大学物理实验磁滞回线实验分析
磁滞回线实验报告
磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。
本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。
实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。
在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
这种现象被称为磁滞回线。
实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。
2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。
3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。
4. 将磁场强度计放置在试管旁边,并将其连接至计算机。
5. 将磁铁靠近试管,使磁场强度计读数开始增加。
6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。
7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。
8. 根据记录的数据,绘制磁滞回线图。
实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。
在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。
根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。
铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。
这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。
2. 磁滞回线的形状与外加磁场的变化速度有关。
当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。
这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。
3. 磁滞回线的形状与材料的磁饱和性有关。
磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。
当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。
磁滞回线的测量实验报告
磁滞回线的测量实验报告一、实验目的1.了解磁滞回线的概念和特点;2.学习使用霍尔传感器测量磁场强度;3.掌握利用实验数据绘制磁滞回线的方法。
二、实验仪器和材料仪器:霍尔元件、磁力计、示波器、直流电源;材料:螺线管、磁铁、导线、万用表。
三、实验原理磁滞回线是磁化物质在外磁场作用下,磁感应强度与磁场强度之间的关系曲线。
当外磁场强度H由小到大变化时,磁感应强度B不仅不是单调变化的,而且在H改变方向时,B经过零点有回弹现象。
这种B-H的关系曲线即为磁滞回线。
磁滞回线可以揭示磁材料的磁化、变磁和反磁过程中的磁场调整以及应力状态等内部状况,对于磁性材料的性能评价具有重要的意义。
四、实验步骤1.准备工作:搭建实验电路,连接霍尔元件、示波器和直流电源;2.将磁力计放置在霍尔元件附近并调整合适的位置;3.施加一定外磁场强度H,并记录示波器上测得的霍尔输出电压UH 与电流电压表测得的霍尔电流IH的数值;4.改变外磁场强度的大小和方向,重复第三步,直到完成一次完整的磁滞回线的测量;5.将测得的磁场强度H和磁感应强度B的数据进行整理。
五、实验注意事项1.实验过程中需保持实验环境的稳定和安静;2.实验中需注意安全,避免磁铁和螺线管等物品的碰撞和意外伤害;3.在调整霍尔元件和磁力计位置时,需保证测量准确性和稳定性;4.测量数据需及时记录并整理,以免丢失。
六、实验结果及数据处理根据实验步骤记录的UH、IH数据,可以得到对应的磁感应强度B和磁场强度H的测量结果。
整理数据后,可以将B-H数据绘制成磁滞回线图。
七、实验结果分析通过实验数据的分析,可以得到磁滞回线的面积、对称性、磁饱和状态等信息。
此外,对于不同材料的磁滞回线,还可以比较其形状和性能差异。
八、实验总结通过本次实验,我们了解了磁滞回线的概念和特点,学习并掌握了使用霍尔传感器测量磁场强度的方法,熟悉了利用实验数据绘制磁滞回线的步骤和技巧。
此外,我们还通过实验结果对不同材料的磁滞回线进行了分析比较,深入了解了磁材料的性能差异和应用前景。
磁滞回线测量实验报告
磁滞回线测量实验报告磁滞回线测量实验报告引言:磁滞回线是描述磁性材料磁化特性的重要参数。
通过对磁滞回线的测量和分析,我们可以深入了解材料的磁性行为,并从中获得有用的信息。
