填料塔的操作
填料塔操作线方程
填料塔操作线方程填料塔是一种常见的工业设备,用于将散状物料以分层的方式填充到容器或装置中。
在填料塔的操作过程中,我们需要掌握填料塔操作线的方程,以确保填料过程的顺利进行。
接下来,让我们详细介绍一下填料塔操作线方程的相关内容。
填料塔操作线方程是用来描述填料塔中物料分布的数学方程。
它可以用来计算填料塔的填料高度、填料床厚度等参数,从而提供实际操作时的参考依据。
在填料塔操作线方程中,常用的一个模型是经验方程。
这种模型基于实际工业应用经验,通过对实验数据的拟合,得到了比较准确的结果。
经验方程的形式可以表示为:h = a * (1 - exp(-b * L))其中,h表示填料高度,L表示填料塔的位置,a和b是经验系数,根据具体填料塔的设计和物料的性质确定。
填料高度h是一个重要的参数,它直接影响到填料塔的工艺效果。
在填料操作过程中,我们需要根据填料塔的设计要求和物料的性质,确定合适的填料高度。
填料高度过高或过低都会对填料塔的操作产生不良影响,导致填料均匀性差、物料堆积等问题的出现。
填料床厚度也是填料塔操作的一个重要参数。
它表示填料层的厚度,对填料塔的流动性能和传质效果有着直接影响。
填料床厚度的选取应该结合填料的性质和操作条件进行综合考虑,以保证填料塔的高效运行。
在实际填料塔操作中,我们需要根据填料塔的设计规格和物料性质确定经验系数a和b的数值。
这需要依靠大量的实验和数据分析工作,并结合相关的理论知识进行综合判断。
通过不断的实践和总结,我们可以逐步优化填料塔操作线方程,提高填料塔的工艺效果和经济效益。
除了填料塔操作线方程,我们还需要注意填料塔操作过程中的一些技巧和注意事项。
首先,我们需要保持填料塔的运行状态稳定,避免出现塌塞、物料流动不畅等问题。
其次,要定期检查填料塔的密封性能,确保操作环境清洁和物料回收的有效性。
此外,还要根据实际情况调整填料塔的操作参数,如进料流量、分层速度等,以确保填料过程的顺利进行。
综上所述,填料塔操作线方程是填料塔操作的重要工具。
现代填料塔技术指南上册pdf(3篇)
第1篇第一章引言填料塔作为一种重要的化工设备,广泛应用于化工、石油、医药、食品等行业。
随着工业技术的不断发展,填料塔的设计、制造和使用技术也在不断进步。
本指南旨在为从事填料塔相关工作的技术人员提供一份全面、实用的技术参考。
第二章填料塔的基本原理2.1 填料塔的工作原理填料塔是一种利用填料层提高气液两相接触面积,从而实现传质、传热等过程的设备。
其主要工作原理如下:1. 气体从塔顶进入,通过填料层向下流动,与液体进行逆流接触。
2. 在填料层中,气液两相发生充分混合,使气体中的组分在液体中被吸收或液体中的组分在气体中被分离。
3. 处理后的气体从塔底排出,液体则从塔顶排出。
2.2 填料塔的类型根据填料的形状、排列方式和塔的结构,填料塔可分为以下几种类型:1. 按填料形状分类:环形填料、鞍形填料、球形填料等。
2. 按填料排列方式分类:散装填料、固定填料、网格填料等。
3. 按塔的结构分类:填料塔、固定床塔、流化床塔等。
第三章填料的选择与设计3.1 填料的选择选择合适的填料是填料塔设计的关键。
选择填料时,应考虑以下因素:1. 填料的比表面积:比表面积越大,气液两相接触面积越大,传质效率越高。
2. 填料的流体力学特性:填料的流体力学特性包括填料的空隙率、阻力系数等,应选择阻力系数小、空隙率大的填料。
3. 填料的化学稳定性:填料应具有良好的化学稳定性,不与处理物料发生反应。
4. 填料的机械强度:填料应具有足够的机械强度,能够承受操作过程中的压力和冲击。
3.2 填料塔的设计填料塔的设计主要包括以下步骤:1. 确定塔径:根据处理量、塔内气液两相流速等参数,确定塔径。
2. 确定填料层高度:根据处理量、填料的比表面积、塔内气液两相流速等参数,确定填料层高度。
3. 确定塔内气液两相流速:根据处理量、塔径、填料层高度等参数,确定塔内气液两相流速。
4. 确定塔内液面高度:根据处理量、塔内气液两相流速、填料层高度等参数,确定塔内液面高度。
化工单元操作:填料塔填料类型
填料塔
常用的填料
2. 鲍尔环
结构:在环的侧壁上开一层或两层长方形小孔,小孔的母 材并不脱离侧壁而是形成向内弯的叶片。上下两层长方形 小孔位置交错。
与拉西环相比: 同尺寸的鲍尔环与拉西环虽有相同的比表面积和空
优点:空隙率高,气体阻力小,液体分布性能较好,填 料性能优于拉西环。
缺点:相邻填料易相互套叠,使填料有效表面降低,从而影 响传质速率。并且强度较差,容易破碎。
矩鞍填料的两端为矩形,且填料两面大小不等。克服了弧 鞍填料相互重叠的缺点,填料的均匀性得到改善。液体分 布均匀,气液传质速率得到提高。瓷矩鞍填料是目前采用 最多的一种瓷质填料。
隙率,但鲍尔环在其侧壁上的小孔可供气液流通,使环 的内壁面得以充分利用。
比之拉西环,鲍尔环不仅具有较大的生产能力和较 低的压降,且分离效率较高,沟流现象也大大降低。
鲍尔环填料的优良性能使它一直为工业所重视,应用 十分广泛。可由陶瓷、金属或塑料制成。
填料塔
常用的填料
3. 阶梯环
结构:阶梯环填料的结构与鲍尔环填料相似,环壁上开有 长方形小孔,环内有两层交错 45°的十字形叶片,环的 高度为直径的一半,环的一端成喇叭口形状的翻边。
填料塔
常用的填料
