小学六年级奥数新定义运算
六年级奥数--定义新运算
六年级奥数——定义新运算2019.06一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b)。
求27*9。
2.设2*2a b a b=+,那么求10*6和5*(2*8)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
【思路导航】经过观察,可以发现本题的新运算“*”被定义为: 因此练习3:1.如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,……那么4*4=________。
六年级奥数定义新运算
第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义, 从而解答某些算式的一种运算.解答定义新运算, 关键是要正确地理解新定义的算式含义, 然后严格按照新定义的计算程序, 将数值代入, 转化为常规的四则运算算式进行计算.定义新运算是一种人为的、临时性的运算形式, 它使用的是一些特殊的运算符号, 如:*、△、⊙等, 这是与四则运算中的“+、-、×、÷”不同的.新定义的算式中有括号的, 要先算括号里面的. 但它在没有转化前, 是不适合于各种运算定律的.二、精讲精练【例题1】假设a*b=(a+b)+(a-b), 求13*5和13*(5*4).练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).. 求27*9.2、设a*b=a2+2b, 那么求10*6和5*(2*8).【例题2】设p、q是两个数, 规定:p△q=4×q-(p+q)÷2. 求3△(4△6).练习2:1、设p、q是两个数, 规定p△q=4×q-(p+q)÷2, 求5△(6△4).2、设p、q是两个数, 规定p△q=p2+(p-q)×2. 求30△(5△3).【例题3】如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, 4*2=4+44, 那么7*4=________;210*2=________.练习3:1、如果1*5=1+11+111+1111+11111, 2*4=2+22+222+2222, 3*3=3+33+333, ……那么4*4=________.2、规定, 那么8*5=________.【例题4】规定②=1×2×3, ③=2×3×4 , ④=3×4×5, ⑤=4×5×6, ……如果1/⑥-1/⑦ =1/⑦×A, 那么, A是几?练习4:1、规定:②=1×2×3, ③=2×3×4, ④=3×4×5, ⑤=4×5×6, ……如果1/⑧-1/⑨=1/⑨×A, 那么A=________.2、规定:③=2×3×4, ④=3×4×5, ⑤=4×5×6, ⑥=5×6×7, ……如果1/⑩+1/⑾=1/⑾×□, 那么□=________.【例题5】设a⊙b=4a-2b+ ab /2,求x⊙(4⊙1)=34中的未知数x.练习5:1、设a⊙b=3a-2b, 已知x⊙(4⊙1)=7求x.2、对两个整数a和b定义新运算“△”:a△b= , 求6△4+9△8.3、设M、N是两个数, 规定M*N=M/N+N/M, 求10*20-1/4.三、课后作业1、设a*b=3a-b×1/2, 求(25*12)*(10*5).2、如果2*1=1/2, 3*2=1/33, 4*3=1/444, 那么(6*3)÷(2*6)=________.3、如果1※2=1+2, 2※3=2+3+4, ……5※6=5+6+7+8+9+10, 那么x※3=54中, x=________.4、对任意两个整数x和y定于新运算, “*”:x*y=(其中m是一个确定的整数). 如果1*2=1, 那么3*12=________.面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
小学六年级奥数 新定义运算
第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、?等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a*b =(a+b)×(a-b),求27*9。
2、设a*b=a 2+2b ,求10*6和5*(2*8)。
3、设a*b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q-(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111111111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa =+++⋅⋅,那么8*5= 。
完整版)六年级奥数定义新运算及答案
