PMSAP温度应力分析讲解
超长结构温度应力计算探讨
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
T实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m)建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
超长结构温度应力计算探讨
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
某工程的温度应力计算
一、温差效应理论1,局部温差不对整体结构产生影响,只考虑整体温差。
2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。
3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。
二、温差取值对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2:1,施工阶段最低或最高温度(T2)选取:A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。
B,对地上结构,可以认为完全暴露在室外。
可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。
2,施工阶段基准温度(T1)选取:结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。
因此后浇带浇注时的温度作为温差效应里的基准温度T1。
当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。
当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12=13.3。
因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。
只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。
探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。
PMSAP温度应力分析
�为布分度温的壳角三设。缩伸生发之使只 �曲弯生发元壳由自使不场度温种这�场 度温的)y,x(f=T�如形虑考只们我�样一 件杆同�轴z为线法�面yx为面平在所壳 角三设。明说行进例为元壳形角三以 载荷效等度温的元壳维二 •
析分力应度温PASMP
tA y f
tA x f
3
3
1
� Ad iL y ft � � iyP
析分力应度温PASMP
。楚清弄载荷效等的化变度温件构种各把要是键 关�析分的力应度温说以所�了样一全完析分 的常通与就析分的来下接�来出算计载荷效等 的化变度温的件构种各将够能果如�来看样这 • 。”载 荷效等“为称就载荷种这�样一全完响影的 力内、形变的构结对者二�载荷种一在存定一 �化变度温种一给任�说者或�响影的载荷种 某为效等将响影的力内、形变的构结对化变度 温的件构�力应度温算计法元限有用采PASMP •
析分力应度温PASMP
J
T � IT
2
� AE �
2J
N�
1J
N �
J
N
J
T � IT
2
� AE � �
2I
N�
l x� �
� J T � ) � � 1( I T � T
载荷效等 •
1I
N � IN
析分力应度温PASMP
�化变性线轴杆沿度温设 •
i
L
3
�标坐积面是 �中其 T3L � 2T 2L � 1T1L � T
) L� � L ( � L� � � T�
�为量增的度温 准基效等成算换�LΔ+L为度长际实�差误造 制为因�件杆钢的L为度长计设始初根一如比
。响影的差误配装入计应�时场度温准基定 确在则�拟模行进场差温效等用要需并�力 应配装、差误配装的著显在存中构结钢果如 •
超长结构温度应力计算探讨
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
T实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m)建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。
超长结构温度应力计算探讨精
