初三数学 概率初步知识点归纳

合集下载

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。

必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。

2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。

取值范围:概率的取值范围是0≤p≤1。

特别地,P(必然事件)=1,P(不可能事件)=0。

二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。

2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。

树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。

三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。

即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。

四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。

2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。

如果概率相等,则游戏公平;否则,游戏不公平。

五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。

示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。

解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。

因此,抽到红桃的概率为P=13/54。

2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。

九年级数学概率初步知识点

九年级数学概率初步知识点

九年级数学概率初步知识点
9年级数学的初步概率知识点包括:
1. 事件与概率:事件是指某种可能发生的结果,概率是指某个事件发生的可能性大小。

2. 随机事件与确定事件:随机事件是指其结果在每次试验中可能不同的事件,确定事
件是指其结果在每次试验中都相同的事件。

3. 样本空间与样本点:样本空间是指所有可能结果的集合,样本点是样本空间中的每
个具体结果。

4. 基本事件与复合事件:基本事件是指样本空间中的单个样本点,复合事件是指由基
本事件组成的事件。

5. 等可能性原理:在一次试验中,如果每个基本事件发生的可能性相等,则称这些事
件是等可能事件。

6. 事件的概率:事件A的概率表示为P(A),定义为事件A发生的次数与试验总次数之比。

7. 加法定理:对于两个互斥事件A和B(即A和B不能同时发生),则P(A或B) =
P(A) + P(B)。

8. 互斥事件与对立事件:互斥事件是指两个事件不能同时发生,对立事件是指在一次
试验中只能发生其中一个事件的概率。

9. 条件概率:指在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B),计算公式为P(A|B) = P(A∩B)/P(B)。

10. 事件的独立性:当事件A的发生与事件B的发生是相互独立的,即事件A的概率不受事件B的发生与否影响时,称事件A与事件B独立。

11. 乘法定理:对于两个独立事件A和B,P(A∩B) = P(A) × P(B)。

12. 事件的补事件:指在一次试验中,事件A不发生的事件。

这些是九年级数学中概率的初步知识点,通过掌握这些知识,可以更好地理解和解决与概率相关的问题。

(完整版)初中概率初步知识点归纳

(完整版)初中概率初步知识点归纳

第九章概率初步知识点归纳【知识梳理】 济宁附中李涛1、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<12、概率定义(1)概率的频率定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。

是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。

3、概率表示方法一般地,事件用英文大写字母A ,B ,C ,…,表示。

事件A 的概率p ,可记为P (A )=P4、概率的计算 ①等可能事件的概率• 古典概型古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。

历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。

计算古典概型,公式:分析方法:(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事件个数,最后相除。

以下补充是初三学习内容:(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?放回去 P (1和2)=92 不放回去P (1和2)=62(3,3)(3,2)(3,1)3(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次结果321第二次(3,2)(3,1)3(2,3)(2,1)2(1,3)(1,2)1第一次结果321第二次(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和1的结果有两种。

九年级初步概率知识点总结

九年级初步概率知识点总结

九年级初步概率知识点总结概率是数学中一个非常重要的概念,它在我们生活中无处不在。

无论是研究投资风险、棋牌游戏的胜率,还是天气预报的准确性,都离不开概率的运算和分析。

在九年级数学课程中,我们初步认识了概率的基本概念与运算法则。

本文将对九年级初步概率知识进行总结和归纳。

一、概率的定义和基本性质概率的定义是指某件事情发生的可能性,用数值来表示,其取值范围在0到1之间。

当事件A必然发生时,概率为1;当事件A 不可能发生时,概率为0。

性质上,事件A的概率加上事件A的对立事件的概率等于1,即P(A) + P(A') = 1。

二、概率的计算方法1. 等可能性原则:当所有可能发生的结果都是等概率时,可以通过相对频率来计算概率。

比如掷硬币的正反面,抽签时的抽中/不抽中等事件。

2. 集合运算法则:对于事件A和事件B,可以通过集合的交、并、差等运算来计算它们的概率。

比如事件A和事件B同时发生的概率为P(A∩B),表示为事件A和事件B的交集。

3. 频率计数法:当问题无法通过等可能性原则计算时,可以用计数法来求解概率。

比如上台阶的步数问题,每次只能上一阶或两阶楼梯,计算上到第n阶楼梯的步数有多少种可能组合。

三、加法公式与乘法公式1. 加法公式:对于不互斥的事件A和事件B,两者同时发生的概率为P(A∪B) = P(A) + P(B) - P(A∩B)。

其中P(A∩B)表示事件A 和事件B同时发生的概率。

2. 乘法公式:对于独立事件A和事件B,两者同时发生的概率为P(A∩B) = P(A) × P(B)。

其中P(A)和P(B)分别表示事件A和事件B发生的概率。

四、条件概率与贝叶斯定理1. 条件概率:当事件A的发生与事件B的发生有关时,事件B发生的条件下事件A发生的概率定义为P(A|B)。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率。

