线性代数解法与技巧窍门

合集下载

经济数学·线性代数:解题方法技巧归纳

经济数学·线性代数:解题方法技巧归纳

经济数学·线性代数:解题方法技巧归纳
常见的解题方法技巧:
1.高斯消元法:用于解决线性方程组的方法,通过
消去未知数的系数,使方程组的每一行的未知数
只有一个。

2.高斯-约旦消元法:用于解决线性方程组的方法,
通过消去未知数的系数,使方程组的每一行的未
知数只有一个,并通过交换方程的顺序来解决无
解或多解的情况。

3.矩阵消元法:用于解决线性方程组的方法,将方
程组写成矩阵形式,通过消去未知数的系数,使
矩阵的每一行的未知数只有一个。

4.高斯-约旦分解法:用于解决线性方程组的方法,
通过将方程组写成两个矩阵的乘积的形式。

5.广义逆矩阵法:用于解决线性方程组的方法,通
过求出矩阵的广义逆(也叫做伪逆),将方程组写
成矩阵的形式,求解未知数的值。

6.矩阵的特征值与特征向量:用于解决矩阵的本征
值问题的方法,通过求解矩阵的特征方程,求得
矩阵的特征值与特征向量,并利用它们来求解其
他问题。

7.奇异值分解:用于解决矩阵的奇异值分解问题的
方法,将矩阵分解为三个矩阵的乘积的形式,并利用它们来求解其他问题。

8.广义逆矩阵的求法:用于求解矩阵的广义逆(也叫做伪逆)的方法,包括计算机辅助的方法和数学计算的方法。

了解高中数学中的线性代数问题的解题技巧

了解高中数学中的线性代数问题的解题技巧

了解高中数学中的线性代数问题的解题技巧线性代数是数学的一个分支,广泛应用于科学、工程和经济等领域。

在高中数学中,线性代数也是一门重要的课程,通过学习线性代数,不仅可以提高学生的数学思维能力,还可以帮助他们解决实际问题。

本文将介绍高中数学中线性代数问题的解题技巧,包括向量、矩阵和线性方程组的解法等。

一、向量的基本概念和运算向量是线性代数中的重要概念,它可以表示大小和方向。

在解决向量问题时,首先要了解向量的基本概念,包括向量的表示方法、向量的模长和方向角等。

其次,需要熟练掌握向量的运算法则,如向量的加法、减法、数量乘法和内积等。

通过灵活运用这些运算法则,可以简化向量计算过程,提高解题效率。

二、矩阵的基本概念和运算矩阵是线性代数中另一个重要的概念,它可以用来表示一组数。

在解决矩阵问题时,首先要了解矩阵的基本概念,包括矩阵的行、列、秩和转置等。

其次,需要掌握矩阵的运算法则,如矩阵的加法、减法、数量乘法和乘法等。

同时,矩阵的逆矩阵和行列式等相关概念和运算也是解决矩阵问题的关键。

掌握了这些基本概念和运算法则,可以更好地理解和解决与矩阵相关的数学问题。

三、线性方程组的解法线性方程组是线性代数中的重要问题之一,它可以用来描述多个线性方程的关系。

在解决线性方程组时,可以采用消元法、矩阵方法和向量方法等不同的解题技巧。

消元法是线性方程组解法中最常用的方法,将线性方程组转化为行阶梯形式,然后逐步消去未知数,得到解的过程。

矩阵方法通过将线性方程组转化为矩阵的形式,然后通过行初等变换或矩阵的逆矩阵等方法求解。

向量方法通过将线性方程组表示为向量的形式,通过向量之间的线性组合求解。

在解决线性方程组问题时,根据具体情况选择合适的解题方法,可以提高解题效率。

四、矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,它们对于理解矩阵的本质和性质有着重要的作用。

矩阵的特征值表示矩阵在某个方向上的伸缩因子,特征向量表示在相应特征值方向上的向量。

线性代数求解方法和技巧

线性代数求解方法和技巧

线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。

在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。

首先,我们讨论线性方程组的求解方法。

线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。

对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。

它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。

在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。

2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。

具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。

3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。

接着,我们可以通过LU分解来求解线性方程组Ax=b。

具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。

除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。

对于齐次线性方程组,其解空间是一个向量空间。

我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。

2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。

对于奇异线性方程组,其解可能不存在,或者存在无穷多解。

我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。

另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。

线性代数规范型求解题技巧

线性代数规范型求解题技巧

线性代数规范型求解题技巧线性代数中,规范型求解题是一类非常常见和重要的问题。

规范型表示方程组具有特定形式的线性方程组。

下面将介绍一些求解规范型问题的基本技巧。

1. 基础技巧首先,我们需要将规范型方程组写成矩阵形式Ax=b 的形式。

A是一个m×n的矩阵,x是一个n维列向量,b 是一个m维列向量。

2. 求逆矩阵法如果矩阵A可逆,那么可以直接通过求逆矩阵的方法求解方程组。

具体地,我们可以通过x=A^(-1)b来求解x。

然而,这种方法只适用于方程的个数小于变量的个数的情况。

3. 列主元消元法如果矩阵A不可逆,我们可以通过列主元消元法来求解方程组。

这种方法首先将矩阵A转化为上三角矩阵,然后再通过回代的方式求解方程组。

具体步骤如下:1) 选择矩阵A的第一列的主元素,如果该主元素不为0,则进行下一步;否则,选择下一列为主元素。

2) 将主元行与第一行进行交换,使主元素移到第一行。

3) 通过消元操作,将第一列的其他元素消为0。

4) 将第一行移到第一列的位置,继续处理下一列。

5) 重复步骤1-4,直到矩阵A变成上三角矩阵。

6) 通过回代的方式求解方程组。

4. 高斯-约旦消元法高斯-约旦消元法是另一种求解规范型方程组的方法,它将矩阵A转化为简化行阶梯型形式。

具体步骤如下:1) 对矩阵A进行行初等变换,将其转化为上三角矩阵。

2) 对上三角矩阵进行回代,得到方程组的解。

5. LU分解法如果矩阵A可以进行LU分解,那么可以通过LU分解的方法求解方程组。

这里L是一个m×m的下三角矩阵,U是一个m×n的上三角矩阵。

具体步骤如下:1) 将矩阵A进行LU分解,得到LU=A。

2) 令y=Ux,将原方程组转化为Ly=b。

3) 通过回代的方式,求解Ly=b得到y。

4) 再通过回代的方式,求解Ux=y得到x。

6. 奇异值分解法如果矩阵A奇异值分解为A=UDV^T,那么可以通过奇异值分解的方法求解方程组。

其中,U是一个m×m的正交矩阵,D是一个m×n的对角矩阵,V是一个n×n 的正交矩阵。

线代矩阵求解题技巧

线代矩阵求解题技巧

线代矩阵求解题技巧线性代数是数学中的一个重要分支,广泛应用于科学和工程学科中。

矩阵求解是线性代数中的一个基本概念,它是解线性方程组、求特征值和特征向量等问题的重要工具。

下面将介绍一些线性代数矩阵求解的基本技巧。

1. 高斯消元法高斯消元法是求解线性方程组的常用方法之一。

该方法的基本思想是通过矩阵变换将线性方程组化为上三角形方程组或者行最简形式,从而得到方程组的解。

高斯消元法具体步骤如下:(1)将线性方程组写成增广矩阵的形式;(2)选取一个主元(通常选取主对角线上的元素),并通过一个变换将该元素下面的所有元素置零;(3)对主元元素下面的行执行类似的操作,直到所有元素都变为零或者上三角矩阵形式;(4)回代求解未知数。

