ct图像处理及三维重建的综述
医学图像的三维重建与可视化
医学图像的三维重建与可视化医学图像的三维重建与可视化是目前医学领域中的研究热点之一。
通过将医学图像转化为三维模型,医生和研究人员可以更好地观察和分析病灶,从而更准确地进行诊断和治疗,提高患者的治疗效果和生活质量。
本文将从三维重建技术和可视化技术两个方面介绍医学图像的三维重建与可视化。
三维重建技术三维重建技术是将多幅医学图像处理后,生成一个三维模型的过程。
常用的医学图像包括X光片、CT、MRI等。
三维重建技术是一项非常技术含量高的工作,需要专业的软件和设备支持,一般需要数学、物理等多个领域的知识的综合运用。
三维重建的过程主要有两步:首先是图像预处理,此步骤对图像进行去噪、增强和分割等操作,以提高三维重建的精度;然后是生成三维模型,此过程需要通过算法和数学模型来将二维图像转化为三维模型。
常用的三维重建方法包括Marching Cubes算法和Voxel Coloring算法。
其中Marching Cubes算法是一种基于灰度值的重建方法,适合于处理CT和MRI图像;而Voxel Coloring算法则是一种基于颜色的重建方法,适合处理表面模型。
可视化技术可视化技术是将三维重建的模型以可视化的方式呈现出来,让医生和研究人员可以更直观、更全面地了解病灶的情况。
常用的可视化技术包括虚拟现实技术、动态模拟技术和实时互动技术等。
虚拟现实技术是将三维重建的模型放入虚拟现实环境中展示,模拟真实环境的同时提供完整的三维信息。
这种技术通常需要大型的设备和高显卡性能的计算机。
虚拟现实技术可以让医生和研究人员在模拟环境下进行手术模拟、观察器官结构等。
动态模拟技术是通过对三维模型进行动态分析,模拟病变的进程和变化,有助于预测治疗后的效果。
例如,在肿瘤治疗中,医生可以通过动态模拟技术来预测肿瘤的发展趋势,从而制定更为科学的治疗方案。
实时互动技术是将三维模型呈现在普通计算机上,并通过交互方式来实现对三维模型的控制。
这种技术可以让医生和研究人员在计算机上方便地进行多角度观察和交互操作,提高工作效率和准确性。
医学图像的处理及三维重建
噪声去除是医学图像预处理的重要步骤,旨在消除图像中的噪声和干扰,提高图像质量。
噪声去除的方法包括滤波、中值滤波、高斯滤波等。这些方法通过平滑图像,减小像素值的随机波动,从而减少噪声对图像的影响。
噪声去除Biblioteka 详细描述总结词总结词
图像增强是为了改善医学图像的视觉效果和特征表现,使其更符合人眼观察和机器分析的要求。
医学图像处理的基本流程
包括图像去噪、对比度增强、图像分割等步骤,以提高图像质量。
从医学图像中提取出与病变相关的特征,如形状、大小、密度等。
将多个二维图像组合成三维模型,并进行可视化处理。
根据处理后的医学图像进行诊断和分析,得出结论。
预处理
特征提取
三维重建
诊断与分析
02
CHAPTER
医学图像的预处理技术
提高图像质量
测量和分析
三维重建
辅助诊断和治疗
医学图像处理的目的和意义
01
02
03
04
通过降噪、增强对比度等技术,使图像更清晰、更易于观察。
对医学图像进行定量测量和分析,提取病变特征和生理参数。
将二维图像转换为三维模型,更直观地展示人体结构和病变。
为医生提供准确的诊断依据和治疗方案,提高诊断和治疗水平。
数据量庞大
由于医学图像处理和三维重建涉及大量计算,如何提高计算效率是亟待解决的问题。
计算效率问题
面临的挑战
技术发展趋势
深度学习在医学图像处理中的应用
利用深度学习技术自动识别和提取图像特征,提高处理效率和准确性。
高性能计算资源的应用
利用高性能计算资源进行大规模并行计算,提高处理速度。
多模态医学图像融合技术
详细描述
图像处理及三维重建的综述课件
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
1.问题的提出及其研究意义 2.国内外的研究现状 3.图像处理基本理论及方法 4. 三维重建基本理论及方法 5.参考文献
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
3.图形处理基本理论及方法
要实现CT断层图像的三维重建,首先要对二维CT图像处 理,提高图片质量。由于医学cT图像本身就是一种数字图 像,数字图像处理的基本理论及方法也适用于CT图像。
本 章系统地介绍了第四章医学图像处理及三维重建软件开发 中所运用到的图像预处理、灰度图像二值化、图像增强、 图像分割等基本理论及相关的算法。
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
3.2中值滤波
CT图像的形成中会引入不同的噪音,为了确保图像的质 量,需要去除噪音,中值滤波能够有效地去除尖峰信号, 削平振动噪音,而对阶梯或陡然下降信号却能很好地保 留,因此它既能有效地抑制噪音,又能很好地保留有效信 号。另外,中值滤波不需要做乘除运算,处理速度也较 高,因此非常适合于CT图像的平滑和去噪处理。中值滤
Байду номын сангаас
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
3.1灰度图像二值化
灰度图像二值化的目的是对图像进行分割,对于CT图像 的分割,主要是骨组织和软组织的分割,而二者的灰度值 相差很大,所以可以采用阈值分割法将其分离出来。具体 的方法就是根据灰度图像的分布,选定一个灰度值作为标 准值,然后将图像矩阵中每像素的灰度值与标准阈值比 较,这样就将一幅灰度图像转化为一幅黑白二值图像,实 现关节软组织和骨主体边界轮廓的清晰区分实现图像分割
医学CT三维重建
30
首都师范大学学报 (自然科学版)
2004 年
原始数据做“预处理”“, 图像重建”和“图像后续处 理”就可得到反映人体某断面几何结构的灰度图像. 例如 X 射线 CT ,此灰度图像反映了人体组织对 X 射 线的不同吸收系数 ,同一吸收系数具有相同的灰度 显示. 因为人体内不同组织的元素种类和密度不同 , 对 X 射线的吸收系数不同. 如果某一组织 (正常情 况下应具有相同的灰度) 的局部发生了病变 ,医生可 明显观察到此组织局部图像灰度的变化的直观显 示 ,从而帮助医生做出诊断.