2. 贝叶斯定理:贝叶斯定理是利用条件概率来计算逆概率的公式。

(完整版)九年级概率初步

(完整版)九年级概率初步

第二十五章 概率初步1、三种事件:必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件。

不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。

随机事件: 许多事情我们无法确定它会不会发生,这些事情称为随机事件.注意:必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件; 随机事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为不确定事件.2.概率的定义:把刻划(描述)事件发生的可能性的大小的量叫做概率.概率通常用字母“P ”表示。

注意:概率通常用分数表示,有时也用小数表示。

不可能事件发生的概率为0;即P(不可能事件)=0;必然事件发生的概率为1;即P (必然事件)=1;随机事件发生的概率;0<P(随机)〈1。

3.概率的计算:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都 相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为4。

用列举法求概率列表法求概率: 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

树状图法求概率 :当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:列表格只能解决两步完成事件的概率,树状图则可解决两步及两步以上事件的概率;无论是哪一种方法在求多步事件概率时首先应分清每一步干什么,其次还应分清属于“取完后放回还是不放回”5.用频率估计概率①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验.③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数。

九年级概率初步知识点及题

九年级概率初步知识点及题

九年级概率初步知识点包括:1. 概率的基本性质:概率是非负数,并且所有概率的和必须等于1。

2. 必然事件和不可能事件:必然事件发生的概率为1,不可能事件发生的概率为0。

3. 独立事件:一个事件的发生不受另一个事件是否发生的影响,这样的两个事件称为独立事件。

独立事件同时发生的概率是各自概率的乘积。

4. 条件概率:在某个事件B已经发生的情况下,另一个事件A发生的概率叫做条件概率,记作P(A|B)。

5. 事件的概率:一般地,如果一个试验有n个等可能的结果,事件A包含其中的k个结果,那么事件A发生的概率为P(A)=k/n。

6. 概率的加法公式:如果两个事件A和B是互斥的(即两个事件不能同时发生),那么P(A∪B)=P(A)+P(B)。

7. 概率的乘法公式:对于任意两个事件A和B,如果它们是独立的,那么P(A∩B)=P(A)×P(B)。

8. 贝叶斯定理:在已知某个事件的概率和一些条件概率的情况下,可以使用贝叶斯定理计算其他条件概率。

以上是九年级概率初步知识点,可以通过做题来巩固这些知识点。

例如:1. 小明和小颖按如下规则作游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后一次取完铅笔的人获胜。

如果小明获胜的概率为1,那么小明第一次应该取走几支铅笔?根据题意,我们知道小明获胜的概率为1,即他一定会赢。

所以我们需要找出小明第一次应该取走几支铅笔才能确保他获胜。

根据游戏规则,每次只能取1支或2支铅笔,如果小明第一次取走2支铅笔,那么无论小颖取走几支(1支或0支),小明都能在第二次取完剩下的所有铅笔,从而获胜。

因此,小明第一次应该取走2支铅笔。

人教版九年级第二十五章概率初步知识点

人教版九年级第二十五章概率初步知识点

第二十五章概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.25.2 用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。