5.金属英特洛克斯(Intalox)填料
有环形与鞍形的结构特点,生产能力大、压降低、液体分 布性能好、传质速率.网体填料
与实体填料对应的另一类填料为网体填料。 有多种形式,如金属丝网制成的网环和鞍型网等。
优点:网丝细密,空隙很高,比表面积很大。由于毛细管作 用,填料表面润湿性能很好。故网体填料气体阻力小,传质 速率高。
化工原理第五章(填料塔)
2013-7-14
(3)填料因子 【定义】比表面积a与空隙率所组成的复合量a/3。 ①干填料因子 填料未被液体润湿时的a/3称为干填 料因子,它反映了填料的几何特性; ②湿填料因子 填料被液体润湿后,填料表面覆盖了 一层液膜,空隙率变小,此时的a/ 3称为湿填料因 子,用φ表示。其单位为1/m。 湿填料因子反映了填料的流体力学性能,空隙率
2013-7-14
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量、 填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
料表面及其缝隙中。
【定义】单位体积填料层内所积存的液体体积,以
(m3液体)/(m3填料)表示。
2013-7-14
6、填料的性能评价 【评价依据】填料性能的优劣通常根据效率、通量 及压降三要素衡量。 (1)效率要高。在相同的操作条件下,填料的比表 面积越大,气液分布越均匀,表面的润湿性能越好 ,则传质效率越高; (2)通量(处理量)要大,压降要小。填料的空隙 率越大,结构越开敞,则通量越大,压降亦越低。
(3)极大的增大了气液两相的传质速率。
【波纹填料的材料】碳钢、不锈钢、铝、陶瓷、玻
璃钢及纸浸树脂等。
2013-7-14
【波纹填料的优点】波纹填料与板式塔、散堆填料 相比,具有以下优异的性能: (1)流通量大。新塔设计可缩小直径,老塔改造可 大幅度增加处理量; (2)分离效率高,较散堆填料有大得多的比表面积;
)更加连续,可使气体向上流动时主要沿弧形通道
流动。
【性能特点】空隙率大,压降和传质单元高度低,
泛点高、汽液接触充分、比重小、传质效率高、通
填料吸收塔的操作和吸收系数的测定
(4)标准状态下氨气的体积流量V0NH3
V0 NH 3
VNH3
T0 p0
0空 p2 p1 0NH3 T2 T1
(5)
式中,V0NH3 为转子流量计的指示值,m3/h;T0,、p0 为标准状态下空气的温度和压强,273K、
101.33kPa;T1、p1 为标准状态下空气的温度和压强,273K、101.33kPa;T2、p2 为操作状态
V0
V空
T0 p0
p1 p2 T1T2
(4)
式中,V0 空为标准状态下空气的体积流量,m3/h;V 空为转子流量计的指示值,m3/h;T0,、 p0 为标准状态下空气的温度和压强,273K、101.33kPa;T1、p1 为标准状态下空气的温度和 压强,273K、101.33kPa;T2、p2 为操作状态下温度和压强,K、Pa。
2.主要设备及尺寸 (1)填料塔
填料吸收塔仿真实验界面
-4-
有机玻璃塔内径:D=120mm;填料层高度:Z=800mm~900mm;填料:不锈钢θ网环 及陶瓷拉西环;规格:Φ8,Φ10,Φ15。
(2)DC—4 型微音气泵一台。 (3)LZB40 气体流量计,流量范围 0~60m3/h,数量一个;LZB15 气体流量计,流量 范围 0~2.5m3/h,数量一个;LZB15 气体流量计,流量范围 0~160m3/h,数量一个。 (4)LML—2 型湿式气体流量计,容量 5L,数量一台。 (5)水银温度计,规格 0~100℃,数量三只。
nNH3 2 MH2SO4 VH2SO4 103
(7)
式中, M H2SO4 为硫酸的摩尔浓度,mol/L;VH2SO4 为硫酸溶液体积,mL。
-2-
n空
(V空
填料塔塔设备的操作与维护:填料的安装
填料塔塔设备的操作与维护:填料的安装(1)填料安装前的处理新填料表面有一薄油层,这油层可能是金属填料在加工过程中采用润滑油润滑而形成的;也可能是为了避免碳钢填料在运输和储存过程中被腐蚀而加的防锈油。
这层油的存在对于某些物系是绝对不允许的,例如空分系统中,油层洗涤下来后与液氧共存,可引起爆炸。
对于水溶液物系,这层油可妨碍液膜的形成,对于某些碱性物系还可引起溶液发泡,因此应弄清该油的物性,在开车之前将其除掉。
碳钢填料应储存在干燥封闭处,不应提前除油,以防锈蚀。
新陶瓷填料和重新填充的陶瓷填料应将其中的碎片筛掉,有时需用手工逐个除去,散装陶瓷填料在运输过程中难免有破碎,大块的碎填料仍可利用,其通量有所下降,压降有所升高,但分离效率不会下降。
(2)散装填料的安装陶瓷填料和非碳钢金属填料,若条件允许,应采用湿法填充。
采用湿法填充,安装支持板后,往塔内充水,将填料从水面上方轻轻倒入水中填料从水中漂浮下落水面要高出填料Im以上。
湿法填充可减少填料破损、变形。
湿法填充还增加了散装填料的均匀性,填料用量减少约5%,填料通量增大,压力降减小。
采用干法填充填料应始终从离填料层一定高度倒入,对于大直径塔采用干法填充,有时需人站在填料层上填充。
应需注意人不可直接站在填料上,以防填料受压变形及密度不均,可在填料上铺设木板使受力分散。
无论采用湿法填充还是采用干法填充,都应由塔壁向中心填充,以防填料在塔壁处架桥,填料不应压迫到位,以防变形密度不均。