下面分别对这几个过程中所涉及的关键技术进 行分析 :
1 获取断层图像信息
要进行三维重建 ,必须先得到清晰的二维断层 图像. 医学领域中 ,利用 X 射线 CT ,放射性核素 CT , 超声 CT 和核磁共振 CT 等技术获得人体断层图象. CT 图像向我们展示了人体内部有关病变的信息 ,把
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
体素的获得有两种方法[4] : (1) 控制 CT 机使其 断层间隔减小 ,直至等于断层内的分辨率. 然而这将 增加检查成本 ,而且一般的 CT 机无法达到如此高 的分辨率. (2) 用计算机图像处理的方法 ,对现有的 断层图像进行插值运算 ,以获得立方体素表示的三 维物体. 插值后 ,断层图像数目增加 ,相当于层厚减 薄 ,这是国际上普遍采用的方法. 值得注意的是 ,插 值只是改变了断层间空间分辨率 ,使三维数据的处 理 、分析和显示更加方便 ,并没有产生新信息.
其次将医生感兴趣的组织从断层图像中分割开来再次在相邻两断层图像间进行内因为断层扫描间距一般比二维图像数据的象素尺寸要大以产生空间三个方向具有相同或相差不最后将重建后的三维图像数据在计算机屏幕上进行立体感显示要对它进行各种几何变换的运算实现多种投影显式方式及几何尺寸的测量等完成任意方位断层的重构任意方位立体视图手术摸拟和医学教学等
医学图像处理技术综述
2009年第1期福建电脑医学图像处理技术综述周贤善(长江大学计算机科学学院湖北荆州434023)【摘要】:医学影像已成为医学技术中发展最快的领域之一,临床医生在医学图象处理技术的帮助下,对人体内部病变部位的观察更直接、更清晰,确诊率也更高。
本文对图像分割、图像配准和图像融合等医学图像处理技术的现状和发展进行了综述。
【关键词】:医学图像处理;图像分割;图像配准;图像融合0、引言医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像模式主要分为X-射线成像(X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波成像(UI)四类。
在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。
利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,从而大大提高医疗诊断的准确性和可靠性;在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。
医学图像处理技术包括很多方面,本文主要从图像分割、图像配准、图像融合技术方面进行介绍。
1、图像分割医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。
目前,主要以各种细胞、组织与器官的图像作为处理的对象。
传统的图像分割技术有基于区域的分割方法和基于边界的分割方法,前者依赖于图像的空间局部特征,如灰度、纹理及其它象素统计特性的均匀性等,后者主要是利用梯度信息确定目标的边界。
结合特定的理论工具,图象分割技术有了更进一步的发展。
比如基于三维可视化系统结合FastMarching 算法和Watershed变换的医学图象分割方法,能得到快速、准确的分割结果[1]。
近年来,随着其它新兴学科的发展,产生了一些全新的图像分割技术。
如基于统计学的方法、基于模糊理论的方法、基于神经网络的方法、基于小波分析的方法、基于模型的snake模型(动态轮廓模型)、组合优化模型等方法。
完整版CT图像后处理技术
最大密度投影可以显示血管、结石、钙化等高密度结构,常用于观察肺部结节 、肝胆结石和血管钙化等病变。这种技术能够清晰地显示高密度组织的形态和 位置,有助于诊断和鉴别诊断。
最小密度投影(MinIP)
总结词
最小密度投影是一种将CT图像中的低 密度组织投影到二维图像上的技术, 能够突出显示密度差异较小的组织结 构。
技术,提高专业水平。
THANKS 感谢观看
预处理是对原始数字图像进行一系列操作,以提高图 像质量的过程。
噪声去除可以减少图像中的随机噪声,提高图像的信 噪比;图像增强可以突出图像中的某些特征,改善图 像的视觉效果;图像滤波可以对图像进行平滑处理, 减少图像中的细节。
图像的后处理
后处理是在预处理的基础上,对图像进行深入的分析和处理,以提取更多的有用信 息。
后处理技术可以重建肿瘤部位的3D图像,帮助医生了解 肿瘤的大小、形态、位置以及与周围组织的毗邻关系。这 有助于医生制定个性化的治疗方案,提高治疗效果和患者 的生存率。
诊断血管病变
血管病变是常见的疾病之一,包括血管狭窄、动脉瘤、血栓等。通过完整版CT图 像后处理技术,医生可以准确地诊断血管病变的类型和程度。
后处理技术可以重建血管的3D图像,帮助医生了解血管的形态、结构和血流情况 。这有助于医生制定合适的治疗方案,预防和治疗血管病变引起的各种疾病。
05 技术挑战与未来发展
技术大,对存储和传输 提出高要求,需要高效的数据管理技术。
由于CT图像的复杂性,自动和精确的图像 解析面临挑战,需要发展更先进的图像处 理和分析算法。
通过曲面重建,可以将弯曲的管状结构在二维图像上展开成一条连续的曲线,便于观察管状结构的弯曲程度、狭 窄和扩张等病变特征。这种技术常用于头颈部、胸腹部和下肢血管的CT检查。
同学,带你见识一下CT三维重建
同学,带你见识一下CT三维重建相信各位童鞋在临床工作中,已经接触到很多 CT 三维重建的图像了,那么 CT 三维重建到底是个啥东东?这个问题要是从 CT 技术的角度去阐述,俩小时不一定讲得完,说的简单些呢,除了普通的 CT 图像(就是我们最熟悉的横断面图像,又称为轴位图像)以外,无论是「高级些」的冠、矢状位图像,还是「逼真程度」很高的血管重建、泌尿系重建、器官重建等图像,都属于 CT 三维重建图像的范畴。
今天我就对 CT 三维重建中的各种后处理方法,及各种不同类型图像有何临床用处进行简单的介绍。
CT 三维重建主要有六种基本后处理方法:•多层面重建(MPR)•最大密度投影(MIP)•表面阴影遮盖(SSD)•容积漫游技术(VRT)•曲面重建(CPR)•虚拟内镜技术(VE)多层面重建(MPR)多层面重建是最基本的「三维」重建成像方法,是二维的图像序列,和我们最熟悉的轴位图像是一个「家族」的。
MPR 适用于任一平面的结构成像,以任意角度观察正常组织器官或病变,可以显示腔性结构的横截面以观察腔隙的狭窄程度、评价血管受侵情况、真实地反映器官间的位置关系等。
