清华大学-理论力学-习题解答-6-10

合集下载

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

F DBCBDBF '习题3-3图第3章 静力学平衡问题3-1 图示两种正方形结构所受荷载F 均已知。

试求其中1,2,3各杆受力。

解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉) 045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0F 2 = F (受拉)3-2 图示为一绳索拔桩装置。

绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。

已知α= 0.1rad.,力F = 800N 。

试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。

解:0=∑y F ,F F ED =αsin αs i nFF ED = 0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果,可推出图(b )中:F AB = 10F DB = 100F = 80 kN 。

3-3 起重机由固定塔AC 与活动桁架BC 组成,绞车D 和E 分别控制桁架BC 和重物W 的运动。

桁架BC 用铰链连接于点C ,并由钢索AB 维持其平衡。

重物W = 40kN 悬挂在链索上,链索绕过点B 的滑轮,并沿直线BC 引向绞盘。

长度AC = BC ,不计桁架重量和滑轮摩擦。

试用角ϕ=∠ACB 的函数来表示钢索AB 的张力F AB 以及桁架上沿直线BC 的压力F BC 。

(b-1)习题3-1图(a-1)(a-2)'3(b-2)习题3-2图F习题3-5图习题3-4图 解:图(a ):0=∑x F ,0sin 2cos=-ϕϕW F AB ,2sin2ϕW F AB =0=∑y F ,02sincos =---ϕϕAB BC F W W F即 2s i n 2c o s 2ϕϕW W W F BC ++=W W W W 2)c o s 1(c o s =-++=ϕϕ3-4 杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。

《理论力学》课后习题解答(赫桐生_高教版)

《理论力学》课后习题解答(赫桐生_高教版)

第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

清华大学版理论力学课后习题答案大全 第10章动能定理及其应用习题解

清华大学版理论力学课后习题答案大全     第10章动能定理及其应用习题解

A(a)O(a)第10章 动能定理及其应用10-1 计算图示各系统的动能:1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。

在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45º(图a )。

2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。

3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。

细圆环在水平面上作纯滚动,图示瞬时角速度为ω(图c )。

解:1.222222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =⋅+=+=ω 2.222122222214321)(21212121v m v m r v r m v m v m T +=⋅++=3.22222222)2(212121ωωωωmR R m mR mR T =++=10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。

现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。

当杆与铅垂线的夹角为ϕ时,试求系统的动能。

解:图(a )B A T T T +=)2121(21222211ωC C J v g W v g W ++=21221121212211122]cos 22)2[(22ωϕωω⋅⋅+⋅++++=l gW l l v l v l g W v g W]c o s 31)[(2111221222121ϕωωv l W l W v W W g +++=10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。

齿轮II 通过匀质的曲柄OC 带动而运动。

曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。

试求行星齿轮机构的动能。

理论力学答案完整版(清华大学出版社)9

理论力学答案完整版(清华大学出版社)9

F1 = F1(sinϑ i − cosϑ j) , F2 = F2i
点 A 和 B 的坐标及其变分为
rA = −(l1 − l2 )cosϑ i + (l1 + l2 )sinϑ j

rB = −2l1 cosϑ i
δrA = (l1 − l2 )sinϑ ⋅δϑ i + (l1 + l2 )cosϑ ⋅δϑ j ,
Fδ re − G1δ ra = 0 按速度合成定理,虚位移存在如下关系:δ ra = δ re tan β ,于是
(a)
题 9-9 图
导出 F = G1 tan β .
(2)水平面有摩擦时,当水平力 F 较小,斜面 D 有向左运动趋势,此时摩擦力方向向右,
临界平衡时,虚功方程为
(F + ) Fmax δ re − G1δ ra = 0 , 其中 Fmax = (G1 + G2 ) f 。求得: F ≥ G1 tan β − (G1 + G2 ) f .
i =1
解题要领 1) 对于自由度不为零的系统,求其平衡时主动力满足的关系可用虚功原理. 2) 对于自由度为零的系统,为求其约束力,可以依次解除一个约束,使自由度为 1,即将
此约束力作为主动力应用虚功原理. 3) 独立的坐标变分个数与系统的自由度相同,可以用解析或虚速度的方法建立不独立的坐
标变分满足的关系.
三 广义坐标表示的虚位移原理
广义坐标:确定质点系位形的独立坐标。
虚功原理的广义坐标表述:受理想约束的质点系,其平衡的充分必要条件是系统所有与广义
坐标对应的广义力为零
Qj = 0 ( j = 1,2,L, m)
∑ 其中
Qj
=