2. LU分解LU分解是将一个矩阵分解为下三角矩阵L和上三角矩阵U的乘积的方法。

这个方法通常用于解决多次使用相同矩阵求解线性方程组的场景。

LU分解的具体步骤如下:(1)设一个n阶方阵A,将其分解为A=LU;(2)通过高斯消元法将A化为上三角矩阵U;(3)构造下三角矩阵L,使得A=LU成立。

3. 矩阵的逆和伴随矩阵对于一个可逆矩阵A,可以通过求解逆矩阵来求解线性方程组。

设A为n阶可逆方阵,若存在一个n阶矩阵B,满足AB=BA=I,那么B称为A的逆矩阵,记作A^(-1)。

逆矩阵可以通过伴随矩阵来求解。

对于n阶矩阵A,它的伴随矩阵记作adj(A),它的定义为adj(A)=det(A)·A^(-1),其中det(A)是A的行列式。

逆矩阵的求解可以通过以下步骤:(1)求解矩阵A的行列式det(A);(2)求解矩阵A的伴随矩阵adj(A);(3)求解矩阵A的逆矩阵A^(-1),即A^(-1)=adj(A)/det(A)。

4. 特征值和特征向量特征值和特征向量在矩阵求解中起着重要作用。

设A 是一个n阶方阵,若存在一个非零向量X,满足AX=kX,其中k为常数,则k为A的一个特征值,X为对应的特征向量。

07线性代数方程组的解法

07线性代数方程组的解法

总计∑ n (k2k) n(n21)
k1
3
除法
n1
k

n(n1)
k1
2
回 代 总 计 算 量 n(n1) 2
总 乘 除 法 共 n 3 3 n 2 1 3 n (n 3 0 ,为 9 8 9 0 )
21
三、Gauss消去法的矩阵表示
每一步消去过程相当于左乘初等变换矩阵Lk
a x a x a x a b 得

(1)


解 (1)


程 (1)A(3组 )x=b(1() 3)
(1)
11 1
12 2
13 3
1n
1

a x a x (2) (2)
22 2
23 3
a x(3) 33 3
a b (2) (2)
2n
2
a b (3) (3)


11 1
12 2
1n n
1

b x 22 2
b2nxn g 2

称 消 元 过 程 。 逐 次 计 算 b出 nn x xn n, x gn 1 n,, x 1 称 回 代 过 1程 0 。
一、Gauss 消去法计算过程
a a b b 统一记 → 号 (1) : , →(1)
(2) ,
2
(3)
(2)
2
1

0
1
L m 0 2
32
1

0 mn2 0


m a a
(2) (2)

i2
i2
22
i 3,4, ,n

常见的线性代数求解方法

常见的线性代数求解方法

常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。

它通过将
方程组转化为上三角矩阵的形式来求解。

这个方法的关键在于选取
主元的策略。

一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。

2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。

它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。

这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。

3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。

这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。

4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。

它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。

5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。

它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。

这个方法通常比Jacobi迭代法收敛得更快。

以上是一些常见的线性代数求解方法。

每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。

《线性代数》学习方法

《线性代数》学习方法

《线性代数》学习方法1.建立数学基础:学习线性代数需要一定的数学基础,尤其是对于矩阵、向量和方程组等概念的理解。

在开始学习线性代数之前,建议先复习一下高中阶段的数学知识,包括数学函数、集合论、代数和几何等内容。

2.理论与实践结合:线性代数是一门理论与实践相结合的学科,理论与实践相互促进。

在学习理论知识的同时,要注重实际应用。

通过解决一些实际问题,可以更好地理解和掌握线性代数的概念和方法。

3.多做练习题:做练习题是学习线性代数的重要途径。

通过练习题,可以巩固理论知识,培养解决问题的能力。

建议在学习过程中,多做一些练习题,并及时总结和反思自己的解题方法和思路。

4.注重证明和推导:线性代数中的很多定理和公式都是通过严格的证明和推导得到的。

在学习线性代数的过程中,要注重理解和掌握定理的证明过程。

通过证明和推导,可以更深入地理解定理的内涵和应用。

5.学会画图:线性代数中的很多概念和方法都可以通过图形来表示和解释。

学会画图可以帮助我们更直观地理解和掌握线性代数的内容。

在学习过程中,可以多画一些示意图和图形,帮助自己形象地理解和记忆线性代数的概念和方法。

6.多与他人交流:线性代数是一门需要思考和交流的学科。

在学习过程中,可以多与同学和老师进行讨论和交流,分享自己的思考和理解。

通过交流,可以互相学习和启发,提高学习效果。

7.参考优质教材和资源:选择一本优质的线性代数教材对于学习的效果非常重要。

可以参考一些经典的线性代数教材,如《线性代数及其应用》和《线性代数引论》等。

同时,还可以利用互联网上的优质资源,如在线课程和视频教程等,丰富学习的内容。

8.培养数学思维:线性代数是一门抽象的学科,需要培养抽象思维和逻辑思维能力。

在学习过程中,要注重思考和理解概念和定理的内涵,培养自己的数学思维能力。

9.持之以恒:学习线性代数需要一定的时间和精力,不能急于求成。

要持之以恒,坚持每天学习一定的时间,不断积累和提高。

总之,学习线性代数需要一定的数学基础和学习方法。

行列式的计算技巧窍门情况总结

行列式的计算技巧窍门情况总结

行列式的计算技巧窍门情况总结行列式是线性代数中重要的概念之一,它在解决线性方程组、矩阵的逆等问题中起着关键作用。

本文将总结行列式的计算技巧和窍门,帮助读者更好地掌握行列式的计算方法。

1.定义行列式是一个方阵所对应的一个标量值。

对于一个n阶方阵A,它的行列式记作det(A),A,或者D(A)。

对于2阶和3阶方阵,行列式的计算较为简单,可以直接应用定义进行计算。

例如对于2阶方阵A:abcd对于3阶方阵A:abcdefghidet(A) = aei + bfg + cdh - ceg - bdi - afh。

2.初等变换法初等变换法是一种常用的计算行列式的方法。

初等变换指的是对行列式的行(或列)进行以下操作:①互换两行(列);②其中一行(列)与其它行(列)相加(或相减,可取加减系数为1和-1);③其中一行(列)乘以一个非零常数。

这些操作不改变行列式的值。

通过使用初等变换,可以将行列式转化为更简单的形式,从而更容易计算。

例如,在计算3阶行列式时,我们可以使用初等变换将行列式化为上三角形式,这样计算起来会更加简便。

3.拆分法则行列式有一个重要的性质,即它是线性的。

也就是说,如果将一个方阵的其中一行(列)按一定的方式进行拆分并相加(或相减),则行列式的值不变。

这个性质对于简化行列式的计算非常有帮助。

例如,在计算3阶行列式时,可以选择将第一列按照一定方式进行拆分,然后相加或相减。

这样可以将行列式化简为两个2阶行列式的形式,从而更容易计算。

4.分块矩阵法对于大规模的方阵,计算行列式将变得较为复杂。

分块矩阵法是一种较为高效的计算行列式的方法。

分块矩阵法的基本思想是将一个大的方阵分割为若干个小的方阵,并利用分块矩阵的性质进行计算。

这样可以将复杂的计算问题化简为对小方阵的计算问题,从而降低了计算的难度和复杂度。

5.逆序数法逆序数法是一种计算行列式的方法,它利用了逆序数和奇偶性的关系。

逆序数是指在一个排列中,逆序对的个数。

线性方程组的解法

线性方程组的解法

线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。

在本文中,我们将介绍几种解决线性方程组问题的方法。

我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。

一、初等变换初等变换往往是解决线性方程组问题的起点。

我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。

2.将某个方程的倍数加到另一个方程上。

3.用一个非零常数来乘某个方程。

执行初等变换时,我们必须记住每个变换对解x的影响。

在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。

用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。

二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。

该方法通过使用矩阵增广形式来解决线性方程组问题。

具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。

2. 使用初等变换来将增广矩阵化为行梯阵形式。

行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。

3. 从最后一行开始,使用回带算法来求得线性方程组的解。

高斯消元法对于小规模的线性方程组可以轻松解决。

但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。

三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。

该方法的关键在于将解决方案表示为每个未知数的一个比值。

这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。

这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。

但是,如果有许多未知数,计算每个比率可能会非常繁琐。

另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。

四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。

线性代数学习方法

线性代数学习方法

线性代数学习方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!线性代数学习方法线性代数学习方法分享线性代数是数学中一门非常重要的学科,被广泛应用于各个领域,包括自然科学、工程、计算机科学、经济学等等。

