2020-2021学年四川省成都市双流中学实验学校八年级(上)期中数学试卷

合集下载

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。

2020-2021学年八年级第一学期期中检测数学试卷附答案

2020-2021学年八年级第一学期期中检测数学试卷附答案

2020-2021学年八年级第一学期期中检测数学试卷一、选择题(本大题共10小题,共30.0分)1.下列根式中是最简二次根式的是()A. √4xB. √x2C. √0.5D. √x2+y22.在0,3π,√5,22,−√9,6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有()7A. 1个B. 2个C. 3个D. 4个3.如图:三个正方形和一个直角三角形,图形A的面积是()A. 225B. 144C. 81D. 无法确定4.下列计算正确的是()A. √(−9)2=−9B. 3√2−2√2=1C. −3√5+√5=−2√5D. -√22=√(−2)25.下列说法正确的有()(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)−a一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数.(6)若面积为3的正方形的边长为a,a一定是一个无理数A. 1个B. 2个C. 3个D. 4个6.某地区用电量与应缴电费之间的关系如下表:则下列叙述错误的是()用电量(千瓦⋅时)1234…应缴电费(元)0.55 1.10 1.65 2.20…A. 用电量每增加1千瓦⋅时,电费增加0.55元B. 若用电量为8千瓦⋅时,则应缴电费4.4元C. 若应缴电费为2.75元,则用电量为6千瓦⋅时D. 应缴电费随用电量的增加而增加7.如图,将两条边长分别为2和4的长方形如图剪开,拼成一个正方形,则该正方形的边长最接近整数()A. 2B. 3C. 4D. 58.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A. 5√21B. 25C. 10√5+5D. 359.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是()A. (−26,50)B. (−25,50)C. (26,50)D. (25,50)10.某乡村盛产葡萄,果大味美,甲、乙两个葡萄采摘园为吸引游客,在销售价格一样的基础上分别推出优惠方案,甲采摘园的优惠方案:游客进园需购买门票,采摘的所有葡萄按六折优惠.乙采摘园的优惠方案:游客无需买票,采摘葡萄超过一定数量后,超过的部分打折销售.活动期间,某游客的葡萄采摘量为x kg,若在甲采摘园所需总费用为y甲元,若在乙采摘园所需总费用为y乙元,y甲、y乙与x之间的函数图象如图所示,则下列说法错误的是()A. 甲采摘园的门票费用是60元B. 两个采摘园优惠前的葡萄价格是30元/千克C. 乙采摘园超过10kg后,超过的部分价格是12元/千克D. 若游客采摘18kg葡萄,那么到甲或乙两个采摘园的总费用相同二、填空题(本大题共8小题,共24.0分)11.已知直角三角形两直角边长分别是9、12,则第三边长的值是______.12.①12的平方根是______ ②√64的立方根是______ ③3的倒数是______213.若一次函数y=(2−m)x+m的图象经过第一,二,三象限,请你写出一个符合上述条件的m的值:______.14.已知点A(a−1,5)和点B(2,b−1)关于x轴对称,则(a+b)2013的值为__________.15.已知线段AB的长度为3,且AB平行于y轴,A点坐标为(3,2),则B点坐标为______.16.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动,设运动的时间为t s,当t=________s时,△ABP为直角三角形.17.在同一直角坐标系中,对于以下四个函数①y=−x+1;②y=x+1;③y=−(x+1);④y=−2(x+1)的图象,下列说法正确的个数是___________(1)①③④三个函数的图象中,当x 1>x2时,y 1>y2(2)在x轴上交点相同的是②和④(3)②中的点到x轴的距离比到y轴的距离都要大1 (4)函数①和②的图象和x轴围成的图形面积为2.18.疫情之下,中华儿女共抗时艰,重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从A地沿相同路线出发徒步前往B地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在A地,于是原路原速返回A地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B 地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距y(米)与甲出发的时间x(分钟)之间的函数关系如图所示,则当乙到达B 地时,甲距A 地的路程是______米.三、解答题(本大题共46分) 19.(16分)6)2748)(1(÷-)31()1(23031125)2(---+-+-π)322)(65()13(2)3(-++-(4)已知x =√3−1,y =√3+1,求x 2+xy +y 2的值.20.(5分)如图,方格纸中每个小方格都是边长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(−1,−2),解答以下问题:(1)在图中标出平面直角坐标系的原点,并建立直角坐标系; (2)若体育馆位置坐标为C(1,−3),请在坐标系中标出体育馆的位置; (3)顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.21.(6分)阅读材料,回答问题:(1)中国古代数学著作图1《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为5.”.上述记载表明了:在Rt△ABC中,如果∠C=90°,BC=a,AC=b,AB=c,那么a,b,c三者之间的数量关系是:______.(2)对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如图2,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明.参考赵爽的思路,将下面的证明过程补充完整:证明:∵S△ABC=12ab,S正方形ABCD=c2,S正方形MNPQ=______.又∵______=______,∴(a+b)2=4×12ab+c2,整理得a2+2ab+b2=2ab+c2,∴______.(3)如图3,把矩形ABCD折叠,使点C与点A重合,折痕为EF,如果AB=4,BC=8,求BE的长.22.(6分)我们将(√a+√b)、(√a−√b)称为一对“对偶式”,因为(√a+√b)(√a−√b)=(√a)2−(√b)2= a−b,所以构造“对偶式”再将其相乘可以有效的将(√a+√b)和(√a−√b)中的“”去掉,于是二次根式除法可以这样解:如1√3=√3√3×√3=√33,2+√22−√2=(2+√2)2(2−√2)×(2+√2)=3+2√2.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小√7−2√6−√3(用“>”、“<”或“=”填空);(2)已知x =√5+2√5−2,y =√5−2√5+2,求x 2+y 2的值; (3)计算:23+√3+25√3+3√5+27√5+5√7+⋯+299√97+97√99.23.(6分)已知正比例函数过点A(2,−4),点P 在此正比例函数的图象上,若坐标轴上有一点B(0,4)且三角形ABP 的面积为8.求:(1)过点A 的正比例函数关系式; (2)点P 的坐标.24.(7分)12. 某班“数学兴趣小组”对函数y =|x +3|的图象和性质进行了探究,探究过程如下,请补充完整(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下: x … −7−6−5 −4−3−2−1 01 … y…4 3 m1 0 12 34…其中,m =______.(2)如图,在平面直角坐标系xOy 中,描出了以上表格中各对对应值为坐标的点,根据描出的点,请画出函数图象.(3)观察函数图象,写出两条函数图象的性质________________________ ;________________________ ; (4)进一步探究函数图象发现:①函数图象与x 轴有______交点,所以对应的方程|x +3|=0有______个实数根; ②关于x 的方程|x +3|=a 有两个实数根时,a 的取值范围是______.答案一、选择题(本大题共10小题,共30分)1.D2.C3.C4.C5.B6.C7.B8.B9.C 10.D二、填空题(本大题共8小题,共24分)11.15 12.①② 2 ③ 13.例如:3(符合条件就行) 14.−1 15.(3,−1)或(3,5) 16.2或258 17.3 18. 三、计算题(本大题共46分) 19.(16分)(3分)6)2748)(1(÷- 原式=22636)3334(==÷-(4分)原式=1−5+√3−1+9 =4+√3.(4分))322)(65()13(2)3(-++-原式=2√3−2+5√2−10√3+2√3−6√2 =−2−6√3−√2;33232±)31()1(2331125)2(---+-+-π(5分)(4)已知x =√3−1,y =√3+1,求x 2+xy +y 2的值. 解:∵x =√3−1,y =√3+1, ∴x +y =2√3,xy =2,∴x 2+xy +y 2=(x +y)2−xy =(2√3)2−2=12−2=1020.解:(1)如图,点O 即为原点,(2)如图,点C 即为所求;(3)S △ABC =3×4−12×2×1−12×1×4−12×3×3=4.5. 21.(6分)(1)(a+b )2正方形的面积 四个全等直角三角形的面积的面积+正方形AEDB 的面积 a 2+b 2=c 2(2)由折叠的性质可知,AE =EC =8−x , 在Rt △ABE 中,AE 2=AB 2+BE 2, 则(8−x)2=42+x 2, 解得,x =3, 则BE 的长为3.22. (6分)解:(1)>(2)∵x 2+y 2=(x +y)2−2xy=(√5+2√5−2√5−2√5+2)2−2=182−2=324−2=322,3+√35√3+3√57√5+5√799√97+97√99=√3)(3+√3)(3−√3)√3√5)(5√3+3√5)(5√3−3√5)√5√7)(7√5+5√7)(7√5−5√7)·√97√99)(99√97+97√99)(99√97−97√99)=1−√33+√33−√55+√55−√77+···+√9797−√9999=1−√99 99=1−√11 3323.(6分)24.(7分)(每空一分)解:(1) 2.(2)函数图象如图所示:(3) 当x>−3时,y随x的增大而增大;x<-3时,y随x的增大而减少;是轴对称图形(写出正确的两个即可)(4) ① 1个1② a>0.。

四川省成都市八年级(上)期中数学试卷(含解析)

四川省成都市八年级(上)期中数学试卷(含解析)

四川省成都市八年级上学期期中考试数学试题A卷(共100分)一、选择题(每小题3分,共30分)1.下列实数中,是有理数的为()A.B.C.πD.02.若5+与5﹣的整数部分分别为x,y,则x+y的立方根是()A.B.±C.3 D.±3.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2D.x≥24.下列一组数是勾股数的是()A.6,7,8 B.5,12,13 C.0.3,0.4,0.5 D.10,15,185.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)6.根据下列表述,能确定位置的是()A.国际影城3排B.A市南京路口C.北偏东60°D.东经100°,北纬30°7.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=﹣1的解为()A.x=0 B.x=1 C.x=D.x=﹣28.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm29.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)10.函数y=kx﹣k(k<0)的大致图象是()A.B.C.D.二、填空题(每题4分,共16分)11.的平方根是.12.计算:(+)=.13.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.14.若y=(a+3)x+a2﹣9是正比例函数,则a=.三、解答下列各题(本题满分54分. 15题每小题6分;16题6分;17题8分;18题10分(每小题5分);19题8分;20题10分.)15.(本小题满分12分,每题6分)(1)计算:+(2﹣)0﹣(﹣)﹣2+|﹣1|(2)计算:2•(3﹣4﹣3)16.(本小题满分6分)已知:2m+2的平方根是±4;3m+n的立方根是﹣1,求:2m﹣n的算术平方根.17.(本小题满分8分)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?18.(本小题满分10分,每小题各5分)(1)如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.(2)在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.19.(本小题满分8分)如图,△ABC在平面直角坐标系中:(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)(2)写出D、E、F的坐标;(3)求出△DEF的面积.20.(本小题满分10分)某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min.(1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算;(3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等.B卷(共50分)一.填空题:(每小题4分,共20分)21.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.22.若+(y+1)4=0,则x y=.23.已知直线a平行于y轴,且直线a上任意一点的横坐标都是3,直线b平行于x轴,且直线b与x轴的距离为2,直线a与b交点为P,则点P的坐标为.24. 如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为.25.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2019=.二、(本题共8分)26.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A 种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(无/件)售价(元/件)A50 80B40 65三、(本题共10分)27.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.四、(本题共12分)28.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x 轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列实数中,是有理数的为()A.B.C.πD.0【考点】实数.【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.【解答】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.2.若5+与5﹣的整数部分分别为x,y,则x+y的立方根是()A.B.±C.3 D.±【考点】估算无理数的大小.【分析】先估算出的大小,然后可求得x,y的值,然后再求得x+y的值,最后再求它们的立方根.【解答】解:∵9<11<16,∴3<<4.∴5+与5﹣的整数部分分别为8和1,∴x+y=9.∴x+y的立方根是.故选:A.3.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2D.x≥2【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数,即可求解.【解答】解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.4.下列一组数是勾股数的是()A.6,7,8 B.5,12,13 C.0.3,0.4,0.5 D.10,15,18【考点】勾股数.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、∵62+72≠82,∴此选项不符合题意;B、∵52+122=132,∴此选项符合题意;C、∵0.32+0.42=0.52,但不是正整数,∴此选项不符合题意;D、∵102+152≠182,∴此选项不符合题意.故选:B.5.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2)C.(0,3)D.(1,3)【考点】坐标确定位置.【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.6.根据下列表述,能确定位置的是()A.国际影城3排B.A市南京路口C.北偏东60°D.东经100°,北纬30°【考点】坐标确定位置.【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【解答】解:A、国际影城3排,具体位置不能确定,故本选项错误;B、A市南京路口,具体位置不能确定,故本选项错误;C、北偏东60°,具体位置不能确定,故本选项错误;D、东经100°,北纬30°,位置很明确,能确定位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.7.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=﹣1的解为()A.x=0 B.x=1 C.x= D.x=﹣2【考点】一次函数与一元一次方程.【分析】根据图象可知,一次函数y=kx+b的图象过点(,﹣1),即当x=时,y=﹣1,由此得出关于x的方程kx+b=﹣1的解.【解答】解:∵一次函数y=kx+b的图象过点(,﹣1),∴关于x的方程kx+b=﹣1的解是x=.故选C.8.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D.12cm2【考点】勾股定理;翻折变换(折叠问题).【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.【解答】解:将此长方形折叠,使点B与点D重合,∴BE=E D.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.9.点M(3,﹣4)关于y的轴的对称点是M1,则M1关于x轴的对称点M2的坐标为()A.(﹣3,4)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出M1,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.【解答】解:∵点M(3,﹣4)关于y的轴的对称点是M1,∴M1的坐标为(﹣3,﹣4),∴M1关于x轴的对称点M2的坐标为(﹣3,4).故选A.10.函数y=kx﹣k(k<0)的图象是()A.B.C.D.【考点】一次函数的图象.【分析】一次函数y=kx﹣k(常数k<0)的图象一定经过第二、一、四象限,不经过第四象限.【解答】解:因为k<0,所以﹣k>0,所以可很一次函数y=kx﹣k(常数k<0)的图象一定经过第二、一、四象限,故选A二、填空题(每题4分,共16分)11.的平方根是±.【考点】立方根;平方根.【分析】根据立方根的定义求出,然后利用平方根的定义求出结果.【解答】解:∵=22的平方根是±.∴的平方根是±.故答案为:±.12.计算:(+)=12.【考点】二次根式的混合运算.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.13.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】长方体内体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,这样就是求出盒子的对角线长度即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为5cm.14.若y=(a+3)x+a2﹣9是正比例函数,则a=3.【考点】正比例函数的定义.【分析】根据正比例函数的定义,可得方程,根据解方程,可得答案.【解答】解:由y=(a+3)x+a2﹣9是正比例函数,得a2﹣9=0且a+3≠0.解得a=3,故答案为:3.三、解答下列各题(本题满分54分. 15题每小题6分;16题6分;17题8分;18题10分(每小题5分);19题8分;20题10分.)15.(本小题满分12分,每题6分)(1)计算:+(2﹣)0﹣(﹣)﹣2+|﹣1|(2)计算:2•(3﹣4﹣3)【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)首先化简二次根式,计算0次幂、负指数次幂、去掉绝对值符号,然后进行加减即可;(2)首先化简二次根式,然后利用单项式与多项式的乘法法则计算即可.【解答】解:(1)原式=4+1﹣4+1=2;(2)原式=4•(12﹣﹣9)=4(3﹣)=36﹣4.16.(本小题满分6分)已知:2m+2的平方根是±4;3m+n的立方根是﹣1,求:2m﹣n的算术平方根.【考点】立方根;平方根;算术平方根.【分析】依据平方根和立方根的定义得到关于m和n的方程,然后再求得代数式2m﹣n的值,最后在求得2m﹣n的算术平方根即可.【解答】解:因为2m+2的平方根是±4所以2m+2=(±4)2,解得:m=7.因为3m+n的立方根是﹣1所以3m+n=(﹣1)3,解得:n=﹣22.所以===6.所以2m﹣n的算术平方根是6.17.(本小题满分8分)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?【考点】勾股定理的应用.【分析】应用勾股定理求出AC的高度,以及B′C的距离即可解答.【解答】解:(1)由题意,得AB2=AC2+BC2,得AC===24(米).(2)由A′B′2=A′C2+CB′2,得B′C====15(米).∴BB′=B′C﹣BC=15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.18.(本小题满分10分,每小题各5分)(1)如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.【考点】勾股定理.【分析】首先,在直角△ABO中,利用勾股定理求得AO=5cm;然后在直角△AFO中,由勾股定理求得斜边FO的长度;最后根据圆形的面积公式进行解答.【解答】解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.(2)在直角坐标系内,一次函数y=kx+b的图象经过三点A(2,0),B(0,2),C(m,3).求这个一次函数解析式并求m的值.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】将两个已知点A(2,0),B(0,2)分别代入y=kx+b,分别求出k、b的解析式,再将未知点C(m,3)代入一次函数解析式,求出m的值.【解答】解:由已知条件,得,解得.∴一次函数解析式为y=﹣x+2,∵一次函数y=﹣x+2过C(m,3)点,∴3=﹣m+2,∴m=﹣1.19.(本小题满分8分)如图,△ABC在平面直角坐标系中:(1)画出△ABC关于y轴对称的△DEF(其中D、E、F是A、B、C的对应点)(2)写出D、E、F的坐标;(3)求出△DEF的面积.【考点】作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出各对应点位置;(2)利用所画图形得出各点坐标;(3)利用△DEF所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF即为所求;(2)D(﹣2,2),E(2,﹣1),F(﹣3,﹣2);(3)△DEF的面积为:4×5﹣×1×4﹣×3×4﹣×1×5=9.5.20.(本小题满分10分)某移动公司有两类收费标准:A类收费是不管通话时间多长,每部手机每月须缴月租12元.另外,通话费按0.2元/min;B类收费是没有月租,但通话费按0.25元/min.(1)请分别写出每月应缴费用y(元)与通话时间x(min)之间的关系式;(2)若小芳爸爸每月通话时间为300min,请说明选择哪种收费方式更合算;(3)每月通话多长时间,按A、B两类收费标准缴费,所缴话费相等.【考点】一次函数的应用.【分析】(1)对于A类收费:0.2x加上月租12元;对于B类收费:0.25x;(2)把x=300代入(1)中两解析式中计算对应的函数值,然后比较函数值的大小即可;(3)令两函数值相等得到方程12+0.2x=0.25x,然后解方程求出x即可.【解答】解:(1)y A=12+0.2x;y B=0.25x;(2)当x=300时,y A=12+0.2x=12+300×0.2=72(元);y B=0.25x=0.25×300=75(元),所以选择A类收费方式更合算;(3)解方程12+0.2x=0.25x得x=240(分),所以每月通话240分钟,按A、B两类收费标准缴费,所缴话费相等.【点评】本题考查了一次函数的应用:利用通话费用等于通话时间乘以通话单价列函数关系式.B卷(共50分)一.填空题:(每小题4分,共20分)21.已知a、b、c位置如图所示,试化简:|a+b﹣c|+=﹣2a+c.【考点】二次根式的性质与化简.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.22.若+(y+1)4=0,则x y=.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先由非负数的性质得出x、y的数值,进一步代入求得答案即可【解答】解:根据题意得x﹣3=0且y+1=0,解得x=3,y=﹣1.则原式=3﹣1=.故答案是:.23.已知直线a平行于y轴,且直线a上任意一点的横坐标都是3,直线b平行于x轴,且直线b与x轴的距离为2,直线a与b交点为P,则点P的坐标为(3,2)或(3,﹣2).【考点】两条直线相交或平行问题.【分析】根据直线a平行于y轴,且直线a上任意一点的横坐标都是3,可得交点横坐标为3;直线b平行于x轴,且直线b与x轴的距离为2,可得交点的纵坐标为2或﹣2,由此可得交点坐标.【解答】解:∵直线a平行于y轴,且直线a上任意一点的横坐标都是3,∴交点P横坐标为3;∵直线b平行于x轴,且直线b与x轴的距离为2,∴交点P的纵坐标为2或﹣2;∴交点P的坐标为(3,2)或(3,﹣2).故答案为:(3,2)或(3,﹣2).24.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为3.【考点】勾股定理的逆定理.【分析】在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,2020 20202020即可得AD==3.故答案为:3.25.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2019=.【考点】勾股定理.【分析】首先根据勾股定理求出OP4,再由OP1,OP2,OP3的长度找到规律进而求出OP2019的长.【解答】解:由勾股定理得:OP4==,∵OP1=;得OP2=;依此类推可得OP n=,∴OP2019=故答案为:二、(本题共8分)26.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用为9500元,求超市所获利润.(提示:利润=售价﹣进价)品牌进价(无/件)售价(元/件)A50 80B40 65【考点】一次函数的应用.【分析】(1)根据题意和表格中的数据可以得到W关于x的函数关系式;(2)根据表格中的数据可以求得购进两种T恤的件数,然后根据(1)中函数关系式即可求得超市所获利润.【解答】解:(1)由题意可得,W=(80﹣50)x+(65﹣40)=5x+5000,即W关于x的函数关系式W=5x+5000;(2)由题意可得,50x+×40=9500,解得,x=150,∴W=5×150+5000=5750(元),即超市所获利润为5750元.三、(本题共10分)27.小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:∵a===2﹣∴a﹣2=﹣∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1)化简+++…+(2)若a=求4a2﹣8a+1的值.【考点】二次根式的化简求值.【分析】(1)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类二次根式即可求解;(2)首先化简a,然后把所求的式子化成4(a﹣1)2代入求解即可.【解答】解:(1)原式=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1=10﹣1=9;(2)a=+1,则原式=4(a2﹣2a+1)﹣3=4(a﹣1)2,当a=+1时,原式=4×()2=8.四、(本题共12分)28.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x 轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q 的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把点(3,﹣1),点B(6,0)代入直线l2,求出k、b的值即可;(2)设点P的坐标为(t,t﹣2),求出D点坐标,再由S△ABP=2S△ABD求出t的值即可;(3)作直线y=3,作点A关于直线y=3的对称点A′,连结A′B,利用待定系数法求出其解析式,根据点Q(m,3)在直线A′B上求出m的值,进而可得出结论.【解答】解:(1)由题知:解得:,故直线l2的函数关系式为:y=x﹣2;(2)由题及(1)可设点P的坐标为(t,t﹣2).解方程组,得,∴点D的坐标为(,﹣).∵S△ABP=2S△ABD,∴AB•|t﹣2|=2×AB•|﹣|,即|t﹣2|=,解得:t=或t=,∴点P的坐标为(,)或(,);(3)作直线y=3(如图),再作点A关于直线y=3的对称点A′,连结A′B.由几何知识可知:A′B与直线y=3的交点即为QA+QB最小时的点Q.∵点A(3,0),∴A′(3,6)∵点B(6,0),∴直线A′B的函数表达式为y=﹣2x+12.∵点Q(m,3)在直线A′B上,∴3=﹣2m+12解得:m=,故存在m的值使得QA+QB最小,此时点Q的坐标为(,3).。