完整版)六年级奥数定义新运算及答案1.根据定义,(2※3)※5=(3+2)×3※5=5×15=75.2.根据定义,a△5=(a-2)×5=30,解得a=8.3.根据定义,(18,12)+[18,12]=6+36=42.4.先计算括号内的值:(68)(35)=(6+8-1)+(3×5-2)=(13)+(13)=26,再将4与26相乘,得到104.5.=8,=25,=2,因此++××>=+>=29.6.根据定义,x⊙5=3x-10,5⊙x=3×5-2x,因此有3x-10+5=2x+15,解得x=20.7.根据定义,a※b=(b+a)×b,因此4※5=(5+4)×5=45.8.根据定义,(x※3)※4=x(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)(x+7),因此x=7.9.根据定义,1※2=a+b-c,2※3=2a+3b-6c,因此有a+b-c=3,2a+3b-6c=4,解得a=2,b=1,c=0,因此m的数值是0.10.(1) 根据定义,4△3=1,8△5=3,因此(4△3)+(8△5)=1+3=4;(2) 根据定义,2△3=-1,(-1)△4=3,因此(2△3)△4=3;(3) 根据定义,2△5=-3,3△4=1,因此(2△5)△(3△4)=-2.11.(1) 根据定义,3※4=1,1※9=8,因此(3※4)※9=8;(2) 这个运算不满足交换律,也不满足结合律,因为a※b的结果取决于a和b的大小关系。
12.(1) 根据定义,(2※3)※4=13,2※(3※4)=28;(2) 根据定义,a※3=(2a+3)/(2b+a),因此有2a+3=6,2b+a=9,解得a=3,b=3/2.13.根据定义,12⊙21=252-3=249,5⊙15=75-5=70.4⊗26。
4×26﹣2。
六年级奥数定义新运算及答案
六年级奥数定义新(Xin)运算及答案1.规(Gui)定:a※b=(b+a)×b,那(Na)么(2※3)※5= 。
2.如(Ru)果a△b表(Biao)示,例(Li)如3△4,那(Na)么,当a△5=30时(Shi), a= 。
3.定义运算“△”如下:对于两个自然数a和b,它们的最大公约数与最小公倍数的和记为a△b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b是任意有理数,我们规定: a⊕b= a+b-1,,那么。
5.x为正数,<x>表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是。
6.如果a⊙b表示,例如4⊙5=3×4-2×5=2,那么,当x⊙5比5⊙x大5时,x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a※b=.如果(x※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x※y=,其中的表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x※m=x(m≠0),则m的数值是。
10.设a,b为自然数,定义a△b。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a,b为自然数,定义a※b如下:如果a≥b,定义a※b=a-b,如果a<b,则定义a※b= b-a。
(1)计算:(3※4)※9;(2)这个运算满足交换律吗?满足结合律吗?也是就是说,下面两式是否成立?①a※b= b※a;②(a※b)※c= a※(b※c)。
12.设a,b是两个非零的数,定义a※b。
六年级奥数《新定义运算》
定义运算是指用一个符号和已知运算表达式表示一种新的运算。
解答定义运算,关键要正确理解定义运算的含义,然后严格按 照定义运算的计算程序,将数值代入,转化为常规的四则运算
进行计算。
定义运算的特殊符号:※、#、§、$等,与+、-、×、÷不同 。
例1、假设aϴb=(a+b)+(a-b),求13ϴ5和13ϴ(5ϴ4)
练习1、a⊕b=3a-2b,已知x⊕(4⊕1)=7,求x。
练习1、规定:=1×2×3,=2×3×4,④
=3×4×5,⑤=4×5×6......如果1/⑧-1/⑨= 1/⑨ ×A, 那么A是几?
练习2、如果1⊙2=1+2,2⊙3=2+3+4....
5⊙6=5+6+7+8+9+10,那么在x⊙3=54中,x等于多少?
例1、a⊕b=4a-2b+1/2ab,已知x⊕(4⊕1)=34,求x
10ӿ20-1/4
例3、如果1ӿ5=1+11+111+1111+11111,
2ӿ4=2+22+222+2222,3ӿ3=3+33+333,4ӿ2=4+44 那么7ӿ4=( ),210ӿ2=( )
例4、规定:=1×2×3,=2×3×4,④=3×4×5,
⑤=4×5×6......如果1/⑥-1/⑦= 1/⑦×A,那么A是 几?
