y b y b r --+--=(3) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(4) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB的方程为200()()()()x a x a y b y b r --+--=55.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.56.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x ca e PF -=.56.椭圆22221(0)x y a b a b +=>>的准线方程为2a x c =±,椭圆22221(0)x y a b b a +=>>的准线方程为2a y c =±57.椭圆22221(0)x y a b a b +=>>的通径(过焦点且垂直于对称轴的弦)长为22b a58.P 是椭圆22221(0)x y a b a b+=>>上一点,F 1,F 2 是它的两个焦点,∠F 1P F 2=θ则△P F 1 F 2的面积=2tan2b θ59.双曲线22221(0,0)x y a b a b -=>>的准线方程为2a x c =±双曲线22221(0,0)x y a b b a -=>>的准线方程为2a y c=±60. 双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a =±双曲线22221(0,0)x y a b b a -=>>的的渐近线方程为a y x b=±61.P 是双曲线22221(0,0)x y a b a b-=>>上一点,F 1,F 2 是它的两个焦点,∠F 1P F 2=θ则△P F 1 F 2的面积=2cot2b θ62.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px =.63. P(0x ,0y )是抛物线px y 22=上的一点,F 是它的焦点,则|PF|=0x +2p64. 抛物线px y 22=的焦点弦长22sin p l θ=,其中θ是焦点弦与x 轴的夹角65.直线与圆锥曲线相交的弦长公式 AB =21k a+(02=++c bx ax ,0∆>,k 为直线的斜率).若(弦端点A ),(),,(2211y x B y x 由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去x 得到20ay by c ++=,0∆>,k 为直线的斜率).则1221||1AB y y ak=-=+66.圆锥曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.67.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb . 68.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 是共面⇔1x y z ++=. 69. 空间两个向量的夹角公式 cos 〈a ,b 〉21a a +(a =123(,,)a a a ,b =123(,,)b b b ).70.直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量).71.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).72.设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO与AC 所成的角为θ.则12cos cos cos θθθ=.73.若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).74.空间两点间的距离公式 若A 111(,,)xy z ,B 222(,,)x y z ,则 ,A B d =||AB AB AB =⋅=.75.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ). 76.异面直线间的距离 ||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).77.点B 到平面α的距离 ||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 78. 2222123l l l l =++222123cos cos cos 1θθθ⇔++=(长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、)(立几中长方体对角线长的公式是其特例).79. 面积射影定理 'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ).80.球的半径是R ,则其体积是343V R π=,其表面积是24S R π=. 81.1,,3V Sh V Sh ==锥柱 82.分类计数原理(加法原理)12n N m m m =+++. 83.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.84.排列数公式 mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).85.排列恒等式 (1)1(1)m m n n A n m A -=-+;(2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+. 86.组合数公式 mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤).87.组合数的两个性质(1) m n C =mn n C - ;(2) m n C +1-m nC =mn C 1+88.组合恒等式(1)11mm n n n m C C m --+=;(2)1m mn n n C C n m-=-; (3)11mm n n n C C m--=; (4) 11k k n n kC nC --= (5)∑=nr r nC=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C .89.排列数与组合数的关系是:m mn n A m C =⋅! .90.二项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:rr n r n r b a C T -+=1)210(n r ,,, =.91.等可能性事件的概率()mP A n=. 92.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B). 93.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).94.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B).95.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).96.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n kn n P k C P P -=-97.函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.98.导数与函数的单调性的关系㈠0)(>'x f 与)(x f 为增函数的关系。