最大密度投影(MIP)最大密度投影是将一定厚度(即 CT 层厚)中最大 CT 值的体素投影到背景平面上,以显示所有或部分的强化密度高的血管和/或器官,简单原理和图像是酱紫的:由于这种方法显示的是一定层厚图像中 CT 值最高的体素,所以变化层厚会对图像产生影响:左:层厚 5mm;右:层厚 15mm肿么样,是不是觉得层厚 5mm 的 MIP 图像上门脉有狭窄,而层厚 15mm 的 MIP 图像上门脉是正常的?由于MIP 常用来显示血管的走行(问我为啥常用来显示血管?因为增强 CT 上血管比周围组织器官亮啊),所以层厚的选择很重要,既不能太薄(血管的部分管腔可能在层厚以外),又不能太厚(周围组织器官有干扰),这是很考验放射科大夫的技术和临床经验的。
下面给大家比较下 MPR 和 MIP 的图像:可以看到,MIP 图像中的血管连续性更好。
CT图像三维重建系统的设计与实现
2 开 发 工具 及 开发 原 理
2 . 1 开发平 台
本 系 统 采 用 的开 发 平 台 是 V i s u a l C + + 和V T K ( V i — s u a i z a t i 0 n T o o l k i t ) .系 统 采用 C + + 进行系统界面设计 、 核 心 算 法 编程 和 系 统 集 成 . 用 V T K编 程 实 现 三 维 可 视
床 实 践 提 供 可 视化 和 模 拟 手 术 信 息 ,可 以大 大 提 高 医
配准 等操作 , 可将 原始数据分成物体 、 背景 、 骨骼 、 软组 织等 多种类 型 . 并将感兴趣的区域提取 出来圆 。
( 3 ) 支持海量 数据快速 分析计算 . 快速 实现 C T图
像三维医学体数据场 的可视化 .包括面绘制 和体绘制
效地去除随机噪声 . 而 且 对 边 缘 的模 糊 程 度较 小 。
测 量 等 功 能
3 . 3 三 维 绘 制技 术
经过图像分割等二维处理 .把 图像 中感兴 趣的 区
域 提 取 出来 后 , 需 要 对 这 些 数 据 进行 三 维 绘 制 . 本 系统
三维绘制模块中使用 面绘制和体绘制技术进行重建 面绘 制处理 的是整个体 数据 场 中的小部分 数据 . 速度较快 .可 以快速灵活地对 图像进行 变换和旋转等 操作 面绘制重建 的只是物体表面 . 内部丰富信息无法
关 键 词 :CT 图像 ;三 维重 建 ;面绘 制 ;体 绘 制
0 引
言
的显示 比例 . 例如 图像 的整体 或局 部缩放 、 多幅 图像 同
时显 示 、 分屏显示等 ; 可 以 对 图像 进 行 标 注 、 测量 , 以便 在 阅 片 的 同时 记 录 获 取 的 信 息 。 ( 2 ) 提供 预处理 功能 , 可以进行 增强 、 滤波 、 切割 、
CT图片三维重建方法之3DSlicer篇
CT图片三维重建方法之3DSlicer篇3D Slicer导入Dicom数据之后才能应用的历史改写了,Png等格式的图像文件也能够导入到3D Slicer软件中进行重建等操作。
当然导入之后还要有一些参数的调整,不同的机器及不同的扫描参数,调整起来也不能千篇一律,不过还是有规律可寻的。
文中所述为本人的个人经验,如有不足之处还望批评指正。
基本条件1.首先需要有一个高质量的CT图像,以数字图像为佳,不建议用照片;2.取材于照片时曝光要均匀一致,不能有局部曝光不足等情况;3.图像不能有梯形失真,如果有则需要软件进行校正;4.图像如有缩放,要求所有图像等比例缩放;5.要保证所有图像的层距一致,不宜中间某幅图像丢失;6.图像在背景中的位置不能人为改动,即使位置改动也要求所有单幅图像都有一致性的改动;7.如为截图,要求所有截图的尺寸一致;8.图像的命名遵循一定规则,注意先后次序,先I后S,也就是从颅底层面到顶部层面排序,注意不能使用中文;9.图像需要有比例尺等参考,图像间距已知;10.仅需要轴位层面即可,其他注意事项可在文末留言。
虽说现在的PACS系统都提供Dicom文件格式,但也有部分医院只提供Png或Jpeg格式的图像。
以下图为例,扫描层距为5mm,图像格式为Png,来源于医众软件。
首先将上幅图像分解为大小一致的30张图片,保存为Png格式,用截图软件或其他方法都可以,注意不要保存到中文目录中。
将一组图片全部导入到3D Slicer软件中,不能按照常规导入Dicom数据的方法。
按照下图所示,拖动一幅图像到3D Slicer软件界面中,勾选Show Options(显示选项)。
去掉Single File(单幅图像)前面的对勾,点击OK,则会将一组图像文件作为一个序列导入到软件中。
导入后的图像轴位显示比例正常,矢状位及冠状位显示比例失调。
已知数据层距为5mm,在模块Volumes中对Image Spacing (图像间距)进行设定,第三个框为轴位层面之间距离(层距)设定为5mm。
CT图像的三维重建
河北工业大学硕士论文CT图像的三维重建摘要目前,CT,PET,MRI等成像设备均是获得人体某一部位的二维断层图像,再由一系列平行的二维断层图像来记录人体的三维信息。
在诊断中,医务人员只能通过观察一组二维断层图像,在大脑中进行三维数据的重建。
这就势必造成难以准确确定靶区的空间位置、大小及周围生物组织之间的关系。
因此,利用计算机进行医学图像的处理和分析,并加以三维重建和显示具有重要意义。
医学图像的三维可视化就是利用一系列的二维切片图像重建三维图像模型并进行定性、定量分析。
该技术可以为医生提供更逼真的显示手段和定量分析工具,并且其作为有力的辅助手段能够弥补影像成像设备在成像上的不足,能够为用户提供具有真实感的三维医学图像,便于医生从多角度、多层次进行观察和分析,能够使医生有效的参与数据的处理分析过程,在辅助医生诊断、手术仿真、引导治疗等方面都可以发挥重要的作用。
医学图像三维表面重建的主要研究内容包括医学图像的预处理,如插值、滤波等;组织或器官的分割与提取;复杂表面多相组织成份三维几何模型的构建等。
本文对CT 图像三维重建的关键技术进行研究,试图利用Marching Cubes(MC)算法实现对二维医学图像的三维重建,并且在重建前可以选择阈值,根据不同的阈值来重建不同的组织或器官。
而当前氩氦刀微创治疗肿瘤在国际国内得到了广泛的临床应用和研究。
因此,本文还对肿瘤的靶向治疗以及氩氦刀冷冻靶向治疗进行了一定的研究,特别针对靶向治疗中的精确定位进行相关的研究。
我们要分析氩氦刀定位中所需建立的复杂坐标系统,研究肿瘤靶向治疗中计算机精确定位系统的数学模型。
并在此基础,研究开发“氩氦刀靶向治疗计算机辅助精确定位系统”。