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾等,诱因多样性使温度作用有别于其它(荷载作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT材料线膨胀系数αT(×10-6/℃轻骨料混凝土7普通混凝土10砌体6~10钢,锻铁,铸铁12不锈钢16铝,铝合金24实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m结构类型室内或土中露天排架结构装配式100 70框架结构装配式75 50 现浇式55 35剪力墙结构装配式65 40 现浇式45 30挡土墙、地下室墙壁等类结构装配式40 30 现浇式30 20建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
浅谈复杂高层结构经SATWE和PMSPA计算的运用
浅谈复杂高层结构经SATWE和PMSPA计算的运用摘要:建筑物就像一尊美丽的艺术品,精美的建筑是设计师把建筑的美观设计与结构设计相互密切配合的结果。
但要分清具体配合的侧重点,有些是着重艺术、美观要求的,有些着重使用功能、生产工艺等等。
总之,建筑师的设计可以将优美的建筑造型,完善的使用功能与结构设计有机地结合,而不能简单地追求奇特。
建筑设计重点是不能离开具体的设计对象。
关键词:复杂高层结构设计抗震一、高层建筑结构设计的意义及依据1、概念设计的意义高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。
2、概念设计的依据高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。
二、高层建筑结构设计方面的原则1、选用适当的计算简图:结构计算式在计算简图的基础上进行的,计算简图选用不当则会导致结构安全的事故常常发生,所以选择适当的计算简图是保证结构安全的重要条件。
计算简图还应有相应的构造措施来保证。
实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。
2、选择合适的基础方案:基础设计应根据工程地质条件,上部结构类型与载荷分布,相邻建筑物影响及施工条件等多种因素进行综合分析,选择经济合理的基础方案,设计时宜最大限度地发挥地基的潜力,必要时应进行地基变形验算。
基础设计应有详尽的地质勘察报告,对一些缺少地质报告的建筑应进行现场查看和参考临近建筑资料。
通常情况下,同一结构单元不宜用两种不同的类型。
3、合理选择构方案:一个合理的设计必须选择一个经济合理的结构方案,也就是要选择一个切实可行的结构形式和结构体系。
结构体系应受力明确,传力简捷。
同一结构单元不宜混用不同结构体系,地震区应力求平面和竖向规则。
总而言之,必须对工程的设计要求、材料供应、地理环境、施工条件等情况进行综合分析,并与建筑、电、水、暖等专业充分协商,在此基础上进行结构选型,确定结构方案,必要时应进行多方案比较,择优选用。
PMSAP温度应力分析共40页
PMSAP温度应力分析
• 温度应力分析是PMSAP程序的一个特色 • PMSAP具有较为完善的温度应力分析功
能,对多高层建筑中的梁、柱、支撑、 剪力墙和楼板,均可计算其温度内力及 变形,并且可以把温度内力考虑到构件 配筋设计中。
PMSAP温度应力分析
• 温度效应对结构的影响在实际工程中经常会遇 到,可以按照前面讲过的方法在结构设计中定 量考虑;
• 基准温度场在理论上是存在且唯一的
基准温度场T0(x,y,z)
• 对于混凝土结构,其基准温度场T0(x,y,z) 可以近似取为混凝土的终凝温度场。
• 对于钢结构,如果在建造期间不产生装 配应力,或者即便有装配应力但在本次 分析中不考虑,则结构建造期的温度场 即可取为基准温度场。
基准温度场T0(x,y,z)
s [1 ex 0 .p 0t) (1 ]s0
• 砼收缩的当量温差场
Ts
s
温度应力调整及组合
• 因温度应力分析采用的是瞬态弹性方法
1)为考虑砼的徐变应力松弛
砼构件的温度内力可以 乘以折减系数0.3 钢构件不折减
温度应力调整及组合
2)为考虑砼构件裂缝引起的刚度退化
砼构件的刚度可以乘以折减系数0.85 钢构件不折减
• 引发筒体和框架柱明显的弯矩和剪力
温差对结构的水平伸缩效应
强筒体之间的水平构 件,温度应力显著
温差对结构的水平伸缩效应
均匀结构平面的中部, 温度应力显著
温差对结构的水平伸缩效应
• 减小水平伸缩效应的措施 1)砼低温入模,低温养护,尽量降低砼的终凝温度 2)设置后浇带(40m左右),避开砼收缩应变的高峰发 展期,从而有效释放大部分的收缩应力(最好60d后 浇筑后浇带,不少于30d) 3)通过高湿度养护、减小水灰比和水泥用量、改善 水泥和砂石骨料的质量、适当提高配筋率,均可减小 砼的收缩应变 4)改善使用环境
超长结构温度应力的计算及控制
伊新富:现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
我谈一下对超长结构用PMSAP计算要考虑的具体问题,望各位多提意见.砼规范9.1.3-3规定:当增大伸缩缝间距时,尚应考虑温度变化和砼收缩对结构的影响。
5.3.6条文说明:温度应力分析参见《水工混凝土结构设计规范》。