各段填料安装完毕应检查上端填料是否推平,若有高低不平现象,应将其推平。
(3)规整填料的安装对于直径小于800mm的小塔,规整填料通常做成整圆盘由法兰孔装入。
对于直径大于800mm的塔,规整填料通常分成若干块,由人孔装入塔内,在塔内组圆,无论整圆还是分块组圆,其直径都要小于塔径,否则无法装入。
填料与塔壁之间的间隙,应根据采用的防壁流圈形式而定,各填料生产厂家通常有自己的标准。
通常为防止由于填料与塔壁间隙而产生气液壁流,在此间隙加防壁流圈。
填料塔检维修安全操作规程
填料塔检维修安全操作规程为保障操作人员和设备的安全,提高填料塔的正常运行效率,特制定本检维修安全操作规程,供操作人员参考。
填料塔检修前准备1.确认填料塔的使用情况,安全状况。
2.停机后,关闭填料塔上方防风罩门,清除塔下面的杂物。
3.断开电源,卸下旋盖。
填料塔检修操作流程1.封闭夹板:–关闭填料塔进出口的门,确定进出口的连接夹板无松动、无泄漏。
–清理进出口附近环境,以便工作人员操作。
2.处理填料层:–移除填料塔内部陈旧的填料,清理塔内。
–清洗每层铝合金内衬板、桥肋和风扇叶片。
–清理每一层填料下方蜗壳污垢和回水分配器,保证回流管道畅通。
3.安装填料:–将新的填料拼接成一层,放置在原有的内衬板上。
–确认填料上重量分布匀称,无碎屑,无沉积物,各种填料之间无间隙。
再按规定覆盖铝合金内衬板。
4.确认填料塔正常:–将旋盖安装牢固。
–连接回流管道,并进行检测确认连接无泄漏。
–打开填料塔进出口的门,确认与连接夹板无松动、无泄漏。
填料塔维修安全操作规程1.填料塔定期检修:–进行定期检查,清理和更换填料,保证操作性能正常。
2.紧急情况下的维修:–检查登高架、防滑设施以及安全绳等安全措施是否妥善。
–使用专业的工具和设备,如防滑绳、安全带等。
3.立即安全退出:–当出现设备问题及突发事件时,操作人员应自觉退出填料塔内部。
–紧急时,应立即脱离填料塔,即使生命的安全十分重要,不能风险过大。
确保安全的应急措施1.紧急情况下:–填料塔操作人员需及时下塔,避开相应区域。
–填料塔操作人员在下塔时,要注意避开一定的范围,以免在操作设备时发生危险。
2.紧急设备停止运行:–紧急设备停止运行时,应立即通知相关工作人员,并关闭进出口门,以确保人员安全。
3.组织应急物资:–为了防止意外事故发生时,处理及应急动员应具备一定的应急物资,如应急救援工具、生活物资、安全防护器具等。
填料塔检维修操作应按照上述步骤顺序操作,操作人员必须接受相关的专业培训,并应注重安全措施,确保人身安全。
填料塔的操作规程
填料塔的操作规程填料塔是化工装置中常见的设备之一,用于对气体和液体进行分离、纯化和反应。
操作填料塔时需要遵守一定的规程,以确保操作的安全性和有效性。
以下是填料塔的操作规程。
一、操作前准备工作1.进行安全检查,确保所有仪表、阀门和设备都处于正常工作状态,防止发生泄漏、堵塞等问题。
2.检查填料塔外部和内部的清洁情况,及时清除杂物和沉积物,并保证填料的完整和清洁。
3.检查填料塔的进料管道和排气管道的连接情况,确保不会发生漏气或泄漏。
4.对于需要进行热交换的填料塔,检查加热、冷却介质的供给情况,确保其正常运行。
二、操作步骤1.开启填料塔顶部的进料阀门,将进料引入填料塔。
在此过程中,应注意进料流量的控制,确保不会发生过载或过剩。
2.检查填料塔底部的液位,确保液位高度在正常范围内,避免发生溢流或枯塔现象。
3.若需调节填料塔内的温度,根据具体情况打开或关闭加热、冷却介质的阀门,实现温度的控制和调整。
4.监测填料塔内的压力情况,确保压力在安全范围内,若超过范围应及时采取措施进行调整。
5.定期检查填料塔中填料的状态和清洁情况,如发现需要更换或清洗的情况,及时进行维修和保养。
6.在操作完成后,逐步关闭填料塔底部的出料阀门,以避免因液位突降而导致的液体喷溅或其他安全事故。
7.关闭填料塔顶部的进料阀门,停止进料并确保压力和温度处于安全状态。
8.对填料塔进行定期的维护和保养,清除堵塞、更换老化或损坏的部件,确保其正常运行。
三、安全注意事项1.在操作填料塔过程中,必须严格遵守工艺和操作规程,不得擅自调整参数或操作程序。
2.在操作过程中应随时注意填料塔内的压力和温度变化,并保持必要的监测和记录。
3.若发现填料塔内的液位异常变化、骤升或骤降,应及时采取措施,以避免液体溢流或塔干现象。
4.在操作填料塔时,应严格遵守防火、防爆和防静电的相关安全规定,避免因为火花或静电引起的火灾或爆炸事故。
5.对于有毒、易燃、易爆、腐蚀性物质的填料塔,操作人员必须佩戴防护装备,确保人身安全。
填料塔吸收操作及体积吸收系数的测定
填料塔吸收操作及体积吸收系数的测定课程名称:过程⼯程原理实验(甲)指导⽼师:成绩:实验名称:填料塔吸收操作及体积吸收系数的测定实验类型:同组学⽣姓名:⼀、实验⽬的和要求(必填)⼆、实验内容和原理(必填)三、主要仪器设备(必填)四、操作⽅法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、⼼得⼀、实验⽬的1. 了解填料吸收塔的构造并熟悉吸收塔的操作。
2. 观察填料吸收塔的液泛显现,测定泛点空塔⽓速。
3. 测定填料层压降ΔP与空塔⽓速u的关系曲线。
4. 测定含氨空⽓—⽔系统的体积吸收系数K Yα。
