19-20 第2章 2.2 第2课时 基本不等式的应用
高中数学2-2基本不等式第2课时基本不等式的应用课时作业新人教A版必修第一册
2.2 基本不等式 第2课时 基本不等式的应用必备知识基础练1.[2022·广东惠州高一期末]若a >1,则a +1a -1有( ) A .最小值为3 B .最大值为3 C .最小值为-1 D .最大值为-1 2.函数y =x +16x +2(x >-2)取最小值时x 的值为( ) A .6 B .2 C . 3 D . 63.[2022·湖南衡阳高一期末]已知x ,y 均为正数,且x +y =1,求1x +4y的最值( )A .最大值9B .最小值9C .最大值4D .最小值44.在班级文化建设评比中,某班设计的班徽是一个直角三角形图案.已知该直角三角形的面积为50,则它周长的最小值为( )A .20B .10 2C .40D .102+205.若正实数m ,n 满足2m +1n=1,则2m +n 的最小值为( )A .4 2B .6C .2 2D .96.[2022·湖北武汉高一期末](多选)下列说法正确的是( ) A .x +1x(x >0)的最小值是2B .x 2+2x 2+2的最小值是 2C .x 2+5x 2+4的最小值是2D .2-3x -4x的最小值是2-4 37.若x >-1,则x +1x +1的最小值是________,此时x =________. 8.用一根铁丝折成面积为π的长方形的四条边,则所用铁丝的长度最短为________.关键能力综合练1.[2022·湖南长郡中学高一期末]已知p =a +1a -2(a >2),q =-b 2-2b +3(b ∈R ),则p ,q 的大小关系为( )A .p ≥qB .p ≤qC .p >qD .p <q2.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-2 2C .6-4 2D .6+4 23.[2022·福建莆田一中高一期末]函数f (x )=x 2-4x +5x -2(x ≥52)有( )A .最大值52B .最小值52C .最大值2D .最小值24.[2022·山东薛城高一期末]已知a ,b ∈R +,且a +2b =3ab ,则2a +b 的最小值为( ) A .3 B .4 C .6 D .95.[2022·湖南雅礼中学高一期末]近来猪肉价格起伏较大,假设第一周、第二周的猪肉价格分别为a 元/斤、b 元/斤,甲和乙购买猪肉的方式不同,甲每周购买20元钱的猪肉,乙每周购买6斤猪肉,甲、乙两次平均单价分别记为m 1,m 2,则下列结论正确的是( )A .m 1=m 2B .m 1>m 2C .m 2>m 1D .m 1,m 2的大小无法确定6.[2022·山东枣庄高一期末]设正实数m 、n 满足m +n =2,则( )A .n m +2n的最小值为2 2 B .m +n 的最小值为2 C .mn 的最大值为1 D .m 2+n 2的最小值为27.函数f (x )=4x 2+1x(x >0)取得最小值时x 的取值为________.8.[2022·河北唐山高一期末]当x >0时,函数f (x )=xx 2+1的最大值为________.9.已知x ,y ∈R +,且满足x +2y =2xy ,那么x +4y 的最小值?xy 的最小值?10.做一个体积为48 m 3,高为3米的无上边盖的长方体纸盒,底面造价每平方米40元,四周每平方米为50元,问长与宽取什么数值时总造价最低,最低是多少?核心素养升级练1.已知a >0,b >0,1a +1b=1,若不等式2a +b ≥m 恒成立,则m 的最大值为( )A .2+ 3B .3+ 2C .3+2 2D .52.一批货物随17列货车从A 市以v km/h 匀速直达B 市,已知两地铁路线长400 km ,为了安全,两列货车间距离不得小于(v20)2km ,那么这批物资全部运到B 市,最快需要________小时,(不计货车的车身长),此时货车的速度是________ km/h.3.在“基本不等式”应用探究课中,甲和乙探讨了下面两个问题:(1)已知正实数x 、y 满足2x +y =1,求1x +12y 的最小值.甲给出的解法:由1=2x +y≥22x ·y ,得xy ≤24,所以1x +12y≥2 1x ·12y =2xy≥4,所以1x +12y 的最小值为4.而乙却说甲的解法是错的,请你指出其中的问题,并给出正确的解法;(2)结合上述问题(1)的结构形式,试求函数y =1x +12-3x (0<x <23)的最小值.第2课时 基本不等式的应用必备知识基础练1.答案:A解析:∵a >1,∴a -1>0, ∴a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a -1=1a -1即a =2时取等号,∴a +1a -1有最小值为3. 2.答案:B解析:因为x >-2,所以x +2>0, 所以y =x +16x +2=x +2+16x +2-2≥2 (x +2)·16x +2-2=6, 当且仅当x +2=16x +2且x >-2,即x =2时等号成立. 3.答案:B解析:因为x ,y 均为正数,且x +y =1, 则1x +4y =(1x +4y )(x +y )=5+y x +4xy≥5+2y x ·4xy=9, 当且仅当x =13,y =23时,1x +4y 有最小值9.4.答案:D解析:设两直角边分别为a ,b ,则斜边为a 2+b 2, 所以该直角三角形的面积为S =12ab =50,则ab =100,周长为a +b +a 2+b 2≥2ab +2ab =20+102,当且仅当a =b =10时等号成立,故周长的最小值为102+20. 5.答案:D解析:正实数m ,n 满足2m +1n=1,2m +n =(2m +n )(2m +1n )=5+2m n +2nm≥5+4=9,等号成立的条件为:m n =n m⇒m =n =3. 6.答案:AB解析:当x >0时,x +1x≥2x ·1x =2(当且仅当x =1x,即x =1时取等号),A 正确; x 2+2x 2+2=x 2+2,因为x 2≥0,所以x 2+2x 2+2=x 2+2≥2,B 正确; x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4≥2,当且仅当x 2+4=1x 2+4,即x 2=-3时,等号成立,显然不成立,故C 错误;当x =1时,2-3x -4x=2-3-4=-5<2-43,D 错误.7.答案:1 0 解析:因为x >-1, 所以x +1x +1=x +1+1x +1-1≥2 (x +1)·1x +1-1=1, 当且仅当x +1=1x +1,即x =0时,等号成立, 所以其最小值是1,此时x =0. 8.答案:4π解析:设长方形的长宽分别为a ,b (a >0,b >0),所以ab =π,所用铁丝的长度为2(a +b )≥4ab =4π,当且仅当a =b =π时取等号.关键能力综合练1.答案:A解析:因为a >2,可得p =a +1a -2=(a -2)+1a -2+2≥2 (a -2)·1a -2+2=4, 当且仅当a -2=1a -2时,即a =3时,等号成立,即p ≥4, 又由q =-b 2-2b +3=-(b +1)2+4,所以q ≤4, 所以p ≥q . 2.答案:D解析:1a +1b +1c=⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c )=4+2b a +c a +a b +c b +a c +2bc ≥4+22ba·a b+2c a ·a c+2c b ·2bc =6+42, 当且仅当2b a=a b ,c a =a c ,c b=2bc时,等号成立, 即a 2=c 2=2b 2时,等号成立. 3.答案:D解析:方法一 ∵x ≥52,∴x -2>0,则x 2-4x +5x -2=(x -2)2+1x -2=(x -2)+1(x -2)≥2,当且仅当x -2=1x -2,即x =3时,等号成立. 方法二 令x -2=t ,∵x ≥52,∴t ≥12,∴x =t +2.将其代入,原函数可化为y =(t +2)2-4(t +2)+5t =t 2+1t =t +1t≥2t ·1t=2,当且仅当t =1t,即t =1时等号成立,此时x =3.4.答案:A解析:因为a +2b =3ab ,故2a +1b=3,故2a +b =13(2a +b )(2a +1b )=13(5+2b a +2a b )≥13(5+4)=3,当且仅当a =b =1时等号成立, 故2a +b 的最小值为3. 5.答案:C解析:根据题意可得m 1=20+2020a +20b=2ab a +b ≤2ab2ab =ab ,当且仅当a =b 时等号成立,m 2=6a +6b 12=a +b2≥ab ,当且仅当a =b 时等号成立, 由题意可得a ≠b ,所以m 1<ab ,m 2>ab ,则m 2>m 1. 6.答案:CD解析:对于选项A ,因为m >0,n >0,m +n =2,所以n m +2n =n m+m +n n=n m +m n+1≥2n m ·mn+1=2+1=3,当且仅当n m =m n且m +n =2,即m =n =1时取等号,则A 错误;对于选项B, (m +n )2=m +n +2mn =2+2mn ≤2+m +n =4,当且仅当m =n =1时等号成立,则m +n ≤2,即m +n 的最大值为2,则B 错误;对于选项C ,m +n ≥2mn ,即mn ≤(m +n2)2=1,当且仅当m =n =1时,等号成立,则C正确;对于选项D, m 2+n 2=(m +n )2-2mn =4-2mn ≥4-2(m +n2)2=2,当且仅当m =n =1时,等号成立,则D 正确.7.答案:12解析:x >0,f (x )=4x +1x≥24x ·1x =4,当且仅当4x =1x ⇒x =12时取“=”.8.答案:12解析:∵x >0,∴f (x )=xx 2+1=1x +1x≤12x ×1x=12, 当且仅当x =1时取等号, 即函数f (x )=xx 2+1的最大值为12. 9.解析:x +2y =2xy ,则1x +12y=1,故x +4y =(x +4y )(1x +12y )=1+4y x +x 2y +2≥3+22,当且仅当4y x =x2y 即x =22y 时等号成立,x +4y 的最小值为3+2 2.又1x +12y =1≥2 12xy,解得xy ≥2,当且仅当x =2y =2时等号成立,xy 的最小值为2.10.解析:设长方体底面的长为a m ,宽为b m ,显然a ,b >0,则3ab =48,故b =16a,总造价为y 元,则y =2(3a +48a )×50+16×40=300(a +16a)+640≥300×2a ·16a+640=3 040,当且仅当a =16a,即a =b =4时等号成立,∴当底面的长与宽均为4米时总费用最少,最少为3 040元.核心素养升级练1.答案:C解析:由不等式2a +b ≥m 恒成立可知,只需m 小于等于2a +b 的最小值, 由a >0,b >0,1a +1b=1,可得2a +b =(2a +b )(1a +1b )=3+b a +2ab≥3+2b a ×2a b =3+22,当且仅当b a =2a b时取等号,∴m ≤3+22,∴m 的最大值为3+2 2.2.答案:8 100解析:设这批物资全部运到B 市用的时间为y 小时,因为不计货车的身长,所以设货车为一个点,可知最前的点与最后的点之间距离最小值为16×(v20)2千米时,时间最快.则y =(v20)2×16+400v =v 25+400v≥2v25×400v=8,当且仅当v 25=400v即v =100千米/小时时,时间y min =8小时.3.解析:(1)甲的解法中两次用到基本不等式,取到等号的条件分别是2x =y 和x =2y ,显然不能同时成立,故甲的解法是错的.正确的解法如下:因为x >0,y >0,且2x +y =1, 所以1x +12y =(2x +y )(1x +12y )=52+y x +x y ≥52+2 y x ·x y =92, 当且仅当y x =x y ,即x =y =13时取“=”,所以1x +12y 的最小值为92.(2)因为0<x <23,所以0<2-3x <2,所以y =1x +12-3x=12[3x +(2-3x )][1x +12-3x ] =12(4+3x 2-3x +2-3x x ) ≥12(4+2 3x 2-3x ·2-3xx)=2+3,当且仅当3x 2-3x =2-3xx ,即x =1-33∈(0,23)时取“=”, 所以y =1x +12-3x (0<x <23)的最小值为2+ 3.。