线性代数攻略

线性代数攻略

7
a11 x1 + a12 x 2 + a 21 x1 + a 22 x 2 + a n1 x1 + a n 2 x 2 +
+ a 1,2 n x 2 n = 0 + a 2 ,2 n x 2 n = 0 + a n ,2 n x 2 n = 0








( b1 1 , b1 2 ,
6
A*A=|A|E, 从 而 A=|A|(A*)1 .|A|n=|A||A*|=8|A|, n=4, |A|=2. 所以 B=3(A-E)-1A=6[A*(A-E)]-1=6 (2E-A*)-1.
1 0 2 E − A* = 因为 −1 0
1 0 −1 (2 E − A*) = 1 0
10
−1 0 1 0 c + c 通解为 1 0 2 1 . 1 0
为任意常数.
注意事项:尽可能避免使用参数的倒数 作因子,以防漏解。万不得已时,应先讨 论可能使分母为 0 的情况。 例 10 设四元线性齐次方程组(I)为
x1 + x 2 = 0 x2 − x4 = 0
又 已 知 某 线 性 齐 次 方 程 组 (II) 的 通 解 为
k1 (0,1,1, 0) '+ k 2 ( −1, 2, 2,1) ' .
的通解,并说明理由. 解 求线性方程组的通解的前提是知道 系数矩阵的秩 ,未知数的个数:方程组 (I)与 (II)均有 2n 个未知数;由已知条件(I)的一 个基础解系含有 n 个解向量,从而其系数 矩阵 r(A)=的秩为 2n-n=n. 显而易见,方程 组(I)与(II)有某种密切的联系,为了看清楚 这种联系 , 最好的办法是采用矩阵形式 : 将 方 程 组 (I) 与 (II) 分 别 改 写 为 矩 阵 形 式 可 得:Ax=0 与(II)Bx=0.由于 B 的行向量组是

线性代数之行列式问题求解方法总结

线性代数之行列式问题求解方法总结

线性代数之行列式问题求解方法总结
在考研数学中,行列式是线性代数中最基本的知识点,也是线性代数必考知识点之一,是历年线性代数中非常基础和重要的知识点,是各位考生比较容易出错的一个知识点。

考研数学线性代数对行列式的的要求,不仅要会计算行列式,更要能够快速高效解决行列式的计算。

下面我总结了一些计算行列式的解法,希望对正在备考2020年考研和即将备考同学们有些帮助。

计算行列式的方法主要有:
(1)三角法:
一个行列式通过各种变换化简成上(下)三角,然后通过对角线相乘,得到行列式的值。

(2)利用行列式的性质
(3)加边法:
(4)把行列式各列各行都加到某一列或某一行:
只要行列式各行或各列加和相等,就可以把行列式各列各行都加到某一列或某一行,然后利用行列式的性质化简该行列式
(5)利用范德蒙行列式
(6)利用递推法
(7)按行列式的某行或某列展开
几个重要结论:
(1)主(次)对角行列式
题型一:利用行列式的性质
例1:
解:
题型二:把行列式各列各行都加到某一列或某一行例2:
解:。

线性代数解题技巧及典型题解析01-求解线性方程组_16

线性代数解题技巧及典型题解析01-求解线性方程组_16

解 方程组中未知量个数 n 3,又方程组 AX 0 有惟一零解,
所以 r ( A) n,故 r ( A) 3.
例3 设 n 元非齐次线性方程组 AX b 有解,其中 A 为(n 1) n 矩阵,求|A|.
解 因为 AX b 有解,故 r ( A ) r ( A) n n 1,从而 | A | 0.
求axb的通解特殊方程组的求解与方程组的基本理论有关的问题含参数的方程组与向量组的线性表示有关的问题与方程组有关的证明题1写出系数矩阵a并对其作初等行变换化为行最简形式同时得到ra这样也就可以确定基础解系所含解向量的个数
线性方程组的主要内容——求解线性方程组
1. 求 AX=O 的通解或基础解系 2. 求 AX=b 的通解 特殊方程组的求解 与方程组的基本理论有关的问题 含参数的方程组
1 (1, 2,1, 0)T , 2 (1, 1, 0,1)T .
方程组的通解为 * k11 k22 , k1 , k2 为任意常数.
1. 在求解线性方程组时,一定要将系数矩阵或增广矩阵化为行最 简形式,这样有利于求解. 2. 若根据同解方程组(1)式写导出组的基础解系一定不要将常 数加进去.因此一般建议写出导出组的同解方程组(2)求基础解 系.
a=0
1 2 1 2 设A 0 1 t t , 且方程组 AX 0 的基础解系含有两个解向量, 求 AX 0 的通解. 1 t 0 1
1 1 a 1 设A 1 a 1 , 1 ,若线性程组AX 有解但不唯一. a 1 1 2 求:(1)a的值; (2)方程组AX 的通解.
A (n+1)a n .
特殊方程组的求解最重要的是分析出其解的结构来!

线性代数---特殊行列式与行列式计算方法总结

线性代数---特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结一、 几类特殊行列式1. 上(下)三角行列式、对角行列式(教材P7例5、例6)2. 以副对角线为标准的行列式11112112,1221222,11,21,11,112,1(1)212,1100000000000000000(1)n n n n nn n n n n n nnn n n n n nnn n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===- 3. 分块行列式(教材P14例10)一般化结果:00n n m n n m n m m n m m nmA C A AB BC B ⨯⨯⨯⨯==⋅0(1)0n m n n m nmn n m mm nmm nA C A AB BC B ⨯⨯⨯⨯==-⋅4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】1) 利用行列式定义直接计算特殊行列式;2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算;4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题)0001000200019990002000000002001D=分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。

解法一:定义法(1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-=解法二:行列式性质法利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。