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

清华大学版理论力学课后习题答案大全_____第3章静力学平衡问题习题解

F DBCBDBF '习题3-3图第3章 静力学平衡问题3-1 图示两种正方形结构所受荷载F 均已知。

试求其中1,2,3各杆受力。

解:图(a ):045cos 23=-︒F FF F 223=(拉) F 1 = F 3(拉) 045cos 232=︒-F F F 2 = F (受压) 图(b ):033='=F F F 1 = 0F 2 = F (受拉)3-2 图示为一绳索拔桩装置。

绳索的E 、C 两点拴在架子上,点B 与拴在桩A 上的绳索AB 连接,在点D 加一铅垂向下的力F ,AB 可视为铅垂,DB 可视为水平。

已知α= 0.1rad.,力F = 800N 。

试求绳AB 中产生的拔桩力(当α很小时,tan α≈α)。

解:0=∑y F ,F F ED =αsin αs i nFF ED = 0=∑x F ,DB ED F F =αcos F FF DB 10tan ==α由图(a )计算结果,可推出图(b )中:F AB = 10F DB = 100F = 80 kN 。

3-3 起重机由固定塔AC 与活动桁架BC 组成,绞车D 和E 分别控制桁架BC 和重物W 的运动。

桁架BC 用铰链连接于点C ,并由钢索AB 维持其平衡。

重物W = 40kN 悬挂在链索上,链索绕过点B 的滑轮,并沿直线BC 引向绞盘。

长度AC = BC ,不计桁架重量和滑轮摩擦。

试用角ϕ=∠ACB 的函数来表示钢索AB 的张力F AB 以及桁架上沿直线BC 的压力F BC 。

(b-1)习题3-1图(a-1)(a-2)'3(b-2)习题3-2图F习题3-5图习题3-4图 解:图(a ):0=∑x F ,0sin 2cos=-ϕϕW F AB ,2sin2ϕW F AB =0=∑y F ,02sincos =---ϕϕAB BC F W W F即 2s i n 2c o s 2ϕϕW W W F BC ++=W W W W 2)c o s 1(c o s =-++=ϕϕ3-4 杆AB 及其两端滚子的整体重心在G 点,滚子搁置在倾斜的光滑刚性平面上,如图所示。

清华大学版理论力学课后习题答案大全

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。

试求动齿轮以圆心A 为基点的平面运动方程。

解:ϕc o s )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。

试以杆与铅垂线的夹角θ 表示杆的角速度。

解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。

作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。

则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。

试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。

解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。

设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。

试求该瞬时杆BC 的角速度和点C 的速度。

《理论力学》第10-11章习题参考解答

《理论力学》第10-11章习题参考解答

1 2
(1 3
G1 g
r 2 ) 2
(G1
G2 )
r 2
求得:
3g(G1 G2 ) r(G1 3G2 )
,
vB
r
3(G1 G2 )gr (G1 3G2 )
②分析AB杆各点的加速度,由基点法得:
aB
aA
aAn
aB A
将矢量方程在铅垂方向投影得:
0
a
n A
aBA
所以:
AB
aBA L
aAn L
《理论力学》第10章习题参考解答
FD
解:已知:
T 10(s), n 2 4 (rad / s) 60
①分析OA的受力,有:
F 3.5 FD 1.5
FD
7 3
F
②取轮子为研究对象,动力学方程为:
(1 2
mr2 )
Fs r
FS
FD f
7Ff 3
求得: 14Ff 3mr
因为角加速度为常数,所以轮子作匀减速运动,则有:
G2 g
aC
FB
L 2
FAy
L 2
(1 12
G2 g
L2 ) AB
解方程得:
FB
G2 (G1 2G2 ) G1 3G2
vB
AB aC
aB
aB A
aCn aB A
C
FB
G2
vA aA aAn FAy FAx
r 2 L
3g(G1 G2 ) (G1 3G2 )L
③分析AB杆各点的加速度,由基点法得: aC aCn aA aAn aCA
将矢量方程在铅垂方向投影得:
aC
a
n A
aC A

理论力学解答(清华版)

理论力学解答(清华版)