学案2:2.2 第2课时 基本不等式的应用
2.2 第2课时 基本不等式的应用不等式与最大(小)值阅读教材,完成下列问题. x ,y 都为正数时,下面的命题成立(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最 值 ; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最 值 . 思考:(1) 函数y =x +1x 的最小值是2吗?(2)设a >0,2a +3a取得最小值时,a 的值是什么?初试身手1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x +4e -xD .y =log 3x +log x 812.当x >0时,x +9x 的最小值为________.3.当x ∈(0,1)时,x (1-x )的最大值为________.4.若点A (-2,-1)在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________.【例1】 (1)已知x >2,则y =x +4x -2的最小值为________.(2)若0<x <12,则函数y =12x (1-2x )的最大值是________.规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1.(1)已知t>0,则函数y=t2-4t+1t的最小值为________.(2)设0<x≤2,则函数ƒ(x)=x(8-2x)的最大值为________.类型2利用基本不等式解实际应用题【例2】如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(如图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌面积最小?规律方法在应用基本不等式解决实际问题时,要注意以下四点:(1)先理解题意,设变量时一般把要求最值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最值问题;(3)在定义域内,求出函数的最值;(4)写出正确答案.跟踪训练2.(1)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则当每台机器运转________年时,年平均利润最大,最大值是________万元.(2)用一段长为36 m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?[1.(1)当x >0时,x 2+1x 有最大值,还是最小值?(2)当x >0时,xx 2+1有最大值,还是最小值?2.(1)设a >0,b >0,(a +b )⎝⎛⎭⎫1a +2b 的最小值是什么?(2)设a >0,b >0,且a +b =1,1a +2b 的最小值是什么?【例3】 (1)若对任意的x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.(2)设a >0,b >0,若3是3a 与3b 的等比中项,求1a +1b 的最小值.母体探究1.(变条件)(1)在例3(2)中,若3是3a 与3b 的等比中项,求1a +1b的最小值.(2)在例3(2)中,把条件换为“2a 和1b 的等差中项是12”,求2a +b 的最小值.2.(变条件)把例3(2)的条件换为“a >0,b >0,且a +b +ab =1”,求a +b 的最小值.规律方法最值法解答恒成立问题将不等式恒成立问题转化为求函数最值问题的处理方法,其一般类型有: (1)f (x )>a 恒成立⇔a <f (x )min . (2)f (x )<a 恒成立⇔a >f (x )max .课堂小结1.利用基本不等式求最值必须满足“一正、二定、三相等”三个条件,并且和为定值,积有最大值;积为定值,和有最小值.2.使用基本不等式求最值时,若等号取不到,则考虑用函数单调性求解.3.解决实际应用问题,关键在于弄清问题的各种数量关系,抽象出数学模型,利用基本不等式解应用题,既要注意条件是否具备,还要注意有关量的实际含义. 当堂达标1.若x >0,y >0且2(x +y )=36,则xy 的最大值为( )A .9B .18C .36D .812.一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.3.求函数f (x )=x x +1的最大值.参考答案新知初探不等式与最大(小)值 阅读教材,完成下列问题.(1)大 s 24;(2)小思考:(1) [提示] 不是,只有当x >0时,才有x +1x ≥2,当x <0时,没有最小值.(2) [提示] 2a +3a≥22a ×3a =26,当且仅当2a =3a ,即a =62时,取得最小值.初试身手1.【答案】C【解析】A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C . 2.【答案】6【解析】因为x >0,所以x +9x ≥2x ×9x =6,当且仅当x =9x,即x =3时等号成立. 3.【答案】14【解析】因为x ∈(0,1),所以1-x >0, 故x (1-x )≤⎝⎛⎭⎫x +1-x 22=14,当x =1-x , 即x =12时等号成立.4.【答案】8【解析】由已知点A 在直线mx +ny +1=0上所以2m +n =1,所以1m +2n =2m +n m +2(2m +n )n=4+⎝⎛⎭⎫n m +4m n ≥8. 【例1】【答案】(1)6 (2)116【解析】(1)因为x >2,所以x -2>0,所以y =x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x -2=4x -2,即x =4时,等号成立.所以y =x +4x -2的最小值为6.(2)因为0<x <12,所以1-2x >0,所以y =12x ·(1-2x )=14×2x ×(1-2x )≤14⎝⎛⎭⎫2x +1-2x 22=14×14=116,当且仅当2x =1-2x ,即当x =14时,y max =116. 规律方法在利用基本不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1.【答案】(1)-2 (2)22 【解析】(1)依题意得y =t +1t -4≥2t ·1t -4=-2,等号成立时t =1,即函数y =t 2-4t +1t(t >0)的最小值是-2.(2)因为0<x ≤2,所以0<2x ≤4,8-2x ≥4>0,故ƒ(x )=x (8-2x ) =12·2x ·(8-2x ) =12·2x ·(8-2x )≤12×82=22, 当且仅当2x =8-2x ,即x =2时取等号, 所以当x =2时,ƒ(x )=x (8-2x )的最大值为2 2.【例-20) cm ,⎝⎛⎭⎫y -252cm ,其中x >20,y >25,则两栏面积之和为2(x -20)×y -252=18 000,由此得y=18 000x -20+25, 所以广告牌的面积S =xy = x ⎝⎛⎭⎫18 000x -20+25=18 000x x -20+25x , 整理得S =360 000x -20+25(x -20)+18 500.因为x -20>0,所以S ≥2360 000x -20×25(x -20)+18 500=24 500. 当且仅当360 000x -20=25(x -20)时等号成立,此时有(x -20)2=14 400,解得x =140, 代入y =18 000x -20+25,得y =175.即当x =140,y =175时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小. 法二:设矩形栏目的高为a cm ,宽为b cm ,则ab =9 000,其中a >0,b >0. 易知广告牌的高为(a +20) cm ,宽为(2b +25)cm.广告牌的面积S =(a +20)(2b +25)=2ab +40b +25a +500=18 500+25a +40b ≥18 500+225a ·40b =24 500,当且仅当25a =40b 时等号成立,此时b =58a ,代入ab =9 000得a =120,b =75.即当a =120,b =75时,S 取得最小值24 500.故当广告牌的高为140 cm ,宽为175 cm 时,可使矩形广告牌的面积最小.规律方法在应用基本不等式解决实际问题时,要注意以下四点: (1)先理解题意,设变量时一般把要求最值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最值问题; (3)在定义域内,求出函数的最值; (4)写出正确答案. 跟踪训练2.【答案】(1)5 8【解析】每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,且x >0,故yx ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.(2)[解] 设矩形菜园的长为x m 、宽为y m ,则2(x +y )=36,x +y =18,矩形菜园的面积为xy m 2.由xy ≤x +y 2=182=9,可得xy ≤81,当且仅当x =y ,即x =y =9时,等号成立.因此,这个矩形的长、宽都为9 m 时,菜园的面积最大,最大面积为81 m 2.[1.[提示] (1)当x >0时,x 2+1x =x +1x ≥2x ×1x=2, 当x =1时等号成立,即x 2+1x有最小值2.(2)当x >0时,x x 2+1=1x +1x ,因为x +1x ≥2,所以x x 2+1≤12,故x x 2+1有最大值12.2.[提示] (1)(a +b )⎝⎛⎭⎫1a +2b =3+b a +2ab ≥3+22,当b =2a 时等号成立; (2)由于a +b =1,所以1a +2b=(a +b )⎝⎛⎭⎫1a +2b ≥22+3, 当b =2a ,即a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【例3】[解] (1)设f (x )=xx 2+3x +1=1x +1x+3,∵x >0,∴x +1x ≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.(2)由题意得,3a ·3b =(3)2,即a +b =1,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.母体探究1.[解] (1)由3是3a 与3b 的等比中项,得3a +b =32,即a +b =2,故12(a +b )=1,所以1a +1b =12(a +b )⎝⎛⎭⎫1a +1b =12⎝⎛⎭⎫2+b a +a b ≥12⎝⎛⎭⎫2+2b a ×a b =2, 当a =b =1时等号成立.(2)由于2a 和1b 的等差中项是12,则2a +1b=1,故2a +b =(2a +b )⎝⎛⎭⎫2a +1b =5+2b a +2ab ≥5+22b a ×2ab=9. 当a =b =3时等号成立.2.[解] a +b +ab =1,得b =1-aa +1>0,故0<a <1,故a +b =a +1-a a +1=a +-1-a +2a +1=a +2a +1-1=a +1+2a +1-2≥2(a +1)×2a +1-2=22-2,当a +1=2a +1,即a =2-1时等号成立.当堂达标 1.【答案】A【解析】由2(x +y )=36得x +y =18.所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立. 2.【答案】8【解析】设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v=400v +16v400≥2400v ×16v 400=8(小时),当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时. 3.[解] f (x )=xx +1=1x +1x ,因为x +1x≥2x ×1x =2,当x =1时等号成立,所以f (x )≤12.。
高中数学第二章一元二次函数方程和不等式2.2基本不等式第2课时基本不等式的应用课件新人教A版必修第一
(2)由基本不等式,得 y=x+28x8≥24 2. 当且仅当 x=28x8,即 x=12 2时,等号成立, 则 y 最小值=24 2≈34. 即最少需要约 34 米铁丝网.