本篇实验报告旨在介绍磁滞回线测量实验的目的、步骤和结果,并对实验所获得的数据进行分析和讨论。
一、实验目的:本次实验的主要目的是通过对某一磁性材料的磁滞回线测量,了解该材料的磁化特性以及磁滞回线的含义。
具体的目标包括:1. 测量和绘制材料的磁滞回线;2. 分析磁滞回线的特征,如饱和磁感应强度、剩余磁感应强度、矫顽力等;3. 通过实验数据,讨论磁滞回线对材料磁性的影响。
二、实验步骤:1. 准备磁性样品和测量设备。
选择一块磁性样品,并将其放置在测量设备中,确保设备已经校准。
2. 施加外加磁场。
通过调节测量设备中的磁场源,逐渐增加外加磁场的强度,使其达到最大值,并将之后逐渐减小。
3. 测量磁滞回线数据。
在每个磁场强度值下,测量并记录材料的磁感应强度。
4. 绘制磁滞回线曲线。
将实验所得的磁感应强度值绘制成磁滞回线曲线。
三、实验结果:在本次实验中,我们测量了某磁性材料的磁滞回线,并得到了以下结果。
磁滞回线曲线如下图所示:[插入磁滞回线曲线图]从图中可以观察到以下几个主要特征:1. 饱和磁感应强度:磁滞回线中的一段水平线段代表材料的饱和磁感应强度。
在这段区域内,无论外加磁场的强度如何增加,材料的磁感应强度都不再增加。
2. 剩余磁感应强度:磁滞回线的起点对应着剩余磁感应强度。
当外加磁场为零时,材料仍然保持一定的磁感应强度,即剩余磁感应强度。
3. 矫顽力:磁滞回线中的一个特征点,即退磁点,表示了磁场逐渐减小时材料需要的磁场强度。
矫顽力越大,说明材料越难退磁。
四、数据分析和讨论:通过实验测量的磁滞回线数据,我们可以对该磁性材料的性质和行为进行一些分析和讨论。
磁滞回线的饱和磁感应强度可以告诉我们材料的磁性能。
当外加磁场的强度超过一定值时,材料将达到饱和,不再对外加磁场变化做出响应。
磁滞回线实验报告精选全文完整版
〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。
〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。
〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。
设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。
抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。
除了磁导率高以外,铁磁材料还具有特殊的磁化规律。
对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。
图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。
如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。
磁滞回线实验报告
一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。
二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。
在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。
磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。
三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。
四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。
五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。
图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。
3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。
矫顽力越大,材料越难退磁,即磁滞特性越好。
(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。
饱和磁感应强度越大,材料的磁导率越高。
(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。
剩磁越大,材料的剩磁特性越好。
动态磁滞回线实验报告
动态磁滞回线实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 动态磁滞回线的概念
1.1.2 动态磁滞回线的影响因素
1.2 实验材料
1.3 实验步骤
1.3.1 准备工作
1.3.2 进行实验
1.4 实验结果分析
1.5 实验结论
实验目的
本实验旨在通过实验观察和测量动态磁滞回线,了解其特性及影响因素,从而加深对磁滞现象的理解。
实验原理