⼆、实验装置1.本实验装置的流程⽰意图见图1。
主体设备是内径70毫⽶的吸收塔,塔内装10×9×1陶瓷拉西环填料。
2.物系是(⽔—空⽓—氨⽓)。
惰性⽓体空⽓由旋涡⽓泵提供,氨⽓由液氨钢瓶供应,吸收剂⽔采⽤⾃来⽔,它们的流量分别通过转⼦流量计测量。
⽔从塔顶喷淋⾄填料层与⾃下⽽上的含氨空⽓进⾏吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样⼝,经吸收后的尾⽓由塔顶排⾄室外,⾃塔顶引出适量尾⽓,⽤化学分析法对其进⾏组成分析。
图1 填料塔吸收操作及体积吸收系数测定实验装置流程⽰意图三、基本原理(⼀)填料层压⼒降ΔP 与空塔⽓速u 的关系⽓体通过⼲填料层时(喷淋密度L =0),其压⼒降ΔP 与空塔⽓速u 的关系曲线呈直线,此直线斜率约为1.8,与⽓体以湍流⽅式通过管道时ΔP 与u 的关系相仿。
若有液体喷淋下来,当⽓速在载点L 点以下时,在⼀定喷淋密度下,由于持液量增加⽽使空隙率减⼩,使得填料层的压降随之增加,⼜由于此时⽓体对液膜的流动⽆明显影响,在⼀定喷淋密度下,持液量不随⽓速变化,故其ΔP ~u 关系与⼲填料相仿。
在⼀定喷淋密度下,⽓速增⼤⾄⼀定程度时,随⽓速增⼤,液膜增厚,即出现“拦液状态”,此时⽓体通过填料层的流动阻⼒剧增,此点称为“载点”;若⽓速继续加⼤,喷淋液的下流严重受阻,使积聚的液体从填料表⾯扩展到整个填料层空间,谓之“液泛状态”,此时⽓体的流动阻⼒急剧增加,此点即为泛点,与之相对应的⽓速称为泛点⽓速。
填料塔填料装填方案
填料塔填料装填方案填料塔是化工工艺中常用的设备,在精馏、吸收和萃取等过程中起到分相和传质的作用。
填料塔的填料选择和装填方案对于设备的运行效果和产品质量有着重要的影响。
下面是对填料塔填料选择和装填方案的详细介绍。
一、填料选择选择填料时需要考虑以下几个因素:传质效果、容积利用率、压降和耐腐蚀性。
1.传质效果:填料的传质效果直接影响到设备的分离效果。
通常选择表面积大、润湿性好的填料,如波纹板、骨状填料、环状填料等。
2.容积利用率:填料塔的容积利用率直接影响设备的经济性。
选择体积小、表面积大的填料可以提高容积利用率,如启擎环、泡泡板等。
3.压降:填料的压降越小,塔的运行能耗越低。
选择压降小的填料可以提高设备的经济性。
4.耐腐蚀性:填料需要具有一定的耐腐蚀性,以保证长期运行的稳定性。
根据具体的工作介质选择耐腐蚀性好的填料材料,如不锈钢、塑料等。
填料的装填方案一般有水平装填和垂直装填两种。
1.水平装填:水平装填适用于较小的填料塔,装填工艺相对简单。
具体操作步骤如下:(1)将填料按照设定的装填高度放置在填料托盘上。
(2)保持填料的平整度和紧密度,防止填料间产生空隙。
(3)在填料顶部设置平行的固定托板,以稳定填料并减少液相折射。
2.垂直装填:垂直装填适用于大型填料塔,装填工艺相对复杂。
具体操作步骤如下:(1)利用起重机将填料箱升入填料口,并将填料整齐的倒入填料塔中。
(2)使用振动器震动填料塔,以达到填料均匀分布的目的。
(3)对填料进行压实,采用专用的填料压实器将填料压实,使得填料间没有空隙。
(4)最后,在填料顶部设置平行的固定托板,以稳定填料并减少液相折射。
三、装填要点无论是水平装填还是垂直装填,都需要注意以下几个要点:1.填料的平整度和紧密度:填料的平整度和紧密度影响塔的运行和传质效果。
需要通过技术措施保持填料的平整度和紧密度,防止填料间产生空隙。
2.压实填料:对填料进行适当的压实,可以减少填料塔的压降和液相折射。
实验2填料吸收塔单元操作实验
实验2填料吸收塔单元操作实验一、实验目的1.熟悉填料塔吸收装置的基本结构及操作流程;2.掌握总体积传质系数的测定方法,了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;3.了解填料塔的流体力学性能;4.了解气相色谱仪和六通阀在线检测CO 2浓度的测量方法。
二、实验内容及基本原理(一)实验内容由自来水源来的水送入填料塔塔顶经喷头喷淋在填料顶层。
由风机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体混合罐,然后再进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。
本实验完成内容:1.了解填料层压强降与操作气速的关系,观察填料塔在某液体喷淋量下的液泛气速。
2.采用水吸收二氧化碳,空气解吸水中二氧化碳,测定填料塔的液侧传质膜系数和总传质系数。
(二)实验原理气体吸收是典型的传质过程之一。
由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。
本实验采用水吸收空气中的CO 2组分。
一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理。
本实验主要测定K X a 和H OL 。
1.计算公式填料层高度Z 为OL OL N H Z ⋅= (2-1)OL OL N Z H =(2-2) Ω=OL X H L a K (2-3) 令:吸收因数A =L /mG])1ln[(111121A mx y mx y A A N OL +----= (2-4) 式中:Z ——填料层高度,m ;L ——水的摩尔流量,kmol / h ;K X a ——以△X 为推动力的液相总体积传质系数,kmol / (m 3·h);H OL ——液相总传质单元高度,m ;N OL ——液相总传质单元数,无因次;Ω ——塔截面积,m 2;G ——气体摩尔流量流量,kmol / h 。
