第2课时 有理数加法的运算律及运用
人教版七年级数学上册- 有理数加法的运算律及运用精品教案
1.3.1 有理数的加法第2课时有理数加法的运算律及运用教学目标:1.能运用加法运算律简化加法运算.2.理解加法运算律在加法运算中的作用,适当进行推理训练.教学重点:如何运用加法运算律简化运算.教学难点:灵活运用加法运算律.情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.知识链接1.填空:3+2=2+3 这里运用了加法的( )25+39+75=(____ +_____ )+____ =___ +(_____ +_____)这里运用了加法的()2.有理数的加法法则:⑴同号两数相加,_____________________________________ ;⑵异号两数相加,绝对值相等时,___________ ;绝对值不相等时,______________________________________________.⑶一个数同0相加,_________________ .3.计算(1)(-15)+(-3)(2)6+(-2.3)(3)(-0.75)+0教与学互动设计:(一)情境创设,导入新课思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究计算:20+(-30)与(-30)+20两次得到的和相同吗?得出结论:20+(-30)=(-30)+20换几组数去试:得到加法交换律:a+b= (学生填).其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)计算:(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)].得出结论:加法结合律:(a+b)+c= .【例1】计算:16+(-25)+24+(-35)【例2】课本P20例3说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.(三)应用迁移,巩固提高【例3】利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?(四)总结反思,拓展升华本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.(五)课堂跟踪反馈夯实基础1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算:(-2)+4+(-6)+8+…+(-98)+100.提升能力3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,又因为(-1)+(+3)=2 ②,由①②有(-1)-(-3)=-1+(+3)③,即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.3.上周五股民新民买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是多少?4.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2, -4, 2.5, 3, -0.5, 1.5, 3, -1, 0, -2.5.问这10筐苹果总共重多少千克?板书设计有理数加法运算律⎩⎪⎨⎪⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.。
七年级数学 第2课时 有理数的加法运算律
1.3.1 有理数的加法第2课时有理数的加法运算律一、新课导入1.课题导入:(1)想一想,小学里我们学过的加法运算律有哪些?(2)这些运算律在有理数的加法中是否还适用呢?我们先来进行下列两道计算,再回答这个问题.30+(-20),(-20)+30.上面两个算式中交换了加数的位置,两次所得的和相同吗?加法运算律在有理数运算中还适用吗?这就是今天要学习的内容——有理数加法运算律.2.学习目标:(1)能叙述有理数加法运算律.(2)会运用加法运算律进行有理数加法简便运算.3.学习重、难点:重点:有理数加法运算律及运用.难点:运算律的灵活运用.二、分层学习1.自学指导:(1)自学内容:探究有理数加法的交换律和结合律.(2)自学时间:5分钟.(3)自学要求:运用计算、类比来验证归纳加法的运算律在有理数加法中的运用.(4)探究提纲:①刚才通过计算知道30+(-20)和(-20)+30相等,同学们再算一算下列各式:a.(-8)+(-9)=-17;(-9)+(-8)=-17.b.4 +(-8)=-4;(-8)+4=-4.根据计算结果你可发现:(-8)+(-9)=(-9)+(-8),4 +(-8)=(-8)+4(填“>”“<”或“=”)由此可得a+b=b+a,这种运算律称为加法交换律.即两个数相加,交换加数的位置,和不变.②计算:a.[8+(-5)]+(-4),8+[(-5)+(-4)];b.[(-12)+20]+(-8),(-12)+[20+(-8)]. 比较a、b两题计算结果,你能得出什么结论?(仿照1),分别用文字和含字母的等式写出你的结论.a.[8+(-5)]+(-4)=-1,8+[(-5)+(-4)]=-1.b.[(-12)+20]+(-8)=0,(-12)+[20+(-8)]=0.根据a、b两题计算结果,可发现[8+(-5)]+(-4)=8+[(-5)+(-4)],[(-12)+20]+(-8)=(-12)+[20+(-8)],由此可得,(a+b)+c=a+(b+c),这种运算律称为加法结合律.即三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:了解学生的探究过程及探究结论,关注他们认识过程中的疑点问题.②差异指导:a.指导那些对有理数加法法则还不熟的学生;b.指导表达有困难的学生归纳出相应的结论.(2)生助生:生生互动讨论交流解决自学中的疑问.4.强化:(1)加法的交换律.(文字、字母表述)加法的结合律.(文字、字母表述)(2)在有理数加法运算中,运用加法交换律和结合律可使运算更加简便.1.自学指导:(1)自学内容:教材第19页例2到第20页“练习”之前的内容.(2)自学时间:5分钟.(3)自学要求:仔细阅读例2的解答过程,弄清每一步的目的和依据分别是什么.认真阅读例3的解答过程,通过例3两种解法的对比,体会有理数加法运算律的作用.(4)自学参考提纲:①例2中是怎样使计算简化的?根据是什么?例2中,把正数和负数分别相加,从而使计算简化.这样做的依据是加法的交换律和结合律.②仿例2计算:a.23+(-17)+6+(-22);b.(-2)+3+1+(-3)+2+(-4)a.23+(-17)+6+(-22)=23+6+[(-17)+(-22)]=29+(-39)=-10b.(-2)+3+1+(-3)+2+(-4)=3+1+2+[(-2)+(-3)+(-4)]=6+(-9)=-3③想一想,要解决例3中的问题,你有几种计算方法?再把自己的想法与同伴交流一下.解法一的解题思路是怎样的?这种思路大家以前就会吗?方法一:直接用加法算出10袋小麦的总质量,再减去10袋小麦的标准质量得出超出或不足的部分.方法二:先算出每袋小麦超出或不足的部分,再求和算出10袋总计超出或不足的部分.④例3中10袋小麦重量数与哪个数字比较接近?解法二中运用了哪些运算律?与解法一比较,哪种方法较好?好在哪里?10袋小麦重量数与90比较接近.解法二中运用了加法的交换律和结合律.解法二较好,使运算更简便.⑤某学习小组五位同学某次数学测试成绩(分)为83、76、94、88、74,该班全体同学测试的平均分为80分,问这五位同学的平均分超出全班平均分是多少分?用两种方法解答.解法一:先计算这5个人的平均分是多少分:(83+76+94+88+74)÷5=83,再计算超过平均分多少分:83-80=3.解法二:每个人的分数超过平均分的记为正数,低于平均分的记为负数,则5个人对应的数分别为:+3,-4,+14,+8,-6.[(+3)+(-4)+(+14)+(+8)+(-6)]÷5=3.答:这五位同学的平均分超出全班平均分3分.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生对这两个例题的思路是否理解.②差异指导:对学困生启发指导.(2)生助生:学生通过讨论交流解决自学中的疑难问题.4.强化:(1)a.使用运算律使计算简便的常用方法:正数与正数相结合,负数与负数相结合;互为相反数的相结合.b.例3中解法1的方法:实际总量-按标准算总量;解法2的方法:先算每袋超(或少)标准量多少?再求总超(或少)标准总量多少?(2)加法运算律在有理数运算中的作用及使用方法.(3)练习:计算:①1+(-12)+13+(-16);②314+(-235)+534+(-825)答案:①23;②-2.三、评价1.学生的自我评价(围绕三维目标):自我总结本节课学习的收获与困惑.2.教师对学生的评价:(1)表现性评价:对学生学习中的行为表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学内容,学生在小学时已接触过并且带有技巧性,是学生比较喜欢的知识,教学时可依据这些特点,由教师设计现实情境,引导学生带着新奇去自主发现与交流,从而获取知识和技巧.对学生在自主探索形成的认识中不足的地方,教师可在指导学生解决实际问题时,针对性的补充与拓展,训练时还可采用抢答等形式,由学生自己做出评判.一、基础巩固(70分)1.(30分)-12+14+(-25)+(+310)运用运算律计算恰当的是(A)A.[(-12+14)]+[(-25)+(+310)]B. [14+(-25)]+[(-12)+(+310)]C. (-12)+ [14+(-25)]+(+310)D.以上都不对2.(40分)计算.(1)5+(-6)+3+9+(-4)+(-7);(2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;(3)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7);(4)12+(-23)+45+(-12)+(-13).