2020-2021学年四川省成都市八年级(上)期中数学试卷

2020-2021学年四川省成都市八年级(上)期中数学试卷

2020-2021学年四川省成都市八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.16的平方根是()A. 4B. ±4C. 8D. ±82.在实数−2,0,√5,π,√9中,无理数有()3A. 1个B. 2个C. 3个D. 4个3.要使式子√1−x有意义,则x的取值范围是()A. x≤1B. x≥1C. x>0D. x>−14.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A. (−2,0)B. (0,−2)C. (1,0)D. (0,1)5.下列各式正确的是()A. ±√0.36=±0.6B. √9=±33=3 D. √(−2)2=−2C. √(−3)36.若点A(1+m,1−n)与点B(−3,2)关于y轴对称,则m+n的值是()A. −5B. −3C. 3D. 17.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中,不能判断△ABC为直角三角形是()A. ∠A:∠B:∠C=3:4:5B. a2=1,b2=2,c2=3C. (b+c)(b−c)=a2D. ∠A−∠B=∠C8.已知三角形的三边长为a、b、c,如果(a−5)2+|b−12|+(c−13)2=0,则△ABC是()A. 以a为斜边的直角三角形B. 以b为斜边的直角三角形C. 以c为斜边的直角三角形D. 不是直角三角形9.如图,一个底面圆周长为24 m,高为5 m的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为A. 12 mB. 15 mC. 13 mD. 9.13m10. 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴的上点D′处,则点C 的对应点C′的坐标为( )A. ( √3 ,1)B. (2,1)C. (1, √3 )D. (2, √3 )二、填空题(本大题共9小题,共36.0分)11. 已知一个正数的两个平方根分别是2m −6和3+m ,则(−m)2的值为 . 12. 如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.13. 如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是 .14. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为3和4,则b 的面积为____.15. 比较大小:√5−12______12(填“>”“<”“=”).16. 三角形的两边长分别是3和5,要使这个三角形是直角三角形,则第三条边长是___________. 17. 若x 、y 为实数,y =√x2−4+√4−x 2x−2,则4y −3x 是______ .18. 点A(x −1,2x)在x 轴上,则点A 的坐标为______.19. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=____.三、计算题(本大题共1小题,共8.0分)20.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地.送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.四、解答题(本大题共8小题,共76.0分)21.计算:(1)3√3−√8+√2−√27(2)(5√2+2√5)(5√2−2√5)+(√3−1)222.已知4是3a−2的算术平方根,a+2b的立方根是2,求a−2b的平方根.23.为了积极响应国家新农村建设,长沙市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为800米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN 方向行驶时,(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄总共能听到多长时间的宣传?24.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PA+PC最小;(3)在DE上画出点M,使|MB−MC1|最大.25.如图,在平面直角坐标系中,四边形ABCD是边长为5的正方形,顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA,OB的长满足|OA−4|+(OB−3)2=0.(1)求OA,OB的长;(2)求点D的坐标;(3)在y轴上是否存在点P,使△PAB是以AB为腰的等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.26. (1)已知:x =2+√3,y =2−√3.求2x 2+2y 2−xy 的值;(2)已知x =√5+12,求x 3+x+1x 3的值.27. 如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC边的点F 处,已知AB =8cm ,BC =10cm . (1)求线段BF 的长; (2)求△AEF 的面积.28. 如图,△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,若动点P从点C 开始,按C →A →B 的路径运动,且速度为每秒1cm ,设出发的时间为t 秒.问t 为何值时,△BCP 为等腰三角形?答案和解析1.【答案】B【解析】【分析】此题考查的是平方根的知识.根据一个正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,可以解答.【解答】解:16的平方根是±4,故选B.2.【答案】B【解析】【分析】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】,0,√5,π,√9中,无理数有√5,π这2个数,解:实数−23故选B.3.【答案】A【解析】解:由题意得,1−x≥0,解得x≤1.故选A.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】B【解析】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=−3,2m+4=−2,∴点P的坐标是(0,−2).故选B.5.【答案】A【解析】解:A、原式=±0.6,正确;B、原式=3,错误;C、原式=−3,错误;D、原式=|−2|=2,错误,故选:A.原式利用算术平方根,以及立方根定义判断即可.此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.6.【答案】D【解析】【分析】本题考查关于x轴、y轴对称的点的坐标,代数式的求值.根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算即可解答.【解答】解:∵点A(1+m,1−n)与点B(−3,2)关于y轴对称,∴1+m=3,1−n=2,解得:m=2,n=−1,所以m+n=2−1=1,7.【答案】A【解析】【分析】此题考查了勾股定理的逆定理,三角形内角和定理,平方差公式,掌握这些定理是关键,逐项分析即可得到答案.【解答】解:A.∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴∠C=75°≠90°,△ABC不是直角三角形,故A正确;B.∵a2=1,b2=2,c2=3,∴a2+b2=c2,故△ABC是直角三角形,故B错误;C.∵(b+c)(b−c)=a2,∴b2=a2+c2,故△ABC是直角三角形,故C错误;D.∵∠A−∠B=∠C,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC是直角三角形,故D错误;故选A.8.【答案】C【解析】【试题解析】【分析】本题考查了勾股定理的逆定理、非负数的性质,掌握非负数的性质是解题的关键.根据非负数的性质得出a,b,c的值,再根据勾股定理的逆定理判断△ABC的形状即可.【解答】解:∵(a−5)2+|b−12|+(c−13)2=0,∴a−5=0,b−12=0,c−13=0,∴a=5,b=12,c=13,∵52+122=132,∴a2+b2=c2,∴△ABC是以c为斜边的直角三角形.【解析】解:将圆柱体的侧面展开,连接AB.如图所示:由于圆柱体的底面周长为24cm,=12cm.则AD=24×12又因为AC=5cm,所以AB=√122+52=13cm.即蚂蚁沿表面从点A到点B所经过的最短路线长为13cm.故选C.将圆柱的侧面展开,得到一个长方形,再利用两点之间线段最短解答.本题考查了平面展开−最短路径问题,解决此类问题,一般方法是先根据题意把立体图形展开成平面图形,再确定两点之间的最短路径.通常情况是根据两点之间,线段最短的性质.本题将圆柱的侧面展开,构造出直角三角形是解题的关键.10.【答案】D【解析】【分析】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关AB=1,根据勾股定理得到OD′=键.由已知条件得到AD′=AD=2,AO=12√AD′2−OA2 =√3,于是得到结论.【解答】AB=1,解:∵AD′=AD=2,AO=12∴OD′=√AD′2−OA2 =√3,∵C′D′=2,C′D′//AB,∴C′(2,√3).故选D.11.【答案】1【解析】本题考查平方根的定义,解题的关键是熟练运用平方根的定义,本题属于基础题型.根据平方根的定义即可求出答案.【解答】解:由题意可知:(2m−6)+(3+m)=0,∴m=1,∴原式=(−1)2=1.故答案为1.12.【答案】2【解析】【分析】本题主要考查了勾股定理的应用,解题关键是利用勾股定理求出斜边的长度,首先根据勾股定理求得斜边的长,进而根据少走的路程=两直角边之和−斜边,即可得出答案.【解答】解:由勾股定理,得斜边长为√32+42=5(m),∴少走的路程为3+4−5=2(m).故答案为2.13.【答案】(−5,4)【解析】【分析】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是−5,纵坐标是4,∴点P的坐标为(−5,4).故答案为(−5,4).14.【答案】7【解析】【分析】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了勾股定理和正方形的性质.如图,根据正方形的性质得BC=BF,∠CBF=90°,AC2=3,DF2=4,再利用等角的余角相等得∠1=∠3,证明△ABC≌△DFB,得到AB=DF,然后根据勾股定理得到BC2=AC2+AB2=AC2+DF2=7,则有b的面积为7.【解答】解:如图,∵a、b、c都为正方形,∴BC=BF,∠CBF=90°,AC2=3,DF2=4,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC和△DFB中,{∠BAC=∠FDB ∠1=∠3BC=FB,∴△ABC≌△DFB,∴AB=DF,在△ABC中,BC2=AC2+AB2=AC2+DF2=3+4=7,∴b的面积为7.故答案为7.15.【答案】>【解析】解:∵√5−1>1,∴√5−12>12.故填空结果为:>.因为分母相同所以比较分子的大小即可,可以估算√5的整数部分,然后根据整数部分即可解决问题.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.16.【答案】4或√34【解析】【分析】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,根据勾股定理的逆定理,可设第三条边长为x,如果满足32+52=x2或32+x2=52,即为直角三角形,解出x的值即可解答.【解答】解:设第三条边长为x,要使三角形是直角三角形,则32+52=x2或32+x2=52,解得:x=√34或x=4.故答案为4或√34.17.【答案】6【解析】解:由题意得:x2−4≥0且4−x2≥0,x−2≠0,解得:x=−2,则y=0,4y−3x=6,故答案为:6.根据二次根式有意义的条件可得x2−4≥0且4−x2≥0,根据分式有意义的条件可得x−2≠0,再解不等式即可.此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.18.【答案】(−1,0)【解析】【分析】本题主要考查x轴上点的坐标特点.根据x轴上所有点的纵坐标等于零求出x,再确定点A的坐标.【解答】解:根据题意得:2x=0,x=0,x−1=−1.∴点点A的坐标为(−1,0).故答案为(−1,0).19.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2√2,∴AB=BC=2√2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,BE′=√2,在Rt△BHE′中,BH=E′H=√22在Rt△BCH中,CH=√BC2−BH2=√6,∴CE′=√2+√6,故答案为:√2+√6.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2√2,BD=BE=2,根据旋转的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.20.【答案】解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC−AC=5−1=4(尺),OE=OA−AE=(x−4)尺,在Rt△OEB中,OE=(x−4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x−4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度额14.5尺.【解析】此题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键.设OA=OB=x尺,表示出OE的长,在直角三角形OEB中,利用勾股定理列出关于x 的方程,求出方程的解即可得到结果.21.【答案】解:(1)原式=3√3−2√2+√2−3√3=−√2;(2)原式=50−20+3−2√3+1=34−2√3.【解析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:∵4是3a−2的算术平方根,a+2b的立方根是2,∴3a−2=4²=16,a+2b=2³=8,解得:a=6,b=1,故a−2b=4,∴a−2b平方根为:±2.【解析】此题主要考查了立方根以及平方根、算术平方根的定义,正确把握相关定义是解题关键.直接利用立方根以及平方根、算术平方根的定义分析得出答案.23.【答案】解:(1)能听到宣传.∵村庄A到公路MN的距离为800m,∴AB=800m,∵周围1000m以内能听到宣传,800<1000,∴村庄能听到宣传;(2)设宣传车到达C处,村庄开始听到宣传,则AC=1000m,又AB=800m,,∴BC=√AC2−AB2=√10002−8002=600m,同理,宣传车驶过D处,村庄听不到宣传,此时AD=1000m,∴BD=√AD2−AB2=√10002−8002=600m,∴CD=CB+BD=1200m,又宣传车的速度v=300m/min,∴t=CDv =1200300=4min,即村庄可以听到4分钟的宣传.【解析】本题主要考查了勾股定理的应用的知识点,解此题的关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,进行解答;(1)由已知条件得出AB=800m,然后与1000m进行比较,即可得出答案.(2)设宣传车到达C处,村庄开始听到宣传,同理,宣传车驶过D处,村庄听不到宣传,然后通过勾股定理计算出CD的距离,从而根据t=CDv得到正确答案.24.【答案】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点P,即为所求;(3)如图所示:点M,即为所求.【解析】此题主要考查了轴对称变换以及轴对称求最短路线问题,正确得出对应点位置是解题关键.(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线的方法,连AC1,交直线DE于点P,由于点C与点C1关于直线DE对称,因此PA+PC最小,即可得出答案;(3)根据MC1≤B1C1+MB1,即可得到|MB−MC1|最大值为B1C1的长.25.【答案】解:(1)∵|OA−4|+(OB−3)2=0,又∵|OA−4|≥0,(OB−3)2≥0,∴OA=4,OB=3.(2)如图2中,作DE⊥y轴于E.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAE+∠BAO=90°,∠DAE+∠ADE=90°,∴∠BAO=∠ADE,∵∠DEA=∠AOB=90°,∴△AOB≌△DEA(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴点D坐标为(4,7).(3)存在.在Rt△AOB中,AB=√32+42=5,∴当PA=AB=5时,P(0,9)或(0,−1),当PB=BA时,P(0,−4).【解析】(1)利用非负数的性质即可解决问题.(2)如图2中,作DE⊥y轴于E.证明△AOB≌△DEA(AAS),推出DE=OA=4,AE= OB=3,即可解决问题.(3)分两种情形分别求解即可解决问题.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,非负数的性质,勾股定理,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.【答案】解:(1)∵x=2+√3=2−√3,y=2−√3=2+√3,∴原式=2×(2−√3)2+2×(2+√3)2−(2−√3)(2+√3)=2(7−4√3)+2(7+4√3)−1=14−8√3+14+8√3−1=27;(2)∵x=√5+12,∴2x=√5+1,∴(2x−1)2=5,整理可得x2=x+1,∴原式=x(x+1)+x+1x(x+1)=(x+1)2x(x+1)=x+1x=x=√5+12.【解析】本题主要考查了二次根式的化简求值,关键是熟练掌握分母有理化.(1)先利用分母有理化化简二次根式,然后代入进行计算即可得出结果;(2)整理已知可得x2=x+1,然后整理分式代入进行计算可得结果.27.【答案】解:(1)∵四边形ABCD是矩形∴AB=CD=8cm,BC=AD=10cm,∵折叠∴△AEF≌△AED,AD=AF=10cm,EF=DE,在Rt△ABF中,BF=√AF2−AB2=6cm(2)∵FC=BC−BF∴CF=10−6=4cm在Rt△EFC中,EF2=CE2+CF2,∴EF2=(8−EF)2+16,∴EF=5,∴S△AEF=12×AF×EF=25.【解析】(1)根据矩形的性质和折叠的性质可得AD=AF=10cm,根据勾股定理可求BF的长;(2)根据勾股定理可求EF的长,根据三角形面积公式可求△AEF的面积.本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.28.【答案】解:∵∠C=90°,AB=5cm,BC=3cm,∴AC=√AB2−BC2=4cm,当CP=CB时,△BCP为等腰三角形,若点P在CA上,t=3(s);若点P在AB上,CP=CB=3,作CH⊥AB于H,如图,CH=125,在Rt△BCH中,BH=√32−(125)2=95,则PB=2BH=185,∴CA+AP=4+5−185=5.4,此时t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,则BD=CD,∴PD为△ABC的中位线,∴AP=BP,即AP=12AB=52,∴t=4+52=132(s);当BP=BC时,△BCP为等腰三角形,即BP=BC=3,∴AP=AB−BP=2,∴t=4+2=6(s),综上所述,t为3s或5.4s或6s或132s时,△BCP为等腰三角形.【解析】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了勾股定理和分类讨论的思想.先根据勾股定理计算出AC= 4cm,然后分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上得t=3(s),若点P在AB上,则t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,如图,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=1 2AB=52,易得t=132(s);当BP=BC=3时,△BCP为等腰三角形,则AP=AB−BP=2,易得t=6(s).第21页,共21页。

