第五章课后习题

合集下载

第五章 投资性房地产课后习题

第五章 投资性房地产课后习题

第五章投资性房地产一、单项选择题1.下列项目中属于投资性房地产的是()。

A.企业以经营租赁方式租入的土地使用权B.已出租的房屋租赁期届满,收回后暂时空置但将来继续用于经营出租C.企业持有短期内以备经营出租的空置建筑物D.房地产企业持有并准备增值后转让的土地使用权2.下列关于投资性房地产的确认和初始计量的叙述中,不正确的是()。

A.在建造投资性房地产过程中发生的非正常性损失,直接计入当期损益B.持有并准备增值后转让的土地使用权初始确认时点为停止自用并准备增值后转让的日期C.持有以备经营出租的空置建筑物初始确认时点为租赁期开始日D.与投资性房地产有关的后续支出,满足投资性房地产确认条件的,应当计入投资性房地产成本3.2×16年1月1日,甲企业与乙企业的一项厂房经营租赁合同到期,甲企业于当日起对厂房进行改扩建,并与乙企业签订了续租合同,约定自改扩建完工时将厂房继续出租给乙企业。

2×16年12月31日厂房改扩建工程完工,共发生支出400万元,符合资本化条件,当日起按照租赁合同约定出租给乙企业。

甲企业取得该厂房时的成本为2000万元,假设甲企业对投资性房地产采用成本模式计量,截至2×16年1月1日已计提折旧600万元。

不考虑其他因素,下列说法中错误的是()。

A.发生的改扩建支出应计入投资性房地产成本B.改造期间不对该厂房计提折旧C. 2×16年1月1日资产负债表上列示该投资性房地产账面价值为0D. 2×16年12月31日资产负债表上列示该投资性房地产账面价值为1800万元4. 2×16年3月1日,甲公司外购一栋写字楼并于当日直接租赁给乙公司使用,租赁期为6年,每年租金为180万元,于每年12月31日收取。

甲公司对投资性房地产采用公允价值模式进行后续计量,该写字楼的实际取得成本为3000万元;2×16年12月31日,该写字楼的公允价值为3100万元。

第五章微机原理课后习题参考答案

第五章微机原理课后习题参考答案

习题五一. 思考题⒈半导体存储器主要分为哪几类?简述它们的用途和区别。

答:按照存取方式分,半导体存储器主要分为随机存取存储器RAM(包括静态RAM和动态RAM)和只读存储器ROM(包括掩膜只读存储器,可编程只读存储器,可擦除只读存储器和电可擦除只读存储器)。

RAM在程序执行过程中,能够通过指令随机地对其中每个存储单元进行读\写操作。

一般来说,RAM中存储的信息在断电后会丢失,是一种易失性存储器;但目前也有一些RAM 芯片,由于内部带有电池,断电后信息不会丢失,具有非易失性。

RAM的用途主要是用来存放原始数据,中间结果或程序,与CPU或外部设备交换信息。

而ROM在微机系统运行过程中,只能对其进行读操作,不能随机地进行写操作。

断电后ROM中的信息不会消失,具有非易失性。

ROM通常用来存放相对固定不变的程序、汉字字型库、字符及图形符号等。

根据制造工艺的不同,随机读写存储器RAM主要有双极型和MOS型两类。

双极型存储器具有存取速度快、集成度较低、功耗较大、成本较高等特点,适用于对速度要求较高的高速缓冲存储器;MOS型存储器具有集成度高、功耗低、价格便宜等特点,适用于内存储器。

⒉存储芯片结构由哪几部分组成?简述各部分的主要功能。

答:存储芯片通常由存储体、地址寄存器、地址译码器、数据寄存器、读\写驱动电路及控制电路等部分组成。

存储体是存储器芯片的核心,它由多个基本存储单元组成,每个基本存储单元可存储一位二进制信息,具有0和1两种状态。

每个存储单元有一个唯一的地址,供CPU访问。

地址寄存器用来存放CPU访问的存储单元地址,该地址经地址译码器译码后选中芯片内某个指定的存储单元。

通常在微机中,访问地址由地址锁存器提供,存储单元地址由地址锁存器输出后,经地址总线送到存储器芯片内直接进行译码。

地址译码器的作用就是用来接收CPU送来的地址信号并对它进行存储芯片内部的“译码”,选择与此地址相对应的存储单元,以便对该单元进行读\写操作。

第5章_经营决策分析习题

第5章_经营决策分析习题

第5章_经营决策分析习题第五章课后练习题整理(附答案)⼀、单选题1、在有关产品是否进⾏深加⼯决策中,深加⼯前的半产品成本属于()A.估算成本B.重置成本C.机会成本D.沉没成本2、在进⾏半产品是否进⼀步深加⼯决策时,应对半成品在加⼯后增加的收⼊和()进⾏分析研究。

A.进⼀步加⼯前的变动成本B.进⼀步加⼯追加的成本C.进⼀步加⼯前的全部成本D.加⼯前后的全部成本3、设⼀⽣产电⼦器件的企业为满⾜客户追加订货的需要,增加了⼀些成本开⽀,其中()是专属固定成本。