练习1、假设a※b=(a+b)×(a-b),求27※9
Байду номын сангаас
练习2、a#b=3a-b×1/2,求(25#12)#(10#5)
例2、设p、q是两个数,规定pΔq=4×q-(p+q)÷2
(完整)小学六年级奥数——新定义运算
第一周定义新运算【名言警句】天才由于积累,聪明在于勤奋。
【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、^、与四则运算中“ +、一、X、+ ”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a*b=(a + b) + (a-b),求13*5 和13* ( 5*4)。
【举一反三】1、设a*b=(a+b) x (a-b),求27*9华罗庚等,这是2、设a*b=a2+2b,求10*6 和5*(2*8)。
3、设a*b=3a —b x -,求(25*12 ) * (10*5 )。
2求3 △( 4 △ 6)例2、设p、q是两个数,规定:p△q=4 Xq—(p + q)【举一反三】求5 △( 6 △ 4 )。
1、设p、q是两个数,规定: p A q=4 Xq—(p +q)2、设p、q是两个数,规定: p A q=p2+ (p —q) X2求30 △( 5 △ 3 )。
3、设M、N是两个数,规定:M * N10 * 20--4例3、如果1 *3 * 3 13311 111 11114 * 2333,11111,2 * 4 2 22 222 2222,4 44,那么7 * 4 ______ ;210 * 2【举一反三】1、如果1 * 53 * 31133111333,1111…那么11111, 2 * 44 * 42、规定a * b aa aaa aa a,那么8 *(b-1 )个a3、如果2 * 113334L,那么(64442 22 222 2222,* 3) (2*6)例4、规定② 3 4,④ 3 4 5 ,⑤ 4 5 6,…如果那么,A是几?三】1、规定:②11 1⑧⑨2 3,③ 23 4,④ 34 5,⑤ 45 6,…如果】A,那么A=⑨2、规定:③21 1⑩石3 4,④ 34 5,⑤ 4 56,⑥1石W,那么口= ----------------5 6 7,…如果3、如果 1 2=1+2 ,2 3=2+3+4,…,5 6=5+6+7+8+9+10,那么,在X 3=54 中, X = ______ 例5、设a e b 2b 护,求X e(4 e 1)34中的未知数x三】1、设a e b 3a 2b,已知x e (4 e 1) 7,求x。
小学六年级奥数——新定义运算()
第一周 定义新运算【名言警句】天才由于积累,聪明在于勤奋。
?——华罗庚【知识点精讲】一、什么是定义新运算?定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、 等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a *b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】1、设a *b =(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×21,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)【举一反三】1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*M N M N N M =+,求110*204-。
例3、如果1*51111111=++++,2*42222222222=+++,3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】1、如果1*5111111=++++,2*42222222222=+++,3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa aa a =+++⋅⋅⋅⋅⋅⋅,那么8*5= 。
第1讲 定义新运算
• 定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如: *、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
• 新定义的算式中有括号的,要先算括号里面的。但它在没有转化前,是不适合于各种运 算定律的。
【例题1】
小学奥数举一反三(六年级)第1讲 定义新运算
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
第1讲 定义新运算
六年级
小学奥数
举一反三
知识要点
小学奥数举一反三(六年级)第1讲 定义新运算
• 定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
• 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算 程序,将数值代入,转化为常规的四则运算算式进行计算。
举一反三 3-1:
小学奥数举一反三(六年级)第1讲 定义新运算