解:(1)原式=5+3+9+[(-6)+(-4)+(-7)]=17+(-17)=0;(2)原式=[(-0.8)+0.8]+1.2+3.5+[(-0.7)+(-2.1)]=0+4.7+(-2.8)=1.9;(3)原式=[(-6.8)+(-3.2)]+425+635+[(-5.7)+(+5.7)]=(-10)+11+0=1;(4)原式=12+(-12)+(-23)+(-13)+45=0+(-1)+45=-15.二、综合应用(20分)3.(10分)食品店一周中各天的盈亏情况如下(盈余为正):132元,-12.5元,-10.5元,127元,-87元,136.5元,98元.一周中总的盈亏情况如何?解:132+(-12.5)+(-10.5)+127+(-87)+136.5+98=383.5(元),即一周盈利383.5元.4.(10分)有8筐白菜,以每筐25kg为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.5.这8筐白菜一共多少千克?解:1.5+(-3)+2+(-0.5)+1+(-2)+(-2)+(-2.5)+25×8=194.5(千克).答:这8筐白菜一共194.5千克.三、拓展延伸(10分)5.(10分)(1)计算下列各式的值.①(-2)+(-2);②(-2)+(-2)+(-2);③(-2)+(-2)+(-2)+(-2);④(-2)+(-2)+(-2)+(-2)+(-2).(2)猜想下列各式的值:(-2)×2;(-2)×3;(-2)×4;(-2)×5.你能进一步猜出一个负数乘一个正数的法则吗?解:(1)①-4;②-6;③-8;④-10.(2)(-2)×2=-4,(-2)×3=-6,(-2)×4=-8,(-2)×5=-10负数乘正数的法则:符号取负号,再把两数的绝对值相乘.。
最新人教版初中七年级数学上册《有理数加法的运算律及运用》教案
1.3.1 有理数的加法第2课时有理数加法的运算律及运用教学目标:1.能运用加法运算律简化加法运算.2.理解加法运算律在加法运算中的作用,适当进行推理训练.教学重点:如何运用加法运算律简化运算.教学难点:灵活运用加法运算律.教与学互动设计:(一)情境创设,导入新课思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究计算:20+(-30)与(-30)+20两次得到的和相同吗?得出结论:20+(-30)=(-30)+20换几组数去试:得到加法交换律:a+b= (学生填).其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)计算:(1)[8+(-5)]+(-4);(2)8+[(-5)+(-4)].得出结论:加法结合律:(a+b)+c= .【例1】计算:16+(-25)+24+(-35)【例2】课本P20例3说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.(三)应用迁移,巩固提高【例3】利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?(四)总结反思,拓展升华本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.(五)课堂跟踪反馈夯实基础1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算:(-2)+4+(-6)+8+…+(-98)+100.提升能力3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高如果将4换成-1,还有类似于上述的结论吗?先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2又因为(-1)+(+3)=2 ②,由①②有(-1)-(-3)=-1+(+3)③,即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢?计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则【例】计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的作者留言:非常感谢!您浏览到此文档。
人教版七年级上册《1.3有理数的加减法》教学设计
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则教学目标1.理解有理数加法的意义;2.初步掌握有理数加法法则;3.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.教学过程一、情境导入我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球为4+(-2),黄队的净胜球为1+(-1).这里用到正数与负数的加法.二、合作探究探究点一:有理数的加法法则例1 计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312); (3)(-5.25)+514; (4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113; (3)(-5.25)+514=0; (4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.探究点二:有理数加法的应用【类型一】 有理数加法在实际生活中的应用例2 股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.【类型二】 和有理数性质有关的计算问题例3 已知|a |=5,b 的相反数为4,则a +b =________.解析:因为|a |=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解.三、板书设计加法法则⎩⎪⎨⎪⎧(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小 的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.教学反思本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,使学生从被动学习变为主动探究.在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.第2课时 有理数加法的运算律及运用教学目标1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点)2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.教学过程一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律例1 计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123). 解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8. 方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用例2 某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎪⎨⎪⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )教学反思本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3.2 有理数的减法第1课时 有理数的减法法则教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;(重点)2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算技能.教学过程一、情境导入北京天气预报网每天实时播报天气情况,它会告诉我们各个城市的天气状况和气温变化.下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-5℃.那么它的温差怎么算?6-(-5)=?二、合作探究探究点:有理数的减法法则【类型一】 有理数减法法则的直接运用例1 计算:(1)7.2-(-4.8);(2)-312-514. 解析:先根据有理数的减法法则,将减法转化为加法,再根据有理数的加法法则计算即可.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834. 方法总结:进行有理数减法运算时,将减法转化为加法,再根据有理数加法法则进行计算.要特别注意减数的符号.【类型二】 有理数减法的实际应用例2 上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( )A .5℃B .6℃C .7℃D .8℃解析:由题意得6-(-1)=6+1=7(℃),故选C.方法总结:要根据题意列出算式,再运用有理数的减法法则解答.【类型三】 应用有理数减法法则判定正负性例3 已知有理数a <0,b <0,且|a |>|b |,试判定a -b 的符号.解析:判断a ,b 差的符号,可能不好理解,不妨把它转化为加法a -b =a +(-b ),利用加法法则进行判定.解:因为b <0,所以-b >0.又因为a <0,a -b =a +(-b ),所以a 与-b 是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a |>|b |,即|a |>|-b |,所以取a 的符号,而a <0,因此a -b 的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以将减法转化为加法通过运算法则来解答.