关键词:三维重建,靶向治疗,CT,图像处理,计算机辅助精确定位,氩氦刀iCT图像的三维重建ii THREE DIMENSION RECONSTRUCTION OF COMPUTEDTOMOGRAPHY IMAGESABSTRACTNowadays, imaging equipment, such as CT, PET, MRI, all have to follow the process ofderiving 3D data from a series of parallel 2D images to record the information of human body. Doctors can only observe 2D images and then reconstruct 3D data by imagination for diagnosis, which would surely lead to confusion in confirming the targeted region, targeted size and so forth. Therefore, it is of great significance to place computers onto the center stage in processing, analyzing, presenting, as well as 3D reconstructing of medical images.The so-called three-dimensional data visualization of medical images is to make full use of the 2D images in reconstructing 3D models, complemented by qualitative and quantitative analysis. This technology plays an important role in many fields. For instance, it provides doctors with a more real-world presentation and quantitative tool. It remedies the defect of imaging by some equipment as a powerful supplementary means. It offers users more real 3D medical images. It also gives doctors a chance to observe and analyze from multiple angles. More importantly, make them more involved in data analyzing and processing. In addition, it aids diagnosis, operation simulation and guide treatment as well.The main research contents of 3D surface reconstruction from medical images include image pre-processing, such as interpolating and filtering, segmenting and extracting tissues or organs of body, constructing 3D surface models.In this dissertation, key techniques for 3D reconstructing from medical images are studied. We use Marching Cubes arithmetic to reconstruct 3D images. In the course of reconstruction, the threshold could be inputed by user.Back to the real world, cryocare targeted cryoablation therapy is receiving widespread clinical practice and research both at home and abroad. For this reason, this dissertation has paid some special attention to tumour targeted and cryocare targeted cryoablation therapies, especially relevant research concerned with precise positioning. We should analyze the complicated coordinate systems required by cryocare targeting and study the mathematical model of computer aided navigation in exactitude for tumour targeted therapies. Building upon all these, our final goal is to develop a “Computer aided navigation in exactitude system for Cryocare Targeted Cryoablation Therapy”.KEY WORDS: 3D reconstruction, targeted therapy, CT, image processing, computer aided navigation in exactitude, cryocare河北工业大学硕士论文目录第一章绪论 (1)§1-1引言 (1)§1-2医学图像三维重建与可视化概念 (1)1-2-1三维重建的一般过程 (1)1-2-2可视化方法的概念及分类 (1)§1-3国内外研究概况 (3)§1-4本课题研究内容 (4)第二章医学图像信息的处理 (5)§2-1引言 (5)§2-2信息源的分析 (5)2-2-1信息源的类型 (5)2-2-2医学信息源的表现形式 (6)2-2-3不同格式医学图像的获取 (6)§2-3信息源的处理 (7)2-3-1信息的转化 (7)2-3-2医学数据的处理 (8)2-3-3CT数据的特点 (11)§2-4图像的预处理 (12)2-4-1平滑(滤波)处理的基本方法 (12)2-4-2断层图像间的插值 (15)2-4-3医学图像的分割 (17)第三章图像三维重建及可视化技术研究 (20)§3-1引言 (20)§3-2基于三维数据的建模方法 (20)3-2-1物体表面重建(基于表面的方法) (20)3-2-2直接体视法(基于体数据的方法) (22)§3-3医学图像的三维重建与可视化 (23)3-3-1三维可视化及重建的发展和现状 (23)3-3-2医学图像可视化及三维重建的应用 (25)3-3-3医学图像的三维重建技术 (26)iiiCT图像的三维重建第四章基于CT图像的三维重建 (30)§4-1引言 (30)§4-2医用CT机的历史与发展现状 (30)§4-3CT图像的获取、处理及重建 (32)§4-4CT图像的相关研究 (34)第五章肿瘤靶向治疗中的计算机精确定位系统的研究 (39)§5-1肿瘤靶向治疗的研究 (39)5-1-1肿瘤靶向治疗简介 (39)5-1-2氩氦刀肿瘤冷冻靶向治疗的一些相关研究 (40)5-1-3氩氦刀靶向治疗肿瘤的一些特点及应用 (44)§5-2靶向治疗计算机辅助精确定位研究 (45)5-2-1计算机辅助靶向治疗精确定位的必要性 (45)5-2-2坐标系的建立和转换 (47)5-2-3模型的建立 (50)§5-3氩氦刀靶向治疗计算机辅助精确定位系统的研究 (54)5-3-1平台的选择 (55)5-3-2系统界面及功能 (56)第六章结论 (62)§6-1本课题研究的总结 (62)§6-2本课题研究工作的展望 (63)参考文献 (65)致谢 (68)攻读学位期间所取得的相关科研成果 (69)iv河北工业大学硕士论文第一章绪论§1-1 引言进入70 年代以来,随着计算机断层扫描(CT:Computed Tomography),核磁共振成像(MRI:Magnetic Resonance Imaging),超声(US:Ultrasonography)等医学成像技术的产生和发展,人们可以得到人体及其内部器官的二维数字断层图像序列。
三维重建算法研究综述
二、文物三维重建技术的应用
1、文物修复与保护:通过三维重建技术,文物修复人员可以更加准确地理 解文物的原貌,为其修复提供重要的参考依据。同时,该技术也可以对文物进行 无损检测,发现文物的潜在损伤,为文物的保护提供数据支持。
2、数字化展示:利用三维重建技术,可以将文物在数字世界中真实地再现 出来,为观众提供身临其境的体验。同时,这种数字化展示方式还可以有效地保 护文物,防止其受到物理损害。
三维重建算法研究综述
01 摘要
03 文献综述 05 参考内容
目录
02 引言 04 结论
摘要
本次演示旨在综述三维重建算法的研究现状及其发展趋势,重点算法的基本 概念、应用领域、研究现状、未来研究方向以及挑战。通过对大量相关文献的搜 集、整理和分析比较,本次演示总结了近年来三维重建算法的重要成果和不足之 处,并指出了未来可能的研究方向。
4、三维重建算法的未来研究方 向
未来,三维重建算法的研究将面临更多挑战和机遇。以下几个方面可能成为 未来的研究方向:
(1)提高三维重建的精度和效率。尽管已经有很多优秀的三维重建算法,但 对于复杂形状和动态变化的目标对象,其精度和效率仍需进一步提高。此外,如 何平衡计算效率和内存消耗也是一个值得研究的问题。
3、虚拟考古:在考古学中,三维重建技术可以帮助考古学家更好地理解古 代文明的生活方式和工艺技术。通过模拟遗址或墓葬的原始状态,我们可以更准 确地推测出古代人类的行为和生活方式。
三、文物三维重建技术的未来发 展趋势
1、高精度与高效率:随着技术的进步,未来的文物三维重建技术将更加注 重扫描设备的精度和重建算法的效率。这将使得我们可以更快、更准确地获取文 物的三维数据。
2、三维重建算法的研究现状和 趋势
医学图像处理-三维重建
进行三维表面绘制。
• 设置图像的颜色及阴影效果。
• colormap(gray);%利用colormap()函数为图
像定义颜色集
• shading flat;%利用shading定义显示图像的
颜色阴影
设置图像光照效果
• light('Position',[-80,-262,-
信息,需要对原始图像进行预处理,以突 出有效的图像信息,消除或减少噪声的干 扰。
• 图像格式的转换与读写 • 图像增强
图像格式的转换与读写
• 正确读取DICOM图像后,通过选择合适的
窗宽、窗位,将窗宽范围内的值通过线性 或非线性变换转换为小于256的值,将CT图 像转换为256色BMP图像。
图像增强
• MATLAB
MATLAB6.5
• MATLAB6.5的图像处理工具箱实现了断层
图像的三维表面重建及体重建,原理简单, 编程实现方便。
• 在对头部CT图片进行的三维表面重建及体
重建实验中,重建速度快,显示效果良好, 便于各类非计算机专业人士推广应用。
• 三维重建技术的实现方法包括两种:
• 一种是通过几何单元拼接拟合物体表面来
平滑处理
计算数据集在显示平面累计投影
• fv=isosurface(x,y,z,D,isovalue);%使用
isosurface()函数计算数据集在显示平面累 计投影,isovalue根据实际情况自行定义
构造三维体重建碎片
• p=patch(fv,FaceColor','yellow','EdgeColor',
三维重建原理
三维重建原理三维重建是指通过一系列的图像或者点云数据,利用计算机算法将其转化为三维空间中的模型的过程。
在现实生活中,三维重建技术被广泛应用于医学影像、工业设计、文物保护、建筑设计等领域。
那么,三维重建的原理是什么呢?接下来,我们将从数据获取、数据处理、模型生成三个方面来介绍三维重建的原理。
首先,数据获取是三维重建的第一步。
数据获取的方式有很多种,常见的包括激光扫描、摄影测量、医学影像等。
激光扫描是通过激光器发射激光束,然后利用传感器接收反射光束,通过测量反射光束的时间和角度来获取目标物体表面的点云数据。
摄影测量则是通过摄像机拍摄目标物体的多张照片,然后通过图像处理算法来获取目标物体的三维坐标数据。
医学影像则是通过医学影像设备如CT、MRI等来获取人体器官的三维结构数据。
无论是哪种数据获取方式,都是三维重建的第一步,也是最为关键的一步。
其次,数据处理是三维重建的第二步。
在数据获取后,我们需要对获取到的数据进行处理,以便后续的模型生成。