A.为及时完成该批产品的⽣产,⽽要购⼊⼀台新设备B.为及时完成该批追加订货,需要⽀付职⼯加班费C.⽣产该批产品机器设备增加的耗电量D.该⼚为⽣产该批产品以及以后的⽣产建造了⼀间新的⼚房4、某⼚需要零件甲,其外购单价为10元,若⾃⾏⽣产,单位变动成本为6元,且需要为此每年追加10000元的固定成本,通过计算可知,当该零件的年需要量为()时,外购、⾃制两种⽅案等效。

A.2500 B.3000 C.2000 D.18005、某公司⽣产⼀种化⼯产品甲,进⼀步加⼯可以⽣产⾼级化⼯产品⼄,甲、⼄两种产品在市场上的售价为50元每千克、120元每千克,但⼄产品的⽣产每年需要追加固定成本20000元,单位变动成本为10元,若每千克甲可加⼯0.6千克⼄,则以下选择中,该公司应( )。

A.进⼀步加⼯⽣产产品⼄B.当产品甲的年销售量超过1250千克,将甲加⼯为⼄C.将甲出售,不加⼯D.两种⽅案均可6、在固定成本不变的情况下,下列()应该采取采购的策略。

A.⾃制单位变动成本⼩于外购价格B.⾃制单位变动成本=外购价格C.⾃制单位变动成本⼤于外购成本D.⾃制单位产品成本⼤于外购成本7、在产销平衡的情况下,⼀个企业同时⽣产多种产品,其中⼀种单位边际贡献为正的产品最终变为亏损产品,其根本原因是()A.该产品存在严重积压B.该产品总成本太⾼C.该产品上分担的固定成本相对较⾼D.该产品的销量太⼩8、下列哪种成本为相关成本()A.可避免成本B.共同成本C.联合成本D.沉没成本9、下列哪种成本为⽆关成本()A.沉没成本B.专属成本C.可避免成本D.增量成本10、如果把不同产量作为不同⽅案来理解的话,边际成本实际上就是不同⽅案形成的()A.相关成本B.沉没成本C.差量成本D.付现成本11、设某企业⽣产某种半成品2000件,完成⼀定加⼯⼯序后,可以⽴即出售,也可以进⼀步深加⼯之后再出售,如果⽴即出售,每件售价15元,若深加⼯后出售,售价为24元,但要多付深加⼯成本9500元,则继续进⾏深加⼯的机会成本为()A.48000 B.30000 C.9500 D.1800012、如上题条件,⽴即出售的机会成本为()A.48000 B.30000 C.38500 D.1800013、有⼀批可修复废品,存在两种处置⽅案,⼀个是降价后直接出售,⼀个是修复后按正常价格出售,修复成本为3000元,降价后出售收⼊为7000元,修复后出售收⼊为11000元,那么差量损益为()A.3000 B.4000 C.8000 D.100014、在短期经营决策中,企业不接受特殊价格追加订货的原因是买⽅出价低于()A.正常价格B.单位产品成本C.单位变动成本D.单位固定成本⼆、多选题1、下列各项中,属于决策分析过程的特征的有()A.本质的主观能动性B.依据的客观性C.⽅案的可选择性D.时间上的未来性2、按照决策条件的肯定程度,可将决策划分为以下类型()A.战略决策B.确定型决策C.风险型决策D.不确定型决策3、下列各项中,属于⽣产经营决策中相关成本的是()A.增量成本B.机会成本C.专属成本D.沉没成本E.不可避免成本4、下列各项中,备选⽅案中不涉及相关收⼊的是()A.差别损益分析法B。

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

第五章课后习题答案

第五章课后习题答案

5.10 假设对指令Cache 的访问占全部访问的75%;而对数据Cache 的访问占全部访问的25%。

Cache 的命中时间为1个时钟周期,失效开销为50 个时钟周期,在混合Cache 中一次load 或store 操作访问Cache 的命中时间都要增加一个时钟周期,32KB 的指令Cache 的失效率为0.39%,32KB 的数据Cache 的失效率为4.82%,64KB 的混合Cache 的失效率为1.35%。

又假设采用写直达策略,且有一个写缓冲器,并且忽略写缓冲器引起的等待。

试问指令Cache 和数据Cache 容量均为32KB 的分离Cache 和容量为64KB 的混合Cache 相比,哪种Cache 的失效率更低?两种情况下平均访存时间各是多少?解:(1)根据题意,约75%的访存为取指令。

因此,分离Cache 的总体失效率为:(75%×0.15%)+(25%×3.77%)=1.055%;容量为128KB 的混合Cache 的失效率略低一些,只有0.95%。

(2)平均访存时间公式可以分为指令访问和数据访问两部分:平均访存时间=指令所占的百分比×(读命中时间+读失效率×失效开销)+ 数据所占的百分比×(数据命中时间+数据失效率×失效开销)所以,两种结构的平均访存时间分别为:分离Cache 的平均访存时间=75%×(1+0.15%×50)+25%×(1+3.77%×50)=(75%×1.075)+(25%×2.885)=1.5275混合Cache 的平均访存时间=75%×(1+0.95%×50)+25%×(1+1+0.95%×50)=(75%×1.475)+(25%×2.475)=1.725因此,尽管分离Cache 的实际失效率比混合Cache 的高,但其平均访存时间反而较低。