2
PART TWO
易错特别练
易错点 忽略等号成立的一致性 已知 x>0,y>0,且 x+2y=1,求证:1x+1y≥3+2 2. 易错分析 易错解为1x+1y=(x+2y)1x+1y≥2 2xy·2 x1y=4 2.在证明 过程中使用了两次基本不等式:x+2y≥2 2xy,1x+1y≥2 x1y,但这两次取 “=”分别需满足 x=2y 与 x=y,自相矛盾,所以“=”取不到.
A.60 件 B.80 件 C.100 件 D.120 件
答案 B
解析 设每件产品的平均费用为 y 元,由题意得,y=80x0+8x≥2 =20.当且仅当80x0=8x(x>0),即 x=80 时“=”成立,故选 B.
800 x x ·8
11.用 17 列货车将一批货物从 A 市以 v km/h 的速度匀速行驶直达 B 市.已知 A,B 两市间铁路线长 400 km,为了确保安全,每列货车之间的距 离不得小于2v02 km,则这批货物全部运到 B 市最快需要________h,此时货 车的速度是________km/h.
(1)记全年所付运费和保管费之和为 y 元,求 y 关于 x 的函数; (2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多 少台?
解 (1)由题意得 y=36x0×300+k×3000x. 当 x=20 时,y=7800,解得 k=0.04. 所以 y=36x0×300+0.04×3000x=108x000+120x(x∈N*). (2)由(1)得 y=108x000+120x≥2 108x000×120x=2×3600=7200.当且 仅当108x000=120x,即 x=30 时,等号成立. 所以要使全年用于支付运费和保管费的资金最少,每批应购入电脑 30 台.
【课件】基本不等式(第二课时)2023-2024学年高一数学(人教A版2019必修第一册)
出发使用基本不等式,求得最值.
练一练
2+1
已知a>1,b>0,则
+2a的最小值为
(−1)
提示:
目标式局部:b2+1≥2b,
所以
2+1
2
+2a≥
(−1)
−1
+2(a-1)+2≥…
.
用基本不等式求最值
( )
例3. 已知 x>0, y>0 ,x+y+2=xy,则xy的
条
件
最
值
之
最小值为
.
2
+2
+
2 (−2)2 (−1)2
=
+
+1
4 1
=(m+n)+( + )-6(以下逆代)
用基本不等式求最值
( )
七
条
件
最
值
之
等
价
变
形
1
例6.已知x>0,y>0,且
+2
+
1 1
= ,求xy的最小值.
+2 3
1
解:由等式
+2
1
3
变形得xy=x+y+8
+
1
+2
=
所以xy≥2 +8 解得xy最小值为16
( )
一
直
接
求
最
值
例1. 已知 x>0,
则y= 2
的最大值
+2+4
1
2.2.2 利用基本不等式解决最值问题【课时教学设计】-高中数学人教A版必修第一册
2.2 基本不等式第2课时 利用基本不等式解决最值问题(一)教学内容:基本不等式的应用(简单的数学情境和实际情境)(二)教学目标1.通过数学情境中的应用,能够利用基本不等式求简单的最值问题,发展数学运算、数据分析等核心素养.2.通过实际情境中的应用,能求解一些简单最优化问题,解决实际问题中的最值,发展学生的数学建模、逻辑推理等核心素养。
(三)教学重点及难点1. 重点:运用基本不等式解决简单的最值问题.2. 难点:对实际问题的分析建模和使用基本不等式的结构观察。
.(四)教学过程设计1.复习回顾,铺垫引入师:根据上一节课的知识,回顾一下基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?生:已知x ,y 都是正数,则①如果积xy 等于定值P(积为定值),那么当x =y 时,和x +y 有最小值2P. ②如果和x +y 等于定值S(和为定值),那么当x =y 时,积xy 有最大值14S 2. 利用基本不等式可以求最值,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.【设计意图】回顾上节课所学知识,对基本不等式的形式加强记忆以及熟悉其使用条件.例1:;24,21的最小值求)设(++->x x x(2)已知10<<x ,求()x x 31-的最大值及相应的x 值。
(1)师:大家观察结构,我们应该如何求这个和的最小值?生:可以式子先变形,2242-+++x x ,变成两个正数的和,再通过两个正数的积是定值来求解。
学生板演. (2)师:我们再来看这题,应该如何求它的最大值?生:式子乘以3再来变形,31)31(3⨯-x x ,变成两个正数的和是定值从而得到解决。
师追问:还有别的解法吗?生:这个式子其实是二次函数,可以利用配方法求解。
【设计意图】培养学生转化化归的数学思想,把不熟悉的问题向熟悉的问题转化.2.合作学习,建模探究例2:(1)用篱笆围一个面积为1002m 的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36 m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?师:第(1)题已知什么条件,我们求什么?生:已知矩形的面积,求周长的最小值(教师在黑板上画图)师:如果设矩形菜园相邻两条边的长分别为x m, y m (在图上标出),则周长为2(x+y) m,那如何求周长的最小值?生:用基本不等式求最值。
2021_2022学年新教材高中数学第二章一元二次函数方程和不等式2.2第2课时基本不等式的应用课件
【加固训练】 已知 a,b,c 为正实数,且 a+b+c=1, 求证:1a-1 b1-1 1c-1 ≥8.
【解析】因为 a,b,c 为正实数,且 a+b+c=1,
所以a1
-1=1-a a
=b+a c
≥2
bc a
.
同理,1b
-1≥2
ac b
,c1
-1≥2
ab c
.
上述三个不等式两边均为正,相乘得:
130
130
x2
130
【解析】(1)设所用时间为 t= x ,则 y= x ×2×2+360 +14× x ,
50≤x≤100.
所以,这次行车总费用 y 关于 x 的表达式是
130×18 y= x
2×130 + 360
x,50≤x≤100或y=23x40+1138x,50≤x≤100
.
(2)y=130× x 18 +2×361030 x≥26 10 , 当且仅当130× x 18 =2×361030 x, 即 x=18 10 时等号成立. 故当 x=18 10 千米/时时,这次行车的总费用最低,最低费用的值为 26 10 元.
bc ca ab 当且仅当 a = b = c ,即 a=b=c 时取等号.
已知 x,y,z 都是正数,求证:(x+y)(y+z)(z+x)≥8xyz. 【证明】因为 x,y,z 都是正数,x+y≥2 xy ,y+z≥2 yz ,x+z≥2 xz , 所以(x+y)(y+z)(z+x)≥8xyz.
方法二:由 xy=24,得 x=2y4 . 所以 l=4x+6y=9y6 +6y=61y6+y
16 ≥6×2 y ·y =48. 当且仅当1y6 =y,即 y=4 时,等号成立,此时 x=6. 故每间虎笼长 6 m,宽 4 m 时,可使钢筋网总长最小.
【高中数学】第二章 2.2 第2课时
第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.答案 18解析 y =x (1-2x )=12·2x ·(1-2x )≤12⎝⎛⎭⎫2x +1-2x 22=18,当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和 y =4x +400x ×4=4x +1 600x ≥24x ·1 600x=160,当且仅当4x =1 600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 答案 8解析 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.答案 6解析 x +4x -2=x -2+4x -2+2,∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10 ≥2(x -1)(y -9)+10=16, 当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18. 当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.答案 9解析 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y ,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎡⎦⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎡⎦⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1 000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1,生产1 000千克该产品需要的时间是1 000x ,所以生产1 000千克该产品消耗的A 材料为y =1 000x (x 2+9)=1 000⎝⎛⎭⎫x +9x ≥1 000×29=6 000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6 000千克.基本不等式在实际问题中的应用典例 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360. 由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10 800.∴y =225x +3602x -360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.[素养提升] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4答案 B解析 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.答案 4解析 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4.当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是________ m 3. 答案 16解析 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16, 当且仅当t =3,即a =2,b =4时等号成立.1.知识清单: (1)已知x ,y 是正数.①若x +y =S (和为定值),则当x =y 时,积xy 取得最大值. ②若x ·y =P (积为定值),则当x =y 时,和x +y 取得最小值. 即:“和定积最大,积定和最小”. (2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值. 3.常见误区:缺少等号成立的条件.1.已知正数x ,y 满足8x +1y =1,则x +2y 的最小值是( )A .18B .16C .8D .10 答案 A解析 x +2y =(x +2y )⎝⎛⎭⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =xy,即x =4y =12时,等号成立.2.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5 答案 C解析 由已知,可得6⎝⎛⎭⎫2a +1b =1, ∴2a +b =6⎝⎛⎭⎫2a +1b ×(2a +b ) =6⎝⎛⎭⎫5+2a b +2ba ≥6×(5+4)=54, 当且仅当2ab =2ba 时,即a =b =18等号成立,∴9m ≤54,即m ≤6,故选C.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设小王从甲地到乙地行驶的路程为s , ∵b >a >0,则v =2ss a +s b =2ab a +b <2ab 2ab =ab , 又2ab a +b >2ab2b=a ,故选A. 4.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 由x 2+3xy -1=0,可得y =13⎝⎛⎭⎫1x -x . 又x >0,所以x +y =2x 3+13x≥229=223⎝⎛⎭⎫当且仅当x =22时等号成立. 5.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n ,则x +y 的最小值是( )A .4B .5C .8D .10 答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +mn≥3+2=5,当且仅当m =n=12时取等号.故选B. 6.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg·L -1) 随时间t (单位:h)的变化关系为C =20t t 2+4,则经过_______ h 后池水中该药品的浓度达到最大.