填料吸收塔的操作及其Kya的测定(教案)
实验七填料吸收塔的操作及其Kya的测定一、实验目的1、了解填料吸收塔的结构和流程;2、了解吸收剂进口条件变化对吸收操作结果的影响;3、掌握吸收传质系数的测定方法。
二、实验任务1、固定气相流量,在不同液相流量下,测定气体进出口浓度y1和y2,计算组分回收率、传质推动力和传质系数。
2、固定液相流量,在不同气相流量下,测定气体进出口浓度y1和y2,计算组分回收率、传质推动力和传质系数。
3、固定液相流量和气相流量,在不同进水温度下,测定气体进出口浓度y1和y2,计算组分回收率、传质推动力和传质系数。
三、实验原理吸收是分离混合气体时利用混合气体中某组分在吸收剂中的溶解度的不同而达到分离的一种方法。
不同的组分在不同的吸收剂,不同的吸收温度,不同的液气比,不同的吸收剂进口浓度,吸收速率是不同的。
所选用的吸收剂对某组分具有选择性吸收。
吸收操作的目标函数为y2,设备和操作是其主要影响因素。
1、设备因素(1)填料塔的结构典型的填料塔结构为塔体是一圆形筒体,筒体内分层安放一定高度的填料层,填料层底端由搁栅支撑,液体分布器和液体再分布器将吸收剂均匀地分散至整个塔截面的填料上。
液体靠重力自上而下流动,气体靠压差自下而上流动,填料的表面覆盖着一层液膜,气液传质发生再气液接触界面上。
(2)填料的作用a、增加气液接触面积应满足:1) 80%以上的填料润湿。
2) 液体为分散相,气体为连续相.(反之为鼓泡塔,失去填料的作用)。
b、增加气液接触面的湍动应满足:1) 保证气液逆流。
2) 要有适宜的液气比,若气速过大,液体下降速度为零,即发生液泛。
填料塔的操作满足了上述要求,填料才会起作用。
(3)液体分布器的作用克服液体向壁偏流现象,为此,每隔一定高度的填料层,要装有液体再分布器。
使填料均匀润湿,从而增加气液接触面积。
2、操作因素(1)当L/G 》m 时需降低吸收剂进口浓度(2)当L/G《 m 时需适当增加吸收剂流量(3)遇上强放热吸收需采用中间冷却装置3、吸收总传质系数的测定传质速率式: N A =K y a ·V 填·△Y m (1) 物料恒算式: G 空(Y 1-Y 2)=L(X 1-X 2) (2) 相平衡式: Y=mX (3)(1)和(2)式联立得: YmY Y V G a K y ∆-=21填空 (4) ●注意:空气流量计需校正,其校正公式为:G 空—装有测空气的流量计; V 填—与塔结构和填料层高度有关;其中:2211ln )()(2211mX Y mX Y m mX Y mX Y Y -----=∆ L —装有测吸收剂的流量计;m---在吸收剂进塔与出塔处装有测液体的温度计,吸收温度 t=(t 进+t 出)/2四、实验装置和流程PT T P G G N NN N f f N N =≈--=ρρρρρρρρ)()(五、实验步骤1、检查丙酮汽化器中是否需要补充丙酮;2、打开吸收剂计量流量计至刻度为2L/h。
填料塔安全操作及保养规程
填料塔安全操作及保养规程填料塔是一种常用的化工设备,其主要功能是用于吸收、脱除或分离气体中的某些成分,并且在其内壁上铺设了填料,用于增加接触面积,提高气体和液体的接触效率。
在使用填料塔的过程中,安全操作和保养是非常关键的,本文将介绍填料塔的安全操作和保养规程。
一、填料塔的安全操作规程1. 填料塔的安装在填料塔的安装过程中,需要注意以下事项:1.安装场地应具备良好的通风条件。
2.填料塔的基础应为坚固耐用的混凝土基础,最小厚度不得少于300mm。
3.填料塔吊装时,应结合工程实际情况选用专业吊装设备,并由专业人员现场指挥操作。
2. 填料塔的操作在填料塔的操作过程中,需要注意以下事项:1.遵守操作规程,按照要求正确操作填料塔。
2.禁止操作人员随意擅自改变操作参数,严禁私自更改设备。
3.若在操作过程中出现异常情况,操作人员应及时停机检查,并做好相应记录。
4.常态运行需要经常巡检设备状态,及时发现问题,并进行处理。
3. 填料塔的维护填料塔的维护需要注意以下事项:1.定期对填料塔进行检查,发现问题及时修复。
2.清洗填料塔时需要关闭进出口阀门,严禁使用带有酸碱的介质进行清洗。
3.在对填料塔进行检修和清洗时,必须止池、排液和通风,并做好相应防护措施。
二、填料塔的保养规程1. 填料塔的日常保养填料塔日常保养需要注意以下事项:1.定期检查填料的状态,如发现变形或损坏的填料,及时更换。
2.检查整个填料塔系统,及时发现和处理泄漏和松动现象。
2. 填料塔的定期保养填料塔的定期保养需要注意以下事项:1.定期对填料塔进行清理,及时进行污垢和沉积物的处理与清理。
2.定期更换填料,周期视塔设计、运行参数以及使用情况而定。
3.填料塔运行时间超过规定周期即需更换填料。
三、填料塔的安全预警为了保障填料塔的安全,工作人员需要时刻关注填料塔的运行和使用,及时发现安全隐患,进行预警和应急措施。
以下是填料塔安全预警的一些常见措施:1.随时关注和记录填料塔的运行参数,及时发现异常。
填料塔的原理及结构,一看就懂!