三、板书设计有理数减法法则:减去一个数,等于加上这个数的相反数,即a-b=a+(-b).利用有理数减法法则,可以将有理数减法统一成加法运算.教学反思本节课从实际问题出发,创设教学情境,有效调动学生学习的兴趣和积极性.通过实例计算,激发学生的探索精神.通过大量的数学练习,使学生在计算中巩固解题技能,在小组交流中体验有理数的减法运算的运算魅力,并在教师的指导下自行归纳运算法则;学生亲身体验知识的形成过程,感悟数学的转化思想.第2课时有理数的加减混合运算教学目标1.会把有理数的加减混合运算统一成加法运算;2.熟练掌握有理数的加减混合运算及其运算顺序;(重点)3.能根据具体问题,适当运用运算律进行简化运算.(难点)教学过程一、情境导入此时飞机比起飞点高多少千米?小组探究此时飞机与起飞点的高度,得出以下两种计算方法:(1)4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米);(2)4.5-3.2+1.1-1.4=1.3+1.1-1.4=2.4-1.4=1(千米).比较以上两种算法,你发现了什么?二、合作探究探究点一:加减混合运算统一成加法运算例1 将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解析:先把加减法统一成加法,再省略括号和加号;读有理式,式子中第一项的符号,要作为这一项的符号读出正负来,式子中的符号就读作加或减.解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法①:负13、正7、负21、负9、正32的和;读法②:负13减去负7减去21减去9加上32.方法总结:注意掌握括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号.探究点二:有理数的加减混合运算例2 计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.其中互为相反数的两数先结合;能凑成整数的各数先结合.另外,同号各数先结合;同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16; (3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.探究点三:利用有理数加减运算解决实际问题例 3 下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米.方法总结:解此题的关键是分析题意列出算式,采用的数学思想是转化思想,即把实际问题转化成数学问题.三、板书设计1.有理数的加减混合运算(1)将减法转化为加法,然后去掉括号和加号.(2)运用加法法则和运算律进行计算.2.加法运算律(1)结合律:(a+b)+c=a+(b+c).(2)交换律:a+b=b+a.教学反思本节课是学生在学习了有理数的加法和减法的基础上进行的.通过本节课的学习使学生知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式,并能熟练掌握有理数的加减混合运算及其运算顺序.本节课本着“扎实、有效”的原则,既关注课堂教学的本质,又注重学生能力的培养,且面向全体学生来设计教学.。
《1.3.1 第2课时 有理数加法的运算律及运用》教案、同步练习和导学案
1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》教案【教学目标】1.理解有理数加法的运算律,并能熟练的运用运算律简化运算;(重点) 2.经历探索有理数加法的运算律的过程,体验探索归纳的数学方法.【教学过程】一、情境导入宋国有个非常喜欢猴子的老人.他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意.因为粮食缺乏,老人想限制口粮.那天,他故意先对猴子们说:“以后给你们吃桃子,早晨三颗晚上四颗,好不好?”众猴子听了都很愤怒.老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来.大家听完故事,请说说你的看法.二、合作探究探究点一:加法运算律计算:(1)31+(-28)+28+69;(2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123).解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加.解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.探究点二:有理数加法运算律的应用某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B 地在A 何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a 即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a (L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,其次是要正确理解题目意图,选择正确的方式解答.三、板书设计有理数加法运算律⎩⎨⎧交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )【教学反思】本节课教学以故事引入,在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.1.3有理数的加减法《1.3.1 有理数的加法》同步练习能力提升1.如果两个有理数的和是负数,那么这两个数()A.一定都是负数B.一定是0与一个负数C.一定是一个正数与一个负数D.可能是一个正数与一个负数,可能都是负数,也可能是0和一个负数2.有理数a,b在数轴上的位置如图,则a+b的值()A.大于0B.小于0C.小于aD.大于b3.若a与1互为相反数,则|a+1|等于()A.2B.-2C.0D.-14.若三个有理数a+b+c=0,则()A.三个数一定同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数5.若x的相反数是-2,|y|=4,则x+y的值为.6.绝对值小于2 016的整数有个,它们的和是.7.计算:(-1)+(+2)+(-3)+(+4)+…+(-99)+(+100)+…+(+2 014)+(-2 015)+(+2 016)+(-2 017)= .8.计算:(1)(-5)+(-4);(2)|(-7)+(-2)|+(-3);(3)(-0.6)+0.2+(-11.4)+0.8;(4).9.在抗洪抢险中,人民解放军驾驶冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正,当天航行记录如下(单位:km):16,-8,13,-9,12,-6,10.(1)B地在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.45 L,则这一天共消耗了多少升油?★10.阅读(1)小题中的方法,计算第(2)小题.(1)-5+17.解:原式==[(-5)+(-9)+(-3)+17]+=0+=-.(2)上述这种方法叫做拆项法,依照上述方法计算:+4 034+.创新应用★11.用[x]表示不超过x的整数中最大的整数,如[2.23]=2,[-3.24]=-4.请计算:(1)[3.5]+[-3];(2)[-7.25]+.★12.在如图所示的圆圈内填上不同的整数,使得每条线上的3个数之和为0,写出三种不同的答案.参考答案能力提升1.D2.A从数轴上可知:-1<a<0,b>1,即a,b异号,且|b|>|a|,故a+b>0.3.C4.D5.-2或6因为|4|=4,|-4|=4,所以y=±4.又因为x的相反数为-2,所以x=2.再将x,y的值代入x+y求值.6.4 03107.-1 009原式=[(-1)+(+2)]+[(-3)+(+4)]+…+[(-99)+(+100)]+…+[(-2013)+(+2014)]+[(-2015)+(+2016)]+(-2017)=-1009.8.解:(1)(-5)+(-4)=-(5+4)=-9.(2)|(-7)+(-2)|+(-3)=|-9|+(-3)=9+(-3)=6.(3)(-0.6)+0.2+(-11.4)+0.8=(0.2+0.8)+[(-0.6)+(-11.4)]=1+(-12)=-11.(4)=(-8)+ (+4)=-4.9.解:(1)16+(-8)+13+(-9)+12+(-6)+10=28(km),B地在A地的东侧,且两地相距28km.(2)|16|+|-8|+|13|+|-9|+|12|+|-6|+|10|=74(km),74×0.45=33.3(L),这一天共消耗油33.3L.10.解:(2)原式=+4034+=[(-2017)+(-2016)+(-1)+4034]+=0+=-2.创新应用11.解:(1)原式=3+(-3)=0.(2)原式=-8+(-1)=-9.12.解:本题答案不唯一,如:1.3.1 有理数的加法《第2课时有理数加法的运算律及运用》导学案【学习目标】:1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.【重点】:掌握有理数的加法交换律和结合律.【难点】:运用加法交换律、结合律简化运算.【自主学习】一、知识链接1.填空:3+2=2+3 这里运用了加法的( )25+39+75=(____ +_____ )+____ =___ +(_____+_____)这里运用了加法的()2.有理数的加法法则:⑴同号两数相加,___________________________________;⑵异号两数相加,绝对值相等时,___________;绝对值不相等时,____________________________________________.⑶一个数同0相加,_________________ .3.