线性代数解题方法和技巧

线性代数解题方法和技巧

第一部分 行列式一、行列式的概念(1) 二阶与三阶行列式的对角线法则 (2) n 阶行列式的定义(3) 余子式、代数余子式的定义【测试题】四阶行列式中含有1123a a 的项是__________二、数字型行列式的计算计算数字型行列式的常见思路有:(1) 如果在行列式的某一行(列)中,零的个数比较多,可按该行(列)展开;(2) 利用行列式的性质,将行列式某行(列)中尽可能多的元素化为零,然后再按该行(列)展开(课本P.18例7的第二种解法);(3) 三角形法:利用行列式的性质,将给定的行列式化为上(下)三角形行列式(课本P.12例7、例8、例9);(4) 递推法或数学归纳法(课本P.15例11,P.18例12); (5) 利用范德蒙行列式;(6) 利用拉普拉斯定理(同济第五版的线性代数没有介绍该定理,不作为期末考试要求). 【测试题】1.计算下列各行列式(k D 为k 阶行列式): (1) 11n aD a=O,其中对角线上的元素都是a ,未写出的元素都是0;(2) n x a aa x aD a a x=L L M M M L ;(3) 1111(1)()(1)()1111nn n n n n n a a a n a a a n D a a a n −−−+−−−−=−−LL M M M L L;(4) 11211nnn nna b a b D c d c d =ONNO,其中未写出的元素都是0.2.设3521110513132413D −−=−−−−,D 的(,)i j 元的余子式和代数余子式依次记作ij M 和ij A ,求11121314A A A A +++及11213141M M M M +++.3.四阶行列式1122433440000000a b a b D b a b a =的值等于__________(A) 12341234a a a a b b b b −;(B) 12341234a a a a b b b b +;(C) 12123434()()a a b b a a b b −−; (D) 23231414()()a a b b a a b b −−.三、抽象型行列式的计算 【测试题】1.设12312,,,,αααββ均为4维列向量,且已知4阶行列式1231,,,m αααβ=,1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=__________(A) m n +; (B) ()m n −+; (C) n m −; (D) m n −.2.若1112132122233132331a a a D a a a a a a ==,则1111121312121222331313233423423423a a a a D a a a a a a a a −=−=−__________ 3.设A 为3阶矩阵,12A =,求:(1) 1*(2)3A A −−;(2) *1(3)2A A −−. 4.设A 为n 阶(实)矩阵,且满足Tn A A E =.如果0A <,求行列式A E +的值. 5.设4阶矩阵A 与B 相似,A 的特征值为1111,,,2345,求行列式1B E −−的值.四、行列式等于零的判定设A 为n 阶方阵,则与“0A =”等价的说法有: (1) A 是奇异矩阵;(2) A 是降秩矩阵,即()R A n <; (3) n 元齐次线性方程组0Ax =有非零解;(4) A 的列(行)向量组中至少存在一个列(行)向量可以由其余1n −个列(行)向量线性表示;(5) A 的列(行)向量组线性相关; (6) A 至少有一个特征值等于零. 【测试题】1.设A 为n 阶矩阵,且0A =,则下列各选项中正确的是__________ (A) A 中必有一列(行)的元素全等于零; (B) A 中必有两列(行)的元素对应成比例;(C) A 的列(行)向量组中必有一个列(行)向量可以由其余的列(行)向量线性表示; (D) A 的列(行)向量组中任意一个列(行)向量都可以由其余的列(行)向量线性表示.2.设A 为m n ×矩阵,B 为n m ×矩阵,则下列各选项中正确的是__________ (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB =; (C) 当n m >时,必有行列式0AB ≠;(D) 当n m >时,必有行列式0AB =.第二部分 矩阵一、矩阵的概念及运算1.矩阵的概念(方阵、行矩阵、列矩阵、同型矩阵、零矩阵、单位阵、对角阵、对称阵、纯量阵、伴随矩阵、可逆矩阵、奇异矩阵、非奇异矩阵、满秩矩阵、降秩矩阵、正交阵等) 2.矩阵的运算 矩阵的加法 数乘矩阵 矩阵的乘法* 矩阵的转置*方阵的幂方阵的行列式*说明:重点复习带*号的矩阵运算. 3.行列式与矩阵的区别【测试题】1.设A 和B 均为n 阶矩阵,k 为正整数,则下列各选项中正确的是__________(可以多选) (A) A B A B +=+; (B) AB BA =; (C) AB BA =; (D) 111()A B A B −−−+=+; (E) 111()AB A B −−−=(F) 111()kA A k−−=; (G) 111[()]()()T T T AB A B −−−=; (H) T T A B A B +=+;(I) TTA BA B +=+; (J) ()kkk AB A B =⋅.2.设A 和B 均为n 阶矩阵,且AB O =,则下列各选项中正确的是__________(A) A O =或B O =; (B) A B O +=; (C) 0A =或0B =; (D) 0A B +=. 3.设,,A B C 均为n 阶矩阵,E 为n 阶单位阵,则下列各选项中正确的是__________(A) 22()()A B A B A B +−=−; (B) 222()AB A B =; (C) 由AC BC =一定可以推出A B =;(D) 22()()A E A E A E −=+−.4.设A 是m 阶矩阵,B 是n 阶矩阵,已知A a =,B b =,若分块矩阵3O A C B O ⎛⎞=⎜⎟⎝⎠,则C =__________ (A) 3ab −; (B) 3mab ;(C) (1)3mn m ab −; (D) (1)(1)3m nm ab +−;二、伴随矩阵设n 阶方阵()ij n n A a ×=,其中2n ≥,则对于A 的伴随矩阵*A 有以下结论:(1) 定义:1121112222*12n n nnnn A A A A A A A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L L M M M L ,其中ij A 为元素ij a 的代数余子式(,1,2,,i j n =L ); (2) **A A AA A E ==; (3)1*n A A−=,故当A 可逆时,*A 也可逆;(4) 若||0A ≠,则1*1A A A −=,*1A A A −=,1**11()()A A A A−−==; (5) **()()T TA A =;(6) *,(),()1,()1,0,() 2.n R A n R A R A n R A n =⎧⎪==−⎨⎪≤−⎩当当当【测试题】1.设A 为(2)n n ≥阶可逆矩阵,对于A 的伴随矩阵*A ,必有**()A =__________ (A) 1n AA −; (B) 1n AA +; (C) 2n AA −; (D) 2n AA +.2.设A 为(3)n n ≥阶矩阵,对于A 的伴随矩阵*A 和常数(0,1)k k ≠±,必有*()kA =__________(A) *kA ; (B) 1*n kA −;(C) *n k A ;(D) 1*k A −.3.设A 和B 均为(2)n n ≥阶矩阵,**,A B 分别为A 和B 的伴随矩阵,对于分块矩阵A O C OB ⎛⎞=⎜⎟⎝⎠,C 的伴随矩阵*C =__________(A) **A A O OB B ⎛⎞⎜⎟⎜⎟⎝⎠; (B) **B B O O A A ⎛⎞⎜⎟⎜⎟⎝⎠; (C) **A B O OB A ⎛⎞⎜⎟⎜⎟⎝⎠; (D) **B A O O A B ⎛⎞⎜⎟⎜⎟⎝⎠. 4.设3阶矩阵a b b A b a b b b a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,若A 的伴随矩阵*A 的秩等于1,则必有__________(A) a b =或20a b +=;(B) a b =且20a b +≠; (C) a b ≠且20a b +=;(D) a b ≠且20a b +≠. 5.设100120123A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,对于A 的伴随矩阵*A ,求1*()A −和*1()A −.三、可逆矩阵1.设A 为n 阶(实)方阵,则与“A 为可逆矩阵”等价的说法有: (1) 存在与A 同阶的方阵B ,使得AB E =(或BA E =)成立; (2) A 是非奇异矩阵,即0A ≠; (3) A 是满秩矩阵,即()R A n =; (4) A 可以表示为一些初等矩阵的乘积;(5) n 元齐次线性方程组0Ax =只有零解(不存在非零解); (6) A 的列(行)向量组线性无关; (7) A 的列(行)向量组是nR 的一个基; (8) A 的特征值都不等于零;(9) TA A 为正定矩阵(不作为期末考试要求).2.求逆矩阵的方法 (1) 伴随矩阵法:1*1AA A−=(最适合于2阶可逆矩阵). 设a b A c d ⎛⎞=⎜⎟⎝⎠可逆,则1*11d b A A c a A ad bc −−⎛⎞==⎜⎟−−⎝⎠(2) 初等行(列)变换法(适合于3阶或更高阶的可逆矩阵):y 若(,)~(,)rA E E X ,则1AX −=;y若~c A E E X ⎛⎞⎛⎞⎜⎟⎜⎟⎝⎠⎝⎠,则1A X −=; 需要特别注意的是,在进行初等行变换时,绝对不能同时进行初等列变换................................. (3) 特殊分块矩阵的逆矩阵设n 阶方阵A 和s 阶方阵B 都可逆,则111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠;111O A O B B O AO −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠; 11111A O A O C B B CA B −−−−−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠(4) 定义法:给定矩阵方程()f A O =,求A 或A 的多项式的逆矩阵. 