填料塔的原理及结构,一看就懂!填料塔(Packing Column)是塔设备的一种。
塔内填充适当高度的填料,以增加两种流体间的接触表面。
例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。
气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。
结构较简单,检修较方便。
广泛应用于气体吸收、蒸馏、萃取等操作。
1填料塔的结构◆填料层:提供气液接触的场所。
◆液体分布器:均匀分布液体,以避免发生沟流现象。
◆液体再分布器:避免壁流现象发生。
◆支撑板:支撑填料层,使气体均匀分布。
◆除沫器:防止塔顶气体出口处夹带液体。
气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
2填料塔的附件填料塔的附件有填料支撑装置、液体分布装置、液体再分布器、除沫装置、填料压紧装置这五种。
⑴填料支撑装置主要用途是支撑塔内的填料,同时又能保证气液两相顺利通过。
若设计不当,填料塔的液泛可能首先在填料支撑装置上发生。
对填料支撑装置的要求:◆对于普通填料,支撑装置的自由截面积应不低于全塔面积的50%,并且要大于填料层的自由截面积;◆具有足够的机械强度、刚度;◆结构要合理,利于气液两相均匀分布,阻力小,便于拆装。
⑵液体分布装置液体在填料塔内均匀分布,可以增大填料的润湿表面积。
以提高分离效率,因此液体的初始分布十分重要。
常用的液体分布装置有:莲蓬式、盘式、齿槽式及多孔环管式分布器等。
液体分布器的性能主要由分布器的布液点密度(即单位面积上的布液点数),各布液点均匀性,各布液点上液相组成的均匀性决定,设计液体分布器主要是决定这些参数的结构尺寸。
对液体分布器的选型和设计,一般要求:液体分布要均匀;自由截面率要大;操作弹性大;不易堵塞,不易引起雾沫夹带及起泡等;可用多种材料制作,且操作安装方便,容易调整水平。
洗涤塔跟填料塔操作流程
洗涤塔跟填料塔操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!洗涤塔与填料塔的操作流程详解在化学工程和环境工程中,洗涤塔和填料塔是两种常见的气液接触设备,主要用于去除气体中的有害物质或进行气体的冷却、吸收等过程。
填料塔反应器的操作与控制—填料塔反应器的操作与控制
填料塔工艺设计与选型
• 二、填料塔工艺设计及选型 • 3、操作温度及压力 • 由吸收过程的气液平衡关系可知,温度降低可增加溶质组分的溶解度,
即低温有利于吸收。 • 由吸收过程的气液平衡关系可知,压力的升高可增加溶质组分的溶解
一、填料塔结构 5、液体再分布装置
填料塔工艺设计与选型
一、填料塔结构 5、除沫装置
填料塔工艺设计与选型
• 二、填料塔工艺设计及选型 • 1、填料塔装置流程 • 装置的流程主要有:逆流操作、并流操作、吸收剂部分再循环操作、
多塔串联操作、串联—并联混合操作。 • 2、液相的选择(吸收剂的选择) • 吸收过程是依靠气体溶质在吸收剂中的溶解度来实现的,因此,吸收
度,即加压有利于吸收。
填料塔工艺设计与选型
• 二、填料塔工艺设计及选型 • 4、填实塔计算 • 填料塔工艺尺寸的计算包括塔径的计算,填料层的高度计算及分段等。 • (1)塔径 • 填料塔的直径D与空塔气速u及气体体积流量Vs之间的关系也可用圆
管内流量公式表示,即
D 4VS
u
填料塔工艺设计与选型
和碎屑 • (4)水洗 在接触塔升压前,用脱盐水洗涤接触塔和预饱和罐。运行
洗涤水流量控制器、液位控制器和压差记录。建立预饱和罐液位并用 洗涤水泵循环洗涤水。 • (5)碱洗 在大约70℃温度下,用4.5% • (6)加入碳酸盐 加入一定量的碳酸钾制成30%(质量分数)的碳酸 盐溶液 • (7)通过碳酸盐系统的循环气体干运转
与气体流量的关系; • 7. 列出实验结果与计算示例。
细认真,这是做好本试验的关键。
填料塔CO2吸收的操作与控制
填料塔工艺流程
填料塔工艺流程填料塔是一种用于气体或液体分离、净化和传质的设备。
它通常由填料层、进料口、出料口、塔板(或隔板)、塔壁和塔顶组成。
填料塔工艺流程是指在填料塔中进行物质传递和分离的一系列步骤和操作。
本文将详细介绍填料塔工艺流程的各个环节。
1. 进料准备。
填料塔的工艺流程首先需要进行进料准备。
这包括对待处理物料的预处理和准备工作。
例如,对于气体进料,需要进行除尘、除湿等预处理工作;对于液体进料,可能需要进行预热、预处理等操作。
进料准备的目的是为了提高填料塔的处理效率和降低能耗。
2. 进料与填料接触。
进料与填料的接触是填料塔工艺流程中的关键步骤。
在填料塔中,填料通常是一种具有大表面积和良好传质性能的材料,例如环形填料、球形填料、网状填料等。
进料与填料的接触可以通过喷淋、滴流、喷洒等方式进行,以实现物质的传递和分离。
3. 物质传递与分离。
在填料塔中,物质传递与分离是通过填料层的间隙和塔板(或隔板)上的孔隙来实现的。
当进料与填料接触后,物质会在填料层和塔板(或隔板)上进行传递和分离。
例如,气体在填料层中通过与液体的接触来进行传质,而液体则通过塔板(或隔板)上的孔隙进行分离。
物质传递与分离的效率取决于填料的选择、填料层的设计和塔板(或隔板)的布置。
4. 出料处理。
填料塔工艺流程中的最后一个环节是出料处理。
在填料塔中,处理后的物料需要经过出料口排出。
对于气体进料,可能需要进行除湿、除尘等处理;对于液体进料,可能需要进行冷却、脱水等操作。