初中概率知识点总结大全

初中概率知识点总结大全

初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。

2. 样本空间:随机试验的所有可能结果组成的集合。

3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。

4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。

5. 等可能事件:指所有事件发生的可能性相等。

6. 概率:事件发生的可能性大小。

用符号 P(A) 表示事件 A 的概率。

二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。

例如:掷一枚骰子,求点数为偶数的概率。

样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。

所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。

2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。

例如:在一个圆形的靶子上打靶,求打在靶心的概率。

由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。

3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。

例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。

4. 排列和组合排列和组合是概率计算中常用的计算方法。

排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。

排列数用 P(n, m) 或 n!/(n-m)! 表示。

组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。

组合数用 C(n, m) 或 n!/m!(n-m)! 表示。

三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。

九年级《概率初步》知识点

九年级《概率初步》知识点

九年级《概率初步》知识点概率是数学中一个非常重要的概念,它描述了某个事件发生的可能性大小。

在九年级的数学学习中,我们将初步接触到概率的概念和相关知识。

本文将介绍九年级《概率初步》的知识点,帮助大家更好地理解和运用概率。

一、概率的基本概念概率是描述事件发生可能性的数值,用0到1之间的实数表示。

其中,0表示不可能事件,1表示必然事件。

概率的取值范围必须在0到1之间,且所有可能事件的概率之和为1。

二、事件的分类在概率中,事件可以分为互斥事件和非互斥事件。

1. 互斥事件:指的是两个事件不能同时发生。

例如,掷硬币的正反面,一次只能出现一个结果。

2. 非互斥事件:指的是两个事件可以同时发生。

例如,掷骰子的点数,可以同时出现多个结果。

三、概率的计算方法在九年级的学习中,我们将学习到以下几种概率的计算方法。

1. 实验法:通过实际的试验来计算概率。

例如,掷骰子,通过多次掷骰子的实验来计算每个点数出现的概率。

2. 统计法:通过统计已知数据来计算概率。

例如,某个班级中男生和女生的比例,可以通过统计已知的男生和女生人数来计算男生和女生的概率。

3. 几何法:通过几何图形来计算概率。

例如,从一个正方形纸片中随机撕下一块,计算落在某个区域内的概率。

四、概率的性质和运算1. 互补事件:指的是事件A发生和事件A不发生。

其概率可以用1减去事件A发生的概率来表示。

2. 事件的并、交、差运算:两个事件的并运算表示两个事件中至少发生一个的概率;交运算表示两个事件同时发生的概率;差运算表示一个事件发生而另一个事件不发生的概率。

3. 加法定理:用于计算两个事件的并的概率。

当两个事件互斥时,它们的并的概率等于它们各自概率的和;当两个事件非互斥时,它们的并的概率等于各自概率之和减去它们的交的概率。

4. 乘法定理:用于计算两个事件的交的概率。

当两个事件相互独立时,它们的交的概率等于它们各自概率的乘积;当两个事件不独立时,它们的交的概率等于第一个事件发生的概率乘以第二个事件在第一个事件发生的条件下发生的概率。

初中《概率》知识点归纳

初中《概率》知识点归纳

初中《概率》知识点归纳概率是数学中的一个分支,研究随机事件的发生概率和可能性的科学。

初中阶段,学生会学习一些基础的概率知识,本文将对初中《概率》知识点进行归纳总结。

一、随机事件和样本空间1.随机事件:具有不确定性的事件称为随机事件,如抛掷一枚硬币的结果、掷骰子的点数等。

2.样本空间:随机试验的所有可能结果的集合称为样本空间,用S表示。

例如,抛掷一枚硬币的样本空间为{正面,反面}。

二、事件的概率1.定义:事件A的概率是指在一次随机试验中,事件A发生的可能性,用P(A)表示。

2.概率的性质:-非负性:对于任意事件A,0≤P(A)≤1-必然事件:对于一定发生的事件,概率为1-不可能事件:对于一定不发生的事件,概率为0。

-加法公式:若A、B为互斥事件,则P(A∪B)=P(A)+P(B)。

3.等可能概率:在样本空间中,每个事件的发生概率相等。

例如,抛掷一枚硬币正面朝上的概率为1/24.事件的互斥与独立:-互斥事件:两个事件不能同时发生,P(A∩B)=0。

-独立事件:两个事件的发生不会相互影响,P(A∩B)=P(A)×P(B)。

三、事件的确定性和可能性1.确定性事件:在一次随机试验中,一定会发生的事件。

2.可能性事件:在一次随机试验中,可能发生也可能不发生的事件。

四、频率与概率1.频率:在大量重复试验中,事件A发生的频次与总试验次数的比值称为事件A的频率,记作f(A)。

2.大数定律:在试验次数很大时,事件A的频率趋近于事件A的概率。

五、排列和组合1.排列:从n个不同元素中,按照一定顺序取出m(m≤n)个元素,称为从n个不同元素中选取m个元素的排列数,记作A(n,m)。

2.组合:从n个不同元素中,取出m(m≤n)个元素,不考虑其顺序,称为从n个不同元素中选取m个元素的组合数,记作C(n,m)。

3.公式:-A(n,m)=n!/(n-m)!-C(n,m)=n!/(m!(n-m)!)六、概率的计算1.等可能概率的计算:P(A)=有利的结果数/总结果数。

九年级数学概率初步知识点总结

九年级数学概率初步知识点总结

九年级数学概率初步知识点总结经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。

下面是整理的九年级数学概率初步知识点,仅供参考希望能够帮助到大家。

九年级数学概率初步知识点(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;(2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的.事件;(4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(5)概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.统计初步的有关概念总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象.样本:从总体中所抽取的一部分个体叫总体的一个样本.样本容量:样本中个体的数目.样本平均数:样本中所有个体的平均数叫样本平均数.总体平均数:总体中所有个体的平均数叫做总体平均数.统计学中的基本思想就是用样本对总体进行估计、推断,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律.数学学习方法及技巧学好初中数学认真听课很重要初中学生想要学好数学,在课上一定要认真听老师讲课。

老师在课堂上讲的是非常重要的知识点,但是在初中数学课上选择做笔记并不是一个正确的做法。

在初中数学课上你需要做的就是跟住老师的思维,学好老师的思维方式,这个阶段要培养自己的数学逻辑思维能力。

大部分的初中数学老师,对于这门学科都有自己的见解,所以跟住老师的思路久而久之就会逐渐转换成自己解题的思路。

学好初中数学要较真数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。

概率初步知识点

概率初步知识点

概率初步知识点归纳1、概率的有关概念1.概率的定义:*种事件在*一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划〔描述〕事件发生的可能性的大小的量叫做概率.2、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.○3不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件.不确定事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为随机事件。