数据处理的方式主要包括数据配准、数据滤波、数据配准等。
数据配准是指将不同数据源获取到的数据进行统一坐标系下的对齐,以便后续的数据融合和模型生成。
数据滤波则是针对数据中的噪声和异常点进行处理,以保证后续模型的精度和准确度。
数据配准则是将不同角度或者不同时间获取到的数据进行融合,以获取更加完整的三维信息。
最后,模型生成是三维重建的第三步。
在数据处理后,我们可以利用数据进行模型生成。
模型生成的方式主要包括点云重建、多视图立体重建、体素表示等。
点云重建是将点云数据转化为三维模型的过程,通过点云配准、点云拟合等算法来生成三维模型。
多视图立体重建则是通过多个视角的图像来进行三维模型的生成,通过立体匹配、视差计算等算法来获取三维信息。
体素表示则是将三维空间划分为小的立方体单元,通过体素的表示和连接来生成三维模型。
综上所述,三维重建的原理主要包括数据获取、数据处理、模型生成三个方面。
医学影像三维重建系统的研究与实现
医学影像三维重建系统的研究与实现随着医学影像技术的发展,医学影像三维重建系统成为了医学领域中一个非常重要的研究方向。
该系统能够将二维医学影像转化为三维模型,为医生提供更详细、直观的信息,有助于提高诊断和手术规划的准确性。
医学影像三维重建系统主要包括三个步骤:图像预处理、特征提取和三维重建。
首先,对原始二维医学影像进行预处理,包括去噪、平滑和分割等操作。
然后,通过特征提取算法,提取出感兴趣结构的轮廓或特征点等信息。
最后,利用这些信息进行三维模型的重建。
在图像预处理步骤中,常用的技术包括滤波和边缘检测。
滤波可去除图像中的噪声,常用的滤波器有中值滤波器和高斯滤波器。
边缘检测则可实现对图像中边缘结构的提取,常用的算法有Canny边缘检测算法和Sobel算子。
这些预处理技术能够提高后续特征提取和三维重建的效果。
在特征提取步骤中,常用的方法有基于阈值分割的方法和基于边缘检测的方法。
阈值分割将图像根据灰度值进行二值化,并提取出结构的轮廓信息。
边缘检测则通过检测图像中的边缘结构来提取特征点。
这些特征点包括角点、线段和曲线等,可用于后续的三维重建。
在三维重建步骤中,常用的方法包括体素化、点云重建和曲面重建。
体素化方法将三维空间划分为小的立方体单元,根据特征点的位置信息将其填充入相应的单元中,从而实现三维模型的重建。
点云重建方法则是根据特征点的位置和法向信息,以点云的形式重建三维模型。
曲面重建方法通过将特征点连接起来,生成连续光滑的曲面,实现对物体形状的描述。
除了以上所述的基本步骤和方法之外,医学影像三维重建系统的研究还面临一些挑战。
首先,医学影像数据的质量和复杂性有时会对重建效果造成不利影响,比如图像中存在噪声或伪影等。
其次,医学影像数据的大小和数量也会对重建算法的效率提出要求,需要设计高效的算法来处理大规模的数据。
此外,还需要考虑医学影像数据的隐私保护问题,确保患者的个人信息得到有效保护。
总之,医学影像三维重建系统是医学领域中一个非常有挑战性和前景的研究方向。
基于视觉的三维重建关键技术研究综述
基于视觉的三维重建关键技术研究综述一、本文概述三维重建技术是指从二维图像中恢复出三维物体的几何形状和结构信息的技术。
随着科技的发展,基于视觉的三维重建技术在医疗、工业、安防、娱乐等领域得到了广泛应用。
本文旨在综述三维重建的关键技术,为相关领域的研究提供参考。
二、三维重建技术概述2、1随着计算机视觉和图形学技术的飞速发展,基于视觉的三维重建技术已成为当前研究的热点之一。
三维重建技术旨在从二维图像或视频序列中恢复出物体的三维形状和结构,具有广泛的应用前景。
在医疗、工业、虚拟现实、增强现实、文物保护、安防监控等领域,三维重建技术都发挥着重要的作用。
在医疗领域,三维重建技术可以用于辅助诊断和治疗,如通过CT或MRI等医学影像数据生成三维人体内部结构模型,帮助医生更准确地了解病情并制定治疗方案。
在工业领域,三维重建技术可以用于产品质量检测、逆向工程等,提高生产效率和产品质量。
在虚拟现实和增强现实领域,三维重建技术可以为用户提供更加真实、沉浸式的交互体验。
在文物保护领域,三维重建技术可以用于对文物进行数字化保护和展示,让更多人能够欣赏到珍贵的文化遗产。
在安防监控领域,三维重建技术可以用于实现更加智能的监控和预警,提高安全防范能力。
因此,研究基于视觉的三维重建关键技术对于推动相关领域的发展和应用具有重要意义。
本文将对基于视觉的三维重建关键技术进行综述,旨在为相关领域的研究人员和实践者提供参考和借鉴。
21、2近年来,深度学习在计算机视觉领域取得了巨大的成功,其强大的特征提取和学习能力为三维重建带来了新的机遇。
深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),能够从大量的图像数据中学习到有效的特征表示,进而用于三维重建任务。
深度学习模型,尤其是卷积神经网络,已被广泛用于从单张或多张图像中预测三维形状。
这类方法通常利用大量的图像-三维模型对作为训练数据,通过监督学习的方式学习从二维图像到三维形状的映射关系。
医学图像的处理及三维重建
谢谢观赏!
2020/11/5
50
三维重建的方法
面绘制(Surface Rendering)方法 体绘制(Volume Rendering)方法
面绘制
面绘制可以提供三维物体的表面信息。它 的基本思想是先对体数据中待显示的物体 表面进行分割,然后通过几何单元内插形 成物体表面,最后通过光照、明暗模型进 行渲染和消隐后得到显示图像。
体绘制步骤
重建数据的采集 重建数据预处理 计算数据集在显示平面累计投影 构造三维体重建碎片 设置图像的颜色、阴影及显示效果
体绘制显示
体绘制方法的优缺点
优点:由于直接研究光线通过体数据场时 与体素的相互关系,无须构造中间面。体 素中的许多细节信息得以保留,结果的保 真性大为提高。从绘制结果来讲,体绘制 的图像质量通常要优于面绘制。
伦琴发现X射线
医学图像的分类
根据成像设备是对组织结构成像还是对组 织功能成像,将医学图像分成两类,即医 学结构图像和医学功能图像。 医学结构图像:X线图像、CT图像、MRI 图像、B超图像等 医学功能图像:PET图像,SPECT图像、 功能磁共振图像(fMRI)等
CT成像设备
CT图像
MRI成像设备
面绘制的方法
边界轮廓线表示法:首先通过分割对二维断 层图像提取轮廓线,然后把各层对应的轮廓 线拼接在一起表示感兴趣物体的表面边界。
表面曲面表示法:基于表面曲面的表示方法 是由轮廓重建物体的表面,用三角形或多边 形的小平面(或曲面)在相邻的边界轮廓线间 通过特定的算法填充形成物体的表面。