第一章 静力学基本概念1-1 考虑力对物体作用的运动效应,力是( A )。

A.滑动矢量B.自由矢量C.定位矢量1-2 如图1-18所示,作用在物体A 上的两个大小不等的力1F 和2F ,沿同一直线但方向相反,则其合力可表为( C )。

A.1F –2FB.2F - 1FC.1F +2F图1-18 图1-191-3 F =100N ,方向如图1-19所示。

若将F 沿图示x ,y 方向分解,则x 方向分力的大小x F = C N ,y 方向分力的大小y F = ___B __ N 。

A. 86.6B. 70.0C. 136.6D.25.91-4 力的可传性只适用于 A 。

A. 刚体B. 变形体1-5 加减平衡力系公理适用于 C 。

A. 刚体;B. 变形体;C. 刚体和变形体。

1-6 如图1-20所示,已知一正方体,各边长a ,沿对角线BH 作用一个力F ,则该力在x 1轴上的投影为 A 。

A. 0B. F/2C. F/6D.-F/31-7如图1-20所示,已知F=100N ,则其在三个坐标轴上的投影分别为: Fx = -402N ,Fy = 302N ,Fz = 502 N 。

图1-20 图1-21第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。

答:F/2;62F/5。

2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。

答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。

清华理论力学课后答案6

清华理论力学课后答案6
题 6-7 图 3
vE 10 = 3 = 5.77 rad/s , CE 3
r3 = r1 + 2r2 ,可得轮 1 的角速度 v r +r (顺时针) ω1 = M = 1 2 ω4 = 12ω4 , r1 r1
轮 1 的转速为 (顺时针). n1 = 12n4 = 10800 r/ min ,
kh da
习题解答
作图示几何关系,图中 v A = v ,解得
解法二:在直角三角形△ACO 中,
sin ϑ =
̇ cosϑ = − R x ̇ ϑ x2 ̇ = v, x = R sin ϑ ,解得 AB 杆的角速度为 其中, x
2 ̇ = − sin ϑ v , ϑ cos ϑ R (负号表示角速度转向与 ϑ 角增大的方向相反,即逆时针)
(d) (e) =
再选定销钉 B 为动点,摇杆为动系,如图(c) ,有
a B = aen + aet + ar + ac
由式(d),(e)得 大小: 方向: 向 BO 轴上投影 解出 ae = aBO − ac ,于是摇杆的角加速度为
τ n
a
n BO
a
n e
+
a
t e
+
a r + ac

2 RωO
O1B ⋅ ω 2 O1
其中 ae = aC′ = a A + a 大小: 方向: ? √
t c ′A

aB
=
aA

+

杆的角速度为 ω AB =
vA = 1 rad/s ,而 C 点的牵连速度为 C AB A
t a BA
+

理论力学答案完整版(清华大学出版社)10

理论力学答案完整版(清华大学出版社)10
两者总质量为 m2,对 O 轴的回转半径为 ρ 。当重物 A 下降时,滚
子 C 沿水平轨道滚动而不滑动,试求重物 A 的加速度。
解: 取整个系统为研究对象,自由度为 1。设重物速度为 vA ,则轮
题 10-9 图
的角速度 ω = vA ,轮心速度为 R−r
vO
=
R
r −
r
vA 。系统的动能为
( ) T
拉格朗日方程的普遍形式
d dt
∂L ∂q& j
− ∂L ∂q j
= Q′j
( j = 1,2,..., m)
式中 Q′j 为非有势力对应的广义力。
矢量方法
动量法:动量定理
动量矩定理 质心运动定理 定轴转动微分方程 平面运动微分方程
质点系统动力学
动静法
动能定理
能量方法
拉格朗日方程
3 保守系统拉格朗日方程的初积分
10-3 质量为 m1 的匀质杆,长为 l,一端放在水平面上, 另一端与质量为 m2、半径为 r 的匀质圆盘在圆盘中心 O 点 铰接。圆盘在地面上作纯滚动,圆心速度为 v。求系统在此
题 10-3 图
位置的动能。
解:杆作平移,动能为
T1
=
1 2
m1v2

圆盘作纯滚动,动能为
T2
=
1 2
m2v2
+
1 2
mivi
⋅ vi

其中 n 为系统中的质点数目,可以是有限或无穷,mi 和 vi 分别为各质点的质量和速度。 平
移刚体的动能 T = 1 mv2 , 2
其中 m 为平移刚体的质量。
定轴转动刚体的动能
T
=
1 2