第五章 课后习题及答案

第五章 课后习题及答案

第五章中学生的情绪管理一、理论测试题(一)单项选择题1.()是人各种感觉、思想和行为的一种综合的心理和生理状态,是对外界刺激所产生的心理反应,以及附带的生理反应,如喜、怒、哀、乐等。

A.情绪B.情感C.心情D.态度2.()是指人或动物面对现实的或想象中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态。

A.快乐B.愤怒C.恐惧D.悲哀3.小华即将上考场,感觉心跳加速,有点微微出汗,这属于情绪的()。

A.外部表现B.主观体验C.生理唤醒D.认知活动4.下列不属于基本情绪的是()。

A.快乐B.焦虑C.恐惧D.悲哀5.王悦接到高考录取通知书已经十多天了,仍心情愉悦,往常觉得平淡的事也能让她很高兴,这种情绪状态属于()。

A.激情B.心境C.应激6.“情急生智”所描述的一种情绪状态是()。

A.心境B.理智C.应激D.激情7.“忧者见之则忧,喜者见之则喜”,这是受一个人的()影响所致。

A.激情B.心境C.应激D.热情8.()是一种猛烈、迅疾和短暂的情绪,类似于平时说的激动。

A.快乐B.应激C.心境D.激情9.狂喜、恐惧的情绪状态属于()。

A.激情B.热情C.应激D.心境10.学生临考的怯场属于()。

A.应激B.心境C.激情D.热情11.车祸、地震、水灾等突如其来的灾难引起的情绪体验是()。

A.心境B.激情C.应激12.晓东在解决了困扰他许久的数学难题后出现的喜悦感属于()。

A.道德感B.理智感C.美感D.效能感13.求知欲属于()。

A.道德感B.理智感C.美感D.应激14.“先天下之忧而忧,后天下之乐而乐”是()。

A.道德感B.理智感C.美感D.热情15.当同学们获悉本班取得学校合唱比赛第一名的成绩时欣喜若狂。

他们的情绪状态属于()。

A.心境B.激情C.应激D.热情16.当人们遇到突然出现的事件或意外发生危险时,为了应付这类瞬息万变的紧急情境,就得果断地采取决定。

这种情况属于()。

A.激情B.应激C.快乐D.心境17.()用因素分析的方法,提出人类具有8~11种基本情绪,它们是兴趣、惊奇、痛苦、厌恶、愉快、愤怒、恐惧、悲伤、害羞、轻蔑、自罪感。

有机化学课后习题及答案(第五章)

有机化学课后习题及答案(第五章)

5章思考题5.1 在不饱和卤代烃中,根据卤原子与不饱和键的相对位置,可以分为哪几类,请举例说明。

5.2 试比较S N2和S N1历程的区别。

5.3 什么叫溶剂化效应?5.4 说明温度对消除反应有何影响?5.5 卤代芳烃在结构上有何特点?5.6 为什么对二卤代苯比相应的邻或间二卤代苯具有较高的熔点和较低的溶解度?5.7 芳卤中哪种卤原子最能使苯环电子离域,为什么?解答5.1 答:可分为三类:(1)丙烯基卤代烃,如CH3CH=CHX(2)烯丙基卤代烃,如CH2=CH-CH2X(3)孤立式卤代烃,如CH2=CHCH2CH2X5.2 答:(略)5.3 答:在溶剂中,分子或离子都可以通过静电力与溶剂分子相互作用,称为溶剂化效应。

5.4 答:增加温度可提高消除反应的比例。

5.5 答:在卤代芳烃分子中,卤素连在sp2杂化的碳原子上。

卤原子中具有弧电子对的p轨道与苯环的π轨道形成p-π共轭体系。

由于这种共轭作用,使得卤代芳烃的碳卤键与卤代脂环烃比较,明显缩短。

5.6 答:对二卤代苯的对称性好,分子排列紧密,分子间作用力较大,故熔点较大。

由于对二卤代苯的偶极矩为零,为非极性分子,在极性分子水中的溶解度更低。

5.7 答:(略)习题5.15.1命名下列化合物。

5.25.2写出下列化合物的构造式。

(1)烯丙基溴(2)苄氯(3)4-甲基-5-溴-2-戊炔(4)偏二氟乙浠(5)二氟二氯甲烷(6)碘仿(7)一溴环戊烷(环戊基溴) (8)1-苯基-2-氯乙烷(9)1,1-二氯-3-溴-7-乙基-2,4-壬二烯(10)对溴苯基溴甲烷(11)(1R,2S,3S)-1-甲基-3-氟-2-氯环己烷(12)(2S,3S)-2-氯-3-溴丁烷5.3 完成下列反应式。

5.4用方程式表示CH3CH2CH2Br与下列化合物反应的主要产物。

(1)KOH(水)(2)KOH(醇)(3)(A)Mg ,乙醚;(B) (A)的产物+HC≡CH (4)NaI/丙酮(5)NH3 (6)NaCN (7)CH3C≡CNa(8)AgNO3(醇) (9) Na (10) HN(CH3)25.5用化学方法区别下列各组化合物。