经典算法
最高 高
较低
绘制速度 快 快 慢 较慢
慢 较快
快
算法特点
内存开销小
简单快捷,内存开销 小
基于医学CT图像的三维重建研究
基于医学CT图像的三维重建研究本文探讨了DICOM文件系统的结构和解析方法、医学CT图像窗宽/窗位调节技术及其三维可视化算法,描述了系统的结构和各功能模块的实现方法。
有效地实现了符合DICOM标准的医学CT图像的三维可视化,为影像诊断提供了形象直观的技术方法。
标签:可视化;医学图像;体绘制;面绘制随着可视化技术的发展,现代的许多医学图像设备都是向提供三维图像发展,目前三维CT、三维超声均可提供三维影像,如通用电气、西门子等成像设备制造商均生产三维CT产品,但是这些设备价格相当昂贵。
通过计算机图像图形学技术和可视化技术,对二维CT图像进行后处理,根据输入的各图像参数直接在PC机上实现三维影像重建具有十分现实的意义。
1 三维可视化系统技术研究符合DICOM标准的CT图像的三维可视化系统必须具有的基本功能是DICOM文件的解析功能,用于提取出重建的数据场和空间信息。
针对医学CT 图像的特殊性,必须具有窗宽/窗位的调节功能,还必须具有体数据场的三维可视化功能。
1.1 DICOM文件的解析功能DICOM标准的提出使得医学图像及各种数字信息在计算机之间的传递有了一个统一的规范,DICOM标准不但规定了通讯的标准,也规定了医学图像特定的存储格式。
DICOM文件一般由一个DICOM文件头和一个DICOM数据集构成,在DICOM文件头中包含了标识数据集合的相关信息,DICOM文件的信息主要集中在数据集部分。
DICOM数据集又由数据元素组成,数据元素主要由4个部分组成:标签、数据长度VL、数据域和数据描述VR。
不同的标签规定了后续数据域中数据对应实体的内容,数据元素按标签的升序排列构成数据集。
DICOM文件解析目的是通过分析符合DICOM标准的CT图像的文件中各数据元素,从给定的序列文件中按标签号逐个提取出重建中需要用到的信息,分析判断各图片之间的空间关系,构造数据场,作为可视化系统的原始输入数据。
1.2 窗宽/窗位调节功能通过DICOM文件解析获得的CT图像各象素比特深度一般为12位,存储位为16位,目前计算机能够显示的灰度级只有8位,因此在重建前要完成16位到8位灰度级的映射功能,这在CT图像的处理中称为窗宽/窗位的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
李健,杨冬茹等. CT扫描结合Mimics三维成像软件对上 扫描结合Mimics [9]李健,杨冬茹等. CT扫描结合Mimics三维成像软件对上 颌第二磨牙的三维重建[J].现代口腔医学杂志 2008, 颌第二磨牙的三维重建[J].现代口腔医学杂志,2008,22 [J].
(5):550-553 ):550550
Sarti, Gori, [14]Alessandro Sarti,Roberto Gori,Claudio Lamberti. A Physieally based model to Simulate maxillo faeial surgery from 3D CT images [J]. Systems,1999, Future Generation Computer Systems,1999,15. [15]赵惠军 王波.基于MRI的盆底组织结构三维重建[J]. 赵惠军, MRI的盆底组织结构三维重建 [15]赵惠军, 王波.基于MRI的盆底组织结构三维重建[J]. 第四军医大学学报,2008,29(14):1317):1317 第四军医大学学报,2008,29(14):1317-1318. [16]巩磊 傅戈雁. 巩磊, [16]巩磊,傅戈雁.快速成型与逆向工程技术及其在医学 中的应用[J].新技术新工艺 新技术新工艺, ):67 67中的应用[J].新技术新工艺,2006, (3):67-69. [17]游素兰 黄远亮.应用M 游素兰, ics软件建立下颌无牙颌 [17]游素兰,黄远亮.应用M im ics软件建立下颌无牙颌 三维有限元模型[J].口腔医学研究,2008,24( ):381 [J].口腔医学研究 381三维有限元模型[J].口腔医学研究,2008,24(4):381383 [18]黄磊 白光辉.多层螺旋CT 黄磊, [18]黄磊,白光辉.多层螺旋CT 三维重建在先天性支气管 起源异常诊断中的应用[J].温州医学院学报,2008 [J].温州医学院学报,2008, 起源异常诊断中的应用[J].温州医学院学报,2008,38
很大差异,其中较有代表性的是比利时Mater1alise公司 的MIMIcs软件[8-11],它是交互式医学图像控制系统的简 称,其相对而言较成熟、应用功能较多。 我国浙江大学反求工程CAD实验室是国内进行反求工程 研究比较早的单位之一,在CT复原三维模型方面开展了大 量的工作,推出了RE一SOFT软件系统,解决了该软件和他 CAD软件的数据转换问题。上海交通大学逆向工程在医学 上的应用起步较早,与临床结合好,己取得很多实际成 果,如开发了与Mimics功能相近的Quickform软[12] ,并 应用于临床,取得很大的成功,在国内影响很大,同时它 在医学假体CAD/CAM等领域取得较大成果。以CAD/CAM为基
3.3图像的平滑与锐化 3.3图像的平滑与锐化
在图像数据的获取过程中,各电子器件的随机扰动不可 避免地会带来噪音,造成图像质量的退化、降低。为确保 图像质量,需对图像进行预处理,以去除噪音。噪音去除 的方法很多,但一般采用不同的滤波方式借助模板结合邻 域操作来完成,根据滤波功能又可分为平滑(低通滤波)和 锐化(高通滤波)。平滑的目的是模糊,在提取较大目标前 去除太小的细节或将目标内的小间断连接起来,并消除噪 音;锐化的目的是增强被模糊的细节。
基础的定做式人工髓关节也己经应用到医疗实践中[13]。清 华大学激光快速成型中心可以进行ct反求方面的工作。[14]
3.图形处理基本理论及方法 3.图形处理基本理论及方法
要实现CT断层图像的三维重建,首先要对二维CT图像处 理,提高图片质量。由于医学cT图像本身就是一种数字图 像,数字图像处理的基本理论及方法也适用于CT图像。本 章系统地介绍了第四章医学图像处理及三维重建软件开发 中所运用到的图像预处理、灰度图像二值化、图像增强、 图像分割等基本理论及相关的算法。
CT图像处理及三维重建技术