其第11.3.1规定:钢筋混凝土框架计算时,应考虑框架封闭时的温度与运用期可能遇到的最高或最低多年月平均温度之间的均匀温差。
必要时,考虑结构在运用间的内外温差。
11.3.3规定:分析钢筋混凝土框架在温度作用下的内力时,杆件的刚度应取用开裂后的实际刚度。
目前,温度应力可用PMSAP计算,刚度按"王铁梦:工程结构裂缝控制"折减为0.25~0.3,但折减后对其它所有的工况都有影响,水平位移增大几倍,所以计算时直接把温差折减到0.3倍,刚度不折减,以方便和竖向,水平荷载组合;组合系数按 "樊小卿:温度作用与结构设计",取1.3(分项系数)X0.6(组合系数)。
温度应力计算1、构筑物抗震规范,钢结构设计手册(沈祖炎等编写),烟囱设计规范等都把温度荷载作为可变荷载。
2、温度荷载效应的分项系数等于1.0,组合系数取1.0。
钢筋及混凝土材料特性有所改变(常温下基本上没变);钢结构设计手册特别说明,当温度荷载与其他荷载组合时,钢材的强度设计值可提高25%。
烟囱设计规范限制混凝土最高温度不大于150度。
3、仅考虑大气温度变化的计算温度差值(摘自钢结构设计手册) 1)采暖房屋25~35度2)非采暖房屋:北方地区35~45度;中部地区25~35度;南方地区20~25度3)热加工车间约40度4)露天结构:北方地区55~60度;南方地区45~50度4、详细的温度差可参考《民用建筑热工设计规范》GB50176-93该工程是一个非常大的平面尺寸了,建议至少设后浇带三道以上才行。
1、现在的PKPM系列的PMSAP已经具备进行温度应力分析的功能。
PMSAP的详细介绍概述
6. 多边形壳元 A B C D E F
是由三角壳元构造的子结构式超单元 主要用于计算楼板、空间壳体 薄壳、中厚壳通用 适用于凹、凸单连通多边形 最多允许200条边 内部网格自动剖分,允许最小30CM的 网格尺寸,可以精细分析楼板的位移、内力 G 给出楼板配筋图及文件
对厚板转换层、板柱体系以及普通 楼板的全楼整体式分析与设计: 在PMSAP中,可以将厚板转换层结构中 的厚板、板柱体系结构中的楼板、或者 一般结构中的楼板进行全楼整体式分析 与配筋设计。楼板的计算结果同梁、柱、 墙一样是从整体分析中一次得出,严格考 虑了楼层之间、构件之间的耦合作用及 地震作用的CQC组合,精度高,更能保障 设计的安全性、合理性。该功能在同类 软件中未见到。
一、前处理---建模手段
1、 2、 3、 4、 5、 PMCAD建模 STS-1建模 SPASCAD建模 PMCAD+SPASCAD 联合建模 STS-1+SPASCAD 联合建模
6、PMSAP的补充建模
6.1 6.2 6.2 6.3 6.4 6.5 6.6 6.7 特殊构件: 铰接杆件,框支柱,转换梁,连梁 弹性楼板:弹性板6,弹性板3,弹性膜 多塔定义:平面定义,立面查看 温度荷载:指定节点温度分布 改节点高:考虑错层 改构件抗震等级 : 梁/柱/撑/墙 改构件材料属性 : 梁/柱/撑/墙 (钢/砼) 定义吊车荷载
7. 地基单元
A 温克尔模型一维线弹簧 B 温克尔模型二维面弹簧 C 分层总和模型地基单元
D 目前主要用于基坑支护结构分析 E 拟用于地基、基础和上部结构整体分析
8.罚单元
A 该类单元可使结构自由度之间满足 指定的线性约束关系。它主要用于 强制实现单元之间的连续性。 PMSAP 提供三类罚单元:一般性罚单元,梁 式罚单元,三角形壳式罚单元。
超长结构温度应力计算探讨(精)
超长结构温度应力计算探讨一、温度作用的特点:温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾等,诱因多样性使温度作用有别于其它(荷载作用。
二、温度作用的规范规定:2.1什么时候需要进行温度作用计算根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。
表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。
正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。
材料确定的情况下,长度越长,温度作用越大。
在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm;如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强度等级为C30计算的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。
表1: 常用材料的线膨胀系数αT材料线膨胀系数αT(×10-6/℃轻骨料混凝土7普通混凝土10砌体6~10钢,锻铁,铸铁12不锈钢16铝,铝合金24实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。