动态磁滞回线的概念
动态磁滞回线是指在磁场强度变化的作用下,磁介质磁化强度随着磁场的变化而发生的磁化-消磁过程。
它是磁介质对外加磁场响应的特征之一。
动态磁滞回线的影响因素
动态磁滞回线的形状和特性受到多种因素的影响,包括磁性材料的种类、外加磁场的频率和强度等。
实验材料
本实验所需材料包括磁性材料样品、磁场强度测量仪器、交变磁场发生器等。
实验步骤
准备工作
1. 将磁性材料样品置于磁场强度测量仪器中。
2. 调节交变磁场发生器的频率和强度参数。
进行实验
1. 开启磁场强度测量仪器和交变磁场发生器。
2. 调节磁场强度测量仪器测量动态磁化曲线。
3. 记录实验数据并进行分析。
实验结果分析
通过实验数据分析,可以观察到动态磁滞回线的形状、变化规律,进一步探讨其在不同条件下的变化趋势和影响因素。
实验结论
根据实验结果分析,可以得出关于动态磁滞回线特性和影响因素的结论,进一步加深对磁滞现象的理解和认识。
动态磁滞回线的测量实验报告
动态磁滞回线的测量实验报告实验目的:测量动态磁滞回线实验器材:1. 变压器2. 电流表3. 电压表4. 磁场计5. 电源6. 载流线圈7. 铁芯实验原理:当铁芯中通过交变电流时,会在铁芯中形成一个交变磁场。
磁场的大小和方向会随着电流的变化而发生变化,从而导致铁芯中的磁化程度发生变化。
磁化程度的变化也会在铁芯上产生一个磁场。
实验步骤:1. 将变压器连接到电源上,并保证电源的稳定。
2. 将电流表和电压表分别连接到变压器的输出端,测量电流和电压的数值。
3. 将磁场计连接到铁芯上的一个侧面,并将另一侧面放置在载流线圈中。
4. 开始测量,通过调整电流的大小和方向来改变铁芯中的电流磁场。
5. 同时通过磁场计来测量铁芯中的磁场的变化情况。
实验结果:根据测量所得的数据,绘制出动态磁滞回线的曲线。
根据曲线可以分析出铁芯的磁滞性能。
实验讨论及结论:根据实验结果,我们可以分析铁芯的磁滞性能。
磁滞回线的形状和大小可以反映出铁芯中的磁化程度和磁化的稳定性。
通过分析磁滞回线,可以得出铁芯的磁导率、矫顽力等参数。
实验的不确定性:由于实验中存在测量误差,可能导致实验结果与实际情况存在一定的差异。
为了减小测量误差,可以多次进行实验并取平均值,或者采用更精确的测量设备。
改进措施:在实验中,可以尝试使用更精确的设备,如数字电流表、数字电压表和高精度磁场计,以提高测量的精确度。
实验的应用:动态磁滞回线的测量可以应用于磁性材料的性能评估、电力设备的设计以及电磁场的模拟等领域。
实验的总结:通过本次实验,我们成功地测量了动态磁滞回线,并对铁芯的磁滞性能进行了分析。
实验结果对于磁性材料的研究和应用具有重要的意义。
同时,在实验过程中我们也发现了一些可以改进的地方,以提高测量结果的精确度。
整个实验过程进行顺利,实验目标得到了实现。
动态磁滞回线的测量实验报告(一)
动态磁滞回线的测量实验报告(一)动态磁滞回线的测量实验报告实验概述•实验目的:测量物质的动态磁滞回线,并分析其磁滞特性。
•实验设备:磁滞计,电磁铁,示波器等。
•实验步骤:–步骤一:连接电磁铁和示波器,并设置示波器的测量范围和采样率。
–步骤二:调节电磁铁的电流,使其从零开始逐渐增加,记录示波器上的磁场变化曲线。
–步骤三:减小电磁铁的电流至零,并逆向增加电流,记录示波器上的磁场变化曲线。
–步骤四:分析记录到的数据,绘制物质的动态磁滞回线图。
实验结果•在示波器上观察到了物质的动态磁滞回线图形。
•磁滞回线图显示了物质在不同磁场强度下的磁化过程,具有磁滞特性。
•通过测量磁滞回线的形状和宽度,可以了解物质的磁化能力和磁滞损耗情况。
实验分析•根据磁滞回线图形的不同,可以判断物质的磁滞性质。
•如果磁滞回线呈现出狭窄而对称的椭圆形,说明物质具有良好的磁滞特性。
•如果磁滞回线呈现出扁平或不对称的形状,则说明物质的磁滞效应较小。
实验总结•动态磁滞回线测量实验是研究物质磁滞特性的重要手段。
•通过测量磁滞回线,可以了解物质的磁化能力和磁滞损耗情况。
•研究物质的磁滞特性对于电磁材料的应用具有重要意义。
参考资料•XXXX,XXXXXXXXX。
•XXXX,XXXXXXXXX。
以上是关于动态磁滞回线测量实验的报告,采用Markdown格式编写,符合相关规则。
对不起,我已经提供了关于动态磁滞回线测量实验的全部报告内容。
在Markdown格式中,使用标题和副标题的形式可以更好地组织文章的结构和内容。
如果您有其他需求或者有其他问题需要解答,请告诉我。
磁滞回线实验报告
磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。
当磁场强度为零时,铁磁性材料的磁化强度也为零。
当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。
当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。
当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。