【测试题】1.求3201022112320121−−⎛⎞⎜⎟⎜⎟⎜⎟−−−⎜⎟⎝⎠逆矩阵. 2.设n 阶矩阵,,A B C 满足ABC E =,则下列各选项中正确的是__________ (A) ACB E =;(B) BAC E =;(C) BCA E =;(D) CBA E =.3.设11,,,A B A B A B −−++均为n 阶可逆矩阵,则111()A B −−−+=__________(A) 11A B −−+;(B) A B +;(C) 1()A A B B −+; (D) 1()A B −+.4.设n 阶矩阵A 满足24A A E O +−=,求1()A E −−.四、矩阵方程最基本的矩阵方程形如:AX B =和XA B =,其中,A B 为已知矩阵,且A 可逆,X 为未知矩阵,这两个矩阵方程的解分别为1X A B −=和1X BA −=.对于一般的矩阵方程,设法利用矩阵的运算法则及恒定变形,将所给的矩阵方程化为上述基本形式之一,再进行求解.常见解法:(1) 课本P.45例12;(2) 课本P.65例3. 【测试题】已知,A B 为3阶矩阵,且满足124A B B E −=−,其中E 为3阶单位阵.(1) 证明:矩阵2A E −可逆;(2) 若120120002B −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,求矩阵A .五、列满秩矩阵设m n ×矩阵A 为列满秩阵,即()R A n =,则有以下结论:(1) A 的行最简形矩阵为n m nE O ×⎛⎞⎜⎟⎝⎠; (2) 若AB C =,则()()R B R C =;(3) 若AB O =,则B O =(矩阵乘法的消去律); (4) A 的列向量组一定线性无关;(5) 若m n >,则A 的行向量组也线性无关.【测试题】设m n ×矩阵A 的秩()R A m n =<,E 为m 阶单位阵,则下列各选项中正确的是__________(A) A 的任意m 个列向量线性无关; (B) A 的任意一个m 阶子式都不等于零; (C) 若矩阵B 满足BA O =,则B O =;(D) A 通过初等行变换必可以化为()(,)m m n m E O ×−的形式.六、正交矩阵1.与“A 为正交阵”等价的说法有:(1) T A A E =(或TAA E =); (2) A 可逆且1T AA −=;(3) A 的行(列)向量组两两正交,且都是单位向量. 2.正交阵的性质 (1) 若A 为正交阵,则1T AA −=也是正交阵,且1A =±;(2) 若,A B 为正交阵,则AB 也是正交阵.【测试题】设,A B 是n 阶正交阵,则下列各选项中不正确的是__________ (A) A B +是正交阵; (B) AB 是正交阵;(C) 1A −是正交阵;(D) 若1A =−,则1λ=−是A 的特征值.七、矩阵的初等变换与初等矩阵(口诀:左行右列) 【测试题】1.设111213212223313233a a a A a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,212223111213311132123313a a a B a a a a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟+++⎝⎠,1010100001P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠, 2100010101P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则下列各选项中正确的是__________(A) 12APP B =;(B) 21AP P B =;(C) 12PP A B =;(D) 21P P A B =.2.设11121314212223243132333441424344a a a a a a a a A a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,14131211242322213433323144434241a a a a a a a a B a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,100010********000P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠, 21000001001000001P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,则1B −=__________ (A) 112A PP −; (B) 112P A P −; (C) 112PP A −; (D) 121P A P −.八、矩阵的秩 1.矩阵的秩的概念矩阵的秩等于最高阶非零子式的阶数,也等于行阶梯形矩阵非零行的行数. 规定零矩阵的秩等于零.2.矩阵的秩的性质(课本P.69至P.70) 【测试题】1.设A 为m n ×矩阵,B 为n 阶可逆矩阵,矩阵A 的秩等于r ,矩阵C AB =的秩等于1r ,则下列各选项中正确的是__________ (A) 1r r >;(B) 1r r <;(C) 1r r =;(D) r 与1r 的关系视乎B 而定.2.(3)n n ≥阶矩阵1111a a a aa a A aa a a a a⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠L L L M M M M L ,若矩阵A 的秩为1n −,则a =__________(A) 1; (B) 11n −; (C) 1−; (D) 11n −.九、行阶梯形矩阵vs.行最简形矩阵第三部分 线性方程组一、线性方程组的解的判定【测试题】设123123123(1)0(1)3(1)x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩,问λ取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其同解.(试用两种方法求解本题)二、齐次线性方程组的通解(基础解系) 【测试题】1.写出一个以1222341001x c c −⎛⎞⎛⎞⎜⎟⎜⎟−⎜⎟⎜⎟=+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠为通解的齐次线性方程组.2.求一个齐次线性方程组,使它的基础解系为12(0,1,2,3),(3,2,1,0)TTξξ==. 3.设n 阶矩阵A 的各行元素之和均等于零,且()1R A n =−,求0Ax =的通解.三、非齐次线性方程组的通解 【测试题】1.设四元非齐次线性方程组的系数矩阵的秩为3,已知123,,ηηη是它的三个解向量,且123(2,3,4,5),(1,2,3,4)T T ηηη=+=,求该方程组的通解.2.设矩阵1234(,,,)A a a a a =,其中234,,a a a 线性无关,1232a a a =−.向量1234b a a a a =+++,求该方程组的通解.3.已知12,ββ是线性方程组Ax b =的两个不同的解,12,αα是对应的齐次线性方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解是__________(A) 1211221()2k k ββααα−+++; (B) 1211212()2k k ββααα++−+;(C) 1211221()2k k ββαββ−+++; (D) 1211212()2k k ββαββ++−+.第四部分 向量组一、线性方程组的四种等价形式y一般形式 11112211211222221122,,.n n n nm m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L Ly向量方程的形式1112111212222212n n m m mn n m a a a x b a a a x b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L L L M M L ,简记为Ax b =. y增广矩阵的形式 11121121222212n n m m mnm a a a b a a a b a a a b ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L M M M M L ,简记为(,)A b . y向量组线性组合的形式 1112112122221212n n n m m mn m a a a b a a a b x x x a a a b ⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+++=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠L M M M M , 若12(,,,)n A a a a =L ,则可简记为1122n n x a x a x a b +++=L .二、线性方程组、矩阵、向量组的相互关系三、向量组的线性组合n 元线性方程组Ax b = 其中A 是m n ×矩阵矩阵(,)A b向量组12:,,,n A a a a L及向量b是否存在解?()(,)R A R A b =是否成立?向量b 能否由向量组A线性表示?无解 ()(,)R A R A b < NO 有解 ()(,)R A R A b = YES(x 的分量就是线性组合的系数)唯一解()(,)R A R A b n ==(未知数个数)表达式唯一 无穷解()(,)R A R A b n =<(未知数个数)表达式不唯一矩阵方程矩阵 向量组AX B =有解 ()(,)R A R A B =向量组B 可以由向量组A 线性表示AX B =,BX A =都有解()()(,)R A R B R A B ==向量组B 与向量组A 等价,特别地,向量组与自己的最大无关组等价,于是有限向量组中成立的结论可推广到一般的情形.