现行规范根据不同的结构形式给出该长度(温度区段长度经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。
表2: 钢筋混凝土结构伸缩缝最大间距(m结构类型室内或土中露天排架结构装配式100 70框架结构装配式75 50 现浇式55 35剪力墙结构装配式65 40 现浇式45 30挡土墙、地下室墙壁等类结构装配式40 30 现浇式30 20建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。
PMSAP的详细介绍
PMSAP
黄吉锋
中国建筑科学研究院PKPM CAD工程部
目录
0.概述 1.前处理---结构建模 2.力学分析 2.1) 结构形式适应性 2.2) 结构材料适应性 2.3) 有限单元库 2.4) 静力荷载分析 2.5) 固有振动分析 2.6) 地震反应谱分析 2.7) 时程分析 2.8) 非线性功能
2.9 计算模型处理
1.剪力墙网格自动细分(LXmax,LYmax) 2.楼板网格自动细分 (LXmax) 3.与楼板相邻的梁的自动细分(LXmax)
4.与剪力墙相邻的柱的自动细分(LYmax)
5.楼层间协调性自动修复,消除悬空墙、悬空柱 6.自动实现梁、楼板和剪力墙的相互协调细分
细分墙、细分楼板、细分杆件以及 考虑自动相互协调带来的具体的 计算优势
1、基于规范的计算 2、基于规范的调整 3、基于规范的荷载组合
3.1 基于规范的计算
1. 2. 3. 4. 5. 6. 7. 8. 各楼层质心、刚心和偏心率 各楼层刚度、刚度比 高位转换结构楼层刚度比 各楼层地震剪重比 各地震方向有效质量系数 地震(双向地震)位移、位移比 风位移、位移比 整体稳定验算
11 楼层最小地震剪力控制 12 梁柱墙的强柱弱梁、强剪弱弯调整 (组合内力调整) 13 高位转换(>=3)框支柱、墙底部加强区 抗震等级提高1级 14 短肢墙结构中的短肢墙抗震等级提高1级
3.3 基于规范的内力组合
考虑恒、活、风、地震、 温度、时程、人防、水土压力, 吊车等荷载
四、结构设计
4.1 混凝土构件设计 4.2 钢构件设计 4.3 组合构件设计
2.5 固有振动分析
1.侧刚分析方法 GUYAN缩减,适用于糖葫芦串结构 2.总刚分析方法 MULTI-RITZ向量法,适用于任意复杂结构
PMSAP温度应力分析
相变应力
某些材料在相变过程中会产生应力, 需要特别考虑。
解决方案
采用有限元方法(FEM)进行非线性 分析,考虑材料的热膨胀系数、相变 潜热等参数。
材料属性的不确定性
材料参数的不确定性
由于实验误差、数据来源不同等因素,材料参 数存在不确定性。
PMSAP温度应力分析
目录
• PMSAP温度应力分析概述 • PMSAP温度应力分析方法 • PMSAP温度应力分析的步骤 • PMSAP温度应力分析的挑战与解决方案 • PMSAP温度应力分析的案例研究
01
PMSAP温度应力分析概 述
定义与特点
定义
PMSAP温度应力分析是一种用于评估 材料在温度变化下所承受的应力的分 析方法。
行提供保障。
高温材料性能测试与评估
要点一
总结词
高温材料在高温环境下表现出不同的性能特性,性能测试 与评估有助于材料的优化设计。
要点二
详细描述
利用PMSAP温度应力分析,可以对高温材料的性能进行测 试与评估,研究材料在不同温度下的力学性能、物理性能 和化学性能等特性,为材料的优化设计提供依据。
THANKS FOR WATCHING
03
PMSAP温度应力分析的 步骤
建立模型
确定模型尺寸和形状
根据实际工程问题,选择合适的模型尺寸和形状,以 便准确模拟实际情况。
划分网格
将模型划分为有限个小的单元,以便进行数值计算。
确定边界条件
根据实际情况,确定模型的边界条件,如固定、自由、 受压或受拉等。
定义材料属性
确定材料种类
根据实际工程问题,选择合适的材料种类。
PMSAP温度应力分析共40页文档
• 但即便是构造上的定性的考虑,也需要设计者 对结构在温度作用下产生的变形和内力有一个 整体的、趋势上的把握,以明确结构上温度应 力集中的部位,从而有的放矢的采取措施。
2)为考虑砼构件裂缝引起的刚度退化
砼构件的刚度可以乘以折减系数0.85 钢构件不折减
温度应力调整及组合
• 温度效应的组合贡献
正常组合的附加项:
TTSTk 可以取组合值系 T 数0.8 可以取分项系T 数1.2
温度梯度
• 所谓温度梯度,指的是温度场在构件截 面方向的变化率。它在数值上等于构件 内外(对柱)或者上下(对梁、板)表 面的温差与截面高度(或厚度)的比值。
壳所在平面为xy面,法线为z轴,同杆件 一样,我们只考虑形如:T=f(x,y)的温度 场,这种温度场不使自由壳元发生弯曲, 只使之发生伸缩。设三角壳的温度分布为:
TL 1T 1L 2T 2L 3T 3
其中: 是面积坐标,
Li
PMSAP温度应力分析
• 等效荷载(等效体力部分)
Pxi AtfxLidA13fxAt
PMSAP温度应力分析
温度引起的梁、柱弯矩图
谢谢!