计算(1)(-15)+(-3)(2)6+(-2.3)(3)(-0.75)+0二、新知预习1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○和○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇和□+(○+◇)2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括:字母表示:加法的结合律:文字概括:字母表示:三、自学自测计算:(1)16 +(-25)+ 24 +(-35);(2)(—2.48)+(+4.3)+(—7.52)+(—4.3)四、我的疑惑_________________________________________________________________ ____________________________________________________________【课堂探究】一、要点探究探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)3+(-5)=-2,-5+3=-2;(2)[3+(-5)]+(-7)=-9,3+[(-5)+(-7)]=-9.问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)例1:计算:16+(-25)+24+(-35)思考:怎样使计算简化的?这样做的根据是什么?要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2 计算(1)(-2.48)+4.33+(-7.52)+(-4.33)(2)65+(-76)+(-61)思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3 每袋小麦的标准重量为90千克,10袋小麦称重记录如图所示,与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少?例4 某一出租车一天下午以文化中心为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.(1)将最后一名乘客送到目的地时出租车离出发地多远?在出发地的什么方向上?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?某日小明在一条南北方向的公路上跑步,他从A地出发,每隔10分钟记录下自己的跑步情况(向南为正方向,单位:米):-1008,1100,-976,1010,-827,9461小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?【当堂检测】1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.计算:3.上周五股民新民买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是多少?4.10筐苹果,以每筐30千克为基准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2, -4, 2.5, 3, -0.5, 1.5, 3, -1, 0, -2.5.问这10筐苹果总共重多少千克?。
北师大版七年级上册第二章第2课时有理数加法的运算律教案
第2课时教学目标:【知识与技能】掌握有理数加法的运算律,并能运用加法运算律简化运算.【过程与方法】把小学学过的加法的交换律、结合律扩展为有理数加法的交换律、结合律,培养学生的观察、比较、归纳及运算能力.【情感态度】结合本课教学特点,向学生进行热爱生活、热爱学习教育和美育渗透,激发学生观察、探究、解决数学问题的欲望.教学重难点:【教学重点】有理数加法运算律.【教学难点】灵活运用运算律使运算简便.教学过程:一、情境导入,初步认识小学学过的加法的交换律、结合律,在有理数运算中还成立吗?【教学说明】学生回顾小学学过的加法的交换律、结合律,再与同伴交流,讨论在有理数中是否仍然运用,激发学生探求新知的欲望.二、思考探究,获取新知1.有理数加法的运算律问题1 计算:(1)(-8)+(-9),(-9)+(-8);(2)4+(-7),(-7)+4;(3)[2+(-3)]+(-8),2+[(-3)+(-8)];(4)[10+(-10)]+(-5),10+[(-10)+(-5)].【教学说明】学生通过观察每题中两个算式的特征,再进行计算,验证加法的交换律、结合律在有理数运算中仍然成立.【归纳结论】在有理数运算中,加法的交换律、结合律仍然成立.加法交换律——两个有理数相加,交换加数的位置,和不变:即a+b=b+a;加法结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变:即(a+b)+c=a+(b+c).注意:这里a,b,c表示任意三个有理数.2.有理数加法运算律的运用问题2计算:(1)31+(-28)+28+69;(2)12+(-13)+8+(-7).【教学说明】学生通过观察、分析、交流,找到最简便的算法,使学生能准确地运用加法的运算律进行简算.【归纳结论】运用加法的交换律、结合律可以使一些运算简便,它的技巧是:(1)互为相反数的两数相加.(2)和为整数(或整十、整百数)相加.(3)正数和负数分别相加.3.有理数加法运算律的实际应用问题3教材第37页例3【教学说明】学生通过观察、分析、尝试不同的解法,再通过比较,进一步体会有理数加法的运算律可以使运算简便.解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(g)解法二:把超过标准质量的克数用正数表示,不是的用负数表示,列出10听罐头与标准质量的差值表:这10听罐头与标准质量差值的和为(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g).因此,这10听罐头的总质量为454×10+10=4550(g)问:(1)这两种解法哪一种更简便?(2)这10听罐头的平均质量是多少?第(2)问是对问题3的延伸.【归纳结论】在实际问题中,合理使用正负数,运用运算技巧,把求较大数的和的运算转化为求较小数的和的运算,使问题简单化.三、运用新知,深化理解1.(1)(-2)+5=5+(-2)运用了加法的律.(2)-3+(3+6)=(-3+)+6运用了加法的律.2.计算下列各题:(1)(-3)+40+(-32)+(-8);(2)13+(-56)+47+(-34);(3)43+(-77)+27+(-43).3.某潜水员先潜入水下61m,然后又上升32m,这时潜水员处在什么位置?4.12筐苹果的质量如下(单位:kg):53,48,54,47.5,49,51.5,52,47,45,54,45,56.求这12筐苹果的总质量?【教学说明】学生自主完成,加深对新学知识的理解,检测对有理数加法运算律的掌握情况,对学生的疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)交换(2)3结合2.(1)-3(2)-30(3)-503.-61+32=-29,这时潜水员在水下29m处.4.以50kg为标准质量,超过的质量记为正数,不足的质量记为负数,记录如下:+3,-2,+4,-2.5,-1,+1.5,+2,-3,-5,+4,-5,+6.(+3)+(-2)+(+4)+(-2.5)+(-1)+(+1.5)+(+2)+(-3)+(-5)+(+4)+(-5)+(+6)=2.50×12+2=602(kg).这12筐苹果的总质量为602kg.四、师生互动,课堂小结1.师生共同回顾有理数加法的运算律.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回顾有理数加法的运算律,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.课后作业:1.布置作业:从教材“习题2.5”中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从学生感受加法的运算律对于有理数的运算仍然成立,到运用有理数加法的运算律进行简算,培养学生动脑习惯.对于简便运算的运算技巧,学生还需在后面的学习中进一步掌握.。
2019秋数学七年级同步新课堂上册人教版: 1.3 1.3.1 第2课时 有理数加法的运算律及运用
夯实训练
整合方法
综学合科素探养究
-9-
(3)+1137+(-3.5)+(-6)+(+2.5)+(+6)++147. 解:原式=[(+1173)+(+147)]+[(-3.5)+(+2.5)]+[(-6)+(+6)] =1+(-1)+0=0.
夯实训练
整合方法
综学合科素探养究
-10-
7.(知识点 2)(6 分)小明的父亲是一位面包加工师,他父亲今天购进了
十袋面粉,标准是每袋 25 千克,回到加工车间逐袋称了一遍,其中只有三
袋正好是 25 千克,另外七袋的实际质量为(单位:千克):24.8,23.5,25.2, 25.3,25.6,24.9,24.7.
(1)若把超过标准质量的部分记为正数,不足的部分记为负数,请把这 十袋面粉的质量分别用正负数或 0 表示出来;
3)+(-15)]应用了( C )
A.加法交换律
B.加法结合律
C.加法交换律与结合律
D.以上都不是
夯实训练
整合方法
综学合科素探养究
-4-
2.(知识点 1)(3 分)下列运算中正确的是( C ) A.7+13+(-8)=13 B.(-3.5)+4+(-3.5)=4 C.334+-334+(-3)=-3 D.3.14+(-7)+3.14=-8
夯实训练
整合方法
综学合科素探养究
-8-
6.(知识点 1)(9 分)用简便方法计算: (1)27+(-0.75)+-37+-41; 解:原式=[27+(-37)]+[(-0.75)+(-14)]=(-17)+(-1)=-117. (2)(-0.3)+(+1.8)+(-1.5)+0.2+(-0.5); 解:原式=[(-0.3)+(-1.5)+(-0.5)]+[(+1.8)+0.2] =(-2.3)+2=-0.3.