答案 2解析 C =20t t 2+4=20t +4t .因为t >0,所以t +4t≥2t ·4t=4 ⎝⎛⎭⎫当且仅当t =4t ,即t =2时等号成立.所以C =20t +4t≤204=5,当且仅当t =4t , 即t =2时,C 取得最大值.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设矩形花园的宽为y ,则x 40=40-y40,即y =40-x ,矩形花园的面积S =x (40-x )≤⎝⎛⎭⎫x +40-x 22=400,当且仅当x =20时,取等号,即当x =20 m 时,面积最大.8.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足关系y =-x 2+12x -25,则每辆客车营运________年时,年平均利润最大. 答案 5解析 ∵y =-x 2+12x -25, ∴年平均利润为y x =-x 2+12x -25x=-⎝⎛⎭⎫x +25x +12≤-2x ·25x+12=2, 当且仅当x =25x ,即x =5时,等号成立.9.已知x >0,y >0且2x +5y =20.(1)求xy 的最大值; (2)求1x +1y的最小值.解 (1)∵2x +5y =20,x >0,y >0, ∴2x +5y ≥210xy , ∴210xy ≤20,即xy ≤10,当且仅当x =5,y =2时,等号成立, ∴xy 的最大值为10. (2)1x +1y =⎝⎛⎭⎫1x +1y ·120(2x +5y ) =120⎝⎛⎭⎫2+5+5y x +2x y =120⎝⎛⎭⎫7+5y x +2x y ≥120(7+210), 当且仅当2x =5y 时,等号成立. ∴1x +1y 的最小值为120(7+210). 10.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km /h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝⎛⎭⎫3+x2360L /h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资) 解 设总费用为y 元. 由题意,得y =76.4×100x +7.2×100x ×⎝⎛⎭⎫3+x 2360=9 800x+2x (40≤x ≤100). 因为y =9 800x +2x ≥219 600=280.当且仅当9 800x=2x ,即x =70时取等号.所以这次租车的总费用最少是280元,此时的车速为70 km/h.11.设0<x <1,则4x +11-x 的最小值为( )A .10B .9C .8 D.272答案 B解析 ∵0<x <1,∴1-x >0, 4x +11-x =[x +(1-x )]·⎝⎛⎭⎫4x +11-x =4+4(1-x )x +x 1-x +1≥5+24(1-x )x ·x1-x=5+2×2=9.当且仅当4(1-x )x =x1-x ,即x =23时,等号成立.∴4x +11-x的最小值为9. 12.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92 B.92 C.14 D .-4答案 A解析 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92,当且仅当b =2a ,即a =13,b =23时等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92. 13.一个矩形的周长为l ,面积为S ,则如下四组数对中,可作为数对(S ,l )的序号是( ) ①(1,4);②(6,8);③(7,12);④⎝⎛⎭⎫3,12. A .①③ B .①③④ C .②④ D .②③④答案 A解析 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy .对于①(1,4),则x +y =2,xy =1,根据基本不等式满足xy ≤⎝⎛⎭⎫x +y 22,符合题意;对于②(6,8),则x +y =4,xy =6, 根据基本不等式不满足xy ≤⎝⎛⎭⎫x +y 22,不符合题意;对于③(7,12),则x +y =6,xy =7,根据基本不等式满足xy ≤⎝⎛⎭⎫x +y 22,符合题意;对于④⎝⎛⎭⎫3,12,则x +y =14,xy =3, 根据基本不等式不满足xy ≤⎝⎛⎭⎫x +y 22,不符合题意.综合,可作为数对(S ,l )的序号是①③.14.已知不等式2x +m +8x -1>0对任意的x >1恒成立,则实数m 的取值范围为________.答案 {m |m >-10}解析 ∵2x +m +8x -1>0在x >1时恒成立,∴m >-2x -8x -1=-2⎝⎛⎭⎫x +4x -1=-2⎝⎛⎭⎫x -1+4x -1+1,又x >1时,x -1>0, x -1+4x -1+1≥2(x -1)·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立,∴-2⎝⎛⎭⎫x -1+4x -1+1≤-2×5=-10.∴m >-10,∴实数m 的取值范围为{m |m >-10}.15.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________.答案 ⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥19 解析 原不等式可转化为a (x 2+1)+1x 2+1≥23,又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1(x 2+1)2时等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少? 解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1,又每件产品的销售价格为1.5×8+16xx 元,∴y =x ⎝⎛⎭⎫1.5×8+16x x -(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m=-⎣⎡⎦⎤16m +1+(m +1)+29,∵m ≥0,16m +1+(m +1)≥216=8,当且仅当16m +1=m +1,即m =3时等号成立,∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学第二章2.2.2基本不等式的应用讲义新人教A版必修第一册
第2课时 基本不等式的应用题型一 利用基本不等式证明不等式[经典例题]例1 已知a 、b 、c >0,求证:a 2b +b 2c +c 2a ≥a +b +c .【解析】 ∵a ,b ,c ,a 2b ,b 2c ,c 2a 均大于0,∴a 2b+b ≥2a 2b·b =2a . 当且仅当a 2b =b 时等号成立.b 2c+c ≥2b 2c·c =2b . 当且仅当b 2c =c 时等号成立.c 2a+a ≥2c 2a·a =2c , 当且仅当c 2a=a 时等号成立.相加得a 2b +b +b 2c +c +c 2a +a ≥2a +2b +2c ,∴a 2b +b 2c +c 2a≥a +b +c . 状元随笔判断a ,b ,c ,a 2b ,b 2c ,c2a均大于0→证a2b+b≥2a →证b2c+c≥2b →证c2a+a≥2c →得所证不等式方法归纳(1)在利用a +b ≥2ab 时,一定要注意是否满足条件a >0,b >0. (2)在利用基本不等式a +b ≥2ab 或a +b2≥ab (a >0,b >0)时要注意对所给代数式通过添项配凑,构造符合基本不等式的形式.(3)另外,在解题时还要注意不等式性质和函数性质的应用. 跟踪训练1 已知x >0,y >0,z >0.求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8.证明:因为x >0,y >0,z >0,所以y x +z x≥2yz x>0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0, 所以⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8yz ·xz ·xyxyz =8,当且仅当x =y =z 时等号成立.分别对y x +z x ,x y +z y ,x z +yz 用基本不等式⇒同向不等式相乘.题型二 利用基本不等式解决实际问题 [教材P 47例4]例2 某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m 3,深为3 m .如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?【解析】 设贮水池池底的相邻两条边的边长分别为x m ,y m ,水池的总造价为z 元.根据题意,有z =150×4 8003+120(2×3x +2×3y ) =240 000+720(x +y ).由容积为4 800 m 3,可得3xy =4 800. 因此xy =1 600.所以z ≥240 000+720×2xy ,当x =y =40时,上式等号成立,此时z =297 600.所以,将贮水池的池底设计成边长为40 m 的正方形时总造价最低,最低总造价是297 600元.状元随笔 贮水池呈长方体形,它的高是3 m ,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.教材反思利用基本不等式解决实际问题的步骤解实际问题时,首先审清题意,然后将实际问题转化为数学问题,再利用数学知识(函数及不等式性质等)解决问题.用基本不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数. (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题. (3)在定义域内,求出函数的最大值或最小值. (4)正确写出答案.跟踪训练2 某渔业公司今年年初用98万元购进一艘渔船用于捕捞,第一年需要各种费用12万元.从第二年起包括维修费在内每年所需费用比上一年增加4万元.该船每年捕捞总收入50万元.(1)问捕捞几年后总盈利最大,最大是多少? (2)问捕捞几年后的平均利润最大,最大是多少? 解析:(1)设该船捕捞n 年后的总盈利y 万元.则y =50n -98-⎣⎢⎡⎦⎥⎤12×n +n (n -1)2×4 =-2n 2+40n -98=-2(n -10)2+102, ∴当捕捞10年后总盈利最大,最大是102万元. (2)年平均利润为y n =-2⎝ ⎛⎭⎪⎫n +49n -20≤-2⎝⎛⎭⎪⎫2n ·49n -20=12,当且仅当n =49n,即n =7时上式取等号.所以,当捕捞7年后年平均利润最大,最大是12万元.状元随笔 1.盈利等于总收入-支出,注意支出,由两部分组成. 2.利用基本不等式求平均利润.一、选择题1.已知a ,b ,c ,是正实数,且a +b +c =1,则1a +1b +1c的最小值为( )A .3B .6C .9D .12解析:∵a +b +c =1,∴1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +b +c )=3+a b +b a +a c +c a +b c +cb≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:C2.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92C .3 D.322解析:因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知,(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6,即a =-32时,等号成立.答案:B3.将一根铁丝切割成三段做一个面积为4.5 m 2的直角三角形框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A .9.5 mB .10 mC .10.5 mD .11 m解析:不妨设直角三角形两直角边长分别为a ,b ,则ab =9,注意到直角三角形的周长为l =a +b +a 2+b 2,从而l =a +b +a 2+b 2≥2ab +2ab =6+32≈10.24,当且仅当a =b =3时,l 取得最小值.从最节俭的角度来看,选择10.5 m.答案:C4.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =( ) A .-3 B .2 C .3 D .8 解析:y =x -4+9x +1=x +1+9x +1-5.由x >-1,得x +1>0,9x +1>0,所以由基本不等式得y =x +1+9x +1-5≥2(x +1)×9x +1-5=1,当且仅当x +1=9x +1,即x =2时取等号,所以a =2,b =1,a +b =3.答案:C二、填空题5.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:86.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.