有机化学课后习题及答案(第五章)

有机化学课后习题及答案(第五章)

5章思考题5.1 在不饱和卤代烃中,根据卤原子与不饱和键的相对位置,可以分为哪几类,请举例说明。

5.2 试比较S N2和S N1历程的区别。

5.3 什么叫溶剂化效应?5.4 说明温度对消除反应有何影响?5.5 卤代芳烃在结构上有何特点?5.6 为什么对二卤代苯比相应的邻或间二卤代苯具有较高的熔点和较低的溶解度?5.7 芳卤中哪种卤原子最能使苯环电子离域,为什么?解答5.1 答:可分为三类:(1)丙烯基卤代烃,如CH3CH=CHX(2)烯丙基卤代烃,如CH2=CH-CH2X(3)孤立式卤代烃,如CH2=CHCH2CH2X5.2 答:(略)5.3 答:在溶剂中,分子或离子都可以通过静电力与溶剂分子相互作用,称为溶剂化效应。

5.4 答:增加温度可提高消除反应的比例。

5.5 答:在卤代芳烃分子中,卤素连在sp2杂化的碳原子上。

卤原子中具有弧电子对的p轨道与苯环的π轨道形成p-π共轭体系。

由于这种共轭作用,使得卤代芳烃的碳卤键与卤代脂环烃比较,明显缩短。

5.6 答:对二卤代苯的对称性好,分子排列紧密,分子间作用力较大,故熔点较大。

由于对二卤代苯的偶极矩为零,为非极性分子,在极性分子水中的溶解度更低。

5.7 答:(略)习题5.15.1命名下列化合物。

5.25.2写出下列化合物的构造式。

(1)烯丙基溴(2)苄氯(3)4-甲基-5-溴-2-戊炔(4)偏二氟乙浠(5)二氟二氯甲烷(6)碘仿(7)一溴环戊烷(环戊基溴) (8)1-苯基-2-氯乙烷(9)1,1-二氯-3-溴-7-乙基-2,4-壬二烯(10)对溴苯基溴甲烷(11)(1R,2S,3S)-1-甲基-3-氟-2-氯环己烷(12)(2S,3S)-2-氯-3-溴丁烷5.3 完成下列反应式。

5.4用方程式表示CH3CH2CH2Br与下列化合物反应的主要产物。

(1)KOH(水)(2)KOH(醇)(3)(A)Mg ,乙醚;(B) (A)的产物+HC≡CH (4)NaI/丙酮(5)NH3 (6)NaCN (7)CH3C≡CNa(8)AgNO3(醇) (9) Na (10) HN(CH3)25.5用化学方法区别下列各组化合物。

第5章课后习题参考答案

第5章课后习题参考答案
}
printf("一行字符中字母#和a出现的次数分别是%d,%d\n ",num1,num2);
}
6、从键盘输入一个正整数,统计该数的位数,如输入1234,输出4,输入0,输出1
#include<stdio.h>
void main()
{
int n,m,num=0;
printf("请输入一个正整数n:");
}
ave=sum/num2;
printf("负数个数num1=%d,正数的平均值ave=%.2f\n",num1,ave);
}
2、sum=2+5+8+11+14+…,输入正整数n,求sum的前n项和。
#include<stdio.h>
void main()
{
int i,n,sum=0;
#include<stdio.h>
void main()
{
char ch;
int num1=0,num2=0;
printf("请输入一行字符:\n");
while((ch=getchar())!='\n')
{
if(ch=='#') num1++;
if(ch=='a') num2++;
#include<stdio.h>
void main()
{
int x,y,z,num=0;
for(x=1;x<=9;x++)

第五章旋光异构(有机化学课后习题答案)

第五章旋光异构(有机化学课后习题答案)

内消旋体: Ⅰ Ⅱ
有手性C
五、一个旋光的醇C5H10O(A),催化加氢后得到一个无
旋光的醇C5H12O(B)。试写出(A)和(B)的结构式。
A:
H
CH
OH
CH2
C OH
C2H5
B: CH3CH2CHC2H5
不饱和度= 1

C H C 2H 5
2 . B rC H 2 C H D C H 2 C l
COOH
3.
CHCl COOH
4.

OH
5.

Br
二、用R、S标出下列化合物中手性碳原子的构型式:
c CH 3
1.
H
b
aB r
2 .
H
a COOH c CH3
b
c
CHO 3. CH3
a
b
COOH
Cl
C H 2C H 3
CH2CH=CH2 H
③ (2R,3R)-2,3-二溴丁酸
COOH Br H Br CH3 H Br
*④ (4S,2E)-4-甲基-2-己烯
H
C C
CH3 H H
CH3 C2H5
四.指出下列说法正确与否(正确的用“√”表示,不正确的
用“×”表示)。
(1) 顺式异构体都是Z型的,反式异构体都是E型的。(× )
第五章旋光异构基础知识部分一下列化合物中有无手性c用表示手性cch3chchchch3ch?chc2h51brch2chdch2cl2coohchclcoohohbr3
第五章
旋光异构
基础知识部分 一、下列化合物中有无手性C(用*表示手性C)
1. C H 3C H C H C H ( C H 3 )C H