如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。
二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。
2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。
3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。
4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。
三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。
样品的磁滞回线如图3所示。
根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。
当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。
此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。
四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。
磁滞回线的测量实验报告
磁滞回线的测量实验报告一、实验目的本次实验旨在掌握磁滞回线的测量方法,了解不同材料的磁性特性,并通过实验数据分析得出相关结论。
二、实验原理1. 磁滞回线磁滞回线是指在恒定外加磁场下,材料的磁化强度随着外加磁场强度的变化而发生变化,并且在去除外加磁场后,材料的残留磁化强度不为零而呈现出一个闭合曲线。
这个曲线就是该材料的磁滞回线。
2. 测量方法测量方法有两种:一种是利用霍尔效应测量样品处于不同磁场下的霍尔电压值,得到样品对应的霍尔电压-外加磁场强度曲线;另一种是利用电桥法测量样品处于不同磁场下电桥平衡时,所需的平衡电流或电压值,得到样品对应的平衡电流/电压-外加磁场强度曲线。
三、实验步骤1. 准备工作:将霍尔元件和样品固定在恒温水槽中,将电桥接线好,并调整电桥平衡状态。
2. 霍尔效应法:分别调节外加磁场强度,记录样品对应的霍尔电压值,并绘制出霍尔电压-外加磁场强度曲线。
3. 电桥法:分别调节外加磁场强度,记录样品对应的平衡电流/电压值,并绘制出平衡电流/电压-外加磁场强度曲线。
4. 数据处理:根据实验数据绘制出样品的磁滞回线,并计算出相关参数。
四、实验结果分析1. 样品的磁滞回线根据实验数据绘制出样品的磁滞回线图像,可以看到该样品呈现出一个闭合曲线,在去除外加磁场后仍有一定的残留磁化强度。
通过对该曲线进行分析可以得到该材料的饱和磁化强度、剩余磁化强度、铁损耗等参数。
2. 不同材料的特性比较通过对不同材料进行实验测量并比较它们的磁滞回线图像和参数可以发现,不同材料之间存在明显差异。
例如,某些材料的饱和磁化强度较高,而剩余磁化强度较低;某些材料的铁损耗较小,而饱和磁化强度较低。
这些差异反映了不同材料的磁性特性和应用领域。
五、实验结论本次实验通过霍尔效应法和电桥法测量了样品处于不同磁场下的电学参数,并绘制出了样品的磁滞回线图像。
通过对该曲线进行分析得出了相关参数,并比较了不同材料的特性。
实验结果表明,磁滞回线是描述材料磁性特性的重要指标,可以用于材料选型、质量检测等方面。
磁滞回线实验
磁滞回线实验报告一、实验目的1、用示波器观测软磁材料的交流磁滞回线2、学习标定磁场强度,磁感应强度,测量样品的磁参数3、了解铁磁材料的磁化过程及磁化规律 二、仪器用具磁滞回线实验仪器(两个待测样品、一个软铁、一个硅钢片等),低压交流源,电感,示波器,直流电压源,数字万能表,导线若干。
三、实验原理磁滞回线表现磁场强度周期性变化时,强磁性物质磁滞现象的闭合磁化曲线。
四、实验内容与步骤1、电路连接:选样品1按实验仪上所给电路图连接电路,令1R =2.5Ω,“U 选择”置于0位,H U 和B U 分别接入示波器的“X 输入”和“Y 输入”,插孔为公共端。
2、样品退磁:开启实验仪电源,顺时针方向转动“U 选择”按钮,令U 从0增至3V ,然后逆时针转动旋钮,将U 从最大降至0,消除剩磁。
3、观察磁滞回线:开启示波器电源,令光点位于坐标网格中心,令U=2.2V ,并分别调节示波器X 和Y 轴灵敏度,使显示屏出现图形大小合适的磁滞回线。
4、绘制基本磁化曲线:按步骤二对样品进行退磁,从U=0开始,逐档提高励磁电压,记录下这些磁滞回线第一象限顶点的坐标,其连线就是样品的基本磁化曲线B -H ;再做μ-H 曲线。
5、调节U=1.2V ,1R =2.5Ω,测定样品一的一组UB 和UH ,记录测量数据。
计算出D H 、r B 、m B 和H B ,绘出样品一的磁滞回线。
五、数据记录及处理 1、绘制基本磁化曲线(H U LR N 1H =, B U nS R 22C B = , HB=μ)2、测定样品一的一组UB、UH值六、注意事项1、磁滞回线顶部出现小环,降低励磁电压予以消除。