练习:1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A.让比赛更富有情趣B.让比赛更具有神秘色彩C.表达比赛的公平性D.让比赛更有挑战性2.小掷一枚硬币,结果是一连9次掷出正面向上,则他第10次掷硬币时,出现正面向上的概率是( ).A.0 B.1 C.0.5 D.不能确定3.关于频率与概率的关系,以下说确的是( ).A.频率等于概率B.当试验次数很多时,频率会稳定在概率附近C.当试验次数很多时,概率会稳定在频率附近D.试验得到的频率与概率不可能相等4.以下说确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.*种彩票中奖的概率是1%,因此买100该种彩票一定会中奖C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5.以下说确的是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B."从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀) D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,则一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全一样的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测工程为耐力类,抽测工程为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进展测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31B .32C .61D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,则一次过关的概率为( ). A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ).(1)"从袋中取出一只红球的概率是99%〞,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差异,因为小对取出一只红球没有把握,所以小说:"从袋中取出一只红球的概率是50%〞 (3)小说,这次考试我得90分以上的概率是200% (4)"从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.以下说确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 3、〔重点〕概率的计算1、概率的计算方式:概率的计算有理论计算和实验计算两种方式,根据概率获得的方式不同,它的计算方法也不同.2、如何求具有上述特点的随机事件的概率呢.如果一次试验中共有n 种可能出现的结果,而且这些结果出现的可能性都一样,其中事件A 包含的结果有m 种,则事件A 发生的概率P(A)=n m。

初中《概率》知识点归纳

初中《概率》知识点归纳

初中《概率》知识点归纳初中《概率》知识点归纳1、科学记数法:把一个数字写成的形式的记数方法。

2、统计图:形象地表示收集到的数据的图。

3、扇形统计图:用圆和扇形来表示总体和部分的关系,扇形大小反映部分占总体的百分比的大小;在扇形统计图中,每个部分占总体的百分比等于该部分对应的扇形圆心角与360°的比。

4、条形统计图:清楚地表示出每个项目的具体数目。

5、折线统计图:清楚地反映事物的变化情况。

6、确定事件包括:肯定会发生的必然事件和一定不会发生的不可能事件。

7、不确定事件:可能发生也可能不发生的事件;不确定事件发生的可能性大小不同;不确定。

8、事件的概率:可用事件结果除以所以可能结果求得理论概率。

9、有效数字:对于一个近似数,从左边第一个不是0的数字起,到精确到的数位为止的数字。

10、游戏双方公平:双方获胜的可能性相同。

11、算数平均数:简称“平均数”,最常用,受极端值得影响较大;加权平均数12、中位数:数据按大小排列,处于中间位置的数,计算简单,受极端值得影响较小。

13、众数:一组数据中出现次数最多的数据,受极端值得影响较小,跟其他数据关系不大。

中学数学概率知识点归纳214、平均数、众数、中位数都是数据的代表,刻画了一组数据的“平均水平”。

15、普查:为了一定目的对考察对象进行全面调查;考察对象全体叫总体,每个考察对象叫个体。

16、抽样调查:从总体中抽取部分个体进行调查;从总体中抽出的一部分个体叫样本(有代表性)。

17、随机调查:按机会均等的原则进行调查,总体中每个个体被调查的概率相同。

18、频数:每次对象出现的次数。

19、频率:每次对象出现的次数与总次数的比值20、级差:一组数据中最大数据与最小数据的差,刻画数据的离散程度21、方差:各个数据与平均数之差的平方的平均数,刻画数据的离散程度22、方差计算公式23、标准方差:方差的算数平方根刻画数据的离散程度。

24、一组数据的级差、方差、标准方差越小,这组数据就越稳定。

九年级数学概率初步知识点

九年级数学概率初步知识点

九年级数学概率初步知识点
九年级数学概率初步的知识点包括以下内容:
1. 事件与样本空间:事件是指在一次随机实验中可能发生的结果,样本空间是指随机实验的所有可能结果组成的集合。

2. 事件的概率:事件A的概率表示为P(A),计算方法为P(A) = 事件A的有利结果数/样本空间的总结果数。

3. 事件的互斥与对立:互斥事件指的是两个事件不可能同时发生,对立事件指的是两个事件只能发生其中一个。

4. 事件的并、交与差:事件A和事件B的并集是指事件A和事件B中至少有一个事件发生的情况,事件A和事件B的交集是指事件A和事件B同时发生的情况,事件A对事件B的差是指事件A发生但事件B不发生的情况。