《有理数的加法》(第2课时)教案 探究版
《有理数的加法》教案(第2课时)新课标要求知识与技能1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟练地进行加法运算.过程与方法1.体验加法交换律、结合律在实际运算中的应用.2.能运用有理数的加法解决问题.情感与态度通过思考、观察、比较等体验数学的创新思维和发展思维,激发学生的学习兴趣.教学重点:1.了解加法交换律、结合律的内容,运用运算律进行加法运算.2.运用有理数的加法解决问题.教学难点:运用有理数的加法解决问题.教学过程一、创设情境小学中我们已经学过加法交换律和结合律,你能说出它们的内容吗?(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).那么它们是否适用于整个的有理数范围呢?你能举例说明吗?例如:计算:(-17)+0=-17,0+(-17)=-17.32+(-23)=9,(-23)+32=9.设计意图:通过对小学知识的复习,引出新的问题,引发学生的联想和思考.二、新知探究探究一:1.计算:(-8)+(-9);(-9)+(-8)两次所得的结果相同吗?换几个加数再试试.解:(-8)+(-9)=-17;(-9)+(-8)=-17.结果相同.换些加数仍然相同.2.你能用精炼的语言表述这一结论吗?有理数加法中,两个数相加,交换加数的位置,和不变.3.你能把该规律用字母表示吗?a+b=b+a.说明:①式子中的字母分别表示任意的一个有理数.(如:既可表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)②在同一个式子中,同一个字母表示同一个数.设计意图:从观察中看到数学,激活学生思维,激起求知的兴趣,通过讨论、思考、交流,提出一个新的问题.因为疑问是建构教学的起点,它可以揭示学生认识上的矛盾,可以对学生产生刺激.在问题的情境中发现,有利于建立新的认知结构.探究二:1.计算:[2+(-3)]+(-8),2+[(-3)+(-8)].两个式子的结果有什么关系?说说你的猜想.解:[2+(-3)]+(-8)=-1+(-8)=-9.2+[(-3)+(-8)]=2+(-11)=-9.2.再换几个数试一试,你的猜想是否还成立呢?如:[10+(-10)]+(-5),10+[(-10)+(-5)].解:[10+(-10)]+(-5)=0+(-5)=-5.10+[(-10)+(-5)]=10+(-15)=-5.所以猜想仍然成立.3.请用精炼的语言把你得到的结论概括出来.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.4.你能用字母把这个规律表示出来吗?(a+b)+c=a+(b+c).设计意图:学生在各自思考充分讨论中发表自己的见解,在相互补充中完善自己,在自主探索中亲历知识的建构过程,在合作学习中提高整体的认知水平.教师除了巡视、引导、评价,还作为参与者,对学生的认识不断地促进和调节作用,在共享集体思维成果的基础上达到对学生所学的知识比较全面、正确的理解.三、例题精讲例1计算:(1)16+(-25)+24+(-32);(2)31 +(-28)+28 +69.解:(1)16+(-25)+24+(-32)=16+24+(-25)+(-32)(加法交换律)=(16+24)+[(-25)+(-32)] (加法结合律)=40+(-57)(同号相加法则)=-17.(异号相加法则)(2)31 +(-28)+28 +69=31 +69 +[(-28)+28 ] (加法交换律和结合律)=100+0=100.提出问题引起学生反思:此题你是抓住数的什么特点使计算简化的?依据是什么?师生活动:引导学生发现,在本例(1)中,把正数与负数分别结合在一起再相加,计算比较简便.在本例(2)中,把互为相反数的两个数结合在一起,计算比较简便.分析总结:利用加法交换律、结合律,可以使运算简化.进行有理数加法的常用技巧,合理正确选用加法运算律的方法:①互为相反数的两个数先相加——相反数结合法;②符号相同的两个数先相加——同号结合法;③分母相同的数先相加——同分母结合法;④几个数相加得到整数,先相加——凑整法;⑤整数与整数,小数与小数相加——同形结合法.设计意图:体会加法运算律对运算的简化作用,并且根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.例2有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克)这10听罐头的总质量是多少?解法一:这10听罐头的总质量为:444+459+454+459+454+454+449+454+459+464=4550(克).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表(单位:克):这10听罐头与标准质量差值的和为:(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(克).因此,这10听罐头的总质量为454×10+10 =4540+10=4550(克).设计意图:通过这个应用题,让学生初步体会有理数加法运算律对加法运算的简便作用,同时让学生感受解决问题的方法的多样性.四、课堂练习师生活动:教师指定4名学生板演练习1,第2、3两题分别指定两名学生板演,并引导学生发现解题过程中出现的问题,及时解决.1.计算下列问题:(1)(-3)+40+(-32)+(-8);(2)13 +(-56)+47+(-34);(3)43+(-77)+27+(-43).解:(1)(-3)+40+(-32)+(-8)=(-3)+40+[(-32)+(-8)] (加法结合律)=(-3)+40+(-40)(加法结合律)=(-3)+0=-3 ;(2)13 +(-56)+47+(-34)=13+47+(-56)+(-34)(加法交换律)=(13+47)+[(-56)+(-34)] (加法结合律)=60+(-90)(同号相加法则)=-30;(异号相加法则)(3)43+(-77)+27+(-43)=43+27+(-77)+(-43)(加法交换律)=(43+27)+[(-77)+(-43)] (加法结合律)=70+(-120)(同号相加法则)=-50.(异号相加法则)2.某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?解:-61+32=-29(m).答:潜水员处于水下29 m.3.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?解:这5筐蔬菜与标准质量差值的和为3+(-6)+(-4)+2+(-1)=[3+2]+[(-4)+(-1)]+(-6)=5+(-5)+(-6)=-6(千克).因此,这5筐蔬菜的总质量为50×5-6 =250-6=244(千克).答:这5筐蔬菜总计不足6千克,5筐蔬菜的总重量是244千克.设计意图:通过习题,加深学生对有理数加法运算律的理解.五、课堂小结1.加法交换律:有理数加法中,两个数相加,交换加数的位置,和不变.符号表示:a+b=b+a.2.加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.符号表示:(a+b)+c=a+(b+c).设计意图:让学生自己总结知识,学会归纳.六、布置作业1.计算:(1)(-25)+34+156+(-65);(2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72). 2.某日小明在一条南北方向的公路上散步.