第5章课后习题参考答案

第5章课后习题参考答案

第五章习题参考答案3.给定一个单位立方体,一个顶点在(0,0,0),相对的另一个顶点在(1,1,1),过这两个顶点连接一条直线,将单位立方体绕该直线旋转θ角,试导出变换矩阵。

解答:需进行以下复合变换:⑴绕Z轴旋转-45。

角,变换矩阵为:/220 0T1= 2/20 00 1 00 0 1⑵绕Y轴旋转2)角,变换矩阵为:/30 30T2= 0 1 0 030 300 0 0 1⑶绕X轴旋转θ角,变换矩阵为:1 0 0 0T3= 0 cosθs i nθ00 -sinθc o sθ00 0 0 1⑷绕Y轴旋转2)角,变换矩阵为:/30 30T4= 0 1 0 030 300 0 0 1⑸绕Z 轴旋转45。

角,变换矩阵为:/2/20 0 T5= 2/20 0 0 0 1 00 0 0 1 故最后的变换矩阵为: T=T1T2T3T4T5=1/32/3cos θ+ 1/3/3s i n1/3c o s θθ+- 1/3/3s i n 1/3c o s θθ-- 0 1/33sin 1/3cos θθ-- 1/32/3c o s θ+ 1/3/3s i n1/3c o s θθ+- 01/33sin 1/3cos θθ+- 1/3/3s i n1/3c o s θθ-- 1/32/3c o s θ+ 00 0 0 1 6.编程绘制第5题中三棱锥的正等轴测和正二测图。

同上类似,只是变换矩阵改为T 正等=0.70700.40800.70700.4080000.816001-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦和T 正二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000943.0000312.00354.00118.00935.07.编程绘制第5题中三棱锥的斜等测和斜二测投影图。

同上类似,变换矩阵改为:T 斜等=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000707.00707.00001T斜二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000354.00354.000018.编程绘制第5题中三棱锥的立体一点、二点和三点透视图。

线性代数第五章 课后习题及解答

线性代数第五章 课后习题及解答

第五章课后习题及解答1. 求下列矩阵的特征值和特征向量:(1) ;1332⎪⎪⎭⎫⎝⎛-- 解:,07313322=--=--=-λλλλλA I2373,237321-=+=λλ ,001336371237121371⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T-因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T,001336371237123712⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎭⎫⎝⎛-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T+因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T(2) ;211102113⎪⎪⎪⎭⎫ ⎝⎛--解:2)2)(1(21112113--==------=-λλλλλλ A I所以,特征值为:11=λ(单根),22=λ(二重根)⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛------=-0001100011111121121 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛-----=-0001000110111221112 A I λ所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T(3) ;311111002⎪⎪⎪⎭⎫ ⎝⎛-解:3)2(31111102-==------=-λλλλλ A I所以,特征值为:21=λ(三重根)⎪⎪⎪⎭⎫⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛----=-0000001111111110001 A I λ所以,0)(1=-x A I λ的基础解系为:.)1,0,1(,)0,1,1(TT -因此,A 的属于1λ的所有特征向量为:TT k k )1,0,1()0,1,1(21-+(21,k k 为不全为零的任 意常数)。

第五章酸碱平衡课后习题参考答案

第五章酸碱平衡课后习题参考答案

第五章酸碱平衡课后习题参考答案1解:共轭碱:CN -;H 2AsO 4-;NO 2-;F -;H 2PO 4-;IO 3-;H 4IO 6-;[Al(OH)2(H 2O)4]2+;[Zn(OH)(H 2O)5]+。

2解:共轭酸:HCOOH ;PH 4+;HClO ;HS -;HCO 3-;H 2SO 3;HP 2O 73-;HC 2O 4-;C 2H 4(NH 2)(NH 3+);CH 3(NH 3+)。

3解:酸:H 3AsO 3;H 3PO 3; 碱:SO 32-;Cr 2O 72-;NH 2-NH 2;BrO -; 两性:H 2C 2O 4-;HCO 3-;H 2PO 4-;HS -。