出料处理的目的是为了使处理后的物料达到规定的质量标准,并且符合环保要求。
综上所述,填料塔工艺流程包括进料准备、进料与填料接触、物质传递与分离以及出料处理等环节。
通过合理的工艺流程设计和操作,可以实现填料塔的高效运行和物质的有效分离与传递。
填料塔在化工、环保等领域有着广泛的应用,对于提高生产效率和保护环境具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填料塔的操作是从物料平衡、热量平衡、相平衡及填料塔性能等几个方面考虑,通过控制系统建立并调节塔的操作条件,使填料塔满足分离要求。
控制系统可采用手动、一般自动化仪表或智能计算机操作。
(一)、控制参数I图中表示了塔操作控制的典型参数,其中6个流量参数:进料量、塔顶和塔釜产品流量、冷凝量、蒸发量和回流量。
除流量参数外,还有压力、塔釜液位、回流罐液位、塔顶产品组成和塔釜产品组成等参数。
精馏塔常用控制参数压力和液位控制是为了建立塔稳态操作条件,液位恒定阻止了液体累积,压力恒定阻止了气体累积。
对于一个连续系统,若不阻止累积就不可能取得稳态操作,也就不可能稳定。
压力是精馏操作的主要控制参数,压力除影响气体累积外,还影响冷凝、蒸发、温度、组成、相对挥发度等塔内发生的几乎所有过程。
产品组成控制可以直接使用产品组成测定值, 也可以采用代表产品组成的物性,如密度、蒸气压等。
最常用的是采用灵敏点温度。
(二)、填料塔操作瓶颈及解决方法任何一个设计都不可能把装置中的每个设备及每个设备中的每个部分设计在同一最大负荷百分数下操作,而许多工厂则希望采取各种手段使装置生产能力达到最大,这就使装置中的至少一个部分成为操作瓶颈,填料塔操作中,填料塔的任一部分、塔顶冷凝器、塔釜再沸器等都可能成为操作瓶颈,这里所指的瓶颈是指装置已达到设计负荷需进一步提高分离效率和生产能力,而装置中的某一设备或某一设备的某一部分限制了生产能力和分离效率的提高。
1、填料塔为操作瓶颈填料塔在设计气液负荷范围内操作可取得所需的分离效率,超过此负荷范围,会导致分离效率下降、压降升高泛塔等现象,多数情况下填料塔操作提高处理能力和分离效率的瓶颈是填料塔本身。
(1)填料塔处理能力的提高①增、降压操作若设备及工艺条件允许,适当增、降塔压是提高填料塔处理能力的最好办法。
在常压附近,提高压力可使处理量提高,低压、相对挥发度高及相对挥发度随压力变化不大时,增压操作对处理量提高最大。
压力较高,有时降低压力可提高处理能力,在高压、相对挥发度低及相对挥发度随压力升高而降低很大的场合,降压操作处理量提高较大。
②进料的预热填料塔进料以上填料段和进料以下填料段通常并不是在同一泛点百分数下操作,普通精馏通常为泡点进料,若将进料预热或预冷,可以使塔的上下段负荷发生变化,若进料段以下为操作瓶颈,热进料可降低塔釜热负荷和下段气液相负荷,代价为上段气液相负荷有所增加。
相反,若上段为瓶颈,冷进料降低了上段的气液相负荷,代价是下段填料负荷有所增加。
这种方法提高幅度通常较小,但对进料以下气液比很大的场合,这种方法调节幅度较大, 这时对塔的效率影响也大。
过热进料影响上段的分离效率,过冷进料影响下段的分离效率,一般认为过冷进料对塔本身的分离效率影响不大,只有一块理论板,但对高效填料塔影响会超过此值,对于液气比很高的场合影响也会超过此值。
过冷进料提高进料以上段的处理能力是以降低进料以下段的分离效率为代价的。
液相过热进料对塔体本身的分离效率影响很小,气相过热进料降低了进料以上段的分离效率。
③增加操作的稳定性填料塔阻力小,持液量低,耐波动性能差。
填料塔在接近上限负荷操作,很小的波动就会使。
塔超过负荷上限,效率下降,一旦效率下降,很难恢复,特别是理论级数多的塔,平衡时间很长,为了能够使填料塔在上限操作,稳定操作,减少外界条件变化至关重要,好的控制系统起很大作用,增强填料塔的操作稳定性,一般可提高5%~10%的处理能力。
④降低回收率提高生产能力的另一办法是降低回流比,使回收率下降,这种方法虽不提倡,但工厂在生产能力受限制时或多或少的不自觉地采用了。
回收率降到某一数值后,继续降低收率提高处理能力,不再经济。
因为收率再降低,产品的生产能力也不再提高。
采取以上措施应注意各液体分布器的操作弹性。
(2)填料塔分离效率的提高工厂经常会提出提高分离效率,以提高产品质量和收率的要求。
与提高处理能力类似,可采用以下方法。
①增加回流一个塔的分离效率一定,若不在最大负荷下操作,提高分离效率的最简单方法是增大回流比。
②增、降压操作前已叙述,一般物系压力上升,相对挥发度减小,降压操作可增大物系的相对挥发度,因此若填料塔不在最大负荷下操作,可适当降压操作,提高分离效率;若填料塔已在最大负荷下操作,可适当增压并增加回流比操作。
③进料的预冷、预热为了提高塔上段的分离效率,可采用预冷进料;相反,为了提高塔下段的分离效率可采用预热进料。
④增强塔操作的稳定性增强塔操作的稳定性同样可以提高塔的分离效率,如图2所示,产品中杂质含量低意味着需要较高的分离效率,稳定操作时需要的分离级数较少。
从能耗角度看,稳定操作能耗最少。
⑤降低收率减小产品采出量,使产品质量提高,但收率降低。
操作稳定性对产品质量的影响2、塔顶冷凝器为操作瓶颈塔顶冷凝器在操作后期经常会成为操作瓶颈,可采用以下措施:(1)提高操作压力。
压力升高塔顶温度提高,换热温差加大。
(2)降低进料温度。
进料温度降低,进料以下内回流加大,从而减少上升蒸气量,减少塔顶热负荷。
3、塔釜再沸器为操作瓶颈;塔釜再沸器为操作瓶颈可采取以下措施解决:(1)降低操作压力。
压力降低,塔釜温度降低,换热温差加大,加热量增加。