他从A 地出发,每隔10 min 记录下自己的跑步情况(向南为正方向,单位:m ):-1 008,1 100,-976,1 010,-827,946.1 h 后停下来休息,此时他在A 地的什么方向?距A 地多远?小明共跑了多少米? 3.分别找出一个满足下列条件的整数:(1)加上-15,和大于0;(2)加上-15,和小于0;(3)加上-15,和等于0. 设计意图:加深对加法运算律的应用和理解,培养学生的应用意识和能力.参考答案: 1.计算:(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.2.解:(-1 008)+1 100+(-976)+1 010+(-827)+946=245(m ). 100811009761010827946-++-++-+=5 867(m ). 所以小明在A 地的南边,距A 地245 m ,小明共跑了5 867 m .3.(1)只要是大于15的整数都可以;(2)只要是小于15的整数都可以;(3)15.七、课堂检测1.下列运算中正确的是( ).A .[]1113717+-+=()B .[]2.55 2.55-++-=()()C .11332222⎡⎤⎛⎫+-+-=- ⎪⎢⎥⎝⎭⎣⎦() D .[]3.144 3.144+-+=-())2.计算161525106+-++-()()时,下列运用运算律最合理的是( ).A.1625[15106]++-+-()()()B.[1525][16106]-+++-()()C.[1615][25106]+-++-()()D.[10616][2515]+-++-()()3.(-2)+4+(-6)+8+…+(-2 010)+2 012+(-2 014)+2 016的值是________.4.小刚的爷爷在自家的院子里种的苹果树今年共收获了8筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,称得质量记录如下(单位:千克):-5,+4,-3,+1,+2,-3,-2,+5.则这8筐苹果的总质量为________千克.5.计算:(1)18.56+(-5.16)+(-1.44)+(+5.16)+(-18.56);(2)114.110.1724⎛⎫⎛⎫+++-+-+⎪ ⎪⎝⎭⎝⎭().6.下表是国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的小时数):(1)如果现在北京时间是9:00,那么东京的时间是多少?(2)如果冬冬给远在巴黎的叔叔打电话,她打电话的时间是北京时间11:00,你知道冬冬的叔叔接听电话的时间吗?她的叔叔此时适宜接电话吗?(在21:00—24:00,0:00—7:00为不适宜时间.)设计意图:考查了加法交换律和结合律的运算以及应用.参考答案:1.C.2.B.3.1 008.4.239.5.计算:(1)18.56+(-5.16)+(-1.44)+(+5.16)+(-18.56)=[18.56+(-18.56)]+[(-5.16)+(+5.16)]+(-1.44)=0+0+(-1.44)=-1.44.(2)114.110.1724⎛⎫⎛⎫+++-+-+⎪ ⎪⎝⎭⎝⎭()=4.10.50.2510.17+++-+-+()()()=[4.110.1]7[0.50.25]+-++++-()()()=670.25-++=1.25.3.(1)9+1=10,即东京时间为10:00;(2)11+(-7)=4,即冬冬的叔叔接听电话的时间为4:00,她的叔叔此时不适宜接听电话.。
人教版数学七年级上册:1.3.1 第2课时《有理数加法的运算律及应用》练习课件(附答案)
B.(-3.5)+4+(-3.5)=4
C.3 3 +(-3 3 )+(-3)=-3
4
4
D.3.14+(-7)+3.14=-8
5.运用加法的运算律计算下列各题: (1)23+(-17)+6+(-22); 解:原式=-10. (2)-6.5+(-1.4)+(-7.6)+5.5; 解:原式=-10.
(3)(-1 )+13+(- 2 )+17;
9.把-1、0、1、2、3 这五个数填入下列方框中, 使行、列三个数的和相等,其中错误的是( D )
10.已知 a 是最小的正整数,b 的绝对值是 2,c 和 d 互为相反数,则 a+b+c+d=( D ) A.3 B.8 或-3 C.-1 D.3 或-1 解析:最小的正整数是 1,所以 a=1;绝对值等于 2 的数是±2,所以 b=±2;互为相反数的两数的和为 0,所以 c+d=0.当 b=2 时,a+b+c+d=1+2+ 0=3;当 b=-2 时,a+b+c+d=1+(-2)+0= -1.故选 D.
知识点一 加法运算律
1.6+(-2)+(-3)+14+(-15)=(6+14)+[(-2)
+(-3)+(-15)]应用了( C )
A.加法交换律B.加法结来自律C.加法交换律与结合律 D.以上都不是
2.下列变形运用加法运算律正确的是( B )
A.4+(-3)=4+3
B.2+(-5)+4=(-5)+4+2
3
3
解:原式=29.
(4)3 1 +(-21 )+(-4 1 ).
4
3
4
解:原式=-31 . 3
知识点二 有理数加法运算律的应用 6.小王支付宝余额有 300 元钱,购物花了 180 元 钱,又转入了 200 元,现在小王支付宝余额里的钱 数为( B ) A.120 元 B.320 元 C.480 元 D.500 元
1.3.1 第2课时 有理数加法的运算律及运用
(3) ( 3 ﹢ -5 )﹢ -7 ﹦_-9_ 3 ﹢( -5 ﹢ -7 ) ﹦_-9_
(4) ( 8 ﹢ -4 )﹢ -6 ﹦_-2_ 8 ﹢( -4 ﹢ -6 ) ﹦_-2_
思考:(1)请用精炼的语言把你得到的结论概括出来. (2)你能用字母把这个规律表示在有理数加法中,两个数相加,交换 加数的位置,和不变.
=9+10+(-3)+(-5)+(-8)+(-3)+6+(-6) +4+(-4)=19+(-19)=0 (千米) 即又回到了出发地. (2)|+9|+|-3|+|-5|+|+4|+|-8|+|+6|+|-3| +|-6|+|-4|+|+10|
=9+3+5+4+8+6+3+6+4+10=58(千米) 所以,营业额为58×2.4=139.2(元).
拓展练习:课时练25页第12题
3 1 (2 1) (4 1)
4
3
4
当堂练习
1.计算: (1)23+(-17)+6+(-22)
=(23+6)+[(-27)+(-22)] =29-49 =-20
(2)(-2)+3+1+(-3)+2+(-4) =(3+1+2)+[(-2)+(-3)+(-4)] =6-9 =-5
用字母表示为:a+b=b+a
2.加法结合律:在有理数的加法中,三个数相加,先 把前两个数相加,或者先把后两个数相加,和不变.
用字母表示为:(a+b)+c=a+(b+c)
典例精析
例1 计算16+(-25)+24+(-35) 解: 16+(-25)+24+(-35)
2.1.1 有理数的加法(第2课时 有理数的加法运算律)七年级数学上册(人教版2024)
一
二
三
四
五
六
日
路程/km
-8
-11
-14
+10
-16
+31
+8
则他家私家车这周一共行驶多少千米?
【解】[(-8)+(-11)+(-14)+(+10)+(-16)+(+31)+(+8)]+50×7
=0+350=350(km).
答:他家私家车这周一共行驶350 km.
7. [2024·枣庄峄城区期中·尊老爱幼]尊老爱幼是我国的传统美德.九九重
2.某银行储蓄卡中存有人民币450元,先取出80元,随后又存入150
元,储蓄卡中还存有人民币多少元?