5. 等可能事件:指在一个随机实验中,每个结果发生的概率相等。

6. 事件的组合:指将多个事件进行排列组合,计算不同情况发生的概率。

7. 古典概型:指样本空间有限,且每个样本发生的概率相等的情况。

8. 条件概率:指在已知事件A发生的情况下,事件B发生的概率,表示为P(B|A),计算方法为P(B|A) = P(A并B)/P(A)。

9. 独立事件:指事件A的发生与事件B的发生没有相互影响,即P(A并B) = P(A) ×P(B)。

10. 事件系列:指多个事件相继进行,每个事件的发生与否会影响下一个事件的发生概率计算。

这些知识点是九年级数学概率初步的基础,通过掌握这些知识,可以进行一些简单的概率计算与推理。

初中概率初步知识点归纳

初中概率初步知识点归纳

初中概率初步知识点归纳1.概率的基本概念:概率是指一些事件发生的可能性大小。

用数字来表示概率,概率的范围在0到1之间,其中0表示不可能发生,1表示必然发生。

2.试验与样本空间:试验是指一些随机事件的观察或测试过程,样本空间是指试验的所有可能结果的集合。

例如,抛一枚硬币的试验,样本空间为{正面,反面}。

3.事件与事件的概率:事件是指样本空间的一个子集,即一些试验的可能结果的集合。

事件的概率是指该事件发生的可能性大小。

事件的概率可以通过计算实验中该事件发生的次数与实验总次数的比例来确定。

4.相等概率事件:如果一个试验的样本空间中的每个结果发生的概率相等,那么每个结果就是一个相等概率事件。

例如,抛一枚均匀硬币的结果正面和反面都是相等概率事件。

5.基本事件与复合事件:基本事件是样本空间中的一个单独结果,复合事件是样本空间中的一个或多个事件的集合。

复合事件可以通过基本事件的交、并、非等运算得到。

6.事件的互斥与独立:两个事件互斥是指它们不能同时发生,即它们的交集为空集;两个事件独立是指它们的发生与不发生相互独立,即一个事件的发生不影响另一个事件的发生。

7.计数原理:计数原理是概率问题中常用的计算方法。

包括排列计数原理和组合计数原理。

排列是指从一组不同的元素中取出若干个按照一定顺序排列的方式,组合是指从一组不同的元素中取出若干个按照任意顺序排列的方式。

8.条件概率:条件概率是指在一些条件下事件发生的概率。

如果事件A和事件B相互独立,那么事件A在事件B发生的条件下发生的概率与事件A发生的概率相等。

9.事件的发生次数的概率分布:事件的发生次数的概率分布可以用频率来近似估计。

当试验次数很大时,事件发生次数的频率趋近于事件发生的概率。

10.古典概型:古典概型是指试验的样本空间有限且所有结果发生的概率相等的情况。

在古典概型中,事件发生的概率可以通过计数原理进行计算。

110《概率初步》知识点总结

110《概率初步》知识点总结

新课标《概率》基础知识一.随机现象的概念:㈠必然现象:在一定条件下必然发生某种结果的现象。

㈡不可能现象:在试验中必然不发生的现象。

㈢确定性现象: 必然现象和不可能现象统称为“确定性现象”。

㈣随机现象:在相同条件下多次观察同一现象,每次观察到的结果不一定相同。

事先很难预料会发生哪一种结果,这种现象就叫做随机现象。

★注意:随机现象绝不是杂乱无章的现象。

其特点是:1)这种现象的结果不确定,发生之前不能预言;2)这种现象的结果带有偶然性,但这种现象的各种可能结果在数量上具有一定的稳定性和规律性。

我们把这种规律性叫做统计规律。

统计规律说明了随机现象具有必然性或规律性的一面。

㈤试验:观察和模拟随机现象的过程叫做试验。

试验的每一个可能结果叫做一个事件。

二.事件的分类:㈠必然事件:在一定条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; ㈡不可能事件:在一定条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; ㈢随机事件:在一定条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;通常用大写字母...,,C B A 来表示随机事件。

随机事件也可以简称“事件”。

★注意:1)必然事件和不可能事件反映的是一定条件下的确定性现象;2)随机事件反映的则是在一定条件下的随机现象。

㈣频数与频率:1.在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数)(A n 为事件A 出现的频数;2.把事件A 出现的比例nn A f A =)(为事件A 出现的频率。

对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率)(A f 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率,1)(0≤≤A P ,这个定义叫做概率的统计学定义。

3.频率与概率的区别与联系:随机事件的频率,指此事件发生的次数)(A n 与试验总次数n 的比值n n A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

初中中考概率知识点总结

初中中考概率知识点总结

初中中考概率知识点总结一、概率的基本概念1. 随机事件与样本空间随机事件是指在一次试验中可能出现也可能不出现的事件,样本空间是指这个试验中所有可能结果组成的集合。

比如,掷一枚硬币,样本空间就是正面和反面,出现正面和出现反面就是两个随机事件。

2. 概率的定义概率是随机事件发生的可能性大小的度量,通常用P(A)表示,其中A表示随机事件。

概率的取值范围是[0,1],即0表示不可能发生,1表示必然发生,而在0和1之间表示可能性大小。

3. 事件的互斥与对立互斥事件指两个事件不能同时发生,对立事件指两个事件一定有一个发生,但是不能同时发生。

二、概率的计算方法1. 定义法计算概率概率的定义法指直接利用概率的定义进行计算,即事件A发生的次数除以试验次数。

例如,掷一枚硬币,正面朝上的概率可以用正面出现的次数除以总次数来计算。

2. 古典概率古典概率适用于有限个等可能结果的试验。

古典概率的计算公式为P(A)=m/n,其中m为事件A发生的次数,n为试验次数。

3. 几何概率几何概率适用于连续随机事件。

计算几何概率时,可以利用事件发生的面积或长度除以总的可能性的面积或长度。

4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率。

条件概率的计算公式为P(A|B)=P(AB)/P(B)。

5. 事件的独立性如果事件A和事件B的发生互不影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A和事件B是独立事件。