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

清华大学理论力学习题解答67

清华大学理论力学习题解答67

[ ρ × mve ]z = mρ 2ω
x
[ ρ × mvr ]z = mv0 cosϕ ⋅ (l + r cosϕ ) + mv0 sinϕ ⋅ r sinϕ
= mv0 (l cosϕ + r)
《理论力学》习题解答
由 LO1 = LO2 得:
m(l + r)v0 = J zω + mρ 2ω + mv0 (l cosϕ + r)
《理论力学》习题解答
习题6-7
水平圆盘可绕铅垂轴z转动,如 图所示。其对z轴的转动惯量为Jz。 一质量为m的质点,在圆盘上作 匀速圆周运动,圆周半径为r, 速度为v0,圆心到盘心的距离为l。 开始运动时,质点在位置A,圆 盘角速度为零。试求圆盘角速度
ω与角ϕ间的关。轴承摩擦略
去不计。
《理论力学》习题解答

ω
=
JZ
+
mv0l(1 − cosϕ ) m(l 2 + r 2 + 2rl cosϕ )
解:取圆盘连同其上的质点作为一个系统,此系统 对于z轴动量矩守恒。
系统在初始时刻对z轴的动量矩为: Lo1 = m(l + r)v0
系统在任意时刻对z轴的动量矩为:
Lo2 = J zω + [ ρ × m(ve + vr )]z
其中:ve = ρω,vr = v0
O
vrve
ρ
m
ϕ
y
ρ = l 2 + r 2 + 2lr cosϕ

理论力学常见问题及解答

理论力学常见问题及解答

理论⼒学常见问题及解答绪论1.按照定义:“理论⼒学”是研究物体机械运动⼀般规律的科学。

定义中为何没有“⼒”?解答:定义中“机械运动⼀般规律”指物体“运动和⼒”的关系,“⼒”是隐含在定义表述中的,理论⼒学与⼒⼀定有关系。

参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995范钦珊. 《理论⼒学》,清华⼤学出版社2004关键词:理论⼒学定义,运动,⼒2.①什么是参考系?②⼒与参考系有关吗?解答:①为了表述物体的运动,必须选定⼀个坐标系,在该坐标系中,能够⽤坐标唯⼀确定物体的位置,这样的坐标系称为运动参考系。

②⼒与参考系⽆关。

参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995洪嘉振,杨长俊. 《理论⼒学》,⾼等教育出版社2008(第3版)关键词:参考系,⼒,运动第1单元:静⼒学基础1.①把⼈看作刚体,汽车中的⼈是平衡的吗?②地球同步通讯卫星是平衡的吗?解答:①如果汽车作匀速直线运动,则汽车中的⼈是平衡的;否则不是。

②同步卫星不是平衡的,因为将地球作为参考系,在该参考系中,虽然卫星不动,但地球这样的参考系不是惯性参考系。

参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版范钦珊. 《理论⼒学》,清华⼤学出版社2004洪嘉振,杨长俊. 《理论⼒学》,⾼等教育出版社2008(第3版)关键词:物体平衡,惯性参考系,⼈,汽车,同步卫星2.物体平衡与⼒系平衡完全等价吗?举例说明。

解答:物体平衡,其上作⽤的⼒系⼀定平衡;反过来,⼒系平衡,⼒学作⽤的物体不⼀定平衡,如绕对称轴匀速旋转的轮⼦,其上⼒系平衡,但物体不平衡。

参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995关键词:物体平衡,⼒系平衡,等价关系3.如何理解⼆⼒杆?解答:刚体受⼆⼒作⽤平衡,且重⼒不考虑,则该刚体是“⼆⼒杆”。