解:450+(-80)+150
=450+150+(-80)
=600-80
=520(元)
答:储蓄卡中还存有人民币520元.
课本练习
3.一辆飞机从9000 m的高度先下降300 m,再上升500 m,这时飞机的
两次所得的和相同吗?换几个加数再试一试.
从上述计算中,你能得出什么结论?
有理数加法中,三
个数相加,先把前
两个数相加,或者
先把后两个数相加,
和不变.
加法交换律:
(a+b)+c=a+(b+c).
概念归纳
1.加法交换律:在有理数加法中,两个数相加,交换
加数的位置,和不变.
用字母表示为:a+b=b+a
2.加法结合律:在有理数的加法中,三个数相加,先
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第二课时) 有理数加法运算律
目录/CONTENTS
六年级数学上册 2.4 有理数的加法(第2课时)
2.4有理数的加法【学习目标】1.有理数加法的两种运算律:①互换律②结合律2.能运用加法的互换律和结合律进行简便计算【学习重点】把握有理数加法的互换律和结合律,并能运用加法运算律简化运算【学习难点】灵活运用运算律使运算简便【利用方式说明】把握学习目标,了解学习重难点,参照讲义,把握本节知识点,然后完成导学案。
一、课前预习导学1. 加法的互换律:两个数相加,互换的位置, 和不变. 用式子表示:a+b= .2. 加法的结合律:三个数相加, 先把相加, 或先把相加, 和不变.用式子表示:(a+b)+c= .二、学习研讨有理数加法的运算律3.计算:(1)(-8)+(-9)= ; (-9)+(-8)=(2)4+(-8)= ; (-8)+4=依照计算结果你可发觉:(-8)+(-9)(-9)+(-8)4+(-8) (-8)+4(填“>”、“<”或“=”)由此可得在有理数运算中a+b =____ _____,这种运算律称为加法________律.4.计算:(1)[2+(-3)]+(-8)=______+______=______;2+[(-3)+(-8)]= _ __+____=_____(2) [10+(-10)]+(-5)= _____+_____=_____;10+[(-10)+(-5)]= _____+_____=_____由此可得:(a+b )+c =____ _,这种运算律称为加法__ __律.【总结】在有理数运算中,加法的互换律、结合律仍然成立。
加法的互换律:两个数相加,互换加数的位置,它们的和不变。
即 .加法的结合律:三个数相加,先把前两个数相加,或先把后两个数相加,它们的和不变。
即 .5.师生探讨例1 31+(-28)+28+69【解】31+(-28)+28+69=31+69+[(-28)+28]=100+0=100仿照例题,独立完成(1)13+(-56)+47+(-34) (2)(-301)+125+301+(-75)(3))()(52275.453225.5-++-+ (4)(-3)+40+(-32)+(-8) 【简便方式】 由(1)得:__ ____ ____ ____ ____ ____ ____ __; 由(2)得:__ ____ ____ ____ ____ ____ ____ __;由(3)得:①__ ____ ____ ____ ____ ____ ____ ;②__ ____ ____ ____ ____ ____ ____ 。
《有理数的加法(第2课时)》精品教案
有理数的加法
第2课时有理数加法的运算律
一、教与学目标:
1.使学生能够比较灵活地运用加法的运算律,简化加法运算;
2.体会简便运算的常用策略,渗透字母表示数的意识.
二、教与学重点难点:
使学生能比较灵活的运用加法运算律,简化加法运算.
三、教与学方法:
自主探究、合作交流.
四、教与学过程:
五、课堂小结:
通过本节课的学习,你有哪些收获还有哪些疑惑
加法交换律:两个数相加,交换加数的位置,和()
即 a+b=()
加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和().
即(a+b)+c=a+()
六、作业布置:。
有理数的加减法混合运算第2课时有理数加减混合运算中运算律的应用课件
知识回顾
1.加法交换律 a+b=b+a
2.加法结合律 a+b+c=a+(b+c)
有理数减法法则 减去一个数,等于加上这个数的相反数.
有理数减法法则可以表示为
a-b=a+ (-b)
一架飞机进行特技表演,起飞后的高度变化如下表: 此时飞机比起飞点高了多少千米?
解法一: 4.5 - 3.2 + 1.1 - 1.4
4.5 + ( - 3.2 ) + 1.1 + ( - 1.4 )
在进行加减混合运算时可运用加法 交换律和结合律简化运算.
4.5 + ( - 3.2 ) + 1.1 + ( -1.4 ) = 4.5 + 1.1 + [ ( - 3.2 ) + ( -1.4 ) ] = 5.6 + ( - 4.6 ) = 1.
= – 140 – 220 – 190 + 290 + 400 + 600 + 300 + 480
= – 550 + 2070
= 1520
答:每吨汽油上升了1520元.
随堂练习
计算: (1)33.1 - ( - 22.9 ) + ( -10.5 );
(2)( - 8 ) - ( -15 ) + ( - 9 ) - ( -12 );
例2 计算:
(1)
-
1 3
-
15
+
-
2 3
;
解:(1)
-
1 3
-
15
+
-
2 3
=
-
1 3
1.3.2 有理数的加法——有理数加法的运算律
知2-练
3 检修小组从A地出发,在东西路上检修线路,如 果规定向东行驶为正,向西行驶为负,一天中行 驶记录如下(单位:千米):-4,+7,-9,+8, +6,-4,-3.则收工时检修小组在A地的 ___东_____边____1____千米.
本节课里我的收获是…… 加法交换律: a + b = b + a 加法结合律: a+( b+ c )=( a +b )+c 有理数的加法运算律及其应用: ①先将相反数相加; ②再将其中的同号的数相加; ③最后求异号加数的和,有分数时,可把相加得 整数的先加起来.
知1-讲
例3 计算:
3 .7 5 + 2 .8 5 + 11 4 + 1 2 + 3 .1 5 + 2 .5 .
导引:将-3.75,
1
1 4
,
1 2
,
-2.5和2.85,3.15分
别结合在一起,然后相加.
解:原式=3.75+11 4+1 2+2.5
知2-讲
91 + 91 + 91. 5+89 + 91. 2 + 91. 3+88. 7+88. 8+
91. 8+91. 1 = 905. 4. 再计算总计超过多少千克:
905.4-90×10=5. 4.
解法2:每袋小麦超过90 kg的千克数记作正数,不足的千 克数记作负数. 10 袋小麦对应的数分别为+1,+1, +1.5,-1,+1.2,+1.3,- 1.3, -1. 2,+1. 8,+1.1.
1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,
2.2 有理数的加减运算 第2课时 有理数的加法运算律
典例精析 例2 有一批食品罐头,标准质量为每听454克。现抽取10听样品 进行检测,结果如下表(单位:克):
这10听罐头的总质量是多少 ?