2020-2021学年实验中学八年级上学期期中数学试卷及解析

2020-2021学年实验中学八年级上学期期中数学试卷及解析

2020-2021学年实验中学八年级第一学期期中数学试卷一、选择题1.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列计算中,正确的是()A.(a2)3=a8B.a8÷a4=a2C.a3+a2=a5D.a2•a3=a53.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.(3分)计算(x﹣k)(x+3)的结果中不含x的一次项,则k的值是()A.0B.3C.﹣3D.﹣25.(3分)已知一个等腰三角形两边长分别为5,6,那么它的周长为()A.16B.17C.16或17D.10或126.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.(3分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.48.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)如图,在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),则点C关于x轴、y轴对称的点的坐标分别为()A.(3,1),(﹣3,﹣1)B.(﹣3,1),(﹣3,﹣1)C.(3,1),(1,3)D.(﹣3,﹣1),(3,1)10.(3分)在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处B.AD的中点处C.A点处D.D点处二、填空题(共8小题;共24分)11.(3分)计算:(ab2)2÷(﹣ab)2=.12.(3分)等式(a+b)2=a2+b2成立的条件为.13.(3分)已知:如图,在△ABC中,点D在BC上,∠B=40°,∠B=∠BAD,∠C=∠ADC,则∠DAC的度数为.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为cm.15.(3分)若x2﹣(m﹣1)x+36是一个完全平方式,则m的值为.16.(3分)如果实数a,b满足a+b=6,ab=8,那么a2+b2=.17.(3分)教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.(3分)在数学课上,老师提出用尺规作图解决问题.已知:线段AB、线段AC,AB>AC,在AB上求作点D,使△ACD的周长等于线段AB的长.小左同学的作法如下:(1)在线段AB上截取BE=AC;(2)连接CE,作线段CE的垂直平分线交AB于点D.老师说:“小左同学的作法正确.”请回答:小左同学的作图依据是.三、解答题(共7小题:共46分,第19题10分,第20-22题,每题5分).19.(10分)计算:(1)(4a3b+6a2b2﹣ab3)÷2ab.(2)(3x+2)(2x2﹣x+1).20.(5分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.21.(5分)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(5分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB =5,求线段DE的长.23.(7分)如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为(直接写出结果).24.(7分)如图,已知等腰三角形ABC中,∠BAC=30°,AB=AC,∠PAB=α,作点B关于直线AP 的对称点为点D,连接AD,连接BD交AP于点G,连接CD交AP于点E,交AB于点F.(1)如图(1)当α=15°时,①按要求画出图形,②求出∠ACD的度数,③探究DE与BF的倍数关系并加以证明;(2)在直线AP绕点A顺时针旋转的过程中(0°<a<75°),当△AEF为等腰三角形时,利用下页备用图直接求出α的值为.25.(7分)我们把正n边形(n≥3)的各边三等分,分别以居中的那条线段为一边向外作正n边形,并去掉居中的那条线段,得到一个新的图形叫做正n边形的“扩展图形”,并将它的边数记为a n.如图1,将正三角形进行上述操作后得到其“扩展图形”,且a3=12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知a3=12,a4=20,a5=30,则图4中a6=,根据以上规律,正n边形的“扩展图形”中a n=;(用含n的式子表示)(3)已知=﹣,=﹣,=﹣,…,且+++…+=,则n=.参考答案一、选择题(共10小题:共30分)1.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.3.解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.4.解:(x﹣k)(x+3)=x2﹣kx+3x﹣3k=x2+(3﹣k)x﹣3k.∵(x﹣k)(x+3)的结果中不含x的一次项,∴3﹣k=0.∴k=3.故选:B.5.解:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故选:C.6.解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选:A.7.解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,解法二:三角形ABC的面积等于三角形AOB的面积+三角形AOC的面积,三角形ABC是等边三角形,所以三个三角形是等底,高OF+高OE等于三角形ABC的高2.故选:C.8.解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.解:∵在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),∴点C关于x轴、y轴对称的点的坐标分别为(3,1),(﹣3,﹣1).故选:A.10.解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、P、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.二、填空题(共8小题;共24分)11.解:(ab2)2÷(﹣ab)2=a2b4÷a2b2=b2.故答案为:b2.12.解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.13.解:∵∠B=∠BAD=40°,∠ADC=∠B+∠BAD,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣160°=20°,故答案为20°.14.解:∵DE是AB的垂直平分线,∴AD=BD=12cm,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°,在Rt△BCD中,BC=BD=×12=6cm.故答案为:6.15.解:∵x2﹣(m﹣1)x+36是一个完全平方式,∴m﹣1=±12,故m的值为﹣11或13,故答案为:﹣11或1316.解:∵a+b=6,ab=8,∴a2+b2=(a+b)2﹣2ab=36﹣16=20,故答案为:2017.解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG ⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.解:由作法得D点线段CE的垂直平分线上,根据线段垂直平分线上的点到这条线段两端点的距离相等,∴DE=DC,而BE=AC,∴△ACD的周长=AC+AD+CD=AC+AD+DE=BE+AE=AB.故答案为线段垂直平分线上的点到这条线段两端点的距离相等.三、解答题(共7小题:共46分,第19题10分,第20-22题,每题5分).19.解:(1)原式=2a2+3ab﹣b2;(2)原式=6x3﹣3x2+3x+4x2﹣2x+2=6x3+x2+x+2.20.【解答】证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.21.解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9=3+9=12.22.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.23.解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.24.解:(1)①如图1:②∵B、D关于AP对称,∴AP垂直平分BD,a=15°,∴AD=AB,∠1=∠2=15°,∵∠BAC=30°,∴∠DAC=∠1+∠2+∠BAC=60°,∵AC=AB,∴AC=AD,∴△ACD为等边三角形∴∠ACD=60°.③DE=2BF,证明:连接EB,∵AP垂直平分BD,∴ED=EB,∴∠3=∠4,∵AB=AD,∠DAB=30°,∴∠ADB=75°,又∠ADC=60°,∴∠3=∠4=15°,∴∠5=30°,又AD=AC,AB平分∠DAC,∴AB⊥DC,∴EB=2BF,∴ED=2BF.11(2)如图2,∵AD =AC ,∴△DAC 是等腰三角形∴∠ADC =(180°﹣2a ﹣30°)÷2=75°﹣a ,∴∠AEF =∠ADC +∠DAE =75°﹣a +a =75°,当AE =AF 时,∠EAF =a =180°﹣75°×2=180°﹣150°=30°; 当AE =EF 时,∠EAF =a =(180°﹣75°)÷2=52.5°; 当EF =AF 时,∠AEF =∠EAF =a =75°(舍去).故答案为:30°或52.5°.25.解:(1)如图所示:(2)图4中a 6=6×7=42,根据以上规律,正n 边形的“扩展图形”中a n =n (n +1);(用含n 的式子表示) (3)∵=﹣,=﹣,=﹣,…,且+++…+=,∴﹣=, 解得n =99.故答案为:42,n (n +1);99.。

2020-2021学年四川省成都市八年级(上)期中数学试卷

2020-2021学年四川省成都市八年级(上)期中数学试卷

2020-2021学年四川省成都市八年级(上)期中数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分)1. 在数3.14159,4,1.010010001…,π,227中,无理数有( ) A. 1个 B. 2个 C. 3个 D. 4个2. 下列各数中,互为相反数的一组是( )A. −2 与√−83B. −2与√(−2)2C. −2与−12D. |−2|与23. 下列计算正确的是( )A. √(−2)2=−2B. √9=±3C. √−83=−2D. √25−√16=√94. 在平面直角坐标系中,位于第四象限的点是( )A. (−2,3)B. (4,−5)C. (1,0)D. (−8,−1)5. 下列各组数据,能作为直角三角形的三边长的是( )A. 11,15,13B. 1,4,5C. 8,15,17D. 4,5,66. 已知点M(a,1),N(3,1),且MN =2,则a 的值为( )A. 1B. 5C. 1或5D. 不能确定7. 若点P(m,2)与点Q(3,n)关于原点对称,则m ,n 的值分别为( )A. −3,2B. 3,−2C. −3,−2D. 3,28. 已知直角三角形两边的长为3和4,则此三角形的周长为( )A. 12B. 7+√7C. 12或7+√7D. 以上都不对9. 已知a 、b 在数轴上的位置如图,则√a 2−|b −a|的化简结果是( )A. 2a −bB. −bC. bD. −2a +b10. △ABC 中,AB =20,AC =13.高AD =12.则△ABC 的周长是( )A. 54B. 44C. 54或44D. 54或33二、填空题(本大题共9小题,共36.0分)11.若√x−3+y2−2y+1=0,则xy=________.12.−15的倒数是______;4的算术平方根是______.13.设a−b=2+√3,b−c=2−√3,则a2+b2+c2−ab−ac−bc=______.14.如图所示,有一圆柱,其高为12cm,它的底面周长是10cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,且必须从侧面爬行,则蚂蚁经过的最短距离为______ cm.15.如图,在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径向外作半圆,半圆的面积分别记为S1、S2,则S1+S2的值为________.16.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是______.17.代数式√a+√a−1+√a−2的最小值是______.18.观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,…,请你将发现的规律用含自然数n(n≥1)的等式表示出来:_______________________.19.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC=______ .三、计算题(本大题共1小题,共8.0分)20.如图:四边形ABCD中,AB=CB=√2,CD=√5,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.四、解答题(本大题共8小题,共76.0分)21.计算:(1)4(x+1)2−(2x+3)(2x−3);)−3.(2)|1−√2|+√18−(3.14−π)0−(−1222.已知5a−1的算术平方根是3,3a+b−1的立方根为2;(1)求a与b的值;(2)求2a+4b的平方根.23.如图,已知等边三角形AOB的一个顶点的坐标为A(2,0),求其余两个顶点的坐标。

2020-2021成都双语实验学校初二数学上期中试题带答案

2020-2021成都双语实验学校初二数学上期中试题带答案

2020-2021成都双语实验学校初二数学上期中试题带答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .62.下列分式中,最简分式是( )A .B .C .D .3.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣34 4.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF ;其中正确的是( )A .①②③B .①③④C .①②④D .①②③④ 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .146.要使分式13a +有意义,则a 的取值应满足( ) A .3a =- B .3a ≠- C .3a >- D .3a ≠7.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .8 8.已知x 2+mx+25是完全平方式,则m 的值为( )A .10B .±10C .20D .±20 9.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠10.下列图形中,周长不是32 m 的图形是( )A .B .C .D .11.下列各式中,从左到右的变形是因式分解的是( )A .()()2224a a a +-=-B .()ab ac d a b c d ++=++C .()2293x x -=- D .22()a b ab ab a b -=- 12.如图,△ABC 中,∠B =60°,AB =AC ,BC =3,则△ABC 的周长为( )A .9B .8C .6D .12二、填空题13.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.14.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 15.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.16.在代数式11,,52x x x +中,分式有_________________个. 17.当x =_____时,分式22x x -+的值为零. 18.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.19.观察下列各式的规律:()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a a b ab a b b b a +++=--…可得到()()2019201820182019a a b ab b a b ++++=-L ______.20.在实数范围因式分解:25a -=________.三、解答题21.先化简,再求值:2422x x x +--,其中x =3﹣2. 22.说明代数式2()()()(2)x y x y x y y y ⎡⎤--+-÷-+⎣⎦的值,与y 的值无关. 23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么?24.如图,AB =AC ,MB =MC .直线AM 是线段BC 的垂直平分线吗?25.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OC=OD ;(3)OE 是线段CD 的垂直平分线.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 3.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.4.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】解:要使分式13a有意义,则a+3≠0,解得:a≠-3.故选:B.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.7.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.8.B解析:B【解析】【分析】根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.9.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠AD A′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.A解析:A【解析】【分析】根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.【详解】在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.【点睛】本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形.二、填空题13.6【解析】【分析】直接利用多项式乘法去括号进而得出一次项系数为0求解即可【详解】∵的乘积中不含的一次项∴=中∴故答案为:6【点睛】本题主要考查了多项式乘多项式解答本题的关键在于正确去括号并计算解析:6【解析】【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【详解】∵(42)(3)x m x -+的乘积中不含x 的一次项,∴(42)(3)x m x -+=24(122)6x m x m +--中1220m -=∴6m =故答案为:6.【点睛】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算. 14.n <2且【解析】分析:解方程得:x=n ﹣2∵关于x 的方程的解是负数∴n ﹣2<0解得:n <2又∵原方程有意义的条件为:∴即∴n 的取值范围为n <2且解析:n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n ﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 15.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及 解析:9【解析】∵m −n =2,mn =−1,∴(1+2m )(1−2n )=1−2n +2m −4mn =1+2(m −n )−4mn =1+4+4=9.故答案为9.点睛: 本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.16.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15x+是整式,1x是分式,2x是整式,即分式个数为1,故答案为:1【点睛】本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母. 17.2【解析】由题意得:解得:x=2故答案为2解析:2【解析】由题意得:20{20xx-=+≠,解得:x=2. 故答案为218.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和19.【解析】【分析】根据已知等式归纳总结得到一般性规律写出所求式子结果即可【详解】归纳总结得:(a−b)(a2019+a2018b+…+ab2019+b2019)=a2020−b2020故答案为:【点睛解析:20202020a b-【解析】【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【详解】归纳总结得:(a−b)(a 2019+a 2018b+…+ab 2019+b 2019)=a 2020−b 2020.故答案为:20202020a b -.【点睛】此题考查多项式乘多项式,平方差公式,解题关键在于找到运算规律.20.【解析】【分析】将5改成然后利用平方差进行分解即可【详解】==故答案为【点睛】本题考查了在实数范围内分解因式把5写成是利用平方差公式进行分解的关键 解析:(a a 【解析】【分析】将5改成2,然后利用平方差进行分解即可. 【详解】25a -=2a -2=(a a +,故答案为(a a .【点睛】本题考查了在实数范围内分解因式,把5写成2是利用平方差公式进行分解的关键. 三、解答题21.【解析】【分析】先把分式化简,再把数代入求值.【详解】 原式=2422x x x--- =242x x-- =(2)(2)2x x x+-- =﹣(x+2),当x 2时,原式=22)-+=【点睛】此题考查分式的加法,关键是寻找最简公分母,也要注意符号的处理.22.说明见解析.【解析】试题分析:根据整式的混合运算的法则和顺序,先算完全平方和平方差,然后合并同类项化简,通过关化简可判断.试题解析:原式=()()222222x xy y x yy y -+-+÷-+=x-y+y=x∴代数式的值与y 无关.23.(1)28和2012是神秘数(2)84k +是4的倍数(3)8k 不能整除8k+4【解析】【分析】(1)根据“神秘数”的定义,设这两个连续偶数分别为2m ,2m+2,列方程求出m 的值即可得答案;(2)根据“神秘数”的定义可知(2n)2-(2n-2)2=4(2n-1),即可得答案;(3)由(2)可知“神秘数”是4的倍数,但一定不是8的倍数,而连续两个奇数的平方差一定是8的倍数,即可得答案.【详解】(1)设设这两个连续偶数分别为2m ,2m+2,则根据题意得:(2m+2)2-(2m)2=28,8m+4=28,m=3,∴2m=6,2m+2=8,即82-62=28,∴28是“神秘数”.(2m+2)2-(2m)2=2012,8m+4=2012,m=501,∴2m=1002∴2012是“神秘数”.(2)是;理由如下:∵(2n)2-(2n-2)2=4(2n-1),∴由这两个连续偶数构造的神秘数是4的倍数.(3)由(2)可知“神秘数”可表示为4(2n-1),∵2n-1是奇数,∴4(2n-1)是4的倍数,但一定不是8的倍数,设两个连续的奇数为2n-1和2n+1,则(2n+1)2-(2n-1)2=8n.∴连续两个奇数的平方差是8的倍数,∴连续两个奇数的平方差不是“神秘数”.【点睛】本题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用24.是,见解析.【解析】【分析】根据线段的垂直平分线的定义,分别证明A、M在线段BC的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC,∴点A在线段BC的垂直平分线上,∵MB=MC,∴点M在线段BC的垂直平分线上,∴直线AM是线段BC的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.25.见解析【解析】试题分析:(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.试题解析:证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.点睛:本题考查了角平分线性质,线段垂直平分线的判定,等腰三角形的判定,三角形全等的相关知识.关键是明确图形中相等线段,相等角,全等三角形.。