如果1*5=1+11+111+1111+11111,
2*4=2+22+222+2222,3*3=3+33+333,……那
么4*4=________。
举一反三 3-ቤተ መጻሕፍቲ ባይዱ:
小学奥数举一反三(六年级)第1讲 定义新运算
规定,
那么
8*5=________。
小学奥数举一反三(六年级)第1讲 定义新运算
如 果 1 * 5 = 1 + 11 + 111 + 1111 + 11111 , 2 * 4 = 2 + 2 2 + 2 2 2 + 2 2 2 2 , 3*3=3+33+333,4*2=4+44,那么7*4=________; 210*2=________。
六年级奥数第1讲定义新运算
定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
⑴13*5=(13+5)+(13-5)=18+8=26⑵5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
六年级奥数-定义新运算
定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学六年级奥数 第六章 定义新运算
第六章 定义新运算知识要点加、减、乘、除四则运算是数学中最基本的运算,它的意义、法则已被我们所熟知。
所谓“定义新运算”,是以四则运算为基础,以一种特殊的符号来表示的特别定义(规定)的运算。
运算时要严格按照新运算的定义进行代换,再进行计算。
具体程序如下:1.代换。
即按照定义符号的运算方法,进行代换。
注意此程序不能轻易改变原有的运算顺序。
2.计算。
准确地计算代换后的算式结果。
例1 (第五届“希望杯”邀请赛试题)对于非零自然数a 和b ,规定符号⊗的含义是:a ⊗b =2m a b a b⨯+⨯⨯(m 是一个确定的整数)。
如果1⊗4=2⊗3,那么3⊗4= 。
点拨 首先,应确定所定义新运算中待定的常数m ,利用1⊗4=2⊗3,求出m 的值,再求3⊗4的值。
解 因为a ⊗b =2m a b a b⨯+⨯⨯ 所以1⊗4=14214m ⨯+⨯⨯=48m + 2⊗3=23223m ⨯+⨯⨯=2312m + 又已知 1⊗4=2⊗3所以48m +=2312m + 即 31224m +=4624m + 于是 3m +12=4m +6解得 m =6从而 3⊗4=634234⨯+⨯⨯=2224=1112说明 要准确理解新运算⊗的含义,将特定的⊗转化为普通的加、乘、除运算。
例2 定义运算“*”,对于任意数a 和b ,有a*b =a×b-(a +b)。
计算:(1)7*8;(2)12*4;(3)(3*5)*7;(4)4*(9*10).点拨 (1)、(2)根据题意可知“a*b =a×b-(a +b)”,两个数按定义的运算步骤是两个数的积减去这两个数的和。
(3)先计算出括号中3*5的值,得3*5=3×5-(3+5)=15-8=7。
求出括号内的值是7,原式(3*5)*7可化简为7*7,再计算出它的值即可。
(4)先计算9*10的值,9*10=9×10-(9+10)=90-19=71。
进而求4*(9*10),即4*71的值。
(完整版)六年级奥数定义新运算及答案
定义新运算1.规定:a ※b=(b+a)×b,那么(2※3)※5= 。
2.如果a △b 表示b a ⨯-)2(,例如3△444)23(=⨯-=,那么,当a △5=30时, a= 。
3.定义运算“△”如下:对于两个自然数a 和b,它们的最大公约数与最小公倍数的和记为a △b.例如:4△6=(4,6)+[4,6]=2+12=14.根据上面定义的运算,18△12= 。
4.已知a,b 是任意有理数,我们规定: a ⊕b= a+b-1,2-=⊗ab b a ,那么[]=⊗⊕⊕⊗)53()86(4 。
5.x 为正数,<x>表示不超过x 的质数的个数,如<5.1>=3,即不超过5.1的质数有2,3,5共3个.那么<<19>+<93>+<4>×<1>×<8>>的值是 。
6.如果a ⊙b 表示b a 23-,例如4⊙5=3×4-2×5=2,那么,当x ⊙5比5⊙x 大5时, x= 。
7.如果1※4=1234,2※3=234,7※2=78,那么4※5= 。
8.规定一种新运算“※”: a ※b=)1()1(++⨯⋅⋅⋅⨯+⨯b a a a .如果(x ※3)※4=421200,那么x= 。
9.对于任意有理数x, y,定义一种运算“※”,规定:x ※y=cxy by ax -+,其中的c b a ,,表示已知数,等式右边是通常的加、减、乘运算.又知道1※2=3,2※3=4,x ※m=x(m ≠0),则m 的数值是 。
10.设a,b 为自然数,定义a △b ab b a -+=22。
(1)计算(4△3)+(8△5)的值;(2)计算(2△3)△4;(3)计算(2△5)△(3△4)。
11.设a ,b 为自然数,定义a ※b 如下:如果a ≥b ,定义a ※b=a-b ,如果a<b ,则定义a ※b= b-a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一周 定义新运算
【名言警句】
天才由于积累,聪明在于勤奋。
?
——华罗庚
【知识点精讲】
一、什么是定义新运算?
定义新运算指用一个符号和已知运算表达式表示一种新的运算。
二、怎么解答定义新运算?