理论力学答案完整版(清华大学出版社)3

理论力学答案完整版(清华大学出版社)3
2 静定和静不定问题 未知约束力分量的数目等于独立平衡方程的数目,这类平衡问题称为静定问题; 未知约束力分量的数目大于独立平衡方程的数目,这类平衡问题称为静不定问题,两者
之差称为静不定次数。这类问题需要补充与静不定次数相同数量的变形协调方程才能求解。 未知约束力分量的数目小于独立平衡方程的数目,这类平衡问题是不存在的。 解题要领:
(2)AD 梁上,固定铰链 A 处有 2 个约束力,辊轴铰链 B、C 和 D 各有 1 个约束力, 共有 5 个约束力,这 5 个约束力组成平面一般力系,可以列出 3 个独立的平衡方程。所以, AD 梁是 2 次静不定。
(3)曲梁 AB 两端都是固定端约束,各有 3 个共 6 个约束力组成平面一般力系,而独 立的平衡方程只有 3 个。所以是 3 次静不定。
2 要区分物体维持平衡时的摩擦力与能够产生的最大静摩擦力,两者不可混淆。 3 有摩擦时的平衡问题往往还伴随物体的翻倒问题,要全面考虑,择其合理解。 4 自锁问题通常利用摩擦角概念和二力平衡条件或三力平衡汇交定理解题,具有几何直观、 概念清楚和便于理解的特点。关键是要确定临界平衡时的摩擦角。 5 滚动摩擦问题的考虑类似于滑动摩擦问题。
FA = 63.22 kN . ∑ Fy = 0, FA + FC sin 60o + FB − F1 sin 60o − F2 − q × 3 = 0 ,
FB = 88.74 kN .
题 3-3(a)图
(b)解:以 AB 以梁为研究对象,画受力图,列平衡方程
∑ Fx = 0 , FD cos 45o − FB cos 45o − F2 cos30o = 0 , ∑ mC = 0, FD sin 45o × 4 + FB sin 45o × 8 − M − F1 × 2

理论力学习题解答(第六章)

理论力学习题解答(第六章)

6-1在图示四连杆机构中,已知:匀角速度O ω,OA =B O 1=r 。

试求在°=45ϕ且AB ⊥B O 1的图示瞬时,连杆AB 的角速度AB ω及B 点的速度。

解:连杆AB 作平面运动,由基点法得BA A B v v v +=由速度合成的矢量关系,知φcos v A BA =v杆AB 的角速度)(/AB /O BA AB 2122+==ωωv (逆时针)B 点的速度2245/r cos v O A B ω=°=v (方向沿AB )6-2. 在图示四连杆机构中,已知:3.021===L B O OA m ,匀角速度2=ωrad/s 。

在图示瞬时,11==L OB m ,且杆OA 铅直、B O 1水平。

试求该瞬时杆B O 1的角速度和角加速度。

解:一.求1ω60230..OA v A =×=⋅=ω m/s取A 为基点,则有BA A B v v v += 得 23.0/6.0ctg v v A B ===ϕ m/sm09.2)3.01()3.0/6.0(sin /v v 2/122A BA =+×==ϕ杆B O 1的角速度67630211../BO /v B ===ω rad/s 顺时针 二.求1ε取点A 为基点,则有n BA A a a a a a ++=+ττBA nB B将上式向X 轴投影21222857s /m .B O /ctg v )sin AB /v (OA ctg a )sin /a (a a a sin a cos a sin a BBA n B n BA A B nBA A n B B +=⋅+⋅+⋅−=++−=−=+−ϕϕωϕϕϕϕϕττ杆B O 1的角加速度7.1923.0/8.57/11===B O a B τεrad/s 2逆时针6-3.图示机构中,已知:OA =0.1m , DE =0.1m ,m 31.0=EF ,D 距OB 线为h=0.1m ;rad 4=OA ω。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《理论力学》习题解答
习题6-10 图示重物A的质量为m,当其下降时,借无重且不可 伸长的绳使滚子C沿水平轨道纯滚动。绳子跨过定滑 轮D并绕在滑轮B上。滑轮B与滚子C固结为一体。已 知滑轮B的半径为R,滚子C的半径为r,二者总质量 为M,其对与图面垂直的轴O的回转半径为ρ 。求重 物A的加速度。
《理论力学》习题解答
a= M (r + ρ
2
ε
!o x O!
G
F
mg ( R − r )
2
2 2
) + m(R − r)
பைடு நூலகம்
N
E
T′
解:重物A作平动,滚子C作平面运动。分别取重物A 和滚子C为研究对象,列出其运动微分方程。 对重物A: ma = mg − T
!!o = T − F 对磙子C: mx M ρ ε = Fr − TR
2
T
A
W
a
!! x o = rε 磙子只滚不滑:
取O为基点,分析E点的加速度: a = − ( R − r )ε 联立求解:
相关文档
最新文档