4解:(1)查表得:50℃时的K θw =5.31×10-14; ∴ 7141030.21031.5][--+⨯=⨯==θW K H pH=6.64同理:100℃时的K θw =5.43×10-13; ∴ 7131037.71043.5][--+⨯=⨯==θW K H pH=6.13(2)[H +]=0.20 pH=0.699(3)[OH -]=8.0×10-3 pH=11.90(4)[H +]=0.05×0.1÷1=5×10-3 pH=2.30(5)333102.15.0100.14.01021.0][---+⨯=⨯⨯+⨯⨯=H pH=2.92 (6)[H +]=0.1/2=0.05 pH=1.30(7)5461005.521010][----⨯=+=OH pH=14-4.30=9.70(8)[OH -]=(0.1-0.01)/2=0.045 pH=12.65 8解:(1)酸HClO 2---共轭碱ClO 2-;碱NO 2----共轭酸HNO 2;7.16100.6100.1)()(]][][[]][][[]][[]][[422222222222=⨯⨯====--+-+---HNO K HClO K H NO HClO H ClO HNO NO HClO ClO HNO K a a (2)HPO 42-(酸)—PO 43-(碱);HCO 3-(碱)—H 2CO 3(酸)671332143332434321007.1102.4105.4)()(]][[]][[------⨯=⨯⨯===CO H K PO H K HCO HPO PO CO H K a a (3)NH 4+(酸)—NH 3(碱);CO 32-(碱)—HCO 3-(酸)82.11108.1107.4100.1)()(]][[]][[51114322423433=⨯⨯⨯⨯===---+-+-CO H K NH K CO NH NH HCO K a a (4)HAc(酸)—Ac -(碱);OH -(碱)—H 2O(酸)9145108.110108.1)(]][[][⨯=⨯===----W a K HAc K OH HAc Ac K (5)HAc(酸)—Ac -(碱);NH 3(碱)—NH 4+(酸)414554341024.310108.1108.1)()(]][[]][[⨯=⨯⨯⨯===---++-NH K HAc K HAc NH NH Ac K a a (6)H 2PO 4-(酸)—HPO 42-(碱);PO 43-(碱)—HPO 42-(酸)5138433432344224241038.1105.4102.6)()(]][[]][[⨯=⨯⨯===------PO H K PO H K PO PO H HPO HPO K a a 15解:由缓冲溶液公式得: ∴ C 酸=0.28(mol/L )所需体积为250×0.28÷6=11.7(ml )18解:(1)刚好中和为NH 4Cl 溶液。

马克思课后习题第五章

马克思课后习题第五章

第五章社会主义的本质和根本任务一、单项选择题1.毛泽东提出探索马克思主义同中国实际即社会主义建设实际的“第二次结合”,在总体上没有取得成功,其最根本的原因是A.教条主义地对待马克思主义B.照搬苏联模式C.以革命的方法搞建设D.没有完全搞清楚“什么是社会主义,怎样建设社会主义”的问题2.社会主义的根本任务是A.消灭剥削,消除两极分化B.提高人民生活水平C.改革开放D.解放和发展生产力,特别是先进生产力3.在邓小平看来,社会主义的优越性归根到底体现在A.生产力发展比资本主义更快更高,并在此基础上改善人民的物质和精神生活B.坚持社会主义公有制不动摇C.经济计划性比资本主义更强,更能促进经济稳定协调发展D.社会主义精神文明水平更高,并实现了物质文明和精神文明的协调发展4.邓小平指出:“贫穷不是社会主义,社会主义要消灭贫穷。

”这个论断A.指出了社会主义的根本任务B.概括了社会主义建设的目标C.明确了社会主义的发展方向D.体现了社会主义本质的要求5.中国共产党保持其先进性的根本体现是A.始终代表先进生产力B.注重社会公正C.始终代表先进生产力的发展要求D.大力推进科技进步和创新6.科学技术是第一生产力,国家之间的竞争更多的是科技力量的竞争,归根到底是A.经济实力的竞争B.人才的竞争C.军事实力的竞争D.政治实力的竞争7.实施科教兴国战略,使经济建设真正转移到依靠A.科学研究和科技开发的轨道上来B.提高劳动者和管理者的能力的轨道上来C.科技进步和提高劳动者素质的轨道上来D.科研与生产相结合的轨道上来二、多项选择题1.根据十一届三中全会以来我党几代中央领导集体的论述,关于中国特色社会主义的本质属性包括A.实现共同富裕B.解放和发展生产力C.促进人的全面发展D.实现社会和谐2.邓小平的社会主义本质论是对传统社会主义观的发展,这是因为“本质论”A.是从本质的角度思考问题B.体现了生产力和生产关系的统一C.体现了社会主义发展过程与发展目标的统一D.解放生产力和发展生产力的统一3.邓小平说,“在改革中,我们要始终坚持两条根本原则”。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案

第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。

对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。

静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。

5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。

通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。

只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。

5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。

由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。

但不能保证面内各局部空间无净电荷。

例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。

5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。

0lE dl⋅=⎰表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

统计学第五章课后题及答案解析

统计学第五章课后题及答案解析

第五章一、单项选择题1.抽样推断的目的在于()A.对样本进行全面调查 B.了解样本的基本情况C.了解总体的基本情况 D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于( )A.样本单位数 B.总体方差C.抽样比例 D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差()A.一年级较大 B.二年级较大C.误差相同 D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将()A.高估误差 B.低估误差C.恰好相等 D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A.扩大到原来的2倍 B.扩大到原来的4倍C.缩小到原来的1/4 D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用()A.整群抽样 B.纯随机抽样C.分层抽样 D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差 B.层内方差C.总方差 D.允许误差二、多项选择题1.抽样推断的特点有( )A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有()A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为( )A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是( )A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有( )A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有( )A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是( )A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章课后习题5-1利用逆向卡诺循环机作为热泵向房间供热,设室外温度为5C -︒ ,室内温度保持20C ︒ ,要求每小时向室内供热42.510KJ ⨯ ,试问:(1)每小时从室外吸收多少热量? (2)此循环的供暖系数多大?(3)热泵由电动机驱动,如电动机效率为95% ,电动机的功率多大?(4)如果直接用电炉取暖,每小时耗电多少(kW h )?解:已知 1412273202935273268 2.510/Q T K T K q KJ h =+==-+==⨯(1)是逆向卡诺循环时,1212Q Q q q T T =2144212682.510 2.28710/293Q Q T q q KJ h T ==⨯⨯=⨯ (2)循环的供暖系数 '11229311.72293268T T T ε===-- (3)每小时耗电能()12442.5 2.287100.21310/w Q Q q q q KJ h =-=-⨯=⨯。