解答这类题关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程式,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种特别设计的运算形式,它使用的是一些特殊的运算符号,如*、△、▽、⊙、 等,这是与四则运算中“+、-、×、÷”不同。
新定义运算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例1、假设a *b=(a +b)+(a-b),求13*5和13*(5*4)。
【举一反三】
1、设a *b =(a+b)×(a-b),求27*9。
2、设a *b=a 2+2b ,求10*6和5*(2*8)。
3、设a *b=3a -b ×2
1,求(25*12)*(10*5)。
例2、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求3△(4△6)
【举一反三】
1、设p 、q 是两个数,规定:p △q=4×q -(p +q) ÷2。
求5△(6△4)。
2、设p 、q 是两个数,规定:p △q=p 2+(p -q) ×2。
求30△(5△3)。
3、设M 、N 是两个数,规定:*
M N M N N M =+,求110*204-。
例3、如果1*5111111111111111=++++,2*42222222222=+++,
3*3333333=++,4*2444=+,那么7*4= ;210*2= 。
【举一反三】
1、如果1*5111111111111111=++++,2*42222222222=+++,
3*3333333=++,…那么4*4= 。
2、规定*a b a aa aaa =+++⋅⋅,那么8*5= 。
a
3、如果12*12=,13*233=,14*3444
=,那么((26*)3)*6÷= 。
例4、规定123②=⨯⨯,234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,…如果
1
1
1
A ⑥⑦⑦-=⨯。
那么,A 是几?
【举一反三】
1、规定:123②=⨯⨯,234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,…如果
1
1
1
A ⑧⑨⑨-=⨯,那么A= 。
2、规定:234③=⨯⨯,345④=⨯⨯,456⑤=⨯⨯,567⑥=⨯⨯,…如果
1
111111
⑩-=⨯W ,那么□= 。
3、如果1✍2=1+2,2✍3=2+3+4,…,5✍6=5+6+7+8+9+10,那么,在X ✍3=54中,X
= 。
例5、设1422b a b a ab =-+
e ,求(41)34x =e e 中的未知数x 。
【举一反三】
1、设32b b a a =-e ,已知(41)7x =e e ,求x 。
2、对两个整数a 和b 定义新运算“▽”: 2()()
a b a ▽b a b a b -=+⨯-,求6▽4+9▽8。
3、对任意两个整数x 和y 定义新运算“*”:4*3xy x y mx y =
+(其中m 是一个确定的整数)。
如果 1*21=,那么3*12= 。
【家庭作业】
1. 设b a ,表示两个不同的数,规定b a b a 43+=∆.求6)78(∆∆。
2. 定义运算?为a ?b =5×)(b a b a +-⨯.求11?12。
3. b a ,表示两个数,记为:a ※b =2×b b a 4
1-⨯.求8※(4※16)。
4. 设y x ,为两个不同的数,规定x □y 4)(÷+=y x .求a □16=10中a 的值。
5. 规定a ?b
a b a b +⨯=
.求2?10?10的值。
6. Q P ,表示两个数,P ※Q =2Q P +,如3※4=243+=3.5.求?4※(6※8);?如果x ※(6※8)=6,那么=x ? 7. 定义新运算x ⊕y
x y 1+=.求3⊕(2⊕4)的值。
8. 有一个数学运算符号“?”,使下列算式成立:4?8=16,10?6=26,6?10=22,18?14=50.求7?3=?
9. “▽”表示一种新运算,它表示:)8)(1(11+++=
∇y x xy y x .求3▽5的值。
10. b
a b a b a ÷+=∆,在6)15(=∆∆x 中.求x 的值。
11. 规定xy y x xA y x ++
=∆,而且1∆2=2∆3.求3∆4的值。
12. 规定a ⊕)1()2()1(-+++++++=b a a a a b Λ,(b a ,均为自然数,a b >).如果x ⊕10=65,那么=x ?
13. 对于数b a ,规定运算“▽”为)5()3(-⨯+=∇b a b a .求)76(5∇∇的值。
14. y x ,表示两个数,规定新运算“?”及“△”如下:x ?y x y 56+=,x △xy y 3=.求(2?3)△4的值。