这时有P(AB)=P(A)P(B)。

6. 事件的联合概率事件A和事件B联合发生的概率可以用P(AB)表示,计算公式为P(AB)=P(A)P(B|A)=P(B)P(A|B)。

三、概率与统计的关系1. 随机变量随机变量是一个随机试验结果的数值表示,可以是离散的也可以是连续的。

对于随机变量,可以计算它的期望值、方差等统计指标。

2. 概率分布概率分布是指随机变量取值和相应概率的对应关系。

对于离散随机变量,可以通过列出取值和概率的对应关系来表示概率分布;对于连续随机变量,可以通过概率密度函数来表示概率分布。

初三数学概率初步完美大全

初三数学概率初步完美大全

概率初步一、随机事件与概率问题1:摇骰子(1)摇到的点数有几种可能的结果?(6种:1、2、3、4、5、6)(2)摇到的点数小于等于6吗?(3)摇到的点数是0吗?(4)摇到的点数是1吗?总结:在一定条件下重复进行试验时,有的事件在每次试验中必然会发生(2),称为必然事件,有的事件在每次试验中都不会发生(3)称为不可能事件。

必然事件和不可能事件统称为确定事件。

还有一类事件在每次试验中可能发生,也可能不发生,事先无法确定(4),称为随机事件。

随机事件的特征。

1. 随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

强调:定义中“在一定条件下”说明当条件改变时,随机事件发生的可能性也会相应地发生改变。

练习1:下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件?说明理由。

(1)篮球运动员在罚球线上投篮一次,未投中;(2)掷一次六面体骰子,向上的一面是6点;(3)度量三角形的内角和,结果是360°;(4)放学回家路上在每一个路口都遇上绿灯;(5)在标准大气压下,沸水的温度是100℃;(6)今晚打开电视发现在播广告;(7)将豆油滴在水中,豆油浮在水面上。

问题2:袋中摸球袋子中有4个彩球和2个白球,这些球的形状、大小、质地完全相同。

在看不到球的条件下,随机地从袋子中摸出一个球。

(1)这个球是彩色还是白色?(2)摸出彩球和摸出白球的可能性一样大吗?小结:从这个问题中可以看出,随机事件发生的可能性有大有小。

那么怎样来描述一个随机事件的可能性呢?这是我们接下来要讨论的问题。

活动:抛掷一枚质地均匀的硬币,(投掷一次)(1)结果有几种可能?(2)投掷前能否确定是哪一面向上?(3)哪种结果的可能性更大?在抛掷一枚质地均匀的硬币时,尽管事先不能确定结果是正面向上还是反面向上,但直觉告诉我们这两个随机事件发生的可能性相同,各占一半。

猜想:抛掷一枚质地均匀的硬币,正面向上和反面向上的可能性相同,各占一半。

新人教九年级数学上概率初步

新人教九年级数学上概率初步

概率初步の定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生の可能性の大小,我们把刻划〔描述〕事件发生の可能性の大小の量叫做概率.2、事件类型:○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.○2不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.○3不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生の事件,因此它们也可以称为确定性事件.不确定事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为随机事件。

1、概率の计算方式:概率の计算有理论计算与实验计算两种方式,根据概率获得の方式不同,它の计算方法也不同.2、如何求具有上述特点の随机事件の概率呢?如果一次试验中共有n种可能出现の结果,而且这些结果出现の可能性都一样,其中事件A包含の结果有m种,那么事件A发生の概率P(A)=。