线性方程组矩阵向量组0Ax =只有零解()R A =A 的列向量的个数A 的列向量组线性无关0Ax =与0Bx =同解~rA B即A 能通过初等行.变换..化为B y矩阵A 的行向量组....与矩阵B 的行向量组....等价(P.84)y矩阵A 的列向量组....与矩阵B 的列向量组....有相同的线性关系(P. 93例11)【测试题】1.设有向量组12321:2,1,11054A a a a α−−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,及向量11b β⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,问,αβ为何值时,(1) 向量b 不能由向量组A 线性表示;(2) 向量b 能由向量组A 线性表示,且表示式唯一; (3) 向量b 能由向量组A 线性表示,且表示式不唯一.2.设向量β可由向量组12,,,m αααL 线性表示,但不能由向量组()Ⅰ:121,,,m ααα−L 线性表示,记向量组()Ⅱ:121,,,,,m αααβ−L 则下列各选项中正确的是__________ (A) m α不能由()Ⅰ线性表示,也不能由()Ⅱ线性表示; (B) m α不能由()Ⅰ线性表示,但可由()Ⅱ线性表示; (C) m α可由()Ⅰ线性表示,也可由()Ⅱ线性表示; (D) m α可由()Ⅰ线性表示,但不能由()Ⅱ线性表示.四、向量组的线性相关性n 元齐次线性方程组0Ax =(其中A 是m n ×矩阵)矩阵A向量组12:,,,n A a a a L是否存在非零解?()R A n <是否成立?是否线性相关?只有零解()R A n =(列向量的个数)线性无关 存在非零解()R A n <(列向量的个数)线性相关(x 的分量就是线性组合的系数)1.设向量组12:,,,n A a a a L ,则与“向量组A 线性相关”等价的说法有:(1) 存在不全为零的实数12,,,n k k k L ,使得11220n n k a k a k a +++=L (零向量)成立; (2) n 元齐次线性方程组0Ax =有非零解; (3) ()R A n <(列向量的个数);(4) A 的列向量组中至少存在一个列向量可以由其余1n −个列向量线性表示.2.设向量组12:,,,n A a a a L ,则与“向量组A 线性无关”等价的说法有:(1) 如果11220n n k a k a k a +++=L (零向量)成立,则必有120n k k k ====L ; (2) n 元齐次线性方程组0Ax =只有零解; (3) ()R A n =(列向量的个数);(4) A 的列向量组中任意一个列向量都不能由其余1n −个列向量线性表示. 3.课本P.89定理5【测试题】1.已知123(,,)2R a a a =,234(,,)3R a a a =,证明:(1) 1a 能由23,a a 线性表示;(2) 4a 不能由123,,a a a 线性表示.2.设向量组12:,,,r A αααL 可由向量组12:,,,s B βββL 线性表示,则下列各选项中正确的是__________(A) 当r s <时,向量组B 必线性相关; (B) 当r s >时,向量组B 必线性相关; (C) 当r s <时,向量组A 必线性相关;(D) 当r s >时,向量组A 必线性相关. 3.设12,,,s αααL 均为n 维向量,则下列各选项中不正确的是__________(A) 若对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++≠L ,则12,,,s αααL 线性无关;(B) 若12,,,s αααL 线性相关,则对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++=L ;(C) 12,,,s αααL 线性无关的充分必要条件是12(,,,)s R s ααα=L ; (D)12,,,s αααL 线性无关的必要条件是其中任意两个向量线性无关.4.设112b a a =+,223b a a =+,334b a a =+,441b a a =+,证明向量组1234,,,b b b b 线性相关.五、向量组的秩【测试题】求矩阵11221021512031311041A ⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠的列向量组的一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示.第五部分 方阵的特征值和特征向量一、向量的内积、长度及正交性1.向量内积的性质(对称性、线性性质、非负性、施瓦兹不等式) 2.向量长度的性质(非负性、齐次性、三角不等式) 3.向量的正交性的性质 y 两两正交的非零向量组一定线性无关; y施密特正交化过程.4.正交矩阵的性质(参阅矩阵部分)二、特征值和特征向量的概念、性质及计算(特征值和特征向量这两个概念只针对方阵而言) 特征多项式 A E λ−(以λ为未知数的一元n 次多项式) 特征方程 0A E λ−=关于方阵的特征值和特征向量有以下结论: (1) 特征值就是特征方程0A E λ−=的根.(2) 特征方程在复数范围内一定有解,根的个数等于方程的次数(重根按重数计算),因此n阶矩阵A 在复数范围内有n 个特征值.(3) 设n 阶矩阵()ij n n A a ×=的特征值为12,,,n λλλL ,则121122n nn a a a λλλ+++=+++L L ,12n A λλλ=L .(4) 设i λ是矩阵A 的一个特征值,则由()0i A E x λ−=求得的任意一个非零解i p 都是A 对应于特征值i λ的特征向量(若i λ为实数,则i p 可取实向量;若i λ为复数,则i p 可取复向量).(5) 对应于特征值i λ的特征向量并不唯一(有无限多个),()0i A E x λ−=的任意一个基础解系都可以作为这无限多个特征向量的最大无关组.(6) 一般来说,对应于特征值i λ的线性无关的特征向量最多只有()i n R A E λ−−个,与特征值i λ的重数没有直接关系.(7) 对应于不同特征值的特征向量线性无关.(8) n 阶矩阵最多只有n 个线性无关的特征向量(因为向量空间nR 的维数等于n ). (9) 若λ是A 的特征值,则k λ是k A 的特征值;()ϕλ是()A ϕ的特征值(其中01()m m a a a ϕλλλ=+++L 是λ的多项式,01()m m A a E a A a A ϕ=+++L 是矩阵A的多项式)(参阅课本P.120例8). (10) TA 与A 有相同的特征值.(11) n 阶零矩阵O 的特征值只能等于0.特别地,若A 是n 阶对称阵,λ是A 的k 重特征值,则 y ()R A E n k λ−=−,从而对应于特征值λ恰有k 个线性无关的特征向量;y 对应于不同特征值的特征向量两两正交;yn 阶对称阵恰有n 个线性无关的特征向量.【测试题】 1.矩阵3113A −⎛⎞=⎜⎟−⎝⎠的特征值为__________2.设n 阶矩阵,A B 满足()()R A R B n +<,证明,A B 有公共特征值,有公共特征向量. 3.已知3阶矩阵A 的特征值为1,2,3−,求*32A A E ++.4.设12(,,,)Tn a a a a =L ,10a ≠,T A aa =,证明0λ=是n 阶矩阵A 的1n −重特征值.三、方阵的相似对角化1.关于n 阶方阵的相似对角化,有以下结论:(1) n 阶方阵A 可以相似对角化当且仅当A 有n 个线性无关的特征向量; (2) 如果n 阶方阵A 的n 个特征值各不相同,则A 可以相似对角化; (3) 对称矩阵一定可以相似对角化.2.n 阶方阵A 相似对角化的一般步骤:(i) 求出A 的所有互不相等的特征值12,,,s λλλL (s n ≤),它们的重数依次为12,,,s k k k L(121s k k k +++=L ).(ii) 如果s n =,则A 可以相似对角化,转入第(iv)步;否则转入第(iii)步.(iii) 如果对每一个i k 重特征值i λ,()i i R A E n k λ−=−都成立,则A 可以相似对角化,转入第(iv)步;否则A 不能相似对角化,算法结束.(iv) 对每一个i k 重特征值i λ,求()0i A E x λ−=的基础解系,得i k 个线性无关的特征向量,转入第(v)步.因为121s k k k +++=L ,所以一共可以得到n 个线性无关的特征向量. (v) 这n 个线性无关的特征向量构成可逆矩阵P ,满足1P AP −=Λ.注意Λ中对角元的排列次序应与P 中列向量的排列次序相对应.特别地,对称阵对角化的步骤参阅课本P.125.3.若方阵,A B 相似,则(1) 方阵,A B 有相同的特征多项式,从而有相同的特征值; (2) 方阵,A B 的多项式()A ϕ与()B ϕ也相似;(3) 特别地,若有可逆矩阵P ,使得1P AP −=Λ为对角阵,则1k k P A P −=Λ,1()()P A P ϕϕ−=Λ,因为12kkkk n λλλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎜⎟⎝⎠O,12()()()()n ϕλϕλϕϕλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠O ,所以可以通过()ϕΛ计算方便地计算A 的多项式()A ϕ; (4) 特别地,若()ϕλ是A 的特征多项式,则()A O ϕ=(零矩阵). 【测试题】1.设矩阵20131405A x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠可相似对角化,求x .2.已知111p ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠是矩阵2125312A a b −⎛⎞⎜⎟=⎜⎟⎜⎟−−⎝⎠的一个特征向量. (1) 求参数,a b 及特征向量p 所对应的特征值; (2) 问A 能不能相似对角化?并说明理由.3.设3阶对称阵A 的特征值为16λ=,233λλ==,与特征值16λ=对应的特征向量为1(1,1,1)T p =,求矩阵A .。