温差对结构的竖向错动效应
错动弯矩明显
轴力重分配明显
温差对结构的竖向错动效应
• 针对温差引起的竖向错动效应,在设计上
对于顶部几个楼层的框架梁,配筋应该适当加强;
对底部几个楼层的柱和墙,轴压比应适当从严控制, 以避免温度效应引起的轴压比超限。
可以通过对“外表构件”做好“隔热”措施,以减 小结构的外表构件温度与结构内部构件温度的差值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基准温度场T0(x,y,z)
• 对于钢-砼混合结构,钢结构部分和混凝 土结构部分的基准温度场分别按照钢结 构和混凝土结构确定。
温差场
外部
外部
内部
内部
外部
温差场
• 外围梁、柱、墙温差
T外 T内 T T0 2
温差场
• 顶层屋面梁、板温差
T外 T内 T T0 2
温差场
温度应力调整及组合
2)为考虑砼构件裂缝引起的刚度退化
砼构件的刚度可以乘以折减系数0.85 钢构件不折减
温度应力调整及组合
• 温度效应的组合贡献 正常组合的附加项:
T T ST
k
可以取组合值系数 T 0.8 可以取分项系数 T 1.2
温度梯度
• 所谓温度梯度,指的是温度场在构件截 面方向的变化率。它在数值上等于构件 内外(对柱)或者上下(对梁、板)表 面的温差与截面高度(或厚度)的比值。 • 温度梯度产生局部的附加弯矩,结构的 顶层及外周构件往往存在明显的温度梯 度。
温差对结构的水平伸缩效应
强筒体之间的水平构 件,温度应力显著
温差对结构的水平伸缩效应
均匀结构平面的中部, 温度应力显著
温差对结构的水平伸缩效应
• 减小水平伸缩效应的措施 1)砼低温入模,低温养护,尽量降低砼的终凝温度 2)设置后浇带(40m左右),避开砼收缩应变的高峰发 展期,从而有效释放大部分的收缩应力(最好60d后 浇筑后浇带,不少于30d) 3)通过高湿度养护、减小水灰比和水泥用量、改善 水泥和砂石骨料的质量、适当提高配筋率,均可减小 砼的收缩应变 4)改善使用环境
• 由于水平构件(梁、板)的伸缩受到竖向构件(柱或墙) 的约束,引发结构的水平伸缩效应。 • 哪里约束强,哪里温度应力大,这是特点,比如: 结构下部楼层的梁、板存在较大的轴拉或者轴压力,设 计时宜考虑偏拉。 距离较近的两个剪力墙筒体之间的连接构件,温度应力 显著。 对均匀的结构平面,平面中部构件的温度应力显著 • 引发筒体和框架柱明显的弯矩和剪力
结构温度效应
黄吉锋 编写 中国建筑科学研究院软件所
基准温度场T0(x,y,z)
• 基准温度场的定义: 在不考虑任何荷载的情况下,结构在某温 度场T0(x,y,z)作用下处于自平衡状态,如果结 构的当前构型与其初始设计构型完全相同(点点 重合),则称T0(x,y,z)为该结构的基准温度场。 • 结构在基准温度场作用下:1)相对于初始构 型没有任何变形;2)所有构件均不产生内力 或应力。
• 结构内部构件温差
T T内 T0
砼收缩的当量温差场
• 砼在龄期 t 的收缩应变
s [1 exp(0.01t )] s 0
• 砼收缩的当量温差场
s Ts
温度应力调整及组合
• 因温度应力分析采用的是瞬态弹性方法
1)为考虑砼的徐变应力松弛
砼构件的温度内力可以 乘以折减系数0.3 钢构件不折减