在求随机事件の概率时,我们常常利用列表法或树状图来求其中のm、n,从而得到事件Aの概率.由此我们可以得到:不可能事件发生の概率为0;即P(不可能事件)=0;必然事件发生の概率为1;即P(必然事件)=1;如果A为不确定事件;那么0<P(A)<1.类型一:随机事件1.选择题:4个红球、3个白球与2个黑球放入一个不透明袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情( )A.可能发生B.不可能发生C.很可能发生D.必然发生思路点拨:举一反三【变式1】以下事件是必然事件の是( )A.中秋节晚上能看到月亮B.今天考试小明能得总分值C.早晨太阳会从东方升起D.明天气温会升高【变式2】在100张奖券中,有4张中奖.某人从中任意抽取1张,那么他中奖の概率是( )A. B. C. D.类型二:概率の意义2.有如下事件,其中“前100个正整数〞是指把正整数按从小到大の顺序排列后の前面100个.事件1:在前100个正整数中随意选取一个数,不大于50;事件2:在前100个正整数中随意选取一个数,恰好为偶数;事件3:在前100个正整数中随意选取一个数,它の2倍仍在前100个正整数中;事件4:在前100个正整数中随意选取一个数,恰好是3の倍数或5の倍数.在这几个事件中,发生の概率恰好等于の有( )A.1个B.2个C.3个D.4个思路点拨:事件是从前100个正整数中随意选取一个数,其中任何一个数被选取出来の可能性都是一样の,所以有100个可能の结果,而从中随意选取一个,只有一种结果,所以其中每个数被选取の概率都是.举一反三【变式1】从两副拿掉大、小王の扑克牌中,各抽取一张,两张牌都是红桃の概率是________.【变式2】口袋中放有3个红球与11个黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球の概率是________.类型三:概率の计算3.有两只口袋,第一只口袋中装有红、黄、蓝三个球,第二只口袋中装有红、黄、蓝、白四个球,求分别从两只口袋中各取一个球,两个球都是黄球の概率.思路点拨:红黄蓝白红黄蓝解:所有可能结果共有12种,两球都为黄球只有1种.故P(两球都是黄球)=举一反三【变式1】抛两枚普通の正方体骰子,朝上一面の点数之与大于5而小于等于9の概率是多少【变式2】在生物学中,我们学习过遗传基因,知道遗传基因决定生男生女,如果父亲の基因用X与Y来表示,母亲の基因用X与X来表示,X与Y搭配表示生男孩,X与X搭配表示生女孩,那么生男孩与生女孩の概率各是多少【变式3】两个人做游戏,每个人都在纸上随机写一个-2到2之间の整数(包括-2与2),将两人写の整数相加,与の绝对值是1の概率是多少【变式4】有两组卡片,第一组の三张卡片上分别写有A、C、C;第二组の五张卡片分别写有A、B、B、C、C,那么从每组卡片中各抽出一张,两张都是Cの概率是多少?2.树形图法4.将分别标有数字1、2、3の三张卡片洗匀后.背而朝上放在桌面上.(1)随机地抽取一张,求P(奇数);(2)随机地抽取一张作为十位上の数字(不放回),再抽取一张作为个位上数字,能组成哪些两位数?恰好是“32〞の概率为多少?举一反三【变式1】两名同学玩“石头、剪子、布〞の游戏,假定两人都是等可能地取“石头、剪子、布〞三个中の一个,那么一个回合不能决定胜负の概率是多少?5.某篮球运发动在最近の几场大赛中罚球投篮の结果如下:投篮次数n8101291610进球次数m6897127进球频率(1)计算表中各次比赛进球の频率;(2)这位运发动投篮一次,进球の概率约为多少?举一反三【变式1】某射击运发动在同一条件下の射击成绩记录如下:射击次数1020304050607080射中8环以上の617253139496580频数射中8环以上の频率(1)计算表中相应の频率.(准确到0.01)(2)估计这名运发动射击一次“射中8环以上〞の概率.(准确到0.1)类型四:概率の思想方法6.一个口袋中有10个红球与假设干个白球,请通过以下试验估计口袋中白球の个数.从口袋中随机摸出一个球,记下其颜色,再把它放回袋中,不断重复上述试验过程,试验中总共摸了200次,其中有50次摸到红球.7.王老汉为了与顾客签订购销合同,对自己鱼塘中鱼の总质量进进了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号の鱼有20条,王老汉の鱼塘中估计有鱼________条,总质量为________千克.类型五:概率の综合应用8.有5条线段,长度分别为2,4,6,8,10,从中任取3条线段.(1)一定能构成三角形吗?(2)猜测一下,能构成三角形の时机有多大?举一反三【变式1】某口袋中有红色、黄色、蓝色乒乓球共72个,亮亮通过屡次摸球试验后,发现摸到红球、黄球、蓝球の频率分别为35%、25%与40%,试估计口袋中3种乒乓球の数目.【变式2】某校三个年级在校学生共796名,学生の出生月份统计如下图,根据以下统计图の数据答复以下问题.(1)出生人数超过60人の月份有哪些?(2)出生人数最多の是几月份?(3)在这些学生中,至少有两个人生日在10月5日是不可能の,还是可能の?还是必然の?(4)如果你随机地遇到这些学生中の一位,那么这位学生生日在哪一个月份の概率最小?随堂练习一、选择题1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方の场地与首先发球者,其主要原因是( ).A.让比赛更富有情趣B.让比赛更具有神秘色彩C.表达比赛の公平性D.让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上の概率是( ).A.0 B.1 C.0.5 D.不能确定3.关于频率与概率の关系,以下说法正确の是( ).A.频率等于概率B.当试验次数很多时,频率会稳定在概率附近C.当试验次数很多时,概率会稳定在频率附近D.试验得到の频率与概率不可能相等4.以下说法正确の是( ).A.一颗质地均匀の骰子已连续抛掷了2000次,其中,抛掷出5点の次数最少,那么第2001次一定抛掷出5点B.某种彩票中奖の概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨の概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地与钉尖朝上の概率不相等5.以下说法正确の是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面の概率为1B.“从我们班上查找一名未完成作业の学生の概率为0〞表示我们班上所有の学生都完成了作业C.一个口袋里装有99个白球与一个红球,从中任取一个球,得到红球の概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上の概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明の袋子中装有4个除颜色外完全一样の小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球の概率是( ).A.B.C.D.7.在今年の中考中,市区学生体育测试分成了三类,耐力类、速度类与力量类.其中必测工程为耐力类,抽测工程为:速度类有50m、100m、50m ×2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类与力量类中各随机抽取一项进展测试,请问同时抽中50m ×2往返跑、引体向上(男)或仰卧起坐(女)两项の概率是( ).A.B.C.D.8.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样の乒乓球放入一个袋中,其中8个白色の,5个黄色の,5个绿色の,2个红色の.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关の概率为( ).A.B.C.D.9.下面4个说法中,正确の个数为( ).(1)“从袋中取出一只红球の概率是99%〞,这句话の意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色の小球,这些小球除颜色外没有其他差异,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球の概率是50%〞(3)小李说,这次考试我得90分以上の概率是200%(4)“从盒中取出一只红球の概率是0〞,这句话是说取出一只红球の可能性很小A.3 B.2 C.1 D.010.以下说法正确の是( ).A.可能性很小の事件在一次试验中一定不会发生B.可能性很小の事件在一次试验中一定发生C.可能性很小の事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生二、填空题11.在一个不透明の箱子里放有除颜色外,其余都一样の4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中の一个可能事件:_________________.12.掷一枚均匀の骰子,2点向上の概率是______,7点向上の概率是______.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,假设从中随机地取出1个球,记事件A为“取出の是红球〞,事件B为“取出の是黄球〞,事件C为“取出の是蓝球〞,那么P(A)=______,P(B)=______,P(C)=______.14.有大小、形状、颜色完全一样の5个乒乓球,每个球上分别标有数字1,2,3,4,5中の一个,将这5个球放入不透明の袋中搅匀,如果不放回地从中随机连续抽取两个,那么这两个球上の数字之与为偶数の概率是______.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形の概率为______.16.从下面の6张牌中,一次任意抽取两张,那么其点数与是奇数の概率为______.17.在一个袋子中装有除颜色外其他均一样の2个红球与3个白球,从中任意摸出一个球,那么摸到红球の概率是______.18.在一个不透明の盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均一样.假设从中随机摸出一个球,它是白球の概率为,那么n=______.三、解答题19.某出版社对其发行の杂志の质量进展了5次“读者调查问卷〞,结果如下:被调查人数10011000100410031000 n满意人数m999998100210021000满意频率(1)计算表中各个频率;(2)读者对该杂志满意の概率约是多少(3)从中你能说明频率与概率の关系吗20.四张质地一样の卡片如下图.将卡片洗匀后,反面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2の概率;(2)小贝与小晶想用以上四张卡片做游戏,游戏规那么见信息图.你认为这个游戏公平吗请用列表法或画树形图法说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率初步知识点归纳
1、事件类型:
○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.
(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<1
2、概率定义
(1)概率的频率定义:
一般地,在大量重复试验中,如果事件A 发生的频率
m
n
会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。