线性代数方程组求解

线性代数方程组求解

线性代数方程组求解线性代数方程组是线性代数中一个重要的概念,它描述了一组线性方程的集合。

求解线性代数方程组是线性代数中的一项基本任务,它对于解决实际问题和数学推理都具有重要意义。

本文将介绍线性代数方程组的求解方法,包括矩阵消元法和矩阵的逆。

矩阵消元法矩阵消元法是求解线性代数方程组的一种常用方法。

它通过消元和回代两个步骤来求解方程组。

具体步骤如下:1.构造增广矩阵:将线性方程组的系数矩阵和常数向量按列合并,得到增广矩阵。

2.初等行变换:对增广矩阵进行初等行变换,将其转化为阶梯形矩阵或行最简形矩阵。

3.回代求解:从最后一行开始,逐步代入求解未知数,得到方程组的解。

矩阵消元法的优点是简单直观,容易理解和实现。

然而,当矩阵的行数和列数较大时,矩阵消元法的计算复杂度会很高,需要消耗大量的时间和计算资源。

矩阵的逆除了矩阵消元法,我们还可以使用矩阵的逆来求解线性代数方程组。

矩阵的逆是一个与原矩阵相乘后得到单位矩阵的矩阵。

对于给定的线性方程组Ax=b,我们可以通过以下步骤求解:1.计算矩阵A的逆矩阵A^-1。

2.将方程组转化为x=A^-1b。

3.计算x的值。

求解矩阵的逆的方法有多种,包括伴随矩阵法和初等变换法等。

其中,伴随矩阵法是一种常用的求解逆矩阵的方法。

它通过求解伴随矩阵和矩阵的行列式来计算矩阵的逆。

使用矩阵的逆求解线性代数方程组的优点是计算速度快,尤其适用于行数和列数较大的情况。

然而,矩阵的逆并不是所有矩阵都存在,如果矩阵不存在逆矩阵或逆矩阵存在但计算困难,则无法使用矩阵的逆求解方程组。

小结线性代数方程组的求解是线性代数中的一个重要问题,涉及到实际问题的解决和数学推理。

本文介绍了两种求解线性代数方程组的方法:矩阵消元法和矩阵的逆。

矩阵消元法通过消元和回代的过程来求解方程组,简单直观但计算复杂度较高;矩阵的逆通过求解矩阵的逆矩阵来求解方程组,计算速度快但存在逆矩阵不存在的情况。

根据具体问题的需求和矩阵性质的条件,选择合适的方法来求解线性代数方程组是十分重要的。

线性代数方程组的解法

线性代数方程组的解法

线性代数方程组的解法关键词:线性代数方程组;高斯消元法;列主元消元法;三角分解法;杜立特尔分解法;迭代法;雅可比迭代法;高斯-赛德尔迭代法1引言目前,解线性代数方程组在计算机上常用的的方法大致把它分为两类:“直接法”与“迭代法”.在线性代数中曾指出阶线性代数方程组有唯一的解,并且可以用克拉默法则求方程组的解,初次看来问题已经解决,但从使用效果看并不是这样的.因为求阶线性代数方程组,如果用克拉默法则,需要计算个阶行列式,每个阶行列式为项之和,每项又是个元素的乘积,所以计算中仅乘法次数就高达次,当较大时,它的计算量是非常惊人的.因为现在所碰到的很多问题都需要很大的计算量,故需要好用的算法来求解.先来回顾一下回代过程和迭代过程.(1)是一个三角形方程组,当有唯一解时,可以用反推的方式求解,也就是先从第个方程解得, (2)然后代入第个方程,可得到, (3)如此继续下去,假设已得到,, , ,代进第个方程即得的计算, (4)上述求解的过程叫做回代过程.定义1[1] (向量的范数) 若向量的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对,总是有.那么上向量的范数(或模)就是 .下面给几个最常遇到的向量范数.向量的“1”范数:(5)向量的“2”范数:(6)向量的范数:(7)例1设求 , , .解由式(5),(6)及(7)知.定义2若矩阵的某个实值函数满足1.是非负的,即且的充要条件是 ;2.是齐次的,即 ;3.三角不等式,即对总有;1.矩阵的乘法不等式,即对总有,那么称为上矩阵的范数(或模).表 1是矩阵几个常用算子范数的定义与算式.表 1范数名称记号定义计算公式“1”范数(又名列模)“2”范数(又名谱模)“”范数(又名行模)的极限就是方程组的解向量,这时候在给定允许的误差内,只要适当的大,就可以作为方程组在满足精度要求条件下的近似解.这种求近似解的方法就是解线性方程组的一类基本的迭代解法,其中称为迭代矩阵,公式(9)称迭代公式(或迭代过程),由迭代公式得到的序列叫做迭代序列.如果迭代的序列是收敛的,则称为迭代法收敛;如果迭代的序列是不收敛,则称它是迭代法发散.定理3设 .如果约化主元素,则可以利用高斯消元的方法把方程组约化成三角形方程组来求解,其计算公式如下:(1)消元计算:对依次计算(2)回代计算:3用高斯消元法与列主元消元法解线性代数方程组(重点)!3.1 高斯消元法解方程组用高斯消元的方法求线性代数方程组的解的整个计算过程可分为两个环节,也就是利用按照次序消去未知数的方法,把原来的方程组转化成跟它同解的三角形方程组(这个转化的过程叫消元过程),再通过回代过程求三角形方程组的解,最终得到原来方程组的解.其中按照方程的顺进行消元的高斯消元法,又叫顺序消元法.3.2列主元消元法解方程组列主元消元法实际上是一种行交换的消元法,它跟顺序消元法比较而言,主要特点是在进行第次消元前,不管的值是否等于零,都在子块的第一列中选择一个元,使,并将中的第行元与第行元互相变换(相当于交换同解方程组中的第个方程),然后再进行消元计算得到结果.注:列主元素法的精度虽然稍低于全主元素法[1],但它计算简单,相对比全主元素法它的工作的量大大减少,并且从计算经验和理论分析都可以表明,它与全主元素法同样拥有很好的值稳定性,列主元素法是求解中小型浓密型方程组的最好的方法之一.4用三角分解法解线性代数方程组4.1 矩阵的三角分解定义4把一个阶矩阵分解成两个三角矩阵相乘的形式称为矩阵的三角分解.常见的矩阵三角分解是其中是下三角形的矩阵,是上三角形的矩阵.定理5[1](矩阵三角分解基本定理)设 .若的顺序主子式,那么存在唯一的杜利特尔分解其中是单位下三角形矩阵,为非奇异的上三角形矩阵.如果是单位下三角形的矩阵,是上三角形的矩阵,那么把这种分解法称为杜利特尔分解法,其中杜利特尔分解法是这种三角分解的一种特例,下面主要介绍利用杜利特尔分解法来求方程组的解.4.2 用杜利特尔分解法解线性代数方程组用杜利特尔分解法解方程组的步骤可以把它归纳为(1)实现分解,也就是1.按算式(11)(12)依次计算的第一行元与的第一列元;1.对按算式(13)(14)依次计算的第行元与的第列元.(2)求解三角形方程组,即按算式依次计算 .(3)求解三角形方程组,即按算式依次计算.利用杜利特尔分解法解方程组与高斯消元法是相似的,它重要的优点是:在利用分解,解有相同的系数矩阵的方程组时,用杜利特尔分解法非常方便,只用两个式子就可以得到方程组的解.5用迭代法解线性代数方程组用迭代法求方程组的解,需要考虑迭代过程的收敛性,在下面的讨论中,都假设方程组的系数矩阵的对角阵是不为零的.5.1 用雅可比迭代法解方程组对于一般线性方程组,如果从第个方程解出,就可以把它转化成等价的方程组. (15)从而可以得到对应的迭代公式(16)这就是解一般方程组的分量形式的雅可比(Jacobi)迭代公式.如果把它改成(17)并把系数矩阵表示成(18)其中则可以看出式的左右两端分别是向量和的第个分量,故因为可逆,所以于是就可以得到是雅可比迭代的公式.其中(称为雅可比迭代矩阵), .5.2 用高斯-赛德尔迭代法解方程组高斯-赛德尔迭代法也是常用的迭代法,设线性代数方程组为,则高斯-赛德尔迭代法的迭代公式为(19)其中迭代法(19)就称为高斯-赛德尔迭代法.通过雅可比迭代法类似的途径,就可以得到矩阵的表达式其中(称为高斯-赛德尔迭代矩阵), .高斯-赛德尔迭代法与雅可比迭代法都有算式简单、容易在计算机上实现等优点,但是用计算机来计算时,雅可比迭代法需要两组工作单元用来寄存与的量,而高斯赛-德尔迭代法只需一组工作单元存放或的分量.对于给定的线性方程组,用这两种方法求解可能都收敛或者都不收敛,也可能一个收敛另一个不收敛,两种方法的收敛速度也不一样.5.3 迭代法的收敛条件与误差分析定义6[1]矩阵全部的特征值的模的最大值,叫做矩阵的谱半径,记作 ,即.定理7[1]对任意初始向量迭代过程收敛的充要条件是;当时,越小,那么其收敛的速度是越快的.由定理7可知,用雅可比迭代法求解时,其迭代的过程是收敛的,而用高斯-赛德尔迭代法来求解,其迭代的过程是发散的.在不同条件下,收敛的速度是不同的,对同一矩阵,一种方法是收敛的,一种方法发散.第 7 页。