2、建议选择样品一做实验,测得数据绘制的磁滞回线的图形比较饱满,实验数据更好测量。
3、无信号接入时,因为噪声会产生峰值,但是接入了信号后噪声产生的峰值会消除。
磁滞回线实验报告
磁滞回线实验报告
实验目的:
通过磁滞回线实验,探究磁性材料在外加磁场作用下的磁化特性,了解磁滞回线对磁性材料的影响。
实验原理:
磁滞回线是指在磁化过程中,当外加磁场从零开始增加,然后再减小至零时,磁化强度不完全回复到零的现象。
磁滞回线实验通过测量磁化强度随外加磁场的变化曲线,可以得到磁滞回线的形状和大小,从而分析磁性材料的磁化特性。
实验仪器:
1. 磁滞回线测试仪。
2. 磁性材料样品。
3. 外加磁场源。
实验步骤:
1. 将磁性材料样品置于磁滞回线测试仪中。
2. 通过外加磁场源对样品施加不同大小的外加磁场。
3. 观察并记录磁化强度随外加磁场的变化曲线。
4. 分析磁滞回线的形状和大小,得出磁性材料的磁化特性。
实验结果:
通过实验测量和分析,得到了磁性材料的磁滞回线。
磁滞回线的形状和大小反映了磁性材料的磁滞特性和磁化强度的变化规律。
实验结果表明,不同磁性材料的磁滞回线形状和大小各不相同,这与其磁化特性有关。
实验结论:
磁滞回线实验结果表明,磁性材料在外加磁场作用下会出现磁化强度不完全回复的现象,这是磁性材料的磁滞特性。
通过磁滞回线实验,可以了解磁性材料的磁化特性,为磁性材料的应用和研究提供重要参考。
总结:
磁滞回线实验是研究磁性材料磁化特性的重要手段,通过实验可以得到磁性材料的磁滞回线,从而分析其磁化特性。
磁滞回线实验结果对于磁性材料的应用和研究具有重要意义,为进一步深入研究磁性材料提供了重要参考。
以上为磁滞回线实验报告内容,希望对您有所帮助。
磁滞回线 大物实验报告
磁滞回线大物实验报告一、实验目的本实验的目的是通过测量铁磁材料的磁滞回线来了解材料的磁性质,并观察磁滞回线的特征。
二、实验原理磁滞回线是描述铁磁材料磁化过程的一种曲线。
当外加磁场的强度逐渐增加时,材料开始磁化,产生磁化强度。
当外加磁场达到一定强度时,材料的磁化强度达到饱和值,此时再增大外加磁场对材料的磁化强度影响较小。
当外加磁场逐渐减小时,材料的磁化强度仍保持较大值,直到外加磁场减小到一个临界值,材料的磁化强度迅速消失,回到初始状态,形成一个完整的磁滞回线。
磁滞回线的特征可以用来描述铁磁材料的磁性质,如磁导率、矫顽力等。
三、实验器材和材料- 铁磁材料样品- 恒定磁场源- 恒定电流源- 数据记录仪四、实验步骤1. 将铁磁材料样品放置在恒定磁场源中心,确保样品处于无外加磁场状态。
2. 打开恒定磁场源,设置恒定磁场的强度,并保持一定的时间,使得材料达到饱和磁化状态。
3. 按照预设的实验步骤,逐渐减小恒定磁场的强度,记录每个磁场强度下材料的磁感应强度。
4. 将实验数据输入到数据记录仪中,绘制磁滞回线曲线。
五、实验结果和分析根据实验步骤得到的数据,我们可以绘制出铁磁材料的磁滞回线曲线。
磁滞回线曲线的横轴表示磁场的强度,纵轴表示材料的磁感应强度。
通过观察磁滞回线曲线,我们可以得到以下结论:1. 磁滞回线呈现出环形曲线的特征,环的面积代表了材料的磁化程度。
面积越大,表示材料越易磁化。
2. 磁滞回线曲线的对称轴表示正负磁场对材料磁化的影响是对称的,说明该铁磁材料具有良好的磁导率。
3. 磁滞回线曲线中的纵坐标的最大值表示了材料的饱和磁感应强度,即在给定磁场下,材料可以达到的最大磁化程度。
4. 磁滞回线曲线上的斜率可以用来表示材料的矫顽力,斜率越大,材料的矫顽力越大,说明材料对外加磁场的影响越大。
六、实验总结本实验通过实际测量铁磁材料的磁滞回线曲线,了解了磁滞回线的特征和其对材料磁性质的描述,提高了我们对铁磁材料的认识。
磁滞回线实验报告
磁滞回线实验报告引言:磁滞回线是描述磁材料磁化特性的重要工具,通过这一实验我们可以研究和分析磁场对物质磁性的影响。
本实验旨在通过测量铁磁材料的磁滞回线,探究其磁滞特性,并进一步了解铁磁材料的性质和应用。
实验原理:磁滞回线是磁化曲线的一种特殊形式,它描述了磁场强度和磁化强度之间的关系。
实验中,我们使用了一块铁磁材料样品,通过改变外部磁场的强度和方向,记录不同磁场强度下的磁化强度,从而得到磁滞回线。
实验装置:本次实验所用装置包括一个电源、一个电流表、一块铁磁材料样品和一个磁场强度计。
我们将电流表通过电源与样品连接起来,使电流流经样品,通过磁场强度计测量磁场强度。
实验步骤:1. 将电源与电流表连接好,并设定合适的电流值。
2. 将磁场强度计放置在铁磁材料附近,调整位置使其与样品接触。
3. 通过调节电流表上的电流大小,改变外部磁场的强度和方向,并记录磁场强度计的读数。
4. 循环进行步骤3,直至完成一整个循环,得到完整的磁滞回线。
5. 分析和整理实验数据,绘制磁滞回线图。
实验结果与讨论:通过实验记录的数据,我们得到了一条完整的磁滞回线。