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年度第一学期八年级期中数学试卷及答案共三套

2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,143.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.96.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有对.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.15.一个八边形的所有内角都相等,它的每一个外角等于度.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为.三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合要求1.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各个汉字进行判断即可得解.【解答】解:A、“大”是轴对称图形,故本选项不合题意;B、“美”是轴对称图形,故本选项不合题意;C、“中”是轴对称图形,故本选项不合题意;D、“国”是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列长度的三条线段能组成三角形的是()A.2,3,4B.3,6,11C.4,6,10D.5,8,14【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、2+3>4,能组成三角形;B、3+6<11,不能组成三角形;C、4+6=10,不能组成三角形;D、5+8<14,不能够组成三角形.故选:A.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带①去B.带②去C.带③去D.带①②去【分析】根据三角形全等的判定方法ASA,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:C.【点评】此题主要考查了全等三角形的应用,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.9【分析】根据多边形内角和公式180°(n﹣2)和外角和为360°可得方程180(n﹣2)=360×3,再解方程即可.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.【点评】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°【分析】如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.【解答】解:∵AC⊥BC于C,∴△ABC是直角三角形,∴∠ABC=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°,∴∠ABC=∠1=70°,∵AB∥DF,∴∠1+∠CEF=180°,即∠CEF=180°﹣∠1=180°﹣70°=110°.故选:A.【点评】本题比较简单,考查的是平行线的性质及直角三角形的性质.7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B.60°C.67°D.77°【分析】由△ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数,继而求得答案.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故选:C.【点评】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.8.如图,AD为∠BAC的平分线,添加下列条件后,不能证明△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.BD=CD D.AB=AC【分析】根据“AAS”对A进行判断;根据“ASA”对B进行判断;根据“SSA”对C进行判断;根据“SAS”对D进行判断.【解答】解:A、由,可得到△ABD≌△ACD,所以A选项不正确;B、由,可得到△ABD≌△ACD,所以B选项不正确;C、由BD=CD,AD=AD,∠BAD=∠CAD,不能得到△ABD≌△ACD,所以C选项正确.D、由,可得到△ABD≌△ACD,所以D选项不正确;故选:C.【点评】本题考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“AAS”、“SAS”、“ASA”.9.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即横坐标不变,纵坐标变成相反数,即可得出答案.【解答】解:根据关于x轴的对称点横坐标不变,纵坐标变成相反数,∴点P(1,﹣2)关于x轴对称点的坐标为(1,2),故选:A.【点评】本题主要考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度较小.10.下列语句中,正确的是()A.等腰三角形底边上的中线就是底边上的垂直平分线B.等腰三角形的对称轴是底边上的高C.一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D.等腰三角形的对称轴就是顶角平分线【分析】在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.垂直平分线对应的是直线、对称轴对应的同样为一条直线,根据各种线之间的对应关系即可得出答案.【解答】解:A、三角形中,中线是连接一个顶点和它所对边的中点的连线段,而线段的垂直平分线是直线,故A错误;B、三角形的高对应的是线段,而对称轴对应的是直线,故B错误;C、线段是轴对称图形,对称轴为垂直平分线,故C正确;D、角平分线对应的是射线,而对称轴对应的是直线,故D错误.故选:C.【点评】本题考查了三角形的基本性质,在三角形中,高、中线对应的都是一条线段,而角平分线对应的是一条射线.这些都属于基本的概念问题,要能够吃透概念、定义.11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′的度数是()A.40°B.35°C.55°D.20°【分析】根据平行线的性质得到∠BAA′=∠ABC=70°,根据全等三角形的性质、等腰三角形的性质计算即可.【解答】解:∵AA′∥BC,∴∠BAA′=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC′=∠ABC=70°,∴∠BAA′=∠BA′A=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故选:A.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.12.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【分析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.【解答】解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE∵∠C=90°,AC=BC∴∠B=45°∴DE=BE∵AC=BC,AB=6cm,∴2BC2=AB2,即BC===3,∴BE=AB﹣AE=AB﹣AC=6﹣3,∴BC+BE=3+6﹣3=6cm,∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).另法:证明三角形全等后,∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题:本大题共6小题,每小题3分,共18分13.如图,已知AB=AC,EB=EC,AE的延长线交BC于D,则图中全等的三角形共有3对.【分析】在线段AD的两旁猜想所有全等三角形,再利用全等三角形的判断方法进行判定,三对全等三角形是△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.【解答】解:①△ABE≌△ACE∵AB=AC,EB=EC,AE=AE∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE,∠AEB=∠AEC∴∠EBD=∠ECD,∠BED=∠CED∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE,△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED,∠ACB=∠ACE+∠CED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.【点评】本题考查学生观察,猜想全等三角形的能力,同时,也要求会运用全等三角形的几种判断方法进行判断.14.等腰三角形的周长为20cm,一边长为6cm,则底边长为6或8cm.【分析】分6cm是底边与腰长两种情况讨论求解.【解答】解:①6cm是底边时,腰长=(20﹣6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20﹣6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6或8cm.故答案为:6或8.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.15.一个八边形的所有内角都相等,它的每一个外角等于45度.【分析】根据多边形的外角和为360°即可解决问题;【解答】解:∵一个八边形的所有内角都相等,∴这个八边形的所有外角都相等,∴这个八边形的所有外角==45°,故答案为45;【点评】本题考查多边形内角与外角,解题的关键是熟练掌握基本知识,属于中考常考题型.16.已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【分析】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)【点评】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.17.如图,DE是AB的垂直平分线,AB=8,△ABC的周长是18,则△ADC的周长是10.【分析】依据线段垂直平分线的性质可得到AD=BD,则△ADC的周长=BC+AC.【解答】解:∵DE是AB的垂直平分线,∴AD=BD.∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=18﹣8=10.故答案为:10.【点评】本题主要考查的是线段垂直平分线的性质,熟练掌握相关知识是解题的关键.18.如图,已知钝角三角形ABC的面积为20,最长边AB=10,BD平分∠ABC,点M、N 分别是BD、BC上的动点,则CM+MN的最小值为4.【分析】过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.【解答】解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N,∴MN=ME,∴CE=CM+ME=CM+MN的最小值.∵三角形ABC的面积为15,AB=10,∴×10•CE=20,∴CE=4.即CM+MN的最小值为4.故答案为4.【点评】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目三、解答题:本大题共7小题,其中19~20题每题8分,21~25题每题10分,共66分19.(8分)请在边长为1的小正方形虚线网格中画出:(画出符合条件的一个图形即可)(1)一个所有顶点均在格点上的等腰三角形;(2)一个所有顶点均在格点上且边长均为无理数的等腰三角形;【分析】(1)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.(2)根据等腰三角形两条边相等的性质作图,根据每个正方形的边长和高来计算画出题目中所要求的图形.【解答】解:(1)如图所示:如三角形的三边长分别为1、1、或2、2、2或3、3、3或、、2或、、2或、、2等(2)如图所示:如三角形的三边长分别为、、或2、、等.【点评】本题考查了在小正三角形网格中,勾股定理的灵活应用.考查学生对有理数,无理数定义的理解,作出符合题目要求的图形.20.(8分)已知:如图,AB=CD,AD=BC.求证:AB∥CD.【分析】根据全等三角形对应角相等得出∠ABD=∠CDA,进一步得出AB∥CD.【解答】证明:在△ABD与△CDB中,,∴△ABD≌△CDB,∴∠ABD=∠CDA,∴AB∥CD.【点评】本题主要考查了三角形全等的判定和性质;根据全等三角形对应角相等得出∠ABD=∠CDA是解决问题的关键.21.(10分)如图,已知OC=OE,OD=OB,试说明△ADE≌△ABC.【分析】由OC=OE,OD=OB,可得到BC=DE,再利用SAS得到△COD≌△BOE,得到∠D=∠B,再利用AAS得到△ADE≌△ABC.【解答】解:在△COD和△BOE中,,∴△COD≌△BOE,∴∠D=∠B,∵OC=OE,OD=OB,∴DE=BC在△ADE和△ABC中,,∴△ADE≌△ABC.【点评】本题考查了三角形的全等的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(10分)如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.【点评】本题考查全等三角形的判定和性质、角平分线的性质、等腰三角形的性质等知识,解题的关键是证明Rt△BDE≌Rt△CDF.23.(10分)如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD 平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.【分析】(1)首先利用等腰三角形的性质得出,∠CAE=∠CEA,再利用外角的性质得出∠BCE的度数,进而利用等边三角形的判定得出答案;(2)首先在AE上截取EM=AD,进而得出△ACD≌△ECM,进而得出△MCD为等边三角形,即可得出答案.【解答】(1)证明:∵CA=CB,CE=CA,∴BC=CE,∠CAE=∠CEA,∵CD平分∠ACB交AE于D,且∠CDE=60°,∴∠ACD=∠DCB=45°,∠DAC+∠ACD=∠EDC=60°,∴∠DAC=∠CEA=15°,∴∠ACE=150°,∴∠BCE=60°,∴△CBE为等边三角形;(2)解:在AE上截取EM=AD,连接CM.在△ACD和△ECM中,,∴△ACD≌△ECM(SAS),∴CD=CM,∵∠CDE=60°,∴△MCD为等边三角形,∴CD=DM=7﹣5=2.【点评】此题主要考查了全等三角形的判定与性质以及等边三角形的性质与判定和三角形外角的性质等知识,正确作出辅助线是解题关键.24.(10分)如图,在等边△ABC中,D、E分别在边BC、AC上,且DE∥AB,过点E 作EF⊥DE交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2cm,求DF的长.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.25.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB=BF即可.【解答】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA),∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.2020-2021学年八年级(上)期中数学试卷一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±22.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.24.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与27.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±19.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.00052810.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)12.在下列各式中,正确的是()A.B.C.D.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()A.13个B.16个C.19个D.22个二、填空题:(本大题共10小题,每小题3分,共30分).14.的相反数是.15.的算术平方根是.16.把“对顶角相等”改写成“如果…那么…”的形式是:.17.3(填>,<或=)18.在平面直角坐标系中,点P(a,a+1)在x轴上,那么点P的坐标是.19.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.20.如图所示,直线a∥b,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,则∠2=.21.已知x、y为实数,且+(y+2)2=0,则y x=.22.已知AB∥x轴,A点的坐标为(﹣3,2),并且AB=4,则B点的坐标为.23.若∠α的两边与∠β的两边互相平行,当∠α=40°时,∠β=.三、解答题:24.(12分)计算或解方程(1)|﹣|+2(2)4(2﹣x)2=9(3)﹣+|1﹣|+(﹣1)201825.(9分)如图(1)写出三角形ABC的各个顶点的坐标;(2)试求出三角形ABC的面积;(3)将三角形ABC先向右平移3个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在该网格中画出平移后的图形.26.(7分)如图,直线AB与CD相交于点0,∠AOD=20°,∠DOF:∠FOB=1:7,射线OE 平分∠BOF.(1)求∠EOB的度数;(2)射线OE与直线CD有什么位置关系?请说明理由.27.(6分)如图,已知AD ∥BC ,∠1=∠2,求证:∠3+∠4=180°.28.(7分)已知实数a 、b 在数轴上对应点的位置如图:(1)比较a ﹣b 与a +b 的大小;(2)化简|b ﹣a |+|a +b |.29.(10分)如图,直线AB 交x 轴于点A (3,0),交y 轴于点B (0,2)(1)求三角形AOB 的面积;(2)在x 轴负半轴上找一点Q ,使得S △QOB =S △AOB ,求Q 点坐标.(3)在y 轴上任一点P (0,m ),请用含m 的式子表示三角形APB 的面积.参考答案与试题解析一、选择题:本大题共13小题,每小题3分,共39分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.4的平方根是()A.2B.﹣2C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.下列各点中,在第二象限的点是()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.【解答】解:因为第二象限的点的坐标是(﹣,+),符合此条件的只有(﹣2,3).故选:D.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.在下列各数;0;3π;;;1.1010010001…,无理数的个数是()A.5B.4C.3D.2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是无理数;0不是无理数;3π是无理数;=3不是无理数;不是无理数;1.1010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCEC.∠1=∠2D.∠D+∠ACD=180°【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【解答】解:A、∵∠3=∠4,∴AC∥BD.本选项不能判断AB∥CD,故A错误;B、∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C、∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D、∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.5.若y轴上的点P到x轴的距离为3,则点P的坐标是()A.(3,0)B.(0,3)C.(3,0)或(﹣3,0)D.(0,3)或(0,﹣3)【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【解答】解:∵y轴上的点P,∴P点的横坐标为0,又∵点P到x轴的距离为3,∴P点的纵坐标为±3,所以点P的坐标为(0,3)或(0,﹣3).故选:D.【点评】此题考查了由点到坐标轴的距离确定点的坐标,特别对于点在坐标轴上的特殊情况,点到坐标轴的距离要分两种情况考虑点的坐标.6.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.【解答】解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.【点评】此题主要考查了实数的性质以及互为相反数的定义,正确化简各数是解题关键.7.如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120°,那么∠COB的度数为()A.80°B.70°C.60°D.50°【分析】求出∠BOD的度数,根据∠DOC的度数求出即可.【解答】解:∵∠AOD=120°,∠AOB=90°,∴∠BOD=120°﹣90°=30°,∵∠DOC=90°,∴∠BOC=∠DOC﹣∠DOB=90°﹣30°=60°,故选:C.【点评】本题考查了角的有关计算的应用,关键是能求出各个角的度数.8.算术平方根等于它相反数的数是()A.0B.1C.0或1D.0或±1【分析】由于算术平方根只能是非负数,而算术平方根等于它相反数,由此得到它是非正数,由此即可得到结果.【解答】解:∵算术平方根只能是非负数,而算术平方根等于它相反数,∴算术平方根等于它相反数的数是非正数,∴算术平方根等于它相反数的数是0.故选:A.【点评】此题主要考查了非负数的性质,其中利用了两个非负数:一个数的算术平方根是非负数;有算术平方根的只能是非负数.9.已知=0.1738,=1.738,则a的值为()A.0.528B.0.0528C.0.00528D.0.000528【分析】利用立方根定义计算即可求出值.【解答】解:∵=0.1738,=1.738,∴a=0.00528,故选:C.【点评】此题考查了立方根,熟练掌握立方根定义是解本题的关键.10.如图:∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④【分析】同位角的概念,在截线的同侧,并且在被截线的同一方的两个角是同位角,所以①②④符合要求.【解答】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:CD.【点评】本题考查了同位角的概念;判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.11.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选:D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.12.在下列各式中,正确的是()A.B.C.D.【分析】运用立方根、平方根的知识,计算左边,根据左边是不是等于右边做出判断【解答】解:=≠2018,故选项A错误;==﹣0.4,故选项B正确;==2018≠±2018,故选项C错误;+=2018+2018=4036≠0,故选项D错误.故选:B.【点评】本题主要考查了实数运算、平方根和立方根,掌握实数的平方根、立方根的意义是解题关键.13.如图,用同样大小的黑色棋子按如图所示的规律摆放:则第7个图案中黑色棋子有()。

2020-2021学年四川省成都市双流中学实验学校八年级(上)月考数学试卷(12月份) (解析版)

2020-2021学年四川省成都市双流中学实验学校八年级(上)月考数学试卷(12月份) (解析版)