新知小结 解法一:这10罐头的总质量为 444+459+454+459+454+454+449+454+459+464 =4550(克) 解法二:把超过标准质量的克数用正数表示,不足454的用 负数表示,列出10听罐头与标准质量的差值表(单位:克)
2. 加法交换律与结合律同样适用于三个以上有理数相加。 注意:用加法交换律时,一定要连同加数的符号一起交换。
典例精析
例1 计算:31+(-28)+28+69
解:31+(-28)+28+69
=31+69+[(-28)+28](加法交换律和结合律) =100+0
=100.
相反数 结合为0
思考 计算下列各式说一说你是怎么做的。
(-3)+2=-1
新课导入 (2)对于(-3)+(-2),你能借助数轴解释运算结果吗?
-5 -4 -3 -2 -1 0 1 如图,数轴上的一个点,从原点出发沿着数轴先向左移动3个 单位长度,再向左移动2个单位长度,到达原点左边5个单位长 度处。
合作探究 小学学习过哪些加法运算律?这些运算律在有理数范围内还
成立吗? 1.计算:(1)(-8)+(-9)
(-9)+(-8);
=-(8+9)
=-17
相等
=-(9+8) =-17
有理数的加法 交换律:两个
(2)4+(-7) =-(7-4)
(-7)+4; =-(7-4)
有理数相加,
=-3
相等
=-3
交换加数的位
置,和不变。
加法交换律适用于有理数。
合作探究 2 .计算:
有理数加法运算律应用规律总结
有理数加法运算律应用规律总结有理数加法运算律是数学中的一条重要规律,它规定了有理数相加时的运算法则。
在运用这个规律时,我们需要遵循一定的步骤和原则,以确保运算结果的准确性。
本文将就有理数加法运算律进行详细的总结和应用规则。
有理数加法运算律可以总结为以下几个方面:1. 加法的交换律:a + b = b + a这条规律说明了有理数相加时,可以交换加数的位置,而不会改变运算结果。
例如,2 + 3 = 3 + 2。
2. 加法的结合律:(a + b) + c = a + (b + c)这条规律说明了有理数相加时,可以改变加数的顺序,而不会改变运算结果。
例如,(2 + 3) + 4 = 2 + (3 + 4)。
3. 加法的零元素:a + 0 = a这条规律说明了任何一个有理数与0相加,结果仍然是这个有理数本身。
例如,2 + 0 = 2。
4. 加法的逆元素:a + (-a) = 0这条规律说明了任何一个有理数与其相反数相加,结果为0。
例如,2 + (-2) = 0。
有了以上的基本规律,我们可以利用有理数加法运算律进行实际的运算。
下面以一些例子来说明如何应用这些规律。
例1:计算-5 + 7 - 3 + (-2) + 4。
根据加法的交换律和结合律,我们可以改变加数的顺序,得到-5 + (-2) + 7 + 4 - 3。
然后,根据加法的逆元素,将每个数与其相反数相加,得到-5 + (-2) + 7 + 4 - 3 = 0 + 0 + 7 + 4 - 3 = 11 - 3 = 8。
例2:计算-2 + (-3) + (-5) + 7 + 4。
根据加法的交换律和结合律,我们可以改变加数的顺序,得到-2 + (-3) + (-5) + 7 + 4 = -5 + (-3) + (-2) + 7 + 4。
然后,根据加法的逆元素,将每个数与其相反数相加,得到-5 + (-3) + (-2) + 7 + 4 = 0 + 0 + 0 + 7 + 4 = 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3 每袋小麦的标准重量为90千克,10袋小麦称重记录
如图所示,与标准重量比较,10袋小麦总计超过多少千克
zxxkw
学科网
或不足多少千克?10袋小麦的总重量是多少?
91
91
91.5
91.3
88.7
88.8
89
91.2
91.8
91.1
解法1:先计算10袋小麦的总重量
91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 =905.4
3. 现有10筐苹果,以每筐30千克为准,超过的千克数记 为正数,不足的千克数记为负数,记录如下(单位:千 克): 2, -4, 2.5, 3, -0.5,1.5, 3, -1, 0, -2.5 问这10筐苹果总共重多少?
答案:304千克.
课堂小结
ห้องสมุดไป่ตู้
1.有理数加法的运算律
加法交换律: a+b=__b_+_a_
90×10+5.4=905.4 答:10袋小麦总计超过标准重量5.4千克,总重量是 905.4千克.
当堂练习
1.计算: (1)23+(-17)+6+(-22)
=(23+6)+[(-27)+(-22)] =29-49 =-20
(2)(-2)+3+1+(-3)+2+(-4) =(3+1+2)+[(-2)+(-3)+(-4)] =6-9 =-5
怎样使计算简 化的?这样做 的根据是什么?
把正数与负数 分别相加,从而计算 简化,这样做既运用 加法交换律又运用
加法的结合律
使用运算律通常有下列情形: (1)互为相反数的两个数可先相加; (2)几个数相加得整数时,可先相加; (3)同分母的分数可以先相加; (4)符号相同的数可以先相加.
二 有理数加法运算律的应用
zxxkw
学科网
加法结合律:(a+b)+c=__a_+_(b_+_c_)___
2.灵活运用加法运算律可使有理数多位数加 法运算边的简便快速.
课后作业
见《学练优》本课时练习
第一章 有理数
有理数的加减法
有理数的加法
第2课时 有理数加法的运算律及运用
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.能概括出有理数的加法交换律和结合律. 2.灵活熟练地运用加法交换律、结合律简化运算(重点、难 点)
导入新课
情境引入
为了防止水土流失,保护环境,某县从2012年起开始 实施植树造林,其中2012年完成786亩,2013年完成957亩, 2014年完成1214亩,2005年完成1543亩.回答下列问题.
问题:该县从2012年到2015年一共完成植树造林多 少亩?看谁算得又快又对?
讲授新课
一 加法运算律
合作探究
3 ﹢ -5
-5 ﹢ 3
_ ﹦ -2 _ ﹦ -2
你们能再举一些数字也符合这样的结论吗?试试看!
(3 3
_ ﹢ -5 )﹢ -7 ﹦ -9 _ ﹢( -5 ﹢ -7 )﹦ -9
你们能再举一些数字也符合这样的结论吗?试试看!
再计算总计超过多少千克 905.4-90X10=5.4 答:10袋小麦总计超过标准重量5.4千克,总重量是 905.4千克.
解法2:每袋小麦超过标准重量的千克数记作正数,不足的 千克数记作负数,10袋小麦对应的数为+1,+1,+1.5,-1, +1.2,+1.3,-1.3,-1.2,+1.8,+1.1 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8 +1.1 =[1+(-1)]+[1.2+(-1.2)]+[1.3+ (-1.3)]+(1+1.5+1.8+1.1)=5.4
通过上面的计算和对比你能发现什么?你能 用字母表示出这个规律吗?
加法的交换律: a+b=b+a 加法的结合律: (a+b)+c=a+(b+c)
典例精析
例1 计算16+(-25)+24+(-35)
解: 16+(-25)+24+(-35)
zxxkw
=16+2学4科网+[(-25)+ (-35)]
=40+(-60)=-20