根据磁滞回线图,我们可以观察到以下几个现象:1. 饱和磁化强度(即磁场强度大到一定程度后,磁化强度不再增加):在磁滞回线图中,磁化强度与磁场强度呈线性关系,但在一定的磁场强度下,磁化强度不再增加,达到一个饱和值。
这是因为在饱和状态下,所有的磁矩都已经对齐,并不能再被外部磁场所影响。
2. 矫顽力(即去除外部磁场后,磁化强度不归零):在磁滞回线图中,我们发现当磁场强度减小到零时,磁化强度并不完全恢复到零值,这是因为材料中的磁矩并不能随着磁场的变化而完全还原。
这一现象称为矫顽力,其大小反映了材料的抗磁化能力。
3. 温度对磁滞回线的影响:通过实验我们可以发现,当样品的温度升高时,磁滞回线会发生变化。
温度升高会导致材料的热运动增大,磁矩的定向较难实现,因此磁滞回线会变宽,矫顽力会减小。
磁滞回线实验报告
磁滞回线实验报告磁滞回线实验报告实验目的:研究磁材料的磁滞回线特性。
实验仪器:霍尔效应测量仪、磁感应强度计。
实验原理:磁滞回线是用来描述磁材料磁化与去磁化过程中磁感应强度的关系曲线。
磁滞回线曲线实际上是由两条曲线组成,即磁化过程中的上升曲线和去磁化过程中的下降曲线。
磁滞回线可以显示出材料的磁滞现象,即材料在外加磁场作用下,磁化和去磁化过程中会有一定的延迟和残留磁化。
实验步骤:1. 将磁材料样品放在实验台上,与霍尔效应测量仪和磁感应强度计连接好。
2. 通过调节霍尔效应测量仪的控制面板上的控制钮,可以控制外加磁场的强度和方向。
3. 先将外加磁场值设为零,记录此时的磁感应强度为零磁场磁感应强度。
4. 调节霍尔效应测量仪的控制面板,增加外加磁场的强度,然后记录此时的磁感应强度。
5. 不断增加外加磁场的强度,记录相应的磁感应强度值。
6. 将外加磁场的方向改变,使其减小逐渐降低,直到减小到零,记录下相应的磁感应强度。
7. 所得到的数据可以用来绘制磁滞回线。
实验结果:根据实验得到的数据,绘制出磁滞回线图。
磁滞回线图是一条闭合曲线,上半部分表示样品在外加磁场作用下的磁化过程,下半部分表示去磁化过程。
磁滞回线的形状和特征可以反映出材料的磁性质。
实验分析:根据磁滞回线图可以看出,磁材料在外加磁场作用下,会出现一定的延迟和残留磁化。
这是由于磁材料内部存在磁畴,外加磁场作用下,磁畴的磁化过程会有一定的惯性,即需要一定的时间才能完成磁化或去磁化过程。
在外加磁场取消后,由于磁材料内部的磁畴之间的相互作用,会导致一部分磁化无法完全去除,从而产生残留磁化。
结论:磁滞回线实验可以研究磁材料的磁滞现象,了解材料的磁性质。
通过磁滞回线分析,可以了解磁材料的磁化和去磁化过程中的特点,为磁材料的应用提供参考。
大学物理磁滞回线分析
实验原理
近代科学实验证明,铁磁质的磁性主要来源于电子 自旋磁矩。在没有外磁场的条件下铁磁质中电子自 旋磁矩可以在小范围内“自发地”排列起来,形成一 个个小的“自发磁化区”——磁畴。磁畴的大小、形 状不一,大致说来,每个磁畴约含 1015个原子。每 个磁畴都有一定的磁矩。
铁磁物质磁化过程示意图
铁磁质的特性:
铁磁材料的磁滞回线 和基本磁化曲线
磁介质及其分类
磁介质:磁场和实物物质间总存在着相互作用,我 们通常把与磁场有相互作用从而影响原磁场的物质 称为磁介质。在此意义下,所有的物质都可称为磁 介质。
磁介质的磁化:磁场对磁场中的物质的作用称为磁 化。当有外磁场存在时,由于磁场与磁介质的相互 作用,磁介质内的分子磁矩沿着磁场(或相反方向) 取向,从而产生一附加磁场,叠加在原磁场上。
铁磁质(铁、钴、镍等)
本实验研究研究对象是铁磁质。
实验目的
1.认识铁磁物质的磁化规律,比较两种典型的铁磁 物质的动态磁化特性。 2.测绘样品的磁滞回线,比较其磁滞损耗大小。 3.测定样品的BS、HS、Br、HD等参数。 4.测定样品的基本磁化曲线,作μ—H曲线。
实验仪器
样品:
EI型硅钢片
TH-MHC磁滞回线实验仪
4. 取U1≈200mV,R1=2.5Ω,在示波器的荧光屏 上调整出适合观察的样品1、2的磁滞回线,分别测 定并计算有关数据计入表17.1中以备绘图之用。
5. 调实验仪“U调节”旋钮及信号源输出旋钮使U1较 小,然后每隔10mV依次增大U1的输出,用万用表 测定样品2的一~二十组不同U1值时的U2(B)值, 结果记录于表17.2中。
特点:剩余磁感应强度大,接近 饱和磁感应强度,矫顽力 小,磁滞回线接近于矩形。 应用:作计算机中的记忆元件。
实验报告 磁滞回线