2020-2021学年四川省成都市双流中学实验学校八年级第一学期月考数学试卷(12月份)一、选择题(共10小题,每题3分,共30分).1.下列实数中,属于无理数的是()A.0B.3.14C.D.2.使代数式有意义的x的取值范围是()A.x≥﹣1B.x>﹣1C.x≥1D.x>13.已知A,B两点在y=2x+1上,A的坐标为(1,m),B的坐标为(3,n),则()A.m=n B.m<n C.m>n D.无法确定4.在平面直角坐标系中,一次函数y=kx﹣3(k<0)的图象大致是()A.B.C.D.5.在平面直角坐标系xOy中,点P(x,y)在第二象限,且点P到横轴的距离等于3,到纵轴的距离等于4,则点P坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)6.将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A.y=﹣4x+2B.y=﹣6x C.y=﹣4x﹣2D.y=﹣2x7.学习了《数据的分析》后,小王同学对其学习小组内甲、乙、丙、丁四名同学的三次数学单元考试成绩的平均分()、方差(s2)统计如下表,则数学成绩最好、最稳定的同学是()甲乙丙丁平均分()1009510095方差(s2)0.890.89 1.01 1.01A.甲B.乙C.丙D.丁8.如图所示,数轴上点A所表示的数为a,则a的值是()A.+1B.C.﹣1D.﹣+19.某公司去年的利润(总产值﹣总支出)为200万元.今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.如果去年的总产值x万元、总支出y 万元,则下列方程组正确的是()A.B.C.D.10.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为()A.B.C.D.二、填空题(本大题共4小题,每小题4分,共16分)11.比较大小:2;﹣5﹣5.12.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是.13.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为cm.14.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是.三、解答题(本大题共6小题,共54分)15.计算:(1)×﹣(1﹣)2;(2)(π﹣2020)0+6﹣|5﹣|﹣()﹣2.16.解方程组:.17.为了提高学生阅读能力,“双中实验校”倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整:被调查的学生周末阅读时间众数是小时,中位数是小时.(2)计算被调查学生阅读时间的平均数.(3)我校八年级共有1200人,试估计周末阅读时间不低于1.5小时的人数.18.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天花去住宿费1510元,两种客房各租住多少间?19.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.20.在等腰Rt△ABC中,∠ABC=90°,AB=BC.(1)如图1,D为线段BC的延长线上一点,连接AD,过点B作BE⊥AD,已知AB=8,AD=17,求CD和BE的长.(2)如图2,点F是线段AC上一点,连接BF,过点B作BG⊥AC于点G,过点C作CH⊥BF于点H,连接GH.①若=,AC=5,求S△BCH的值.②求证:CH﹣BH=HC.四、填空题(本大题共5小题,每小题4分,共20分)21.若(a﹣2)+3y b﹣2=2是关于x,y的二元一次方程,则a﹣b=.22.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为23.如图,已知直线上l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B 作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线的垂线交轴于点A2;按此作法继续下去,则A1的坐标为,A2020的坐标.24.如图,已知a,b,c分别Rt△ABC是的三条边长,∠C=90°,我们把关于x的形如y =x+的一次函数称为“勾股一次函数”.若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是10,则c的值是.25.如图,已知x轴上一点A(4,0),B为y轴上的一动点,连接AB,以B为直角顶点,AB为腰作等腰直角△ABC,连接OC,则AC+OC的最小值是.五、解答题(本大题共3小题,共30分)26.甲、乙两个仓库要向A、B两地运送水泥,已知甲库可调出水泥100吨,乙库可调出水泥80吨;A地需水泥70吨,B地需水泥110吨,两仓库到A、B两地的路程和运费如下表:路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式及x的取值范围;(2)当甲、乙两个仓库各运往A、B两地水泥多少吨时总运费最少?最少运费是多少?27.已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线m上取一点C,使AC=AB,连接BC,在直线BC上任取一点E,作∠AEF=∠BAC,EF交直线n于点F.(1)如图1,当点E在线段BC上,目∠BFE=20°时,求∠BAE的度数.(2)若点E是线段BC上任意一点,求证:EF=AE.(3)如图2,当点E在线段BC的延长线上时,若∠BAC=90°,请判断线段EF与AE 的数量关系,并说明理由.28.如图,直线y=kx+k分别交x轴、y轴于点A,C,直线BC过点C交x轴于点B,且OA=OC,∠CBA=45°,点P是直线BC上的一点.(1)求直线BC的解析式;(2)若动点P从点B出发沿射线BC方向匀速运动,速度为个单位长度/秒,连接AP,设△PAC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出t的取值范围;(3)若点Q是直线AC上且位于第三象限图象上的一个动点,点M是y轴上的一个动点,当以点B、M、Q为顶点的三角形为等腰直角三角形时,求点Q和点M的坐标.参考答案一、选择题(共10小题,每题3分,共30分).1.下列实数中,属于无理数的是()A.0B.3.14C.D.【分析】根据无限不循环小数叫无理数,可得答案.解:A.0是整数,属于有理数;B.3.14是有限小数,属于有理数;C.是分数,属于有理数;D.是无理数.故选:D.2.使代数式有意义的x的取值范围是()A.x≥﹣1B.x>﹣1C.x≥1D.x>1【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.解:使代数式有意义,则x﹣1≥0,解得,x≥1,故选:C.3.已知A,B两点在y=2x+1上,A的坐标为(1,m),B的坐标为(3,n),则()A.m=n B.m<n C.m>n D.无法确定【分析】利用一次函数图象上点的坐标特征可得出m,n的值,比较后即可得出结论.解:∵点A(1,m),B(3,n)在y=2x+1上,∴m=3,n=7.∵3<7,∴m<n.故选:B.4.在平面直角坐标系中,一次函数y=kx﹣3(k<0)的图象大致是()A.B.C.D.【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.解:∵一次函数y=kx﹣3(k<0),b=﹣3,∴该函数图象经过第二、三、四象限,故选:C.5.在平面直角坐标系xOy中,点P(x,y)在第二象限,且点P到横轴的距离等于3,到纵轴的距离等于4,则点P坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)【分析】P在第二象限,那么点P的横纵坐标的符号为负,正;进而根据P到x轴的距离为纵坐标的绝对值.到y轴的距离为横坐标的绝对值判断出具体坐标.解:∵点P在第二象限,且第二象限内的点横坐标小于0,纵坐标大于0;∴点P的横坐标小于0,纵坐标大于0∵点P到x轴的距离等于3,到y轴的距离等于4,∴点P的坐标是(﹣4,3).故选:C.6.将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A.y=﹣4x+2B.y=﹣6x C.y=﹣4x﹣2D.y=﹣2x【分析】直接利用一次函数平移规律,“上加下减”得出即可.解:将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得图象对应的函数关系式为:y=﹣4x﹣2.故选:C.7.学习了《数据的分析》后,小王同学对其学习小组内甲、乙、丙、丁四名同学的三次数学单元考试成绩的平均分()、方差(s2)统计如下表,则数学成绩最好、最稳定的同学是()甲乙丙丁平均分()1009510095方差(s2)0.890.89 1.01 1.01A.甲B.乙C.丙D.丁【分析】此题有两个要求:①成绩较好,②最稳定.于是应选平均数大、方差小的运动员参赛.解:由于甲的平均数较大且方差较小,故选甲.故选:A.8.如图所示,数轴上点A所表示的数为a,则a的值是()A.+1B.C.﹣1D.﹣+1【分析】根据勾股定理,可得圆的半径,根据圆的性质,可得答案.解:如图,在Rt△BCD中,由勾股定理,得BD===,由圆的性质,得AD=BD=,1﹣a=,∴a=1﹣,故选:D.9.某公司去年的利润(总产值﹣总支出)为200万元.今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.如果去年的总产值x万元、总支出y 万元,则下列方程组正确的是()A.B.C.D.【分析】根据:①去年总产值﹣去年总支出=200,②今年总产值﹣今年总支出=780,可列方程组.解:设去年的总产值x万元、总支出y万元,根据题意,可列方程:,故选:A.10.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为()A.B.C.D.【分析】根据题意和函数图象可以得到各个过程中S随着t的变化如何变化,注意选项A 和选项D中的区别是一个变化比较大,一个变化比较小,这个可以根据两个正方形的面积进行判断正误.解:由题意可得,小正方形的面积为:1×1=1,大正方形的面积为:2×2=4,∴刚开始小正方形从左向右运动,到小正方形正好完全进入大正方形的过程中,S随t的增大而减小,面积由4减小到3;当小正方形刚好完全进入大正方形到一边刚好要出大正方形的过程中,S随t的增大不变,一直是S=3,从小正方形刚好出大正方形到完全出大正方形的过程中,S随t的增大而增大,S由3增加到4,故选项A、B、C不符合题意,选项D符合题意,故选:D.二、填空题(本大题共4小题,每小题4分,共16分)11.比较大小:<2;﹣5<﹣5.【分析】根据算术平方根估算大小,然后利用实数的大小比较法则进行比较.解:∵,∴,∵,∴5>5,∴﹣5<﹣5.故答案为:<,<.12.已知:如图,∠1=∠2=∠3=55°,则∠4的度数是125°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=55°,∴∠6=180°﹣55°=125°,∴∠4=∠6=125°.故答案为:125°.13.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为2cm.【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.解:设在杯里部分长为xcm,则有:x2=32+42,解得:x=5,所以露在外面最短的长度为7cm﹣5cm=2cm,故吸管露出杯口外的最短长度是2cm,故答案为:2.14.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是.【分析】先把x=1代入y=x+1,得出y=2,则两个一次函数的交点P的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为.三、解答题(本大题共6小题,共54分)15.计算:(1)×﹣(1﹣)2;(2)(π﹣2020)0+6﹣|5﹣|﹣()﹣2.【分析】(1)根据二次根式的乘法法则和完全平分公式计算;(2)利用零指数幂、负整数指数幂和绝对值的意义计算.解:(1)原式=﹣(1﹣2+3)=2﹣4+2=4﹣4;(2)原式=1+2+5﹣3﹣4=2﹣.16.解方程组:.【分析】方程组利用加减消元法求出解即可.解:,①×3得:6x﹣3y=9③,②+③得:7x=7,解得:x=1,将x=1代入①得:2﹣y=3,解得:y=﹣1,则方程组的解为.17.为了提高学生阅读能力,“双中实验校”倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整:被调查的学生周末阅读时间众数是 1.5小时,中位数是 1.5小时.(2)计算被调查学生阅读时间的平均数.(3)我校八年级共有1200人,试估计周末阅读时间不低于1.5小时的人数.【分析】(1)根据众数,中位数的定义解决问题即可.(2)根据平均数的定义求解即可.(3)用样本估计总体的思想解决问题即可.解:(1)由题意可得,本次调查的学生数为:30÷30%=100(人),阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40(人),补全的条形统计图如图所示:由补全的条形统计图可知,抽查的学生阅读时间的众数是1.5小时,中位数是1.5小时.故答案为:1.5;1.5.(2)所有被调查同学的平均阅读时间为:(小时),即所有被调查同学的平均阅读时间为1.32小时.(3)不低于1.5小时所占比例;,∴1200×58%=696(人),故我校八年级阅读不低于1.5小时的人数696人.18.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天花去住宿费1510元,两种客房各租住多少间?【分析】设租住三人间x间,租住两人间y间,就可以得出3x+2y=50,3×25x+2×35y =1510,由这两个方程构成方程组求出其解就可以得出结论.解:设租住三人间x间,租住两人间y间,由题意,得,解得:.答:租住三人间8间,租住两人13间.19.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△PAB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB=x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,﹣6).(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P 的坐标.解:(1)令x=0得:y=4,∴B(0,4).∴OB=4令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△PAB=S△OCD,∴S△PAB=××6×8=12.∵点P在y轴上,S△PAB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).20.在等腰Rt△ABC中,∠ABC=90°,AB=BC.(1)如图1,D为线段BC的延长线上一点,连接AD,过点B作BE⊥AD,已知AB=8,AD=17,求CD和BE的长.(2)如图2,点F是线段AC上一点,连接BF,过点B作BG⊥AC于点G,过点C作CH⊥BF于点H,连接GH.①若=,AC=5,求S△BCH的值.②求证:CH﹣BH=HC.【分析】(1)先利用勾股定理求出BD,CD,再利用S△ABD=•AB•BD=•AD•BE,求出BE,即可解决问题;(2)①如图2中,设BH=x,CH=2x,利用勾股定理可得x,求出BH,CH可得结论;②如图3,在CH上截取CM=BH,连接GM,证明△GCM≌△GBH,根据线段的差可得结论.解:(1)在Rt△ABD中,AB=8,AD=17,∠ABC=90°,∴,∵AB=BC=8,∴CD=BD﹣BC=15﹣8=7,∵.∴BE===.(2)①∵AB=BC,∠ABC=90°,∴,∴BC=5,∵,设BH=x,则HC=2x,在Rt△BCH中,BC2=BH2+HC2=5x2,∴5x2=52,∴,∴,∴.②在CH上截取CM=BH,连接GM,∵AB=BC,BG⊥AC,∠ABC=90°,∴BG=AG=CG,∵BH⊥CH,∴∠BHC=∠BGC=90°,由8字模型倒角得∠GCM=∠GBH,在△GCM和△GBH中,,∴△GCM≌△GBH(SAS),∴CM=CH,∠CGM=∠BGH,∴∠CGM+∠BGM=∠BGH+∠BGM=90°,∴∠HGM=90°,∴△HGM是等腰直角三角形,∴,∴,∴.四、填空题(本大题共5小题,每小题4分,共20分)21.若(a﹣2)+3y b﹣2=2是关于x,y的二元一次方程,则a﹣b=﹣5.【分析】根据二元一次方程的定义得到且a﹣2≠0,联立方程组并解答.解:依题意得且a﹣2≠0,解得,则a﹣b=﹣2﹣3=﹣5.故答案为:﹣5.22.已知关于x,y的二元一次方程组的解满足x﹣y=3,则m的值为1【分析】②﹣①得到x﹣y=4﹣m,代入x﹣y=3中计算即可求出m的值.解:,②﹣①得:x﹣y=4﹣m,∵x﹣y=3,∴4﹣m=3,解得:m=1,故答案为:123.如图,已知直线上l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B 作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线的垂线交轴于点A2;按此作法继续下去,则A1的坐标为(0,4),A2020的坐标(0,24040).【分析】根据所给直线解析式可得l与x轴的夹角,进而根据所给条件依次得到点A1,A2的坐标,通过相应规律得到A2020坐标即可.解:∵直线l的解析式为上,当y=1,时,代入上式x=,即AB=,AO=1,∴tan∠AOB==,∴∠AOB=60°,∵A(0,1),AB⊥y轴,∴OB=2,∵A1B⊥l,∴OA1=4,∴A1(0,4),同理可得A2(0,16)...A n(0,22n),∴A2020的纵坐标为24040,∴A2021(0,24040),故答案为:A2020(0,24040).24.如图,已知a,b,c分别Rt△ABC是的三条边长,∠C=90°,我们把关于x的形如y =x+的一次函数称为“勾股一次函数”.若点P(1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是10,则c的值是.【分析】依据题意得到三个关系式:,ab=20,a2+b2=c2,运用完全平方公式即可得到c的值.解:∵点在“勾股一次函数”乌的图象上,∴把代入得,,即,∵a,b,c分别是Rt△ABC的三条边长,∠C=90°,Rt△ABC的面积为10,∴,a2+b2=c2,故ab=20,∴(a+b)2﹣2ab=c2,∴,∴,解得:,故答案为:.25.如图,已知x轴上一点A(4,0),B为y轴上的一动点,连接AB,以B为直角顶点,AB为腰作等腰直角△ABC,连接OC,则AC+OC的最小值是4.【分析】过C作CH⊥y轴于H,根据等腰直角三角形,的性质得到AB=BC,∠ABC=90°.根据全等三角形的性质得到OB=HC,OA=BH.设B点坐标为(0,n),得到OB=HC=n,推出点C在直线y=x+4上.设直线y=x+4与x轴交于点P,与y轴交于点Q,令y=0,得到P(﹣4,0),Q(0,4),过O点作直线y=x+4的对称点M,连结PM,AM,CM,根据轴对称的性质得到PO=PM,CO=CM,∠OPQ=∠MPQ=45°,求得M点坐标为(﹣4,4).当且仅当A,M,C三点共线时,AC+OC取得最小值,根据勾股定理即可得到结论.解:过C作CH⊥y轴于H,∴△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°.∵∠AOB=∠CHB=90°,∴∠OBA+∠OAB=90°,∠0BA+∠HBC=90°,∴∠OAB=∠HBC,在△AOB和△BHC中,∴△AOB≌△BHC(AAS),∴OB=HC,OA=BH.∵A点坐标为(4,0),∵OA=4,∴BH=4,设B点坐标为(0,n),∴OB=HC=n,∴OH=OB+BH=4+n,∴C点坐标为(n,4+n),∴点C在直线y=x+4上.设直线y=x+4与x轴交于点P,与y轴交于点Q,令y=0,x+4=0,解得x=﹣4,令x=0,y=4,∴P(﹣4,0),Q(0,4),∴OP=OQ=4.∵∠POQ=90°,∴∠OPQ=45°,过O点作直线y=x+4的对称点M,连结PM,AM,CM,由对称性可知,PO=PM,CO=CM,∠OPQ=∠MPQ=45°,∴∠MPO=90°,∴M点坐标为(﹣4,4).∵AC+OC=AC+CM≥AM,∴当且仅当A,M,C三点共线时,AC+OC取得最小值,∴AC+OC的最小值即为线段AM的长度.∴,∴AC+OC的最小值为.故答案为:.五、解答题(本大题共3小题,共30分)26.甲、乙两个仓库要向A、B两地运送水泥,已知甲库可调出水泥100吨,乙库可调出水泥80吨;A地需水泥70吨,B地需水泥110吨,两仓库到A、B两地的路程和运费如下表:路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式及x的取值范围;(2)当甲、乙两个仓库各运往A、B两地水泥多少吨时总运费最少?最少运费是多少?【分析】(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100﹣x)吨,乙库运往A地水泥(70﹣x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.解:(1)设甲库运往A地水泥x吨,依题意得y=12×20x+10×25×(100﹣x)+12×15×(70﹣x)+8×20×(10+x)=﹣30x+39200 (0≤x≤70)(2)上述一次函数中k=﹣30<0∴y的值随x的增大而减小,∴x=70时,总运费y最少,最少的总运费为37100元.27.已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线m上取一点C,使AC=AB,连接BC,在直线BC上任取一点E,作∠AEF=∠BAC,EF交直线n于点F.(1)如图1,当点E在线段BC上,目∠BFE=20°时,求∠BAE的度数.(2)若点E是线段BC上任意一点,求证:EF=AE.(3)如图2,当点E在线段BC的延长线上时,若∠BAC=90°,请判断线段EF与AE 的数量关系,并说明理由.【分析】(1)由三角形的内角和定理可求解;(2)由“AAS”可证△EMF≌△EBA,可得EF=AE;(3)由“SAS”可证△ABE≌△NBE,可得AE=EN,∠EAB=∠ENB,由补角的性质可证EF=EN=AE.【解答】证明:(1)如图1,设AB与EF交于点O,∵m∥n,∴∠BAC=∠ABF,∵∠BAC=∠ABF,∴∠AEF=∠ABF,∵∠AOE=∠BOF,∠OAE=180°﹣∠AEF﹣∠AOE,∠BFE=180°﹣∠ABF﹣∠BOF,∴∠OAE=∠BFE=20°.(2)如图1﹣1,以E为圆心,BE为半径画弧交直线n于点M,连接EM,∴EM=EB,∴∠EMB=∠EBM,∵m∥n,∴∠ACB=∠EBM,∵AC=AB,∴∠ACB=∠ABC,∴∠EMF=∠ABC,由(1)可知,∠EAB=∠EFB,在△EMF和△EBA中,,∴△EMF≌△EBA(AAS),∴EF=AE.(3)EF=AE,理由如下:如图2,在BF上截取BN=AB,连接EN,∴AB=AC,∴∠ACB=∠ABC,∵m∥n,∴∠ACB=∠NBC,∴∠ABC=∠NBC,在△ABE和△NBE中,,∴△ABE≌△NBE(SAS),∴AE=EN,∠EAB=∠ENB,∵∠AEF=∠BAC=90°,∠BAC=∠ABF=90°,∴∠EAB+∠EFB=180°,∵∠ENB+∠ENF=180°,∴∠EFB=∠ENF,∴EF=EN,∴EF=AE.28.如图,直线y=kx+k分别交x轴、y轴于点A,C,直线BC过点C交x轴于点B,且OA=OC,∠CBA=45°,点P是直线BC上的一点.(1)求直线BC的解析式;(2)若动点P从点B出发沿射线BC方向匀速运动,速度为个单位长度/秒,连接AP,设△PAC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出t的取值范围;(3)若点Q是直线AC上且位于第三象限图象上的一个动点,点M是y轴上的一个动点,当以点B、M、Q为顶点的三角形为等腰直角三角形时,求点Q和点M的坐标.【分析】(1)点A(﹣1,0),且OA=OC,则点C(0,3),则k=3,∠CBA=45°,则OB=OC=3,即可求解;(2)利用S=S△ABC﹣S△ABP或S=S△ABP﹣S△ABC,即可求解;(3)分∠BMQ=90°、∠MQB=90°、∠QBM=90°三种情况,分别求解即可.解:(1)直线y=kx+k分别交x轴、y轴于点A,C,则点A(﹣1,0),且OA=OC,则点C(0,3),则k=3,故直线AC的表达式为:y=3x+3,∵∠CBA=45°,∴OB=OC=3,∴点B(3,0),∵点C(0,3)、点B(3,0),则直线BC的表达式为:y=﹣x+3;(2)当点P在线段BC时,过点P作PH⊥x轴于点H,∵∠CBA=45°,PH=PB sin45°=t×=t,S=S△ABC﹣S△ABP=×BA×(OC﹣PH)=4×(3﹣t)=6﹣2t,(0≤t≤3);当点P在y轴右侧的射线BC上时,同理可得:S=S△ABP﹣S△ABC=2t﹣6,(t>3);故S=;(3)设点M(0,m),点Q(n,3n+3),①如图2(左侧图),当∠BMQ=90°时,(点M在x轴上方),分别过点Q、P作y轴的平行线QG、BH,过点M作x轴的平行线分别交GQ、BH于点G、H,∵∠GMQ+∠MQG=90°,∠GMQ+∠HMB=90°,∴∠HMB=∠GQM,∠MHB=∠QGM=90°,MB=MQ,∴△MHB≌△QGM(AAS),∴GQ=MH,BH=GM,即:m=﹣n,m﹣3n﹣3=3,解得:m=,n=﹣;故点M(0,)、点Q(﹣,﹣);同理当点M在x轴下方时,3n+3﹣m=3且﹣m=﹣n,解得:m=n=0(舍去);②当∠MQB=90°时,同理可得:﹣n=﹣3n﹣3,3n+3﹣m=3﹣n,解得:m=﹣6,n=﹣,故点M(0,﹣6)、点Q(﹣,﹣);③当∠QBM=90°时,同理可得:﹣3n﹣3=3,m=3﹣n解得:m=5,n=﹣2,点M(0,5)、点Q(﹣2,﹣3);综上,M(0,)、Q(﹣,﹣)或M(0,﹣6)、Q(﹣,﹣)或M(0,5)点Q(﹣2,﹣3).。