• 基准温度场在理论上是存在且唯一的
基准温度场T0(x,y,z)
• 对于混凝土结构,其基准温度场T0(x,y,z) 可以近似取为混凝土的终凝温度场。 • 对于钢结构,如果在建造期间不产生装 配应力,或者即便有装配应力但在本次 分析中不考虑,则结构建造期的温度场 即可取为基准温度场。
基准温度场T0(x,y,z)
PMSAP温度应力分析
• PMSAP采用有限元法计算温度应力,构件的温 度变化对结构的变形、内力的影响将等效为某 种荷载的影响,或者说,任给一种温度变化, 一定存在一种荷载,二者对结构的变形、内力 的影响完全一样,这种荷载就称为“等效荷 载”。 • 这样看来,如果能够将各种构件的温度变化的 等效荷载计算出来,接下来的分析就与通常的 分析完全一样了,所以说温度应力的分析,关 键是要把各种构件温度变化的等效荷载弄清楚。
PMSAP温度应力分析
• 温度应力分析是PMSAP程序的一个特色 • PMSAP具有较为完善的温度应力分析功 能,对多高层建筑中的梁、柱、支撑、 剪力墙和楼板,均可计算其温度内力及 变形,并且可以把温度内力考虑到构件 配筋设计中。
PMSAP温度应力分析
• 温度效应对结构的影响在实际工程中经常会遇 到,可以按照前面讲过的方法在结构设计中定 量考虑; • 但由于准确确定温差场的困难性,以及混凝土 实际存在的收缩徐变、微裂缝发展等复杂情况, 很多时候通过在构造上采取措施,来避免温度 应力的不利影响。 • 但即便是构造上的定性的考虑,也需要设计者 对结构在温度作用下产生的变形和内力有一个 整体的、趋势上的把握,以明确结构上温度应 力集中的部位,从而有的放矢的采取措施。
• 如果钢结构中存在显著的装配误差、装配应 力,并需要用等效温差场进行模拟,则在确 定基准温度场时,应计入装配误差的影响。 比如一根初始设计长度为L的钢杆件,因为制 造误差,实际长度为L+ΔL,换算成等效基准 温度的增量为:
L T ( L L)
或者说,为考虑此装配应力,基准温度还应 叠加上该温度增量 T
温差对结构的竖向错动效应
• 内外构件的温差不一致,造成结构的竖 向错动变形 • 一般顶部的若干层连接内筒与边柱的框 架梁,会产生较大的错动弯矩和剪力 • 底部若干层竖向构件(柱和墙)的轴力 会出现明显的重分配(有的构件轴压比 增大,有的构件轴压比减小)
温差对结构的竖向错动效应
错动弯矩明显
轴力重分配明显
温ቤተ መጻሕፍቲ ባይዱ对结构的竖向错动效应
• 针对温差引起的竖向错动效应,在设计上 对于顶部几个楼层的框架梁,配筋应该适当加强; 对底部几个楼层的柱和墙,轴压比应适当从严控制, 以避免温度效应引起的轴压比超限。 可以通过对“外表构件”做好“隔热”措施,以减 小结构的外表构件温度与结构内部构件温度的差值。
温差对结构的水平伸缩效应
PMSAP温度应力分析
• 温度应力的计算一般包括两个方面:
(1)按照热传导理论,根据弹性体的 热学性质、内部热源、边界条件、初始 条件,计算弹性体内各点在各瞬时的温 度,也即:决定温度场。在PMSAP中, 我们不考虑这个问题,温度场需要由用 户定义。
PMSAP温度应力分析
• (2)温度场知道以后,按照热弹性力 学的理论,根据各物质点的温度变化求 解其温度应力,也即:决定应力场,这 是PMSAP要着重解决的问题。