系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________【实验名称】静态法测量软磁材料的磁滞回线和示波器观测动态磁滞回线【目的要求】i)了解电子积分器的工作原理和使用方法;ii)用静态磁参数测试仪测量软磁材料的磁化曲线和静态磁滞回线.iii)用示波器观测软磁材料的磁滞回线iv)学习标定磁场强度、磁感应强度,测定样品的参数(B S, B r, H c)【仪器用具】JCC‐Ⅱ型静态磁参数测试仪, 磁参量实验测试板, 测试连接线, 低压电源,变压器,示波器,电阻(2Ω),电感(0.05H),等等等等【实验原理】i)铁磁材料的磁化规律系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________如图所示, 曲线OA 为起始磁化曲线. 开始时, H 和B 均为0, 随着H 的增加, B 开始增加较为缓慢, 然后经过一段急剧增加的过程后又缓慢下来. 再继续增大H 时, B 几乎不变, 即达到磁饱和. 我们把闭合曲线Arc’A’r’A 叫做磁滞回线, B S 叫做饱和磁感应强度, B r 叫做剩余磁感应强度, rc’和r’c 称为退磁曲线, H c 称为矫顽力.为了让材料达到稳定状态,本实验选择在饱和电流I s 条件下, 重复按测试仪上的 “换向” 键, 使材料在达到稳定磁化. 只有经过“磁锻炼”后的磁滞回线才能代表该材料的磁滞性质. ii)测量原理和方法(1)计算磁化场的磁场强度H112()IH R R πΝ=+ (0.1)其中N 1为励磁线圈匝数, R 1, R 2为环的内外半径, I 为励磁电流. (2)通过探测线圈的磁通量Φ与该处的磁感应强度B 的关系为:2N BS Φ= (0.2)励磁电流反向引起的磁通量变化为:222N BS ∆Φ=Φ= (0.3)探测线圈两端的感生电动势为:i d e dtΦ=−(0.4) 即:i e dt ∆Φ=−∫ (0.5)本实验利用运算放大器实现积分运算, 其输出电压U 0与输入电压e i 的关系为:01i U e dt RC ≈−∫(0.6) 所以有:022RCB U N S=(0.7) 通过测量积分电压U 0, 可以计算出磁感应强度B, 各个数值在仪器上有标定:系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________N 1 (匝) N 2 (匝) S (mm 2) R 1 (mm) R 2 (mm) RC (s) 560±20400±1026±122250.102iii)示波器观察的原理:示波器两个通道分别接在标准电阻和积分电容上,这样他们的读数分别正比于H 和B. 关系为:H=N1l i1=N1Uch1 lR0=k1Uch1B=R2CN2SUCh2=k2Uch2 R 2C 不好算,我们用标准电感来测量,测量标准电感时候的图线斜率k ,那么我们有:R2C=MkR0k1=N1lR0,k2=M kR0N2S 【实验内容】i)测软磁材料的起始磁化曲线先消磁, 然后将励磁电流由小到大逐渐改变, 直到电流基本达到饱和, 测量电流相对应的积分电压U 0, 根据公式(0.1)和(0.7)求出相应的H 和B. ii)测量软磁材料的静态磁滞回线 (1)测饱和磁感应强度Bs饱和时进行磁锻炼, 积分清零, 电流换向, 测得积分电压U s , 于是有:22S S RCB U N S=(0.8) 此后保持测试仪的电流输出的大小. (2)测剩余磁感应强度B r数字表清零, 撤去励磁电流. 数字表上给出的积分电压记录为U r , 与之对应的磁感应强度的变化ΔB r 为:系别 ___________ 班号 ____________ 姓名 ______________ 同组姓名 __________实验日期 _________________________ 教师评定 ______________2r r RCB U N S∆=(0.9) 因此, 剩余磁感应强度B r 为:r S r B B B =−∆ (0.10)(3)测磁滞回线上第I, Ⅱ, Ⅲ象限的点(a)接通测试板上的分流支路, 调节电位器, 使通过线圈的电流由I S 减小到需要的I 1. (b)断开分流支路, 再饱和电压下对材料磁锻炼.(c)再次接通分流支路, 将数字表清零, 然后断开开关S 2撤去线圈上的电流, 此时数字表上给出的积分电压记录为U 1. U 1对应的是磁感应强度从B 1到B r 的改变, 即:1112r RCB B B N S ∆=−= (0.11) 因而有:11r B B B =+∆ (0.12)(d)数字表清零. 再将开关S 2打向另一方, 即使线圈上的电流方向反向, 数字表上给出的积分电压记录为U 1ʹ , U 1ʹ 对应的是磁感应强度从B r 到B 1ʹ 的改变, 即有:1112r RC B B B U N S ′′′∆=−= (0.13) 因而有:11r B B B ′′=−∆ (0.14)(e)重复上述步骤.iii)测量动态图线:示波器调节到X ‐Y 模式,DC 耦合;连接线路之后,打开电源,然后把稳压电源的输出提高,直到在示波器上看到了图形,这个图形就是所谓动态磁化曲线,记录下曲线同示波器网格的所有交点;然后断开电源,把待测样品取下,换上标准电感,然后打开电源,测量得到的直线的斜率。
大学物理实验教程:磁滞回线测定
(2)根据U=3.0V测定的一组UH、UB、Br、Hc参数,计算出相应的B和H。在直角 坐标纸上画出磁滞回线,即B-H曲线。
四、分析与思考
1.什么是磁滞现象? 2.什么是磁化曲线?什么是磁滞回线? 3.全部完成B-H曲线的测量以前,能不能变动示波器面板上的X、Y轴分度值旋钮?