1.问题的提出及其研究意义 1.问题的提出及其研究意义 2.国内外的研究现状 2.国内外的研究现状 3.图像处理基本理论及方法 3.图像处理基本理论及方法 4. 三维重建基本理论及方法 5.参考文献 5.参考文献
1.问题的提出及其研究意义 问题的提出及其研究意义
随着医学数字成像技术的飞速发展及其在临床诊断中 的广泛应用,先进的医学断层仪器,如计算机断层扫描 等医学成像设备采集人体器官[1]、骨骼[2]、关节[3]等部位 的影像数据为医学研究与诊断提供高质量的二维断层图像 信息,同时也为反求工程在医学上的应用提供了良好的条 件。同时ct技术也已经广泛应用于建筑学,混凝土中的 破损机理的分析,实现了混凝土技术的三维重建[4];人们 也利用ct采集无损原木的切片图像,实现图片重建,这对 无损检测具有重要意义[5];在工业上,利用三维重建技 术,实现ct图像的可视化研究,提高无损检测准确性[6]。
3.2中值滤波 3.2中值滤波
CT图像的形成中会引入不同的噪音,为了确保图像的质 量,需要去除噪音,中值滤波能够有效地去除尖峰信号, 削平振动噪音,而对阶梯或陡然下降信号却能很好地保 留,因此它既能有效地抑制噪音,又能很好地保留有效信 号。另外,中值滤波不需要做乘除运算,处理速度也较 高,因此非常适合于CT图像的平滑和去噪处理。中值滤波 是抑制噪音的一种非线性的信号处理。
3.1灰度图像二值化 3.1灰度图像二值化
灰度图像二值化的目的是对图像进行分割,对于CT图像 的分割,主要是骨组织和软组织的分割,而二者的灰度值 相差很大,所以可以采用阈值分割法将其分离出来。具体 的方法就是根据灰度图像的分布,选定一个灰度值作为标 准值,然后将图像矩阵中每像素的灰度值与标准阈值比 较,这样就将一幅灰度图像转化为一幅黑白二值图像,实 现关节软组织和骨主体边界轮廓的清晰区分实现图像分割
[10]徐亮,周家镇等. MimicsV1010软件STL模块与FEA模块 软件STL模块与FEA [10]徐亮,周家镇等. MimicsV1010软件STL模块与FEA模块 徐亮 2008, 在医学三维重建中的关系[J].中国现代药物应用,2008,2
(6):17-18 ):1717
[11]谢宏刚, 徐亮等.对Mimics V10. 0 软件三种三维重 [11]谢宏刚, 谢宏刚 2008,20( ):1089 1089建方法的研究[J].西部医学,2008,20(5):1089-1091 金刚,李德华,李泽宇. [12] 金刚,李德华,李泽宇.三维激光彩色扫描仪中物体 表面色彩信息获取[J].华中理工大学学报,1999, [J].华中理工大学学报 表面色彩信息获取[J].华中理工大学学报,1999,7. 刘非,李涤尘等. [13] 刘非,李涤尘等.基于反求工程的个体匹配化骨骼制 造方法的研究[J].西安交通大学学报,2002, [J].西安交通大学学报 造方法的研究[J].西安交通大学学报,2002,9(36).
[5]陈雷,杨丽娟等.原木CT 图像的三维重建[J]. [5]陈雷,杨丽娟等.原木CT 图像的三维重建[J]. 国外电 陈雷 子元器件, 2008,( ):77 ,(9 77子元器件, 2008,(9):77-79 [6]曾理 安贝贝等.工业CT 曾理, CT图像中小间隙裂纹的亚像素测 [6]曾理,安贝贝等.工业CT图像中小间隙裂纹的亚像素测 量方法[J]. 计算机工程与应用, 2010,46(30):230):230 量方法[J]. 计算机工程与应用, 2010,46(30):230236 J.Dusaussay, [7] Nieolas J.Dusaussay,Robert N.Yaneey et al. CT一 Image Proeessing for CT一Assiste Reverse PartCharaeterization[J].IEEE, Engineering and PartCharaeterization[J].IEEE, vol.4,no.2, vol.4,no.2,2002. [8]鲍春雨 刘晋浩等.基于CT CT图像人体脊柱腰椎节 [8]鲍春雨 ,刘晋浩等.基于CT图像人体脊柱腰椎节 段逆向工程研究[J].机械设计,2008,25( ):16 [J].机械设计 16段逆向工程研究[J].机械设计,2008,25(9):1618
面绘制方法是基于二维图像边缘或轮廓线提取,通过 几何单元拼接拟合物体表面来描述物体三维结构的,称为 基于表面的三维面绘制方法,又称为间接绘制方法。 体绘制方法则是直接应用视觉原理,将体素投影到显 示平面的方法,称为基于体数据的体绘制方法,又称为直[l]张建华, 甘新莲等 多层螺旋CT [l]张建华, 甘新莲等.多层螺旋CT 三维重建技术在孤立 张建华 性肺结节的临床应用价值[J].中国医学影像技术,2004, [J].中国医学影像技术 性肺结节的临床应用价值[J].中国医学影像技术,2004, 20(12):1907):1907 20(12):1907-1910 [2]张玉兰 郑晓林等 多层螺旋CT CT后处理技术在下颌骨骨 [2]张玉兰 郑晓林等.多层螺旋CT后处理技术在下颌骨骨 折中的应用[J].中国CT [J].中国 杂志,2010, ):51 51折中的应用[J].中国CT 和MRI 杂志,2010,8(3):5153 [3]王胜林 多层螺旋CT 王胜林. CT三维重建在髋关节疾病及人工关节 [3]王胜林.多层螺旋CT三维重建在髋关节疾病及人工关节 置换中的临床应用[J].中国组织工程研究与临床康复, [J].中国组织工程研究与临床康复 置换中的临床应用[J].中国组织工程研究与临床康复, 2008,12(26):5113-5116 2008,12(26):5113):5113 [4]田威 党发宁等.混凝土CT 图像的3 维重建技术[J]. 田威, [4]田威,党发宁等.混凝土CT 图像的3 维重建技术[J]. 四川大学学报, 2010,42( ):12 12四川大学学报, 2010,42(6):12-16
4.三维重建基本理论及方法 4.三维重建基本理论及方法
由一系列二维CT断层图像上的轮廓线重构三维形体, 即医学图像的三维重建实质上个三维数据的生成及显示的 可视化问题。三维重建技术能充分利用CT、MR工等医学图 像数据。 医学图象的三维重建就是根据输入的断层图象序列, 经分割和提取后,构建出待建组织的三维几何表达,这种 三维几何表达的模型最常用的就是表面模型。表面模型一 般以平面片特别是三角面片来逼近表示,对于封闭的表 面,构成一多面体,这时也称多面体模型。医学图像三维 重建的方法主要有面绘制和体绘制两类。