2020-2021成都市八年级数学上期中试卷含答案

2020-2021成都市八年级数学上期中试卷含答案

2020-2021成都市八年级数学上期中试卷含答案一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF3.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+B .40004000210x x -=+C .40004000210x x -=-D .40004000210x x -=- 4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2C .8D .11 5.下列图形中,周长不是32 m 的图形是( )A .B .C .D .6.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角7.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .68.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .4 9.若分式25x x -+的值为0,则x 的值是( ) A .2B .0C .-2D .-5 10.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9) 11.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.14.正多边形的一个外角是72o ,则这个多边形的内角和的度数是___________________.15.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)16.已知8a b +=,224a b =,则222a b ab +-=_____________. 17.若分式67x--的值为正数,则x 的取值范围_____. 18.因式分解:m 3n ﹣9mn =______.19.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).22.解方程:22111x x x -=--. 23.已知a b c ,,是ABC △的三边的长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.24.已知关于x 的方程233x m x x -=--解为正数,求m 的取值范围. 25.“已知a m =4,a m+n =20,求a n 的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得: a m+n =a m a n ,所以20=4a n , 所以a n =5.请利用这样的思考方法解决下列问题:已知a m =3,a n =5,求下列代数的值:(1)a 2m+n ; (2)a m-3n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】分析:根据全等三角形的判定定理AAS ,可知应选D. 详解:解:如图:A 选项中根据AB =DE ,BC =EF ,∠A =∠D 不能判定两个三角形全等,故A 错; B 选项三个角相等,不能判定两个三角形全等,故B 错;C 选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C 错;D 选项中根据“AAS ”可判定两个三角形全等,故选D ;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.3.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x ,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键. 5.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.6.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A;根据三角形的内角和定理判断B;根据三角形的高的定义及性质判断C;根据三角形外角的性质判断D.【详解】A、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.7.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.8.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.9.A解析:A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x 的值. 详解: 根据题意得 :x-2=0,且x+5≠0,解得 x=2.故答案为A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.10.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.11.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).12.D解析:D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=0,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=0,∴x2+z2+2xz﹣4xy+4y2﹣4yz=0,∴(x+z)2﹣4y(x+z)+4y2=0,∴(x+z﹣2y)2=0,∴z+x﹣2y=0.故选D.二、填空题13.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°.【解析】【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°,∴∠4=180°-35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为145.14.540°【解析】【分析】【详解】根据多边形的外角和为360°因此可以求出多边形的边数为360°÷72°=5根据多边形的内角和公式(n-2)·180°可得(5-2)×180°=540°考点:多边形的内解析:540°【解析】【分析】【详解】根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.考点:多边形的内角和与外角和15.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a②当4a2是乘积二倍项时4a4+解析:4a 或4a 或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.16.28或36【解析】【分析】【详解】解:∵∴ab=±2①当a+b=8ab=2时==﹣2×2=28;②当a+b=8ab=﹣2时==﹣2×(﹣2)=36;故答案为28或36【点睛】本题考查完全平方公式;分解析:28或36.【解析】【分析】【详解】解:∵224a b =,∴ab=±2. ①当a+b=8,ab=2时,222a b ab +-=2()22a b ab +-=642﹣2×2=28; ②当a+b=8,ab=﹣2时,222a b ab +-=2()22a b ab +-=642﹣2×(﹣2)=36; 故答案为28或36.【点睛】本题考查完全平方公式;分类讨论.17.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x>7 解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.18.mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后利用平方差公式分解即可详解:原式=mn (m2-9)=mn (m+3)(m-3)故答案为mn (m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:mn (m+3)(m ﹣3)【解析】分析:原式提取mn 后,利用平方差公式分解即可.详解:原式=mn (m 2-9)=mn (m+3)(m-3).故答案为mn (m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.37【解析】【分析】先判断出∠AEC=90°进而求出∠ADC=∠C=74°最后用等腰三角形的外角等于底角的2倍即可得出结论【详解】解:∵AD=AC 点E 是CD 中点∴AE⊥CD∴∠AEC=90°∴∵AD解析:37【解析】【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【详解】解:∵AD=AC ,点E 是CD 中点,∴AE ⊥CD ,∴∠AEC=90°,∴9074C CAE ∠=︒-∠=︒,∵AD=AC ,∴∠ADC=∠C=74°,∵AD=BD ,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为:37°.【点睛】此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出∠ADC=74°是解本题的关键.20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】 考核知识点:0指数幂和负指数幂.三、解答题21.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.22.原方程无解.【解析】试题分析:观察可得最简公分母是21x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边都乘以21x -,得:()2121x x x +-=-, 去括号得2221x x x +-=-,移项合并得1x =.检验:当1x =时,210x -=,所以原方程无解.23.△ABC 为等边三角形【解析】试题分析:将原式展开后可得2222220a b ab b c bc +-++-= ,再结合完全平方式的特点分组得到2222(2)(2)0.a b ab c b bc +-++-=接下来根据完全平方公式可得22()()0,a b c b -+-=结合非负数的性质即可使问题得解试题解析:将22222()0a b c b a c ++-+= 变形,可得 2222(2)(2)0.a b ab c b bc +-++-=由完全平方公式可得22()()0,a b c b -+-=由非负数的性质,得0,0,a b c b -=-=即,a b c b ==所以.a b c ==24.m <6且m ≠3【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是正数”建立不等式求m 的取值范围.【详解】去分母,得x ﹣2(x ﹣3)=m ,解得:x =6﹣m ,∵x >0,∴6﹣m >0,∴m <6,且x≠3,∴m≠3.∴m <6且m≠3.【点睛】解答本题时,易漏掉m≠3,这是因为忽略了x ﹣3≠0这个隐含的条件而造成的,这应引起同学们的足够重视.25.(1)45;(2)3125. 【解析】试题分析:(1)逆用“同底数幂的乘法”和“幂的乘方”的运算法把2m n a +化成2()m n a a ⋅结合已知条件即可求值了;(2)逆用“同底数幂的除法”和“幂的乘方”的运算法则把3m n a -化成3m n a a ÷结合已知条件即可求值了.试题解析:(1)∵35m n a a ==,,∴222()3545m n m n a a a +=⋅=⨯=;(2)∵35m n a a ==,, ∴333()3125125m n m n a a a -=÷=÷=.。

