计算教学中,如何处理算理与计算方法的关系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再说,形如a÷x=b的方程,它本来就属于分式方程。我们知道。解分式方程需要去分母,去分母有可能带来“增根”。所以,解分式方程,哪怕你确信整个求解过程准确无误,也要“验根”.Fra Baidu bibliotek判断你所得到的是原方程的解还是增根。这层意思超出了小学数学“验算”的内涵,在小学是不大可能渗透的。因此,把这个“例子"让给中学,以免生成误解,是合情合理的。
1.计算教学中,如何处理算理与计算方法的关系?
计算的算理是指计算的理论依据,通俗地讲就是计算的道理。算理一般由数学概念、定律、性质等构成,用来说明计算过程的合理性和科学性。计算的算法是计算的基本程序或方法,是算理指导下的一些人为规定,用来说明计算过程中的规则和逻辑顺序。
算理和算法既有联系,又有区别。算理是客观存在的规律,主要回答“为什么这样算”的问题;算法是人为规定的操作方法,主要解决“怎样计算”的问题。算理是计算的依据,是算法的基础,而算法则是依据算理提炼出来的计算方法和规则,它是算理的具体体现。算理为计算提供了正确的思维方式,保证了计算的合理性和可行性;算法为计算提供了便捷的操作程序和方法,保证了计算的正确性和快速性。算理和算法是计算教学中相辅相成、缺一不可的两个方面。
如何正确处理算理与算法的关系,防止“走极端”的现象,广大数学教师在教学实践中进行了有益的探索,取得了许多成功经验。比如,“计算教学要寻求算理与算法的平衡,使计算教学‘既重算理,又重算法”“把算理与算法有机融合,避免算理与算法的‘硬性对接’”“引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明晰算理”“计算教学要让学生探究并领悟算理,及时抽象并掌握算法,力求形成技能并学会运用”等等,这些观点对于计算教学少走弯路、提高计算教学质量具有重要作用。
因此.有必要作进一步的分析。
在小学,形如a-x=b的方程与形如a+x=b的方程,不论是依据四则运算的关系解,还是依据等式基本性质解,都是有区别的。但是到了初中,学了有理数的四则运算之后,它们的区别几乎可以忽略不计,因为a-x=b可以看做a+(-x)=b。所以即使小学不出现形如a-x=b的方程,中学也不必补充例子作为新授内容来教。可见,我们大可不必因为少了这个例子而不放心、放不下。
这样一来,剩下形如x+a=b,x-a=b,ax=b,x÷a=b的方程,求解思路就趋于统一:,
x+a=b,x-a=b,都是在方程两边加上或减去a;
ax=b,x÷a=b,都是在方程两边乘或除以a(a≠O)。’、
因此,过去四种情况,四条依据,需要安排四道例题;现归结为两条依据,只需两道例题,有利于学生举一反三。而且,回避上述两种形式的方程,并不影响学生列方程解决实际问题。因为当能列出形如a-x=b与a÷x=b的方程时,总能根据实际问题的数量关系,改写成形如x+b=a与bx=a的方程。这也体现了列方程解决问题,常常可以化逆向思维为顺向思维的优势。
处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。当前,计算教学中“走极端”的现象实质上是没有正确处理好算理与算法之间关系的结果。一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。与此相反,一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。
2.以往的教材是利用四则运算各部分间的关系来解方程,新课程标准要求用等式的性质解简单的方程,你是如何处理的?为什么?
如今,新一轮课程改革强调学习过程的经历与体验,这一与时俱进的过程观已被越来越多的教师所认同。既然如此,方程与实际问题就都只是“例子”,且都是让学生经历过程、获得体验的“载体”。也就是说,如今我们更为关注的是知识的“过程".并由此演绎、推论。既然是“例子”,就不必求全,少了a-x=b与a÷x=b这两个例子,本应坦然,没什么好大惊小怪的。但是,长期工作在教学第一线的教师又深知‘‘例子"、“知识点”的重要性,不敢掉以轻心,这也是有道理的。本来嘛,“例子"承载“过程”,知识的“点"与知识的“过程”相辅相成,很难说孰轻孰重。再者,舍弃了两个“例子”,总感觉不全面、有缺失,过去教得驾轻就熟,学生掌握也没有困难,为什么就不要了呢?
看来,实施义务教育,贯彻九年制义务教育的数学课程标准,要求我们应当更多地考虑中小学数学教育的衔接,更加自觉地从中小学数学的全局、从学生数学学习的可持续发展着眼,分析教学内容的地位与作用。这在某种意义上,可以说是“科学发展观"、是“以学生发展为本”理念的实际体现。
以上多角度地阐述,意在讲清改革举措的原委、意图及相关的考虑。但对于教学实践工作者来说,理解、认同其所以然之后,还需面对并妥善解决一系列的教学实际问题。光知道要过河,如果没有可操作的过河方法,仍然无济于事。
处理计算教学中算理与算法的关系还应注意以下五点:一是算理与算法是计算教学中有机统一的整体,形式上可分,实质上不可分,重算法必须重算理,重算理也要重算法;二是计算教学的问题情境既为引出新知服务,体现“学以致用”,也为理解算理、提炼算法服务,教学要注意在“学用结合”的基础上,以理解算理,掌握算法,形成技能为主;三是算理教学需借助直观,引导学生经历自主探索、充分感悟的过程,但要把握好算法提炼的时机和教学的“度”,为算法形成与巩固提供必要的练习保证;四是算法形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点;五是要防止算理与算法之间出现断痕或硬性对接,要充分利用例题或“试一试”中的“可以怎样算?”“在小组里说一说,计算时要注意什么?”等问题,指导学生提炼算法,为算理与算法的有效衔接服务。
相关文档
最新文档