解析:设xy =t (t >0),由xy =2x +y +6≥22xy +6,即t 2≥22t +6,(t -32)(t +2)≥0,∴t ≥32,则xy ≥18,当且仅当2x =y,2x +y +6=xy ,即x =3,y =6时等号成立,∴xy 的最小值为18.答案:187.某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.解析:设原价为1,则提价后的价格为 方案甲:(1+p %)(1+q %), 方案乙:⎝⎛⎭⎪⎫1+p +q 2%2, 因为(1+p %)(1+q %)≤1+p %+1+q %2=1+p +q2%,且p >q >0,所以(1+p %)(1+q %)<1+p +q2%,即(1+p %)(1+q %)<⎝⎛⎭⎪⎫1+p +q 2%2, 所以提价多的方案是乙. 答案:乙 三、解答题8.已知a >0,b >0,a +b =1,求证:⎝⎛⎭⎪⎫1+1a ⎝⎛⎭⎪⎫1+1b ≥9.证明:∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+ba,同理,1+1b =2+ab,∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎫2+b a ⎝⎛⎭⎪⎫2+a b=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).9.桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1 800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a b =1 2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值各为多少?解析:(1)由题可得,xy =1 800,b =2a ,则y =a +b +6=3a +6,S =(x -4)a +(x -6)b =(3x -16)a =(3x -16)y -63=1 832-6x -163y (x >6,y >6,xy =1 800). (2)方法一 S =1 832-6x -163y ≤1 832-26x ×163y =1 832-480=1 352,当且仅当6x =163y ,xy =1 800,即x =40,y =45时,S 取得最大值1 352.方法二 S =1 832-6x -163×1 800x =1 832-⎝ ⎛⎭⎪⎫6x +9 600x ≤1 832-26x ×9 600x=1832-480=1 352,当且仅当6x =9 600x ,即x =40时取等号,S 取得最大值,此时y =1 800x=45.[尖子生题库]10.已知a >b ,ab =1,求证:a 2+b 2≥22(a -b ).证明:∵a >b ,∴a -b >0,又ab =1,∴a 2+b 2a -b =a 2+b 2+2ab -2ab a -b =(a -b )2+2ab a -b =a -b +2a -b≥2(a -b )·2a -b=22,即a 2+b 2a -b ≥22,即a 2+b 2≥22(a -b ),当且仅当a -b =2a -b,即a -b =2时取等号.。
§2.2 第2课时 基本不等式在实际问题中的应用
第2课时 基本不等式在实际问题中的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决生活中简单的最大(小)值问题.3.能够运用基本不等式解决几何中的应用问题. 导语同学们,我们说数学是和生活联系非常紧密的学科,我们学习数学,也是为了解决生活中的问题,比如:“水立方”是2008年北京奥运会标志性建筑之一,如图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左右两个矩形框架,两框架面积之和为18 000 m 2,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD 空白的宽度为10 m ,两框架之间的中缝空白宽度为5 m ,请问作为设计师的你,应怎样设计矩形ABCD ,才能使水立方占地面积最小?要解决这个问题,还得需要我们刚学习过的基本不等式哦,让我们开始今天的探究之旅吧!一、基本不等式在生活中的应用问题 利用基本不等式求最大(小)值时,应注意哪些问题?提示 一正:x ,y 都得是正数;二定:积定和最小,和定积最大;三相等:检验等号成立的条件是否满足实际需要.例1 (教材46页例3改编)小明的爸爸要在家用围栏做一个面积为16m 2的矩形游乐园,当这个矩形的边长为多少时,所用围栏最省,并求所需围栏的长度. 解 设矩形围栏相邻两条边长分别为x m ,y m ,围栏的长度为2(x +y )m. 方法一 由已知xy =16, 由x +y2≥xy ,可知x +y ≥2xy =8, 所以2(x +y )≥16,当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m. 方法二 由已知xy =16,可知y =16x ,所以2(x +y )=2⎝⎛⎭⎫x +16x ≥2×2x ·16x=16. 当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.延伸探究 如果小明的爸爸只有12 m 长的围栏,如何设计,才能使游乐园的面积最大? 解 由已知得2(x +y )=12,故x +y =6,面积为xy , 由xy ≤x +y 2=62=3,或xy =x (6-x )≤x +6-x2=3,可得xy ≤9,当且仅当x =y =3时,等号成立.因此,当游乐园为边长为3的正方形时,面积最大,最大面积为9 m 2. 反思感悟 利用基本不等式解决实际问题的步骤 (1)理解题意,设变量,并理解变量的实际意义; (2)构造定值,利用基本不等式求最值; (3)检验,检验等号成立的条件是否满足题意; (4)结论.跟踪训练1 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,求该容器的最低总造价. 解 设该长方体容器底面的长和宽分别为a m ,b m ,成本为y 元, 由于长方体容器的容积为4 m 3,高为1 m ,所以底面面积S =ab =4,y =20S +10[2(a +b )]=20(a +b )+80, 由基本不等式可得y =20(a +b )+80≥20×2ab +80=160(元), 当且仅当a =b =2时,等号成立, 因此,该容器的最低总造价为160元. 二、基本不等式在几何中的应用例2 如图所示,设矩形ABCD (AB >BC )的周长为24,把它沿AC 翻折,翻折后AB ′交DC 于点P ,设AB =x .(1)用x 表示DP ,并求出x 的取值范围; (2)求△ADP 面积的最大值及此时x 的值. 解 (1)矩形ABCD (AB >BC )的周长为24, ∵AB =x ,∴AD =242-x =12-x ,在△APC 中,∠P AC =∠PCA ,所以AP =PC ,从而得DP =PB ′,∴AP =AB ′-PB ′=AB -DP =x -DP ,在Rt △ADP 中,由勾股定理得(12-x )2+DP 2=(x -DP )2,∵AB >BC =AD ,得x >12-x , ∴6<x <12,∴DP =12-72x (6<x <12).(2)在Rt △ADP 中,S △ADP =12AD ·DP =12(12-x )⎝⎛⎭⎫12-72x =108-⎝⎛⎭⎫6x +432x (6<x <12). ∵6<x <12,∴6x +432x ≥2·6x ·432x =722,当且仅当6x =432x ,即x =62时取等号.∴S △ADP =108-⎝⎛⎭⎫6x +432x ≤108-722,∴当x =62时,△ADP 的面积取最大值108-72 2. 反思感悟 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪训练2 如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB =4米,AD =3米,当BM =________时,矩形花坛AMPN 的面积最小.答案 4解析 设BM =x (x >0),则由DC ∥AM 得ND ND +3=44+x,解得ND =12x ,∴矩形AMPN 的面积为S =(4+x )⎝⎛⎭⎫3+12x =24+3x +48x ≥24+23x ×48x=48,当且仅当3x=48x,即x =4时等号成立.1.知识清单:(1)基本不等式在生活中的应用. (2)基本不等式在几何中的应用. 2.方法归纳:配凑法.3.常见误区:生活中的变量有它自身的意义,容易忽略变量的取值范围.1.用一段长为8 cm 的铁丝围成一个矩形模型,则这个模型的最大面积为( ) A .9 cm 2B .16 cm 2C .4 cm 2D .5 cm 2答案 C解析 设矩形模型的长和宽分别为x ,y ,则x >0,y >0, 由题意可得2(x +y )=8, 所以x +y =4,所以矩形菜园的面积S =xy ≤(x +y )24=424=4,当且仅当x =y =2时取等号,所以当矩形菜园的长和宽都为2 cm 时,面积最大,为4 cm 2.2.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案:每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样 D .无法确定答案 B解析 任取其中两次加油,假设第一次的油价为m 元/升,第二次的油价为n 元/升. 第一种方案的均价为30m +30n 60=m +n2≥mn ;第二种方案的均价为400200m +200n =2mnm +n≤mn .所以无论油价如何变化,第二种都更划算.3.某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( ) A .x =a +b 2 B .x ≤a +b 2 C .x >a +b 2 D .x ≥a +b2答案 B解析 由题意得,A (1+a )(1+b )=A (1+x )2, 则(1+a )(1+b )=(1+x )2, 因为(1+a )(1+b )≤⎝⎛⎭⎫1+a +1+b 22,所以1+x ≤2+a +b 2=1+a +b2,所以x ≤a +b2,当且仅当a =b 时取等号.4.在如图所示的锐角三角形空地中,欲建一个内接矩形花园(阴影部分),矩形花园面积的最大值为________.答案400解析由题意设矩形花园的长为x>0,宽为y>0,矩形花园的面积为xy,根据题意作图如下,因为花园是矩形,则△ADE与△ABC相似,所以AFAG=DEBC,又因为AG=BC=40,所以AF=DE=x,FG=y,所以x+y=40,由基本不等式x+y≥2xy,得xy≤400,当且仅当x=y=20时,矩形花园面积最大,最大值为400.课时对点练1.三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“()”的几何解释()A.如果a>b>0,那么a>bB.如果a>b>0,那么a2>b2C.对任意正实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立D.对任意正实数a和b,有a+b≥2ab,当且仅当a=b时等号成立答案 C解析可将直角三角形的两直角边长度取作a,b,斜边为c(c2=a2+b2),则外围的正方形的面积为c2,也就是a2+b2,四个阴影面积之和刚好为2ab,对任意正实数a和b,有a2+b2≥2ab,当且仅当a=b时等号成立,故选C.2.汽车上坡时的速度为a ,原路返回时的速度为b ,且0<a <b ,则汽车全程的平均速度比a ,b 的平均值( ) A .大 B .小 C .相等 D .不能确定答案 B解析 令单程为s ,则上坡时间为t 1=s a ,下坡时间为t 2=s b ,平均速度为2s t 1+t 2=2s s a +s b =21a +1b<ab <a +b 2.3.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).故C 既够用,浪费也最少.4.如图所示,矩形ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的( )A .最小长度为8B .最小长度为4 2C .最大长度为8D .最大长度为4 2 答案 B解析 设BC =a ,CD =b , 因为矩形的面积为4,所以ab =4, 所以围成矩形ABCD 所需要的篱笆长度为 2a +b =2a +4a≥22a ·4a=42, 当且仅当2a =4a,即a =2时,等号成立.5.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为(4n +46)(n ∈N *)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .300天 B .400天 C .600天 D .800天 答案 B解析 设一共使用了n 天,则使用n 天的平均耗资为320 000+(50+4n +46)n2n =320 000n +2n+48,当且仅当320 000n=2n 时,取得最小值,此时n =400.6.