四川省成都市八年级(上)期中数学试卷

四川省成都市八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共 30.0 分),,127,3127 中,无理数1. 在 722 ,3.33 ,π2,- 212 ,,的个数有 ()A. 2个B. 3个C.4个D.5个2. 花粉的质量很小,一粒某栽花粉的质量约为0.000103 毫克,那么 0.000103 可用科学记数法表示为()A. ×10-5B. ×10-4C. ×10-3D. ×10-33. 4 的平方根是()A. ±16B. 16C. ±2D. 24. -3 的绝对值为()A. 3B.-3C. ±3D. 95. 一个正数的两个平方根分别是2a 与-a+2 ,则 a 的值为()A. 1B.-1C. 2D.- 26. 64 的立方根是()A. ±2B. ±4C. 4D. 27. 已知直角三角形两边的长为 3 和 4,则此三角形的周长为()A. 12B. 7+7C. 12或7+7D. 以上都不对8.如图,在平面直角坐标系 xOy 中,点 P( -3,5)对于 y 轴的对称点的坐标为()A.(-3,-5)B.(3,5)C.(3.-5)D.(5,-3)9. 设直角三角形的两条直角边分别为 a 和 b,斜边长为c,已知 b=12, c=13 ,则 a=()A.1B.5C.10D.2510.如图,将一根长 24cm 的筷子,置于底面直径为 5cm,高为 12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则 h 的取值范围是()A.12cm≤ h≤ 19cmB.12cm≤ h≤ 13cmC.11cm≤ h≤ 12cmD.5cm≤ h≤ 12cm二、填空题(本大题共9 小题,共 36.0 分)11. 已知 y=( k-2) x+(k2-4 )是正比率函数,则k 的值为 ______.12. 使式子 x+1 存心义的x 取值范围是______ .13.如图,一架云梯长 10 米,斜靠在一面墙上,梯子顶端离地面6 米,要使梯子顶端离地面 8 米,则梯子的底部在水平面方向要向左滑动 ______米.14.已知点 A(2, -3), B( 2, 3),则 A, B 两点的距离为 ______.15.假如 y=x-3+3-x+1,则2x+y的值是______16.m n为两个连续的整数,且m n,则mn的平方根=______.已知:、< 13 <17. 在平面直角坐标系 xOy 中,点 P( 4,a)在正比率函数y=12 x 的图象上,则点 Q( 2a-5,a)位于第 ______象限.18.比较大小: 5-12 ______58.(填“>”,“<”或“=”)19.如图,透明的圆柱形容器(容器厚度忽视不计)的高为 12cm,底面周长为10cm,在容器内壁离容器底部3cm 的点 B 处有一饭粒,此时一只蚂蚁正幸亏容器外壁,且离容器上沿3cm的点 A 处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.三、计算题(本大题共 1 小题,共8.0 分)20.如图,Rt△ABC 中,∠C=90 °,AD 均分∠CAB ,DE ⊥AB 于 E,若 AC=6,BC=8,CD=3.(1)求 DE 的长;(2)求△ADB 的面积.四、解答题(本大题共8 小题,共76.0 分)21. ( 1)计算: 4×22-8+( π +3)0+(-1)2( 2)计算: 613 +(2-3)(2+3) -27 +( 2018-π)02 222.已知 a=5+2,b=5-2,求 a +b +7 的平方根.23.如图,一架梯子 AB 长 13 米,斜靠在一面墙上,梯子底端离墙 5 米.( 1)这个梯子的顶端距地面有多高?( 2)假如梯子的顶端下滑了 5 米,那么梯子的底端在水平方向滑动了多少米?24.在平面直角坐标系中,一次函数y=- x+b 的图象与正比率函数y=kx 的图象都经过点B(3, 1),求一次函数和正比率函数的表达式.25.如图, OABC 是一张放在平面直角坐标系中的长方形纸片, O 为原点,点 A 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,OA=10,OC=8 ,在OC 边上取一点D,将纸片沿AD 翻折,使点 O 落在 BC 边上的点 E 处,求 D 、E两点的坐标.26.阅读下边资料,并解答后边的问题:16+5 =1. (6-5)(6+5)(6+5)=6-5 ;15+2=1 . (5-2)(5+2)(5-2)=5-2 ;14+3=1 . (4-3)(4+3)(4-3)=4-3 .( 1)察看上边的等式,请直接写出1n+1+n 的结果 ______;2 +n)( n+1-n )=______,此时称 n+1+n 与 n+1-n 互为有理化()计算( n+1因式;3.()请利用上边的规律与解法计算:12+1+13+2+14+3+ +1100+9927.阅读以下资料:小明碰到这样一个问题:已知:在△ABC 中,AB,BC,AC 三边的长分别为 5、10、13,求△ABC 的面积.小明是这样解决问题的:如图① 所示,先画一个正方形网格(每个小正方形的边长为 1),再在网格中画出格点△ABC(即△ABC 三个极点都在小正方形的极点处),从而借助网格就能计算出△ABC 的面积.他把这类解决问题的方法称为构图法.请回答:(1)图 1 中△ABC 的面积为 ______;参照小明解决问题的方法,达成以下问题:( 2)图 2 是一个 6×6 的正方形网格(每个小正方形的边长为1).① 利用构图法在答卷的图2中画出三边长分别为2、 29DEF;13、 5 的格点△②计算△DEF 的面积.28.在正方形 ABCD 中,点 E, F 分别在边 BC ,CD 上,且∠EAF=∠CEF =45 °.( 1)将△ADF 绕着点 A 顺时针旋转 90°,获得△ABG(如图①),求证:△AEG≌△AEF ;( 2)若直线 EF 与 AB,AD 的延伸线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2.答案和分析1.【答案】 B【分析】【剖析】本题主要考察了无理数的定 义,注意带根号的要开不尽刚刚是无理数,无穷不循环小数为无理数.如 π, , (每两个8 之间挨次多 1个 0)等形式.依据无理数的定 义求解即可.【解答】解: , ,-是无理数,应选 B .2.【答案】 B【分析】解:0.000103=1.03 ×10-4,应选:B .绝对值小于 1 的正数也能够利用科学 记数法表示,一般形式 为 a ×10-n,与较大数的科学 记数法不一样的是其所使用的是 负指数幂,指数由原数左侧起第一个不为零的数字前面的 0 的个数所决定.本题考察用科学记数法表示 较小的数,一般形式为 a ×10-n,此中1≤|a|<10,n为由原数左 边起第一个不 为零的数字前面的 0 的个数所决定.3.【答案】 C【分析】2解:∵4=(±2),∴4 的平方根是 ±2.应选:C .因为某数的两个平方根应当互为 相反数,所以可用直接开平方法 进行解答.本题考察了平方根的观点.注意一个正数有两个平方根,它 们互为相反数;0的平方根是 0;负数没有平方根.解:-3 的绝对值为 3,即 |-3|=3.应选:A.依据负数的绝对值等于它的相反数解答.本题考察了绝对值,一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;0 的绝对值是 0.5.【答案】D【分析】解:依据题意得 2a-a+2=0,解得:a=-2,应选:D.因为一个正数的两个平方根应当互为相反数,由此即可列方程解出a.本题主要考察了平方根的性质.注意一个正数有两个平方根,它们互为相反数.6.【答案】D【分析】【剖析】本题考察了立方根,以及算术平方根,娴熟掌握各自的定义是解本题的关键.原式利用算术平方根及立方根定义计算即可获得结果.【解答】解:=8,8 的立方根是 2,应选 D.7.【答案】C【分析】解:设 Rt△ABC 的第三边长为 x,①当 4 为直角三角形的直角边时,x 为斜边,由勾股定理得, x=5,此时这个三角形的周长=3+4+5=12;②当 4 为直角三角形的斜边时,x 为直角边,由勾股定理得, x=,此时这个三角形的周长=3+4+,应选:C.先设 Rt△ABC 的第三边长为 x,因为 4 是直角边仍是斜边不可以确立,故应分 4 是斜边或 x 为斜边两种状况议论.本题考察的是勾股定理的应用,解答本题时要注意分类议论,不要漏解.8.【答案】B【分析】解:点P(-3,5)对于y 轴的对称点的坐标为(3,5).应选:B.依据对于 y 轴对称的点,纵坐标同样,横坐标互为相反数解答.本题考察了对于 x 轴、y 轴对称的点的坐标,解决本题的重点是掌握好对称点的坐标规律:(1)对于x 轴对称的点,横坐标同样,纵坐标互为相反数;(2)对于y 轴对称的点,纵坐标同样,横坐标互为相反数;(3)对于原点对称的点,横坐标与纵坐标都互为相反数.9.【答案】B【分析】解:∵直角三角形的两条直角边分别为 a 和 b,斜边长为 c,b=12,c=13,∴a= = =5.应选:B.直接依据勾股定理即可得出结论.本题考察的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和必定等于斜边长的平方是解答此题的重点.10.【答案】C【分析】解:当筷子与杯底垂直时 h 最大,h 最大 =24-12=12cm.当筷子与杯底及杯高组成直角三角形时 h 最小,以下图:此时,AB===13cm,故 h=24-13=11cm.故 h 的取值范围是 11cm ≤h ≤12cm .应选:C .先依据题意画出图形,再依据勾股定理解答即可.本题将勾股定理与 实质问题 相联合,考察了同学们的察看力和由详细到抽象的推理能力,有必定 难度.11.【答案】 -2【分析】解:∵y=(k-2)x+(k 2-4)是正比率函数,∴k-2≠0,k 2-4=0,解得:k=-2.故答案为:-2.直接利用正比率函数的性 质剖析得出答案.本题主要考察了正比率函数的定 义,正确掌握定义是解题重点.12.【答案】 x ≥-1【分析】解:依据题意得:x+1≥0,解得 x ≥-1.故答案为:x ≥-1.本题主要考察自变量的取值范围,函数关系中主要有二次根式.依据二次根式的意义,被开方数是非负数.本题考察二次根式存心 义的条件,比较简单,注意掌握二次根式的意 义,被开方数是非 负数.13.【答案】 2【分析】解:由题意可知梯子的长是不变的,由云梯长 10 米,梯子顶端离地面 6 米,可由勾股定理求得梯子的底部距 墙 8米.当梯子顶端离地面 8 米时,梯子的底部距墙为 6 米,则梯子的底部在水平面方向要向左滑动8-6=2(米).梯子的长是不变的,只需利用勾股定理解出梯子滑动前和滑动后的所组成的两三角形即可.本题考察正确运用勾股定理.擅长察看题目的信息是解题以及学好数学的关键.14.【答案】6【分析】解:如图,A 、B 间的距离为 6.故答案是:6.依据题意画出图形即可由图直接求出 A 、B两点之间的距离.本题考察了坐标与图形的性质,依据题意画出图形,利用数形联合是解题的重点.15.【答案】7【分析】解:∵,∴x-3=0,解得:x=3,则 y=1,故 2x+y=7.故答案为:7.直接利用二次根式存心义的条件得出 x,y 的值,从而得出答案.本题主要考察了二次根式存心义的条件,正确得出 x,y 的值是解题重点.16.【答案】±23【分析】【剖析】本题考察的是平方根,估量无理数的大小,先依据题意算出的取值范围是解答此题的重点,先估量出的取值范围,得出m、n的值,从而可得出结论.【解答】解:∵9<13< 16,∴3<<4,∴m=3,n=4,∴mn=3×4=12,12 的平方根 =±2.故答案为±2.17.【答案】二【分析】解:∵点 P(4,a)在正比率函数 y= x 的图象上,∴a=2,∴2a-5=-1,∴Q(-1,2)∴点 Q(2a-5,a)位于第二象限.故答案为:二.把点 P 坐标代入正比率函数分析式可得 a 的值,从而依据点的 Q 的横纵坐标的符号可得所在象限.本题考察了一次函数图象上点的坐标特色,获得 a 的值是解决本题的打破点.18.【答案】<【分析】解:-==∵,∴4,∴,∴- <0,∴<.故答案为:<.第一求出两个数的差是多少;而后依据求出的差的正、负,判断出、的大小关系即可.本题主要考察了实数大小比较的方法,要娴熟掌握,解答本题的重点是判断出- 的差的正、负.19.【答案】13【分析】解:如图:∵高为 12cm,底面周长为 10cm,在容器内壁离容器底部3cm 的点 B 处有一饭粒,此时蚂蚁正幸亏容器外壁,离容器上沿3cm 与饭粒相对的点 A处,∴A′ D=5cm,BD=12-3+AE=12cm ,∴将容器侧面睁开,作 A 对于 EF 的对称点 A′,连结 A′B,则 A′B即为最短距离,A′ B==13(Cm).故答案为:13将容器侧面睁开,成立 A 对于 EF 的对称点 A′,依据两点之间线段最短可知A′B的长度即为所求.本题考察了平面睁开 ---最短路径问题,将图形睁开,利用轴对称的性质和勾股定理进行计算是解题的重点.同时也考察了同学们的创建性思想能力.20.【答案】解:(1)∵AD均分∠CAB,DE⊥AB,∠C=90°,∴CD =DE ,∵CD =3,∴DE =3;(2)在 Rt△ABC 中,∠C=90°, AC=6,BC=8,由勾股定理,得 AB═10,∴△ADB 的面积为S=12 AB?DE=12×10 ×3=15.【分析】(1)依据角均分线的性质获得 CD=DE;(2)依据勾股定理求出 AB ,依据三角形的面积公式计算.本题考察的是勾股定理、角均分 线的性质,假如直角三角形的两条直角 边长分别是 a ,b ,斜边长为 c ,那么 a 2+b 2=c 2.21.【答案】 解:( 1)原式 =22 -22 +1+1=2 ;( 2)原式 =23+4-3-33+1=2-3.【分析】(1)先依据零指数幂、负整数指数 幂的意义计算,而后化简二次根式后归并即可;(2)依据平方差公式和零指数 幂的意义计算.本题考察了二次根式的混淆运算:先把各二次根式化 简为最简二次根式,然后进行二次根式的乘除运算,再归并即可.在二次根式的混淆运算中,如能联合题目特色,灵巧运用二次根式的性 质,选择适合的解 题门路,常常能事半功倍.22 222.【答案】 解: ∵a +b =( a+b ) -2ab , 2 2 2 ∴a +b +7=( a+b ) -2ab+7,2 =( 5+2+5-2) -2( 5+2)( 5-2) +7,=20-2+7=25 ,2 2所以 a +b +7 的平方根为 ±5. 【分析】本题考察了二次根式的化 简求值以及平方根的求法,掌握完整平方公式是解题的重点.2 2 为 2 依据完整平方公式公式,把 a +b 化 (a+b ) ,再代入即可.-2ab23.【答案】 解:( 1)依据勾股定理:所以梯子距离地面的高度为: AO=AB2-OB2 =132-52 =12 (米);答:这个梯子的顶端距地面有 12 米高;( 2)梯子下滑了 1 米即梯子距离地面的高度为 OA ′=12-5=7 (米),依据勾股定理: OB ′=A ′B ′2-OA ′2=132-72 =2 30 (米),∴BB ′=OB ′-OB=( 230 -5)米答:当梯子的顶端下滑1 米时,梯子的底端水平后移了( 230 -5)米.【分析】(1)利用勾股定理能够得出梯子的 顶端距离地面的高度.(2)由(1)能够得出梯子的初始高度,下滑 1 米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为 5 米,能够得出,梯子底端水平方向上滑行的距离.本题考察了勾股定理在实质生活中的运用,考察了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB′的长度是解题的重点.24.【答案】解:将B(3,1)代入y=kx,得:1=3k,解得: k=13 ,∴正比率函数的表达式为y=13x.将 B(3, 1)代入 y=-x+b,得: 1=-3+ b,解得: b=4,∴一次函数的表达式为y=-x+4.【分析】由点 B 的坐标,利用待定系数法即可求出正比率及一次函数的表达式,此题得解.本题考察了两条直线订交或平行问题、一次函数图象上点的坐标特色、待定系数法求一次函数分析式以及待定系数法求出正比率函数分析式,依据点的坐标,利用待定系数法求出一次(正比率)函数分析式是解题的重点.25.AD 是四边形 OAED 的对【答案】解:依题意可知,折痕称轴,∴在 Rt△ABE 中,AE=AO=10,AB=8,BE=AE2-AB2 =102-82 =6,∴CE=4 ,∴E( 4, 8).22 2在 Rt△DCE 中, DC +CE =DE ,又∵DE =OD ,22 2∴( 8-OD ) +4 =OD ,∴D ( 0, 5),综上 D 点坐标为( 0, 5)、 E 点坐标为( 4,8).【分析】先依据勾股定理求出BE 的长,从而可得出 CE 的长,求出 E 点坐标,在Rt△DCE 中,由 DE=OD 及勾股定理可求出OD 的长,从而得出 D 点坐标.本题主要考察了翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,地点变化,对应边和对应角相等是解答此题的重点.26.【答案】解:(1)n+1 -n(2) 1(3)由( 1)知,原式 =2-1+ 3 -2 +4 -3 + +100 -99 =-1+ 100 =-1+10=9【分析】解:(1)察看上边的等式可知:= - ;故答案是:- ;2)(+ )()=( 2 2))=n+1-n=1;(-(故答案是:1;(3)见答案(1)依据上边的资料直接写答案;(2)利用平方差公式进行计算并填空;(3)利用(1)中的规律进行计算.主要考察二次根式的有理化.依据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是切合平方差公式的特色的式子.即一项符号和绝对值同样,另一项符号相反绝对值同样.27.【答案】解:(1)72;( 2)①以以下图所示,△DEF 即为所求三角形,②S△DEF=5×4-12×3×2-12 ×4×2-12 ×5×2=8 .【分析】【剖析】本题主要考察的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和必定等于斜边长的平方是解答此题的重点.(1)依据图①直接写△ABC 的面积即可;(2)① 利用勾股定理进行解答;解:(1)S△ABC =3×3-×1×2-×1×3-×2×3=.故答案为;(2)① 见答案;②见答案.28.【答案】(1)证明:∵△ADF绕着点A顺时针旋转90°,获得△ABG,∴AG=AF ,BG=DF ,∠GAF =90 °,∠BAG=∠DAF ,∵∠EAF=45 °,∴∠BAE+∠DAF =∠BAE+∠BAG =90 °-45 °=45 °,即∠GAE=∠EAF ,∴在△AEG 和△AEF 中, AG=AF∠ GAE=∠ EAFAE=AE,∴△AEG≌△AEF( SAS);(2)证明:连结 G,以下图:∵四边形 ABCD 是正方形,∴AB=BC=CD=AD ,∠C=90 °,∵∠CEF=45 °∴CE=CF ,DF =DN ,BM=BE,∵BC=CD ,∴BE=DF ,∵BG=DF ,∴BG=DF=BE=BM ,∴∠BMG=45 °,∵∠EMB=45 °,∴∠EMG=90 °,∴MG =2BM,同理: NF=2DF ,∴MG =NF ,∴EG 2=MG2+ME 2=NF 2+ME2,∵△AEG≌△AEF,∴EG=EF ,∴EF2=ME 2+NF 2.【分析】(1)由旋转的性质得出 AG=AF ,BG=DF ,∠GAF=90°,∠BAG= ∠DAF ,证出∠GAE═ ∠EAF,由SAS 即可得出△AEG≌△AEF ;(2)连结 GM ,由正方形的性质和已知条件得出 BE=DF,得出BG=DF=BE=BF ,得出∠BMG=45°,所以∠EMG=90°,由勾股定理得出EG 2=MG2+ME2=NF2+ME2,再由 EG=EF,即可得出结论.角三角形的判断与性质、勾股定理等知识;本题综合性强,有必定难度,娴熟掌握正方形的性质,证明三角形全等是解决问题的重点.。

四川省成都市 八年级(上)期中数学试卷-(含答案)