电机效率为95%,因而电机功率为:40.213100.623360095%N KW ⨯==⨯ (4)若直接用电炉取暖,则42.510/KJ h ⨯的 热能全部由电能供给,耗电力 442.5102.510// 6.943600P KJ h KJ s KW ⨯=⨯== 5-2 设有一由两个定温过程和两个定压过程组成的热力循环,如图5-34所示。

工质加热前的状态为110.1,300p MPa T K == ,定压加热到 21000T K = ,再在定温下每千克工质加热400KJ 。

试分别计算不采用回热和采用极限回热循环的热效率,并比较它们的大小。

工质的比热容 1.004/()p c KJ kg K =。

解:(1)不回热时(2)采用极限回热时,1-2 过程所需热量由 3-4 过程供给,所以或5-3 试证明:同一种工质在参数坐标图(例如图)上的两条绝热线不可能相交。

(提示:若相交的话,将违反热力学第二定律。

)证假设 AB 和 CD 两条可逆绝热线可能相交,其交点为 1,设另一条等温线分别与二条绝热线交于 2 和 3。

若工质依 1-2-3-1 进行热力循环,此循环由 1-2,2-3 和 3-1 三个过程组成,除 2-3 过程中工质自单一热源吸热外,其余二过程均绝热,这样就可使循环发动机有从单一的热源吸热,全部转化为机械能而不引起任何其他变化,显然是与热学第二定律相矛盾的,肯定是不可能,从而证明两条可逆绝热线不可能相交。

5-4 设有1 kmol 的某种理想气体进行图5-35所示的循环1-2-3-1,已知。

设比热容为定值,绝热指数。

(1)求初态压力;(2)在图上画出该循环;(3)求循环效率;(4)该循环的放热很理想,但热效率不很高,问原因何在?(提示:算出平均温度。

)解:① 1-2 为可逆的绝热过程,初终状态参数间关系有:②循环 1-2-3-1 的T-S图如右③吸热量放热量而,,④如果是以11500T K=为热源,2300T K=为冷源的卡诺循环,其热效率可达 80%,()这里吸热过程按定压、平均吸热温度可见,1T 比1T 低得多,故该循环热效率不高。

5-5 如图5-36所示,一台在恒温热源1T 和0T 之间工作的热机E ,作出的循环净功 net W 正好带动工作于H T 和0T 之间的热泵P ,热泵的功热量HQ 用于谷物烘干。

已知1011000,360,290,100T K T K T K Q KJ H ==== 。

(1)若热机效率40%t η=,热泵供暖系数 ' 3.5ε= ,求 H Q ;(2)设E 和P 都以可逆机代替,求此时的H Q ;(3)计算结果1Q Q H >,表示冷源中有部分热量传入温度为 的热源,此复合系统并未消耗机械功而将热量由 0T 传给了H T ,是否违背了第二定律? 为什么? 解 ①热机 E 输出功热泵向热源H T 输送热量②若 E 、P 都是可逆机,则③ 上述两种情况H Q 均大于Q ,但这并不违背热力学第二定律,以(1)为例,包括温度为的诸热源和冷源,以及热机 E ,热泵 P 在内的一个大热力系统并不消耗外功,但是,,就是说虽然经过每一循环,冷源0T 吸入热量60KJ ,放出热量100KJ ,尽传出热量40KJ 给H T 的热源,但是必须注意到同时有100KJ 热量自高温热源1T 传给H T 的热源,所以40KJ 热量自低温传给高温热源()0H T T →是花了代价的,这个代价就是 100kJ 热量自高温传给了低温热源,所以不违热力学第二定律。

5-6 某热机工作于122000,300T K T K ==的两个恒温热源之间,试问下列几种情况能否实现,是否是可逆循环;(1)11,0.9net Q KJ W KJ ==;(2)122,0.3Q KJ Q KJ ==;(3)20.5, 1.5net Q KJ W KJ ==。

解:在12,T T 间工作的可逆循环热效率最高,等于卡诺循环热效率,而(1)不可能实现(2) 是可逆循环(3)是不可逆循环5-7 有人设计了一台热机,工质分别从温度为12800,500T K T K ==的两个高温热源吸热11500Q KJ = 和 2500Q KJ =,以0300T K =的环境为冷源,放热 3Q ,问:(1)如要求热机作出的循环净功 1000net W KJ = ,该循环能否实现?(2)最大循环净功 net W 为多少? 解:已知11500Q KJ =,2500Q KJ=,1000net W KJ=放热所以可以实现。

(2)最大循环净功只有在可逆循环时才能获得,即5-8 试判别下列几种情况的熵变是(a )正、(b )负、(c)可正可负: (1)闭口系中理想气体经历一可逆过程,系统与外界交换功量20KJ ,热量20KJ ;(2)闭口系经历一不可逆过程,系统与外界交换功量20KJ ,热量20KJ ;(3)工质稳定流经开口系,经历一可逆过程,开口系做功20KJ ,换热-5KJ ,工质流在进出口的熵变;(4)工质稳定流经开口系,按不可逆绝热变化,系统对外做功10KJ ,系统的熵变。