(多选)已知某出租车司机为升级服务水平,购入了一辆豪华轿车投入运营,据之前的市场分析得出每辆车的营运总利润y (万元)与运营年数x 的关系为y =-x 2+12x -25,则下列判断正确的是( )A .车辆运营年数越多,收入越高B .车辆在第6年时,总收入最高C .车辆在前5年的平均收入最高D .车辆每年都能盈利 答案 BC解析 由题意,y =-x 2+12x -25,是开口向下的二次函数,故A 错误;对称轴x =6,故B 正确;y x =-x +12-25x =-⎝⎛⎭⎫x +25x +12≤-225+12=2,当且仅当x =5时,等号成立,故C 正确;当x =1时,y =-14,故D 错误.7.矩形的长为a ,宽为b ,且面积为64,则矩形周长的最小值为________. 答案 32解析 由题意,矩形中长为a ,宽为b ,且面积为64,即ab =64, 所以矩形的周长为2a +2b =2a +128a ≥22×128=32,当且仅当a =8时,等号成立,即矩形周长的最小值为32.8.某工厂建造一个无盖的长方体贮水池,其容积为4 800 m 3,深度为3 m .如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,要使水池总造价最低,那么水池底部的周长为________m. 答案 160解析 设水池底面一边的长度为x m ,则另一边的长度为4 8003x m ,由题意可得水池总造价y =150×4 8003+120×⎝⎛⎭⎫2×3x +2×3×4 8003x =240 000+720⎝⎛⎭⎫x +1 600x (x >0), 则y =720⎝⎛⎭⎫x +1 600x +240 000≥720×2x ·1 600x+240 000=720×2×40+240 000=297600,当且仅当x =1 600x ,即x =40时,y 有最小值297 600,此时另一边的长度为4 8003x=40(m),因此,要使水池总造价最低,则水池的底面周长为160 m.9.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:y =900vv 2+5v +1 000(v >0).在该时段内,当汽车的平均速度v 为多少时车流量y最大?解 y =900vv 2+5v +1 000=900v +1 000v +5,∵v +1 000v ≥2v ·1 000v =2010,∴y =900v +1 000v +5≤9002010+5=180410+1,当且仅当v =1 000v ,即v =1010时等号成立.∴当汽车的平均速度v =1010千米/小时时车流量y 最大.10.根据交通法规,某路段限制车辆最高时速不得超过100千米/小时,现有一辆运货卡车在该路段上以每小时x 千米的速度匀速行驶130千米.假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)由题意,y =2⎝⎛⎭⎫2+x 2360·130x +14·130x =2 340x +13x18(0<x ≤100). (2)因为y =2 340x +13x18≥22 340x ·13x18=2610,当且仅当x =1810时,等号成立, 又0<1810<100,所以当x =1810千米/小时时,这次行车的总费用最低,为2610元.11.无字证明是指只用图象而无需文字解释就能不证自明的数学命题,由于其不证自明的特性,这种证明方式被认为比严格的数学证明更为优雅与条理,请写出该图验证的不等式( )A .a 2+b 2≥a +bB .4ab ≥a 2+b 2C .a +b ≥2abD .a 2+b 2≥2ab答案 D解析 从图形可以看出正方形的面积比8个直角三角形的面积和要大,当中心小正方形缩为一个点时,两个面积相等;因此(a +b )2≥8×12ab =4ab ,所以a 2+b 2≥2ab .12.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =p (p -a )(p -b )(p -c )求得,其中p 为三角形周长的一半,这个公式也被称为海伦一秦九韶公式.现有一个三角形的边长满足a =6,b +c =8,则此三角形面积的最大值为( ) A .37 B .8 C .47 D .9 3 答案 A解析 由题意p =7,S =7(7-a )(7-b )(7-c )=7(7-b )(7-c )≤7·7-b +7-c2=37,当且仅当7-b =7-c ,即b =c =4时,等号成立, 此三角形面积的最大值为37.13.某商场对商品进行两次提价,现提出四种提价方案,提价幅度较大的一种是( ) A .先提价p %,后提价q % B .先提价q %,后提价p % C .分两次提价p +q2%D .分两次提价p 2+q 22%(以上p ≠q ) 答案 D解析 由题意可知,A ,B 选项的两次提价均为 (1+p %)(1+q %);C 选项的提价为⎝⎛⎭⎫1+p +q 2%2,D 选项的提价为⎝ ⎛⎭⎪⎫1+p 2+q 22%2, 又∵p +q2<p 2+q 22,∴(1+p %)(1+q %)<⎝⎛⎭⎫1+p +q 2%2<⎝⎛⎭⎪⎫1+p 2+q 22%2, ∴提价最多的为D 选项.14.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________ km 处. 答案 5解析 设仓库到车站距离为x ,每月土地费用为y 1,每月货物的运输费用为y 2, 由题意可设y 1=k 1x,y 2=k 2x ,把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8, ∴y 1=20x ,y 2=0.8x ,费用之和y =y 1+y 2=0.8x +20x≥2×4=8, 当且仅当0.8x =20x ,即x =5时等号成立.当仓库建在离车站5 km 处两项费用之和最小.15.一家商店使用一架两臂不等长的天平秤黄金,一位顾客到店里购买10 g 黄金,售货员先将5 g 的砝码放在天平的左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5 g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次秤得的黄金交给顾客,你认为顾客购得的黄金是( ) A .大于10 g B .大于等于10 g C .小于10 g D .小于等于10 g答案 A解析 由于天平两臂不等长,可设天平左臂长为a (a >0),右臂长为b (b >0),则a ≠b , 再设先称得黄金为x g ,后称得黄金为y g ,则bx =5a ,ay =5b , ∴x =5a b ,y =5b a,∴x +y =5a b +5b a=5⎝⎛⎭⎫a b +b a ≥5×2a b ·ba=10, 当且仅当a b =ba,即a =b 时等号成立,但a ≠b ,等号不成立,即x +y >10,因此,顾客购得的黄金大于10 g.16.某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为x 元时,销售量可达到(10-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.(1)求每套丛书利润y 与售价x 的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.解 (1)∵⎩⎪⎨⎪⎧x >010-0.1x >0,∴0<x <100, y =x -⎝⎛⎭⎫20+1010-0.1x =x -100100-x-20(0<x <100), 当x =80时,y =80-100100-80-20=55(元), 此时销量为10-0.1×80=2(万套),总利润为2×55=110(万元).(2)y =x -100100-x-20, ∵0<x <100,∴100-x >0,∴y =-⎣⎡⎦⎤100100-x +(100-x )+80 ≤-2100100-x·(100-x )+80=60, 当且仅当100100-x =100-x ,即x =90元时,每套利润最大为60元.。
《基本不等式》一元二次函数、方程和不等式PPT教学课件(第二课时基本不等式的应用)
2 2 [x+2x≥2 x·2x=2 2,当
________.
且仅当 x= 2时,等号成立.]
栏目导航
9
3.设 x,y∈N*满足 x+y=20, 100 [∵x,y∈N*,∴20=x+
则 xy 的最大值为________.
y≥2 xy,
∴xy≤100.]
栏目导航
10
合作探究 提素养
栏目导航
11
(3)当 x>1 时,函数 y=x+x-1 1≥2 x-x 1,所以函数 y 的最小值是
2 x-x 1.(
)
栏目导航
[提示] (1)由 a+b≥2 ab可知正确. (2)由 ab≤a+2 b2=4 可知正确. (3) x-x 1不是常数,故错误.
[答案] (1)√ (2)√ (3)×
37
栏目导航
38
13
栏目导航
14
利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆 项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳 为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或 定积;若不等,一般用后面第三章§3.2 函数的基本性质中学习.
栏目导航
33
∵x>0,∴x+22x5≥2 x·22x5=30. 当且仅当 x=22x5,即 x=15 时,上式等号成立. ∴当 x=15 时,y 有最小值 2 000 元. 因此该楼房建为 15 层时,每平方米的平均综合费用最少.
19-20版 第2章 2.1 2.1.1平面上的柯西不等式的代数和向量形式柯西不等式的一般形式及其参数配方法的证明
2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明学习目标:1.认识柯西不等式的几种不同形式,理解其几何意义.2.通过运用柯西不等式解决一些简单问题.教材整理1 柯西不等式1.柯西不等式的代数形式:设a 1,a 2,b 1,b 2均为实数,则(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2.2.柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|. 3.柯西不等式的三角不等式:|α|+|β|≥|α+β|.4.柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )12(b 21+b 22+…+b 2n )12≥|a 1b 1+a 2b 2+…+a n b n |,其中等号成立⇔a 1b1=a 2b 2=…=a nb n(当某b j =0时,认为a j =0,j =1,2,…,n ). 教材整理2 参数配方法利用二次三项式的判别式证明柯西不等式的方法称为参数配方法.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8[解析] 由柯西不等式可求出(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥⎝ ⎛⎭⎪⎫x ·1x +y ·a y 2=(1+a )2,当x =1,y =a 时,(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值是(a +1)2,故只需(1+a )2≥9, 即a ≥4即可. [答案] B121 ax2)≥x1x2.[精彩点拨]如果对不等式左端直接用柯西不等式,得不到所要证明的结论.若把第二个小括号内的两项对调一下,再应用柯西不等式即可得证.[自主解答]∵a,b,x,y大于0,∴(ax1+bx2)(bx1+ax2)=(ax1+bx2)(ax2+bx1)≥(a x1x2+b x1x2)2=(a+b)2x1x2.又因为a+b=1,所以(a+b)2x1x2=x1x2,其中等号当且仅当x1=x2时成立.所以(ax1+bx2)(bx1+ax2)≥x1x2.1.利用二维形式的柯西不等式证明时,要抓住柯西不等式的结构特征,必要时,需要将数学表达式适当变形.2.变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.1.设x 1,x 2,…,x n 为正数,求证: (x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n ≥n 2.[证明] 由柯西不等式得 (x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n ≥⎝ ⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n ≥n 2.[精彩点拨] 由x +y +z =1以及u =2x 2+3y 2+z 2的形式,联想柯西不等式,构造因式⎝ ⎛⎭⎪⎫12+13+1解决问题.[自主解答] 由x +y +z =12·2x +13·3y +1·z . 根据柯西不等式,有 ⎝ ⎛⎭⎪⎫12·2x +13·3y +1·z 2 ≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫132+12·(2x 2+3y 2+z 2)=116(2x 2+3y 2+z 2),因此1=(x +y +z )2≤116(2x 2+3y 2+z 2), ∴u =2x 2+3y 2+z 2≥611, 当且仅当2x =λ2,3y =λ3,z =λ时等号成立. ∴x =λ2,y =λ3,z =λ代入x +y +z =1, 得x =311,y =211,z =611时,等号成立. 