四川省成都市  八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷题号一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分) 1. 25的算术平方根是( )A. 5B. ±5C. ±√5D. √5 2. 下列各数中,属于无理数的是( )A. √16B. 13C. √12D. 3.33. 下列计算结果正确的是( )A. √36=±6B. √(−3.6)2=−3.6C. −√3=√(−3)2D. √−53=−√534. 下列四组数据不能作为直角三角形的三边长的是( )A. 6、8、10B. 5、12、13C. 7、10、12D. 3、4、5 5. 若点P 的坐标为(a ,0),且a <0,则点P 位于( )A. x 轴正半轴B. x 轴负半轴C. y 轴正半轴D. y 轴负半轴 6. 在平面直角坐标系中,点P (-2,3)关于x 轴的对称点的坐标是( )A. (2,3)B. (2,−3)C. (−2,−3)D. (−3,2) 7. 下列根式中属于最简二次根式的是( )A. √a 2+1B. √12C. √8D. √27x 8. 下列各点中,在第二象限的点是( )A. (2,3)B. (2,−3)C. (−2,−3)D. (−2,3)9. 估计21的算术平方根的大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间 10. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到斜边AB 的距离是()A. 365B. 125C. 9D. 6二、填空题(本大题共12小题,共36.0分)11. 36的平方根是______ .√16的算术平方根是______ ;27的立方根是______ . 12. -√5的相反数是______ ,倒数是______ ,绝对值是______ . 13. 在Rt △ABC 中,已知AB =5cm ,BC =4cm ,则AC = ______ . 14. 若|a −3|+√b −5=0,则a +b = ______ .15. 点A (a ,2)和点B (3,b )关于x 轴对称,则ab = ______ . 16. 有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的▇填上适当的数字为:______ .17. 一个直角三角形的斜边比直角边大2,另一直角边为6,则斜边长为______ .18. 已知点A (m -5,1),点B (4,m +1),且直线AB ∥y 轴,则m =______. 19. 已知a 2+|b -4|=2a -1,则ab 的平方根是______ .20. 如图,四边形ABCD 是正方形,AE =4cm ,BE =2cm ,对角线AC 上一点P ,使PE +PB 的值最小,则PE +PB 的最小值=______cm .21. 观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,请你将发现的规律用含正整数n 的等式表达______.22. 一只电子青蛙在如图的平面直角坐标系做如下运动:从坐标原点开始起跳记为A 1,然后沿着边长为1的等边三角形跳跃即A 1→A 2→A 3→A 4→A 5…已知A 3的坐标为(1,0),则A 2014的坐标是______ .三、计算题(本大题共2小题,共38.0分) 23. 求下列各式的值①5√2+√8-2√18 ②(√2+√3)(√2-√3)③(√6-2√15)×√3-6√12 ④√12-√0.5-√13+√18⑤√18+√2√2-3+(π-3.14)0+(12)-1 ⑥13(x +3)2-12=0.24. 如图所示,折叠长方形一边AD ,点D 落在BC 边的点F 处,已知BC =10厘米,AB =8厘米,求FC 和EF 的长.四、解答题(本大题共6小题,共46.0分)25.已知在四边形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四边形ABCD的面积.26.△ABC在直角坐标系内的位置如图.(1)分别写出A、B、C的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出B1的坐标.27.已知a2+b2-6a-2b+10=0,求√a+b的值.√4b+2√a28.已知,如图在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.29.30.已知点A(5,a)与点B(5,-3)关于x轴对称,b为1+√2的小数部分,求(1)a+b的值.(2)化简√4a+(√2+1)b-1√3.31.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①∠DCP+∠BOP∠CPO 的值不变,②∠DCP+∠CPO∠BOP的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.答案和解析1.【答案】A【解析】解:∵52=25,∴25的算术平方根是5,故选:A.根据算术平方根的定义即可解决问题.本题考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【答案】C【解析】解:,,3.3是有理数,是无理数,故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.【答案】D【解析】解:A、=6,此选项错误;B、=3.6,此选项错误;C、3=,此选项错误;D、=-,此选项正确.故选D、根据二次根式的化简以及求立方根进行计算即可.本题考查了实数的运算.解题的关键是掌握二次根式的化简以及立方根的计算.4.【答案】C【解析】解:A、62+82=102,能组成直角三角形,故此选项不合题意;B、52+122=132,能组成直角三角形,故此选项不合题意;C、72+102≠122,不能组成直角三角形,故此选项符合题意;D、32+42=52,能组成直角三角形,故此选项错不合题意;故选:C.根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.5.【答案】B【解析】解:∵点P的坐标为(a,0),且a<0,∴点P位于x轴负半轴.故选B.根据纵坐标为0的点在x轴上解答.本题考查了点的坐标,主要利用了坐标轴上点的坐标特征,需熟记.6.【答案】C【解析】解:根据平面直角坐标系中对称点的规律可知,点P(-2,3)关于x轴的对称点坐标为(-2,-3).故选:C.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点解答.主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.【答案】A【解析】解:A、该二次根式符合最简二次根式的定义,故本选项正确;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项错误;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项错误;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项错误;故选:A.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.【答案】D【解析】解:因为第二象限的点的坐标是(-,+),符合此条件的只有(-2,3).故选D.点在第二象限的条件是:横坐标是负数,纵坐标是正数,以此进行判断即可.解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.【答案】C【解析】解:4<5,故选C.先估算的大小,即可得出选项.本题考查了估算无理数的大小的应用,能估算无理数的大小是解此题的关键.10.【答案】A【解析】【分析】设点C到斜边AB的距离是h,根据勾股定理求出AB的长,再根据三角形的面积公式即可得出结论.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.【解答】设点C到斜边AB的距离是h,∵在Rt△ABC中,∠C=90°,AC=9,BC=12,∴AB==15,∴h==.故选A.11.【答案】±6;2;3【解析】解:∵(±6)2=36,∴36的平方根是±6.=4,4的算术平方根是2.27的立方根是3.故答案为:±6;2;3.依据平方根、算术平方根、立方根的定义求解即可.本题主要考查的是立方根、算术平方根、平方根的定义,熟练掌握相关知识是解题的关键.12.【答案】√5;-√5;√55【解析】解:-的相反数是,倒数是-,绝对值是.故答案为:;-;.依据相反数、倒数、绝对值的定义求解即可.本题主要考查的是实数的性质,掌握相反数、倒数、绝对值的定义是解题的关键.13.【答案】3或√41【解析】解:①AC为斜边,BC,AB为直角边,由勾股定理得BC==;②AB为斜边,AC,BC为直角边,由勾股定理得BC==3;所以AC的长为或3.故答案为:3或.分两种情况解答:①AC为斜边,BC,AB为直角边;②AB为斜边,AC,BC为直角边;根据勾股定理计算即可.本题考查了勾股定理在直角三角形中的正确运用,注意运用分类讨论解决问题.14.【答案】8【解析】解:根据题意得,a-3=0,b-5=0,解得a=3,b=5,所以,a+b=3+5=8.故答案为:8.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.【答案】-6【解析】解:∵点A(a,2)和点B(3,b)关于x轴对称,∴a=3,b=-2,∴ab=-6,故答案为:-6.根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,进而得到ab的值.此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.16.【答案】6【解析】解:斜边的长:=25米,少走:7+24-25=6米.在图示的直角三角形,根据勾股定理就可求出斜边的距离,即可解.本题考查正确运用勾股定理解题,比较简单.17.【答案】10【解析】解:设斜边为x,则x2=(x-2)2+62解得x=10.设斜边为x,根据勾股定理列方程即可解答.勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.18.【答案】9【解析】解:∵点A(m-5,1),点B(4,m+1),且直线AB∥y轴,∴m-5=4,解得m=9.故答案是:9.根据平行于y轴的直线上的点的横坐标相同进行解答.本题考查了坐标与图形性质.需要掌握平行于坐标轴直线上点的坐标特征.19.【答案】±12【解析】解:∵a2+|b-4|=2a-1,∴(a-1)2+|b-4|=0,∴a=1,b=4∴=∴的平方根是故答案为:根据条件求出a与b的值,然后即可求出的平方根.本题考查平方根的概念,涉及非负数的性质,绝对值的性质,以及代入求值问题.20.【答案】2√13【解析】解:连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,由对称的性质可得,PB=PD,故PE+PB=DE,由两点之间线段最短可知,DE即为PE+PB的最小值,∵AE=4cm,BE=2cm,∴AB=6cm,在Rt△ADE中,DE=.所以PE+PB=DE=2,故答案为:2,连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,根据两点之间线段最短可知,点P即为所求.本题考查的是最短路线问题及正方形的性质、勾股定理,有一定的综合性,但难易适中.21.【答案】√n +1n+2=(n +1)√1n+2【解析】解:含正整数n 的等式表达为=(n+1).故答案为:=(n+1). 根据被开方数的整数和分数的分母的相差2写出即可.本题考查了算术平方根,仔细观察被开方数的整数和分数的分母的关系是解题的关键.22.【答案】(1006,√32) 【解析】解:过点A 2作A 2B ,交y 轴于点B ,由题意可得出:A 2B=OA 3=,∴BO=,∴A 2坐标为:(,),A 4坐标为:(,),A 6坐标为:(,), …∴点A 2014的坐标为(1006,)故答案是:(1006,). 根据已知图形得出A 2,A 4,A 6的坐标,进而得出变化规律求出点A 2014的坐标.此题主要考查了等边三角形的性质以及点的坐标变化,得出A 2,A 4,A 6的坐标变化规律是解题关键.23.【答案】解:①原式=5√2+2√2-6√2=√2;②原式=2-3=-1;③原式=3√2-6√5-3√2=-6√5;④原式=2√3-√22-√33+3√2 =5√32+5√22; ⑤原式=3+1-3+1+2=4;⑥(x +3)2=36,x +3=±6,所以x =2或-9.【解析】①先把二次根式化为最简二次根式,然后合并即可;②利用平方差公式计算;③先进行二次根式的乘法运算,然后化简后合并即可;④先把二次根式化为最简二次根式,⑤先进行二次根式的乘法运算,再利用零指数幂和负整数指数幂的意义计算,然后化简后合并即可;⑥先把方程变形为(x+3)2=36,然后利用平方根的定义求x .本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.【答案】解:折叠长方形一边AD ,点D 落在BC 边的点F 处,所以AF =AD =BC =10厘米(2分)在Rt △ABF 中,AB =8厘米,AF =10厘米,由勾股定理,得AB 2+BF 2=AF 2∴82+BF 2=102∴BF =6(厘米)∴FC =10-6=4(厘米).设EF =x ,由折叠可知DE =EF =x由勾股定理,得EF 2=FC 2+EC 2∴x 2=42+(8-x )2∴x 2=16+64-16x +x 2,解得x =5(厘米).答:FC 和EF 的长分别为4厘米和5厘米.【解析】想求得FC ,EF 长,那么就需求出BF 的长,利用直角三角形ABF ,使用勾股定理即可求得BF 长.翻折中较复杂的计算,需找到翻折后相应的直角三角形,利用勾股定理求解所需线段.25.【答案】解:如图,连接BD ,在R △ABD 中,AB =3,DA =4,根据勾股定理得,BD =5,在△BCD 中,BC =12,CD =13,BD =5,∴BC 2+BD 2=122+52=132=CD 2∴△BCD 为直角三角形,∴S 四边形ABCD =S △ABD +S △BCD=12AB ∙AD +12BC ∙BD=12×3×4+12×12×5 =36.【解析】先根据勾股定理求出BD ,进而判断出△BCD 是直角三角形,最后用面积的和即可求出四边形ABCD 的面积.此题主要考查了勾股定理及逆定理,三角形的面积公式,解本题的关键是判断出△BCD 是直角三角形.26.【答案】解:(1)A (0,3),B (-4,4),C (-2,1);(2)△A 1B 1C 1如图所示,B 1(4,4).【解析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 1的坐标.本题考查了利用轴对称作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.【答案】解:因为(a -3)2+(b -1)2=0,所以a =3,b =1.所以原式=√3+1√4+2√3=√3+1√3+1=1.【解析】首先利用配方法将已知等式进行变形,得到:(a-3)2+(b-1)2=0,结合非负数的性质求得a 、b 的值.然后代入求值即可.本题考查了配方法的应用:用配方法解一元二次方程;利用配方法求二次三项式是一个完全平方式时所含字母系数的值.也考查了非负数的性质. 28.【答案】解:∵S △ABC =12BC •OA =24,OA =OB ,BC =12,∴OA =OB =2×24BC =4812=4,∴OC =8,∵点O 为原点,∴A (0,4),B (-4,0),C (8,0).【解析】首先根据面积求得OA 的长,再根据已知条件求得OB 的长,最后求得OC 的长.最后写坐标的时候注意点的位置.写点的坐标的时候,特别注意根据点所在的位置来确定坐标符号. 29.【答案】解:(1∵点A (5,a )与点B (5,-3)关于x 轴对称,∴a =3. ∵1<√2<2, ∴b =√2-1.∴以a +b =√2-1+3=√2+2.(2)将a 、b 的值代入得:原式=√12+(√2+1)(√2-1)-√33=2√3+2-1-√33=5√33+1. 【解析】(1)先依据关于x 轴对称的两点的纵坐标互为相反数可求得a 的值,然后再估算出的大小,从而可求得b ,最后进行计算即可;(2)先将a 、b 的值代入,然后进行计算即可.本题主要考查的是二次根式的混合运算,熟练掌握运算法则是解题的关键. 30.【答案】解:(1)依题意,得C (0,2),D (4,2),∴S 四边形ABDC =AB ×OC =4×2=8;(2)存在.设点P 到AB 的距离为h ,S △PAB =12×AB ×h =2h , 由S △PAB =S 四边形ABDC ,得2h =8,解得h =4,∴P (0,4)或(0,-4);(3)结论①正确,过P 点作PE ∥AB 交OC 与E 点,∵AB ∥PE ∥CD ,∴∠DCP +∠BOP =∠CPE +∠OPE =∠CPO ,∴∠DCP+∠BOP∠CPO =1.【解析】(1)根据平移规律,直接得出点C ,D 的坐标,根据:四边形ABDC 的面积=AB×OC 求解;(2)存在.设点P 到AB 的距离为h ,则S △PAB =×AB×h ,根据S △PAB =S 四边形ABDC,列方程求h的值,确定P点坐标;(3)结论①正确,过P点作PE∥AB交OC与E点,根据平行线的性质得∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,故比值为1.本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化.。

2020-2021学年成都市双流中学实验学校八年级上学期第一次月考数学试卷(含解析)

2020-2021学年成都市双流中学实验学校八年级上学期第一次月考数学试卷(含解析)

2020-2021学年成都市双流中学实验学校八年级上学期第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1. 12.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是 A.B. 2C.D.2. 下列计算,正确的是( )A. √(−2)2=−2B. √(−2)×(−2)=2C. 3√2−√2=3D. √8−√2=√103. 使√x −3有意义的x 的取值范围是( ) A. x >3B. x <3C. x ≥3D. x ≠3 4. 等腰三角形的一边为6,另一边为13,则它的周长为( )A. 19B. 25或32C. 25D. 32 5. 下列各数是无理数的是( )A. 0B. πC. √83D. −13 6. 适合条件2∠A =2∠B =∠C 的三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定 7. 估计√13−4的值应该在( )A. −1到0之间B. 0到1之间C. 1到2之间D. 2到3之间 8. 若a 、b 互为倒数,a 、c 互为相反数,且|d|=2,则代数式d 2−d ⋅ ( a+ab+c2 )3的值为( ) A. 334B. 414C. 334或414D. 323或413 9. 下列命题: ①40°角为内角的两个等腰三角形必相似;②反比例函数y=−2,当x>−2时,y随x的增大而增大;x③两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.④若圆的半径为5,AB、CD是两条平行弦,且AB=8,CD=6,则弦AC的长为√2或5√2;⑤函数y=−(x−3)2+4(−1≤x≤4)的最大值是4,最小值是3.其中真命题有()A. 0个B. 1个C. 2个D. 3个10.小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,则这棵树AB的高度为()(结果保留两位有效数字,√3≈1.732)A. 6.9B. 6.93C. 8.4D. 8.43二、填空题(本大题共9小题,共36.0分)11.平方等于64的数是;立方等于−8数是。

2020-2021成都市八年级数学上期中一模试题(带答案)

2020-2021成都市八年级数学上期中一模试题(带答案)

2020-2021成都市八年级数学上期中一模试题(带答案)一、选择题1.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°2.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°3.下列各式中,分式的个数是()2 x ,22a b+,a bπ+,1aa+,(1)(2)2x xx-++,bab+.A.2 B.3 C.4 D.54.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+5.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A .90°B .120°C .150°D .180°6.分式可变形为( )A .B .C .D .7.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( ) A .4xB .4x -4C .4x 4D .4x -8.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .x x y-B .22x yC .2x yD .3232x y9.下列各式能用平方差公式计算的是( )A .(3a+b)(a-b)B .(3a+b)(-3a-b)C .(-3a-b)(-3a+b)D .(-3a+b)(3a-b)10.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1) 11.已知2410x x --=,则代数式22(3)(1)3x x x ---+的值为( )A .3B .2C .1D .1-12.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0二、填空题13.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年四川省成都市双流中学实验学校八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)
1.下列实数中是无理数的是()
A.0.38B.2C.D.
2.以下列各组数作为三边,不能围成直角三角形的是()
A.2,3,4B.3,4,5C.5,12,13D.1,,2
3.在平面直角坐标系中,点P(﹣1,1)位于()
A.第一象限B.第二象限C.第三象限D.第四象限
4.估计的值在()
A.2到3之间B.3到4之间C.4到5之间D.5到6之间
5.下列运算正确的是()
A.=﹣2B.=2C.=±2D.=3
6.已知A(﹣2,a),B(1,b)是一次函数y=﹣2x+3的图象上的两个点,则a与b的大小关系是()A.a>b B.a<b C.a=b D.不能确定
7.如图,△ABC中,∠B=90°,BC=3,AC=4,则AB的长度为()
A.2B.C.2D.5
8.在根式,,,中与是同类二次根式的有()
A.1个B.2个C.3个D.4个
9.如图,一次函数y=2x﹣3的图象大致是()
A.B.
C.D.
10.如图,在平面直角坐标系中,点A在x轴上,点B在第一象限内,若△OAB为等边三角形,且边长为4,则点B的坐标是()
A.(2,4)B.(2,)C.(2,2)D.(,2)
二、填空题(本大题共4小题,每小题4分,共16分)
11.16的平方根是,﹣27的立方根是.
12.已知M(3,0),N(﹣2,0),则MN的长度为.
13.若二次根式有意义,则x的取值范围是.
14.如图,一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱表面爬到B点,那么它需要爬行的最短路线的长是.
三、解答题(本大题共6小题,共54分)
15.计算下列各式.
(1)﹣9+×.
(2)4x2﹣49=0.
16.先化简,再求值:(a+b)2+(a﹣b)(2a+b)﹣3a2,其中.
17.在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.
(1)请写出点A,B,C的坐标.
(2)请作出三角形ABC关于x轴对称的三角形A1B1C1.
(3)请直接写出线段A1B的长度.
18.已知,如图,在四边形ABCD中,∠B=90°,AB=15,BC=20,CD=7,AD=24.(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
19.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.
(1)求点B的坐标.
(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C坐标.
20.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC
的左侧,连接AE.
(1)求证:AE=BD.
(2)若DE=,AD:BD=1:3,求线段AD长.
(3)试探究线段AD、BD与CD之间的数量关系.
四、填空题(本大题共5小题,每小题4分,共20分)
21.若+(y+3)2=0,则y x的值为.
22.已知P1(a﹣1,4)和P2(2,b)关于x轴对称,则(a+b)2019的值为.
23.在Rt△ABC中,∠ACB=90°,AB=8cm,AB边上的高为4cm,则Rt△ABC的周长为cm.24.对于实数x,规定[x]表示不大于x的最大整数,如[4]=4,[]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是.
25.已知如图,点A(﹣2,0)、B(4,0)、D(﹣5,9),设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒个单位的速度运动到D后停止,当点F的坐标是时,点M在整个运动过程中用时最少.
五、解答题(本大题共3小题,共30分)
26.小明在解决问题,已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣.
∴a﹣2=﹣.
∴(a﹣2)2=3,即a2﹣4a+4=3.
∴a2﹣4a=﹣1,
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.
请你根据小明的分析过程,解决如下问题:
(1)计算:=;
(2)计算:+…+;
(3)若a=,求3a2﹣18a+5的值.
27.将一块a×b×c的长方体铁块(如图1所示,单位:cm)放入一长方体水槽(如图2所示)中,并以速度v(单位:cm3/s)匀速向水槽注水,直至注满为止.已知铁块中棱长b为10cm,水槽的底面积为200cm2.若将铁块b×c面放至水槽的底面,则注水全过程中水槽的水深y(cm)与注水时间t(s)的函数图象如图3所示(水槽各面的厚度忽略不计).
(1)铁块中棱长a=cm,水槽的深度为cm.
(2)求注水速度v及铁块中棱长c的值.
(3)若将铁块的a×b面放至水槽的底面,试求注水全过程中水槽的深y(cm)与注水时间t(s)的函数关系及t的取值范围.
28.解答下列各题.
(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA.
(2)如图2,直线l1与坐标轴交于点A、B,直线l2:y=﹣2x﹣4经过点A且与直线l1垂直,求直线l1的函数表达式.
(3)如图3,平面直角坐标系内有一点B(4,4),过点B作BA⊥x轴于点A、BC⊥y轴于点C,点P 是线段AB上的动点,点D是直线y=2x﹣2上的动点且在第一象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.
参考答案
一、选择题(本大题共10小题,每小题3分,共30分)
1.D;2.A;3.B;4.B;5.A;6.A;7.B;8.B;9.B;10.C;二、填空题(本大题共4小题,每小题4分,共16分)
11.±4;﹣3;12.5;13.x≥2;14.10cm;
三、解答题(本大题共6小题,共54分)
15.;16.;17.;18.;19.;20.;
四、填空题(本大题共5小题,每小题4分,共20分)
21.9;22.﹣1;23.(8+8);24.6560;25.;
五、解答题(本大题共3小题,共30分)
26.﹣;27.5;10;28.;。

相关文档
最新文档