线性代数计算法则

线性代数计算法则

线性代数计算法则线性代数是数学中的一个分支,主要研究向量空间、线性变换和线性方程组等内容。

它在科学、经济学和工程学等各个领域都有广泛的应用。

线性代数的计算法则是进行线性代数运算的方法和规则,下面将对线性代数计算法则进行详细介绍。

一、向量和矩阵的基本运算1.向量和矩阵的加法:向量和矩阵的对应元素相加,即两个向量或矩阵的对应元素分别相加形成一个新的向量或矩阵。

2.向量和矩阵的数乘:一个向量或矩阵中的每个元素乘以一个实数,即实数与向量或矩阵的每个元素相乘形成一个新的向量或矩阵。

3.向量的内积:两个向量的内积等于对应元素乘积的和。

4.矩阵的乘法:矩阵的乘法是指两个矩阵相乘的运算,其中第一个矩阵的列数等于第二个矩阵的行数。

矩阵乘法的结果是一个新的矩阵,其中每个元素是第一个矩阵的其中一行与第二个矩阵的其中一列对应元素乘积的和。

5.矩阵的转置:将矩阵的行和列互换,得到一个新的矩阵。

6.矩阵的逆:对于一个方阵A,如果存在一个方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,矩阵B称为A的逆矩阵。

二、矩阵的行列式1.行列式定义:行列式是一个标量值,它是一个n阶方阵中元素的代数和。

2.行列式性质:-行列式的值与它的转置矩阵的值相等。

-交换矩阵中两行或两列的位置,行列式取负。

-将矩阵的其中一行(或其中一列)的所有元素乘以一个数k,行列式的值也乘以k。

-如果矩阵的其中一行(或其中一列)的元素全为0,则行列式的值等于0。

-如果矩阵的两行(或两列)相等,则行列式的值等于0。

-行列式的值等于每一行(或每一列)的元素与它们所在行(或列)的代数余子式相乘再求和。

三、矩阵的特征值和特征向量1.特征值和特征向量定义:对于一个n阶方阵A,如果存在一个数λ和非零向量X,使得AX=λX,则称λ为矩阵A的特征值,X为对应的特征向量。

2.特征值和特征向量的计算:-特征值是矩阵A减去λ的单位矩阵后的行列式等于0的解。

-对每个求解得到的特征值λ,代入(A-λI)X=0的线性方程组中,求解得到对应的特征向量X。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.开课学期:每学期
4.学时安排:周学时2,总学时36
5.学分分配:2学分
(二)开设目的
是使学生了解线性代数中的一些解法与技巧,拓展知识面,从而进一步提高学生的抽象思维能力和分析问题及解决问题的能力。
(三)基本要求
通过教学,使学生较熟练掌握线性代数的基本概念、基本理论、基本算法。理解由这些内容而产生的基本问题及解决方法,努力营造良好的逻辑思维能力,着重培养熟练的运算能力,使学生造就具有分析问题、解决问题的能力。
主要内容
n维向量,向量组的线性相关、线性无关及极大线性无关组。
教学要求
1. 理解n维向量的概念、向量的线性组合与线性表示的概念.
2. 理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3. 了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4. 理解非齐次线性方程组解的结构及通解的概念.
5. 会用初等行变换求解线性方程组.
第五章 矩阵的特征值和特征向量
教学目的
使学生进一步理解矩阵的特征值和特征向量的概念及性质,能将矩阵转化为相似对角矩阵。
主要内容
矩阵的特征值和特征向量,相似矩阵。
教学要求
1. 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。
第二章 矩阵
教学目的
使学生进一步理解矩阵的概念,熟练掌握矩阵的秩
教学要求
1. 理解矩阵的概念,了解单位矩阵、对角矩阵、对称矩阵、三角矩阵、反对称矩阵,以及它们的性质.
2. 掌握矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式.
2. 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵转化为相似对角矩阵。
注:根据各课程的具体情况编写,但必须写明各章教学目的、要求、内容提要。
三、课时分配及其它
(一)课时分配
课程总教学时数为36学时,每周2学时,上课18周。具体分配如下:
第一章行列式8学时
第二章矩阵8学时
第三章向量8学时
4. 了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.
第四章 线性方程组
教学目的
使学生会用初等变换求解线性方程组。
主要内容
克莱姆法则,用初等变换求解线性方程组。
教学要求
l. 会用克莱姆法则.
2. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3. 理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。
(九)参考书目
四川大学数学系 编著:《 高等数学 第三册 》, 高等教育出版社,1990,5.
二、教学内容
第一章 行列式
教学目的
使学生进一步理解行列式的概念、性质,熟悉行列式的计算。
主要内容
行列式的概念、性质和计算。
教学要求
1. 了解行列式的概念,掌握行列式的性质.
2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式.
第四章线性方程组4学时
第五章矩阵的特征值和特征向量8学时
(二)考核要求
1. 成绩评价
平时成绩(含考勤与作业)占30%,论文成绩占70%.
注:写明各学期教学总时数及各周学时数。
深圳大学数学与计算科学学院
课程教学大纲
(2006年10月重印版)
课程编号23120019c
课程名称线性代数解法与技巧
课程类别综合选修
教材名称线性代数
制 订 人汤跃宝
审 核 人郭辉
2005年4月修订
一、课程设计的指导思想
(一)课程性质
1.课程类别:综合选修课
2.适用专业:数学与应用数学专业金融数学专业方向
3. 理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4. 了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
第三章 向量
教学目的
使学生进一步理解向量组线性相关、线性无关的概念,熟悉向量组的秩的求法。
(四)主要内容
《线性代数解法与技巧》是线性代数的补充和提高课程,是培养造就高层次专门人才所需数学素质的基本课程。主要内容应包括:行列式和矩阵的性质和运算,解线性方程组,求矩阵的特征值和特征向量。
(五)先修课程
线性代数。
(六)后继课程
概率论与数理统计。
(七)考核方式
考查。
(八)使用教材
同济大学数学教研室 编著:《 线性代数 第四版 》,高等教育出版社. 2003,7.
相关文档
最新文档