(2)提高进料温度。
进料温度提高,减少进料以下的内回流,从而减少了所需加热量。
五、填料塔常见故障诊断与处理填料塔达不到设计指标统称为故障。
填料塔的故障可由一个因素引起,也可能同时由多个因素引起,一旦出现故障,工厂总是希望尽快找出故障原因,以最少的费用尽快解决问题。
故障诊断者应对塔及其附属设备的设计及有关方面的知识有很深的了解,了解得越多,故障诊断越容易。
故障诊断应从最简单最明显处着手,可遵循以下步骤:若故障严重,涉及安全、环保或不能维持生产,应立即停车,分析、处理故障。
若故障不严重,应在尽量减少对安全、环境及利润损害的前提下继续运行。
在运行过程中取得数据及一些特征现象,在不影响生产的前提下,做一些操作变动,以取得更多的数据和特征现象。
如有可能还可进行全回流操作,为故障分析提供分析数据。
分析塔过去的操作数据,或与同类装置相比较,从中找出相同与不同点。
若塔操作由好变坏,找出变化时间及变化前后的差异,从而找出原因。
l 故障诊断不要只限于塔本身,塔的上游装置及附属设备,如泵、换热器以及管道等都应在分析范畴内。
l 仪表读数及分析数据错误可能导致塔的不良操作。
每当故障出现,首先对仪表读数及分析数据进行交*分析,特别要进行物料平衡,热量平衡及相平衡分析,以确定其准确性。
l 有些故障是由于设计不当引起的。
对设计引起故障的检查应首先检查图纸,看是否有明显失误之处,分析此失误是否为发生故障的原因;其次,要进行流体力学核算,核算某处是否有超过上限操作的情况;此外,还需对实际操作传质进行模拟计算,检查实际传质效率的高低。
精馏操作基本知识1、何为相和相平衡:答:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。
系统中相数的多少与物质的数量无关。
如水和冰混合在一起,水为液相,冰为固相。
一般情况下,物料在精馏塔内是气、液两相。
在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。
平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。
比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。
塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。
但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。
2、何为饱和蒸汽压?答:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。
众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。
如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。
但是,当温度一定时,气相压力最中将稳定在一个固定的数值上,这时的压力称为水在该温度下的饱和蒸汽压。
应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值是,液相的水分子仍然不断地气化,气相中的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,气体和液体达到平衡状态。
所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。
3、何为精馏,精馏的原理是什么?答:把液体混合物进行多次部分汽化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏。
为什么把液体混合物进行多次部分汽化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。
这就改变了气液两相的组成。
当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。
这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。
如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分。
由此可见,多次部分汽化和多次部分冷凝同时进行,就可以将混合物分离为纯或比较纯的组分。
液体气化要吸收热量,气体冷凝要放出热量。
为了合理的利用热量,我们可以把气体冷凝时放出的热量供给液体气化时使用,也就是使气液两相直接接触,在传热同时进行传质。
为了满足这一要求,在实践中,这种多次部分汽化伴随多次部分冷凝的过程是逆流作用的板式设备中进行的。
所谓逆流,就是因液体受热而产生的温度较高的气体,自下而上地同塔顶因冷凝而产生的温度较低的回流液体(富含低沸点组分)作逆向流动。
塔内所发生的传热传质过程如下1)气液两相进行热的交换,利用部分汽化所得气体混合物中的热来加热部分冷凝所得的液体混合物;2)气液两相在热交换的同时进行质的交换。
温度较低的液体混合物被温度较高的气体混合物加热二部分汽化。
此时,因挥发能力的差异(低沸点物挥发能力强,高沸点物挥发能力差),低沸点物比高沸点物挥发多,结果表现为低沸点组分从液相转为气相,气相中易挥发组分增浓;同理,温度较高的气相混合物,因加热了温度较低的液体混合物,而使自己部分冷凝,同样因为挥发能力的差异,使高沸点组分从气相转为液相,液相中难挥发组分增浓。