谢谢观看
1.掌握用磁滞回线实验仪绘制磁滞回线的方法; 2.认识铁磁物质的磁化规律,观察两种典型铁磁物质的磁化特性;
3.测定样品的基本磁化曲线,作μ-H曲线;
4 . 计 算 样 品 的 Hc、H r 、Bm和 Hm等参数; 5.测绘样品的磁滞回线。
1、磁滞回线实验仪 2、双踪示波器
二、实验仪器
磁滞回线实验仪
样品的磁感应强度瞬时值 B与C、R2、N2组成的电路 有关:
实验原理线路图
其中,C、R2、N2和S均为已知常数, 所以由UB可确定B。
1、电路连接
三、实验内容
选取实验仪上的黑色 样品按图连接线路,令
R1=2.5Ω, “U选择”置于
0位。UH和UB分别接示 波器的“X输入”和“Y输 入”,将示波器的 “SEC/DIV”旋钮旋至XY档。
O 基本磁化曲线
5、磁导率
对于基本磁化曲线上的每一点,可 以将磁感应强度Bm与相应磁场强度Hm 之比,定义为磁导率。
因为B与H成非线பைடு நூலகம்关系,故铁磁
材料μ的不是常数,而是随H而变化。
铁磁材料的基本磁化曲线和μ-H的关系
硬磁材料
软磁材料
6、磁性材料分类
特点:磁滞回线狭长、矫顽力、剩磁和磁滞损 耗均较小 应用:制造变压器、电机、和交流磁铁的主 要材料
双踪示波器
三、实验原理
1、铁磁材料的典型磁化特征
大学物理实验报告-磁滞回线研究
磁滞回线研究一、 实验目的:a. 研究磁性材料的动态磁滞回线;a) b.了解采用示波器测动态磁滞回线的原理;b) c. 利用作图法测定磁性材料的饱和磁感应强度B,磁场强度H二、 实验仪器:普通型磁滞回线实验仪DH 4516。
实验原理:当材料磁化时,磁感应强度B 不仅与当时的磁场强度H 有关,而且决定于磁化的历史情况,如图2.3.2-1所示。
曲线OA 表示铁磁材料从没有磁性开始磁化,磁感应强度B 随H 的增加而增加,称为磁化曲线。
当H 增加到某一值H S 时,B 几乎不再增加,说明磁化已达到饱和。
材料磁化后,如使H 减小,B 将不沿原路返回,而是沿另一条曲线ACA 下降。
当H 从-H S 增加时,B 将沿A ’C ’A 曲线到达A ,形成一闭合曲线称为磁滞回线,其中H=0时,r B B ,B r 称为剩余磁感应强度。
要使磁感应强度B 为零,就必须加一反向磁场-H c , H c 称为矫顽力。
为了使样品的磁特性能重复出现,也就是指所测得的基本磁化曲线都是由原始状态(H=0,B=0)开始,在测量前必须进行退磁,以消除样品中的剩余磁性。
1 .示波器测量磁滞回线的原理图2.3.2-2所示为示波器测动态磁滞回线的原理电路。
将样品制成闭合的环形,然后均匀地绕以磁化线圈N 1及副线圈N 2,即所谓的罗兰环。
交流电压u 加在磁化线圈上,R 1为取样电阻,其两端的电压u 1加到示波器的x 轴输入端上。
副线圈N 2与电阻R 2和电容串联成一回路。
电容C 两端的电压u 加到示波器的y 输入端上。
(1)u x (x 轴输入)与磁场强度H 成正比,若样品的品均周长为l ,磁化线圈的匝数为N 1,磁化电流为i 1(瞬时值),根据安培环路定理,有H l =N 1 i 1,而111i R u =,所以H N l R u 111= (1) 由于式中R 1、l 和N 1皆为常数,因此,该式清楚地表明示波器荧光屏上电子束水平偏转的大小(u 1)与样品中的磁场强度(H )成正比。