解:(1)闭口系能量守恒,故,理想气体,即0T ∆=,所以过程为定温可逆过程。

可逆过程熵变为正(2)不可逆过程rQS T δ∆>⎰热量为负,故熵变可正,可负,可为零(3)稳定流动系可逆过程时进口、出口熵差rQS T δ∆=⎰,换热为负,故熵差为负。

(4)稳定流动绝热系,进行不可逆过程,虽进、出口熵差0S ∆>但系统(控制体积)的熵变为零。

5-9 燃气经过燃气轮机由0.8,420MPa C ︒绝热膨胀到0.1,130MPa C ︒ 。

设比热容 1.01/(),0.732/()p v c KJ Kg k c KJ Kg k == ,(1)该过程能否实现? 过程是否可逆?(2)若能实现,计算1kg 燃气作出的技术功 ,设进出口的动能差、位能差忽略不计。

解: (1)该绝热过程的比熵变因0S ∆>,该绝热过程是不可逆绝热过程。

(2)由稳流系能量方程,在不计动能差,位能差,且q = 0时,可简化为5-10 0.25kg 的CO 在闭口系中由110.25,120p MPa t C ==︒膨胀到110.125,25p MPa t C ==︒ ,做出膨胀功8.0W KJ = 。

已知环境温度025t C =︒ ,CO 的0.297/(),0.747/()g v R KJ kg K c KJ kg K == ,试计算过程热量,并判断该过程是否可逆? 解:、由闭口系能量方程(负值表示放热)环境吸热系统和环境组成的孤立系熵变由于孤立系熵变大于零,该过程为不可逆膨胀过程。

5-11 将一根 0.36m kg =的金属棒投入9w m kg =的水中,初始时金属棒的温度,1060m i T K =,水的温度295W T K = 。

比热容分别为0.42/()m c KJ kg K =和 4.187/()W c KJ kg K = ,试求:终温 1T 和金属棒、水及它们组成的孤立系的熵变。

设容器绝热。

解:由闭口系能量方程,本题取容器内水和金属棒为热力系,绝热,不作外功,故 0Q =、0W =,则0U ∆=,由金属棒和水组成的孤立系的熵变为金属棒熵变和水熵变之和5-12 刚性密闭容器中有 1kg 压力 10.1013p MPa = 的空气,可以通过叶轮机搅拌或由 283r t C =︒ 的热源加热及搅拌联合作用,而使空气温度由17t C =︒上升到2317t C =︒ 。

试求:(1)联合作用下系统得熵产g S ;(2)系统的最小熵产 ,min g S ;(3)系统的最大熵产,max g S 。

解:由已知容器中空气进行的是定容过程,(1)由12,T T 由附表中查得由闭口系方程,这里是输入搅拌功,w为负值,(a)由闭口系熵方程(b)(c)将上述两个结果代入式(b),则注意:式中 w 为负值,可见系统熵产与搅拌功的大小有关,搅拌功越大,则s越大。

g(2)据题意,,所以靠热源加热至多可加热到这一段温升只是由于叶轮搅拌而产生。

故将过程分成两个阶段:由T向2T靠热源加热,由a T到2T靠1搅拌。

先由附表查得因此这种情况是尽可能多利用加热,而搅拌功最小的情况,所以是系统的最小的熵产。

(3)最大熵产发生在不靠加热,全部由于搅拌而升温,这时 q = 0,0f S =这时搅拌功最大,5-13 要求将绝热容器内管道中流动着的空气由117t C =︒ 在定压()120.1p p MPa ==下加热到257t C =︒ 。

采用两种方案。

方案A :叶轮搅拌容器内的粘性液体,通过粘性液体加热空气。

方案B :容器中通入 30.1p MPa = 的饱和水蒸气,加热空气后冷却为饱和水,见图5-37。

设两系统均为稳态工作,且不计动能、位能影响,试 分别计算两种方案流过 1kg 空气时系统的熵产,并从热力学角度分析哪一种方案更合理。

已知 水蒸气进、出口的焓值及熵值分别为342673.14/,417.52/h KJ kg h KJ kg==和342673.14/(), 1.3028/()s KJ kg K s KJ kg K ==.解: 取控制体积如图,低压下空气作为理想气体。

方案 I :稳定流动系空气的熵方程为,该控制体积为绝热:,根据12,T T 由附表中查得,方案Ⅱ:空气和水蒸汽均为稳定流动,根据,稳定流动热力系的熵方程由于绝热, (a )由于可由稳定流动能量方程确定,不计动能,位能差时可推得由附表,根据12,T T 查得,将这些数据代入(a ),得计算结果表明,系统 2 的熵产远小于系统 1 的,从热力学角度分析方案Ⅱ更合理。

5-14 6110m kg =⨯、温度45t C =︒的水向环境放热,温度降低到环境温度010t C =︒,试确定其热量火用,X Q E 和热量 火无,n Q A 。

相关文档
最新文档