故函数u =2x 2+3y 2+z 2的最小值是611.1.利用柯西不等式求最值,不但要注意等号成立的条件,而且要善于对目标函数配凑,保证出现常数结果.2.常用的配凑的技巧有:(1)巧拆常数;(2)重新安排某些项的次序;(3)适当添项;(4)适当改变结构,从而达到运用柯西不等式求最值.2.若实数x,y,z满足x2+y2+z2=9,则x+2y+3z的最大值是________.[解析]由柯西不等式得(x+2y+3z)2≤(1+22+32)·(x2+y2+z2)=14×9,故x+2y+3z≤314,所以x+2y+3z的最大值是314.[答案]314【例3】已知正数x,y,z满足x+y+z=xyz,且不等式1x+y+1y+z+1z+x≤λ恒成立,求λ的取值范围.[精彩点拨]“恒成立”问题需求1x+y+1y+z+1z+x的最大值,设法应用柯西不等式求最值.[自主解答]∵x>0,y>0,z>0,且x+y+z=xyz,∴1yz+1xz+1xy=1.又1x+y+1y+z+1z+x≤12⎝⎛⎭⎪⎫1xy+1yz+1zx=12⎝⎛⎭⎪⎫1·1xy+1·1yz+1·1zx≤12⎣⎢⎡⎦⎥⎤(12+12+12)⎝⎛⎭⎪⎫1xy+1yz+1zx12=32,当且仅当x=y=z时,即x=y=z=3时等号成立,∴1x+y+1y+z+1z+x的最大值为32.故1x+y+1y+z+1z+x≤λ恒成立时,应有λ≥3 2.因此λ的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.此题也是通过构造转化应用柯西不等式,由此可见,应用柯西不等式,首先要对不等式形式、条件熟练掌握,然后根据题目的特点“创造性”的应用定理.3.已知函数f(x)=2x+5-x.若关于x的不等式f(x)≤|m-2|恒成立,求实数m的取值范围.[解]由柯西不等式得(2x+5-x)2≤(22+12)·|(x)2+(5-x)2|=25,所以f(x)=2x+5-x≤5.当且仅当x2=5-x1,即x=4时,等号成立.又不等式f(x)≤|m-2|恒成立,所以|m-2|≥5,解得m≥7或m≤-3.故m的取值范围为(-∞,-3]∪[7,+∞).1.在二维形式的柯西不等式的代数形式中,取等号的条件可以写成ab=cd吗?[提示]不可以.当b·d=0时,柯西不等式成立,但ab=cd不成立.2.在平面直角坐标系中,若△ABC的三个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3).则二维柯西不等式的三角形式又是怎样体现的呢?[提示]根据二维柯西不等式的几何意义,在△ABC中,三角形式的柯西不等式为(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)2≥(x1-x2)2+(y1-y2)2.3.在一般形式的柯西不等式中,等号成立的条件记为a i=kb i(i=1,2,3,…,n),可以吗?[提示]不可以.若b i=0而a i≠0,则k不存在.4.利用柯西不等式时,常用的变形技巧有哪些?[提示]柯西不等式形式优美,有重要的应用价值,应用柯西不等式解题的关键是恰到好处的变形,常用的变形技巧有:(1)等价变形,将要解决的不等式问题作等价变形,构造出几个实数的平方和与另n个实数平方和的乘积的形式.(2)配辅助式,为了应用柯西不等式,有时要根据所证不等式的结构特征,结合柯西不等式等号成立的条件,配凑适当的辅助式,使问题获证.(3)适当换元,有时根据所证不等式的结构特征适当换元,转化为容易应用柯西不等式的结构特征,使问题简捷获解.(4)配系数,为了应用柯西不等式沟通条件与结论之间的联系,有时要通过巧配系数来完成.【例4】 已知3x 2+2y 2≤6,求证:2x +y ≤11.[精彩点拨] 将不等式2x +y ≤11的左边凑成柯西不等式的形式,然后证明.[自主解答] 2x +y =23·3x +12·2y . 由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)⎝ ⎛⎭⎪⎫43+12≤6×116=11,于是2x +y ≤11,当且仅当3x 23=2y 12,即x y =43时等号成立.4.已知x +2y =1,则x 2+y 2的最小值为________. [解析] ∵1=x +2y ,∴1=(x +2y )2≤(1+22)(x 2+y 2). 当且仅当x =15,y =25时,取等号, ∴(x 2+y 2)min =15. [答案] 151.设x,y∈R,且2x+3y=13,则x2+y2的最小值为()A.13 B .169 C .13D .0[解析] (2x +3y )2≤(22+32)(x 2+y 2),∴x 2+y 2≥13. [答案] C2.已知2x 2+y 2=1,则2x +y 的最大值是( ) A .2 B .2 C .3D .3[解析] 2x +y =2·2x +1×y ≤(22+12)[(2x )2+y 2]=3(2x 2+y 2)=3, 当且仅当2y =2x , 即x =y =33时等号成立. [答案] C3.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,25] B .[-210,210] C .[-10,10]D .[-5,5][解析] ∵(a 2+b 2)[12+(-1)2]≥(a -b )2, ∴|a -b |≤20=25,∴a -b ∈[-25,25]. [答案] A4.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b +36c 的最小值为________.[解析] ∵a ,b ,c 为正数,∴(a +b +c )⎝ ⎛⎭⎪⎫4a +9b +36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2≥⎝ ⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=121,当且仅当a 2=b 3=c6=k (k >0)时等号成立. 故(a +b +c )⎝ ⎛⎭⎪⎫4a +9b +36c 的最小值是121.[答案] 1215.已知实数x ,y ,z 满足x +2y +z =1,求t =x 2+4y 2+z 2的最小值. [解] 由柯西不等式得(x 2+4y 2+z 2)(1+1+1)≥(x +2y +z )2. ∵x +2y +z =1, ∴3(x 2+4y 2+z 2)≥1, 即x 2+4y 2+z 2≥13. 当且仅当x =2y =z =13,即x =13,y =16,z =13时等号成立. 故x 2+4y 2+z 2的最小值为13.课时分层作业(八) 柯西不等式(建议用时:45分钟)[基础达标练]一、选择题1.若a 2+b 2=1,x 2+y 2=2,则ax +by 的最大值为( ) A .1 B .2 C . 2D .4[解析] ∵(ax +by )2≤(a 2+b 2)(x 2+y 2)=2, ∴ax +by ≤ 2. [答案] C2.若实数a ,b ,c 均大于0,且a +b +c =3,则a 2+b 2+c 2的最小值为( ) A .3 B .1 C .33D . 3[解析] ∵a +b +c =1·a +1·b +1·c ,且a ,b ,c 大于0.由柯西不等式得 (1·a +1·b +1·c )2≤(12+12+12)(a 2+b 2+c 2), ∴a 2+b 2+c 2≥3.当且仅当a =b =c =1时等号成立,∴a 2+b 2+c 2的最小值为 3. [答案] D3.已知x +y =1,且x >0,y >0,那么2x 2+3y 2的最小值是( ) A.56 B.65 C.2536D.3625[解析] 2x 2+3y 2=(2x 2+3y 2)⎝ ⎛⎭⎪⎫12+13·65≥65⎝⎛⎭⎪⎫2x ·22+3y ·332 =65(x +y )2=65,当且仅当2x ·13=3y ·12,即x =35,y =25时等号成立,∴2x 2+3y 2的最小值为65. [答案] B4.若a 21+a 22+…+a 2n =1,b 21+b 22+…+b 2n =4,则a 1b 1+a 2b 2+…+a n b n 的最大值为( )A .1B .-1C .2D .-2[解析] ∵(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n ),≥(a 1b 1+a 2b 2+…+a n b n )2,∴(a 1b 1+a 2b 2+…+a n b n )2≤4,故a 1b 1+a 2b 2+…+a n b n ≤2.因此a 1b 1+a 2b 2+…+a n b n 的最大值为2.[答案] C5.已知a 2+b 2+c 2=1,x 2+y 2+z 2=1,t =ax +by +cz ,则t 的取值范围为( ) A .(0,1) B .(-1,1) C .(0,-1)D .[-1,1][解析] 设α=(a ,b ,c ),β=(x ,y ,z ). ∵|α|=a 2+b 2+c 2=1,|β|=x 2+y 2+z 2=1, 由|α||β|≥|α·β|,得|t |≤1. ∴t 的取值范围是[-1,1].[答案] D 二、填空题6.已知a ,b ,c ∈R ,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________. [解析] ∵a +2b +3c =6,∴1×a +1×2b +1×3c =6,∴(a 2+4b 2+9c 2)(12+12+12)≥(a +2b +3c )2,即a 2+4b 2+9c 2≥12.当且仅当1a =12b =13c ,即a =2,b =1,c =23时取等号.[答案] 127.若a =(1,0,-2),b =(x ,y ,z ),若x 2+y 2+z 2=16,则a ·b 的最大值为________.[解析] 由题知,a ·b =x -2z ,由柯西不等式知[12+02+(-2)2](x 2+y 2+z 2)≥(x +0-2z )2,当且仅当向量a 与b 共线时“=”成立, ∴5×16≥(x -2z )2, ∴-45≤x -2z ≤45, 即-45≤a ·b ≤4 5. 故a ·b 的最大值为4 5. [答案] 4 58.已知a 1-b 2+b 1-a 2=1,则a 2+b 2=________. [解析] 由柯西不等式得(a 1-b 2+b 1-a 2)2≤[a 2+(1-a 2)][(1-b 2)+b 2]=1, 当且仅当b1-a 2=1-b 2a 时,上式取等号, ∴ab =1-a 2·1-b 2,a 2b 2=(1-a 2)(1-b 2), 于是a 2+b 2=1. [答案] 1 三、解答题9.已知θ为锐角,a ,b 均为正数.求证:(a +b )2≤a 2cos 2θ+b2sin 2θ.[证明] 设m =⎝ ⎛⎭⎪⎫acos θ,b sin θ,n =(cos θ,sin θ),则|a +b |=⎪⎪⎪⎪⎪⎪a cos θ·cos θ+b sin θ·sin θ =|m ·n |≤|m ||n |= ⎝ ⎛⎭⎪⎫a cos θ2+⎝ ⎛⎭⎪⎫b sin θ2·1 =a 2cos 2θ+b 2sin 2θ,∴(a +b )2≤a 2cos 2θ+b 2sin 2θ.10.在半径为R 的圆内,求周长最大的内接长方形.[解] 如图所示,设内接长方形ABCD 的长为x ,宽为4R 2-x 2,于是 ABCD 的周长l =2(x +4R 2-x 2)=2(1·x +1×4R 2-x 2). 由柯西不等式得l ≤2[x 2+(4R 2-x 2)2]12(12+12) 12=22·2R =42R .当且仅当x 1=4R 2-x 21,即x =2R 时等号成立.此时,宽=4R 2-(2R )2=2R ,即ABCD 为正方形, 故周长最大的内接长方形为正方形,其周长为42R .[能力提升练]1.函数y =x 2-2x +3+x 2-6x +14的最小值是( ) A .10 B .210 C .11+210D .10+1[解析] y =(x -1)2+2+(3-x )2+5.根据柯西不等式,得y 2=(x -1)2+2+(3-x )2+5+2[(x -1)2+2][(3-x )2+5]≥(x -1)2+2+(3-x )2+5+2[(x -1)(3-x )+10] =[(x -1)+(3-x )]2+2+5+210 =11+210,当且仅当x -13-x =25,即x =210-13时等号成立.此时,y min =11+210=10+1. [答案] D2.设a ,b ,c ,x ,y ,z 都是正数,且a 2+b 2+c 2=25,x 2+y 2+z 2=36,ax +by +cz =30,则a +b +cx +y +z=________.[解析] 由柯西不等式知:25×36=(a 2+b 2+c 2)·(x 2+y 2+z 2)≥(ax +by +cz )2=302=25×36,当且仅当a x =b y =cz =k 时取“=”. 由k 2(x 2+y 2+z 2)2=25×36,解得k =56,所以a +b +c x +y +z=k =56.[答案] 56。
2.2 第2课时 基本不等式的实际应用
【例 2】 已知 x>0,y>0,且满足 + =1,求 x+2y 的最小值.