是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。

3、概率表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示。

事件A 的概率p ,可记为P (A )=P
4、概率的计算 ①等可能事件的概率
• 古典概型
古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。

历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。

计算古典概型,
公式:
分析方法:
(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事
件个数,最后相除。

以下补充是初三学习内容:
(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为
不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
特别注意放回去与不放回去的列表法的不同.
如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?
放回去 P (1和2)=
9
2 不放回去P (1和2)=62
(3,3)
(3,2)
(3,1)
3
(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次
结果3
2
1
第二次
(3,2)
(3,1)
3(2,3)
(2,1)2
(1,3)(1,2)
1第一次
结果3
2
1第二次
(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列
表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:
由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和
1的结果有两种。

∴ P (1和2)=
9
2
不放回去, 树状图如下:
∴ P (1和2)=
6
2
注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易.
•几何概型
几何概型讨论的对象是所有可能结果有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。

布丰投针问题是应用几何概型的一个典型例子。

公式:
目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获用频数估计概率;第三类问题则是简单的古典概型,几何概型,理论上用公式容易求出其概率。

2、概率应用
(1)通过设计简单的概率模型,在不确定的情境中做出合理的决策;
(2)概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性可以解决一些实际问题。

【易错点解析】
易错点1:随机事件概率的有关概念
例1 题目1:在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超.有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是
A.李东夺冠的可能性较小
B.李东和他的对手比赛l0局时,他一定赢8局
C.李东夺冠的可能性较大
D.李东肯定会赢
易错点2:计算简单随机事件的概率
例2 题目1:某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为。

【中考考点解读】
考点一、确定事件(必然事件、不可能事件)和不确定事件(随机事件).
(要会判断---用排除法)
考点二、概率的意义与表示方法
考点三、确定事件和随机事件的概率之间的关系
1、确定事件概率
(1)当A是必然发生的事件时,P(A)=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
考点四、等可能性事件概率求法
古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A
m
包含其中的m中结果,那么事件A发生的概率为P(A)=n
3.几何概型的概率的求法(面积比)
考点五、利用频率估计概率
利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

相关文档
最新文档