分析:从形式上看不具备用基本不等式求最值的条件,但根据
已知变形,消去一个变量,可构造成能使用基本不等式的形式,
也可使用“1”的代换尝试解决.
解:∵x>0,y>0, + =1,
+
(x+2y)=10+
+
的最大值;
(2)已知 0<x< ,求 y= x(1-2x)的最大值;
(3)已知 x>0,求 y=
的最大值.
+
解:(1)∵x<,∴5-4x>0,
∴y=4x-2+
=-
当且仅当
- +
+3≤-2+3=1,
-
5-4x=
,即 x=1 时,上式等号成立,
-
故当 x=1 时,y 取得最大值 1.
当且仅当 x=y= 时,取等号.
(2)因为 x,y 都是正数,且 x+y=15,
所以由基本不等式得 xy≤
当且仅当
+
x=y= 时,取等号.
=
=
,
答案:(1)2
(2)
【思考辨析】
判断下列说法是否正确,正确的在后面的括号内打“ ”,错误
的打“×”.
x+2y
反思感悟
常数代换法适用于求解条件最值问题,应用此种方法求解最
2.2+课时2+基本不等式的应用-2024-2025学年高一上学期数学人教A版(2019)必修第一册
则y= x (6<x<500),
y-6
S=(x-4)a+(x-6)a=(2x-10)a=(2x-10)· 2 =(x-5)(y-6)=3 030-6x
15 000
- x (6<x<500).
15 000
15 000
(2)S=3 030-6x- x ≤3 030-2 6x· x =3 030-2×300=2 430.
15 000
当且仅当6x= x ,即x=50时,“=”成立,此时x=50.y=60,
Smax=2 430.即设计x=50 m,y=60 m时,运动场地面积最大,最大值为2
430 m2.
作者编号:32001
课堂总结
1.基本不等式的变式: + ≥ 2 , ≤
+ 2
2
2.利用基本不等式求最值时,要注意: 一正二定三相等
时,再考虑函数的单调性.
(4)正确写出答案.
作者编号:32001
当堂检测
1.某公司一年购买某种货物600吨,每次购买x吨,运费为6
万元/次,一年的总存储费用为4x万元.要使一年的总运费
与总存储费用之和最小,则x的值是_____________.
解析:本题考查基本不等式及其应用.
600
设总费用为 y 万元,则 y= x ×6+4x=
求得 x=15,即铁栅的长是 15 米.
作者编号:32001
新课讲授
归纳总结
求实际问题中最值的一般思路
(1)先读懂题意,设出变量,理清思路,列出函数关系
式.
(2)把实际问题抽象成函数的最大值或最小值问题.
(3)在定义域内,求函数的最大值或最小值时,一般先
高一数学必修一第二章第二课基本不等式
高一数学必修一第二章第二课基本不等式摘要:1.必修一第二章第二课:基本不等式2.基本不等式的概念3.基本不等式的推导和证明4.基本不等式的应用举例5.总结与拓展正文:【1.必修一第二章第二课:基本不等式】在高一数学必修一的第二章中,我们迎来了第二课——基本不等式。
这一课是整个高中数学学习过程中非常重要的一部分,它将为我们后续学习更复杂的数学知识打下坚实的基础。
那么,什么是基本不等式呢?它又有哪些应用呢?让我们一起来探讨。
【2.基本不等式的概念】基本不等式,又称柯西不等式,是指在实数范围内,两个数的平方和与两个数的乘积之间存在的一种不等关系。
它的数学表达式为:(a+b)^2 >=4ab。
这个不等式在数学中有着广泛的应用,是解决许多数学问题的关键思想。
【3.基本不等式的推导和证明】接下来,我们将来推导和证明基本不等式。
首先,我们假设有两个实数a 和b,那么(a+b)^2 = a^2 + 2ab + b^2。
根据基本不等式,我们要证明a^2 + 2ab + b^2 >= 4ab。
将4ab 移到左边,我们得到a^2 - 2ab +b^2 >= 0,也就是(a-b)^2 >= 0。
这个不等式显然成立,因为一个数的平方永远大于等于0。
所以,我们成功地证明了基本不等式。
【4.基本不等式的应用举例】了解了基本不等式的概念和证明,我们来看看它在实际问题中的应用。
假设有一个等差数列,首项为a,公差为b,项数为n,我们要求这个等差数列的和。
根据等差数列求和公式,我们可以得到S_n = na + n(n-1)/2 * b。
由于n 是正整数,我们可以利用基本不等式得到:S_n >= 2 * sqrt(na * (n-1)/2 * b)。
这个式子告诉我们,在等差数列中,当n 固定时,a 和b 的乘积越大,和就越大。
【5.总结与拓展】通过学习基本不等式,我们不仅掌握了一个重要的数学知识,还学会了如何运用它解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.72
B.4
C.92
D.5
栏目导航
C [∵a+b=2,∴a+2 b=1. ∴1a+4b=1a+b4a+2 b =52+2ba+2ba≥52+2 2ba·2ba=92 当且仅当2ba=2ba,即b=2a时,等号成立. 故 y=1a+4b的最小值为92.]
栏目导航
1.已知 a>0,b>0, a+b=2,则 y=1a+4b的最 小值是( )
栏目导航
利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆 项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳 为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或 定积;若不等,一般用后面第三章§3.2 函数的基本性质中学习.
栏目导航
(2)法一:∵0<x<13,∴1-3x>0. ∴y=x(1-3x)=13·3x(1-3x) ≤133x+21-3x2=112. 当且仅当 3x=1-3x,即 x=16时,等号成立. ∴当 x=16时,函数取得最大值112.
栏目导航
法二:∵0<x<13,∴13-x>0. ∴y=x(1-3x)=3·x13-x≤3·x+132-x2 =112, 当且仅当 x=13-x,即 x=16时,等号成立. ∴当 x=16时,函数取得最大值112.
栏目导航
2.已知 a>0,b>0,a+2b=1,求1a+1b的最小值.
[解] 法一:1a+1b=1a+1b·1
=1a+b1·(a+2b)
=1+2ab+ab+2=3+2ab+ab≥3+2
2b a a ·b
=3+2 2,
栏目导航
当且仅当2ab=ab, a+2b=1,
a= 2-1,
即 b=1-
2 2
时等号成立.
栏目导航
1.(1)已知 x>0,求函数 y=x2+5xx+4的最小值; (2)已知 0<x<13,求函数 y=x(1-3x)的最大值. [解] (1)∵y=x2+5xx+4=x+4x+5≥2 4+5=9,
当且仅当 x=4x即 x=2 时等号成立. 故 y=x2+5xx+4(x>0)的最小值为 9.
第二章 一元二次函数、方程和不等式
2.2 基本不等式 第2课时 基本不等式的应用
栏目导航
学习目标
核心素养
1.熟练掌握利用基本不等式求函数 1.通过基本不等式求最值,提升数学
的最值问题.(重点)
运算素养.
2.会用基本不等式求解实际应用 2.借助基本不等式在实际问题中的
题.(难点)
应用,培养数学建模素养.
2 2 [x+2x≥2 x·2x=2 2,当
________.
且仅当 x= 2时,等号成立.]
栏目导航
3.设 x,y∈N*满足 x+y=20, 100 [∵x,y∈N*,∴20=x+
则 xy 的最大值为________.
y≥2 xy,
∴xy≤100.]
栏目导航
合作探究 提素养
栏目导航
利用基本不等式求最值 【例 1】 (1)已知 x<54,求 y=4x-2+4x-1 5的最大值; (2)已知 0<x<12,求 y=12x(1-2x)的最大值. [思路点拨] (1)看到求 y=4x-2+4x-1 5的最值,想到如何才能出现 乘积定值;(2)要求 y=12x(1-2x)的最值,需要出现和为定值.
栏目导航
[解] (1)∵x<54,∴5-4x>0, ∴y=4x-2+4x-1 5=-5-4x+5-14x+3≤-2+3=1, 当且仅当 5-4x=5-14x,即 x=1 时,上式等号成立, 故当 x=1 时,ymax=1.
栏目导航
(2)∵0<x<12, ∴1-2x>0, ∴y=14×2x(1-2x)≤14×2x+21-2x2=14×14=116. ∴当且仅当 2x=1-2x0<x<21,即 x=14时,ymax=116.
即xy= =132, 时,等号成立, 故当 x=12,y=3 时,(x+2y)min=18.
栏目导航
若把“8x+1y=1”改为“x+2y=1”,其他条件不变,求8x+1y的最小 值.
[解] ∵x,y∈R+, ∴8x+1y=(x+2y)8x+1y =8+1x6y+xy+2=10+1x6y+xy≥10+2 16=18. 当且仅当1x6y=xy时取等号,
∴1a+1b的最小值为 3+2 2.
栏目导航
法二:1a+1b=a+a2b+a+b2b=1+2ab+ab+2
=3+2ab+ab≥3+2 2,
当且仅当2ab=ab, a+2b=1,
a= 2-1,
即 b=+2 2.
栏目导航
自主预习 探新知
栏目导航
已知 x、y 都是正数, (1)若 x+y=S(和为定值),则当 x=y 时,积 xy 取得最大值S42. (2)若 xy=p(积为定值),则当 x=y 时,和 x+y 取得最小值 2 p. 上述命题可归纳为口诀:积定和最小,和定积最大.
栏目导航
1.已知 a>0,b>0,a+b=2,则 y=1a+4b的最小值是( )
栏目导航
利用基本不等式求条件最值 【例 2】 已知 x>0,y>0,且满足8x+1y=1.求 x+2y 的最小值. [解] ∵x>0,y>0,8x+1y=1, ∴x+2y=8x+1y(x+2y)=10+xy+16x y ≥10+2 xy·16xy=18,
栏目导航
当且仅当8x+1y=1, xy=16xy,
A.72 B.4 C.92 D.5
C [∵a+b=2,∴a+2 b=1. ∴1a+4b=1a+b4a+2 b =52+2ba+2ba≥52+2 2ba·2ba=92 当且仅当2ba=2ba,即b=2a时,等号成立. 故 y=1a+4b的最小值为92.]
栏目导航
2.若 x>0,则 x+2x的最小值是
栏目导航
结合 x+2y=1,得 x=23,y=16, ∴当 x=23,y=16时,8x+1y取到最小值 18.
栏目导航
1.本题给出的方法,用到了基本不等式,并且对式子进行了变形, 配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会 变形.
2.常见的变形技巧有:(1)配凑系数;(2)变符号;(3)拆补项.常见形 式有 f(x)=ax+bx型和 f(x)=ax(b-ax)型.