吉林中部地区土壤水分遥感反演与应用

合集下载

多源遥感在土壤水分定量反演中应用概述

多源遥感在土壤水分定量反演中应用概述

多源遥感在土壤水分定量反演中应用概述摘要:土壤水分作为土壤的重要组成部分,对农业、水文、气象等方面具有很高的应用价值,在该领域的探索与研究一直比较活跃,遥感技术的发展为实时快速获取土壤水分信息提供了新的手段,已成为目前遥感技术应用研究的前沿领域,本文系统总结和分析了国内外土壤水分的遥感定量估测方法,并最后提出了该领域可能的发展方向,相信对从事相关工作的研究人员会有一定的参考价值。

关键词:遥感土壤水定量反演土壤水分是表示一定深度土层的土壤干湿程度的物理量,是监测土地退化和干旱的重要指标,同时也是水文学、气象学、土壤学、生态学以及农业科学等研究领域中的一个重要参数。

一方面它影响地表与大气界面的水分和能量交换,其变化会引起土壤热学特性、地表光学特性的改变,从而影响气候的变化;另一方面它是植物和作物赖以生存的主要源泉,其大小决定着植物或作物根系的发育,对进行大尺度精准农业的水分调节,节水灌溉具有重要意义。

遥感技术不仅能对农作物长势进行大面积、实时、非破坏性监测,从而实现精准农业的发展对地表土壤水分信息快速、及时的掌握,还能为精准农业的发展提供动态监测和分析作物的健康状况与影响作物产量等必要的技术支持。

目前获取土壤水分含量的方法主要有田间实测法、土壤水分模型法和遥感法三种。

其中传统的田间实测法和土壤水分模型法,因测点稀、速度慢、范围有限,无法满足精准农业中对土壤水分信息快速获取的需求。

而遥感估测土壤水分的方法原理是通过测量土壤表面发射或反射的电磁能量,研究遥感信息与土壤水分含量之间的关系,并建立相关的信息模型,从而反演出土壤水分情况,恰恰克服了前二种估测方法的实时性差、单点测量空间变异性差、不能宏观表现等缺陷,为精准农业中大面积快速获取土壤水分信息、实时准确监测提供科学依据。

1 国内外研究进展如何快速、准确地获取区域地表土壤含水量信息是定量遥感研究的热点之一,也是目前遥感技术应用研究的前沿领域。

国内外用遥感技术监测土壤水分的方法有很多,目前在该领域的研究主要集中在光学遥感(即可见光-近红外、热红外遥感)和微波遥感波段进行。

全国土壤湿度及其变化的遥感反演与分析解析

全国土壤湿度及其变化的遥感反演与分析解析

弋R40210分类号UDC密级编号中国科学院研究生院硕士学位论文全国±攮量廑区基銮丝笪遥蹙厦渲量佥堑蛊瘟申请学位级别理堂亟±学科专业名称丝圈堂皇地堡篮星丕筮论文答辩日期2QQ5生鱼目论文提交日期2Q逝生主旦答辩委员会主席摘要土壤湿度是进行农业、水文、气象、生态等方面研究的主要基础信息,也是进行土地退化评价及环境监测的重要指标,土壤湿度的遥感监测方法研究对于资源环境遥感有重要的意义。

本文结合“生态安全相关要素的定量遥感关键技术研究”项目中“土地退化的遥感监测指标定量提取与评价技术”子课题的工作,试图在全国范围进行土壤表层湿度的时空序列反演,并探讨全国土壤湿度分布的时空特性。

论文在对土壤湿度反演方法进行总结及评价的基础上,选择温度植被干旱指数(TVDI)法对全国土壤湿度进行反演。

用地表能量平衡方程对TVDI法的原理及影响因子进行了分析,发现对TVDI产生影响的因子包括太阳总辐射、气温、地表反照率、空气密度、地表发射率、风速等,在文中着重探讨了气温随高程的变化对TVDI反演土壤湿度的影响。

由于气温随高程变化的影响与高程有关,提出用数字高程模型(DEM)对TVDI反演过程进行订正的方法。

参考气温的垂直递减率,用实测值相关分析的方法确定订正系数并得到订正后的TVDI结果。

订正前后土壤湿度结果的对比分析表明,进行订正后的TVDI能更好地反演土壤湿度。

与NSIDC网站提供的AMSR土壤湿度数据的比较发现,TVDI对土壤水分含量位于O.05-0,15g.cm。

之间的情况有最好的反映,由于这个区间包括了图像中90%以上的像元,认为TVDI可以反映土壤湿度的状况。

用上述方法对2003年36旬的土壤湿度情况进行了反演。

对旬Ts—NDVI(地表温度.植被指数)空间散点图的情况进行了分析,对各旬分别确定Ts—NDVI特征空间干湿边边界及方程。

一般用TS的最大最小值作为干湿边边界。

由于在研究没有去除图像中的条带噪声,当噪声点较多时,用Ts的最大最小值不能得到很好的干湿边边界,对这种情况,用频率法确定干湿边的边界。

遥感反演土壤湿度的主要方法

遥感反演土壤湿度的主要方法

遥感反演土壤湿度的主要方法遥感反演土壤湿度根据波段的不同分为3类:微波遥感土壤湿度法;作物植被指数法;热红外遥感监测法(主要是应用热惯量模型)。

1.1 微波遥感土壤湿度法分主动微波遥感监测法和被动微波遥感监测法两种。

此方法物理基础坚实,即土壤的介电特性和土壤含水量密切相关,水分的介电常数大约为80,干土仅为3,它们之间存在较大的反差。

土壤的介电常数随土壤湿度的变化而变化,表现于卫星遥感图像上将是灰度值G亮度温度Tb的变化。

因此,微波遥感土壤水分的方法被广泛地应用于实际的监测工作中。

1.1.1 主动微波遥感监测法以应用x波段侧视雷达为主,主要是后向反射系数法。

因为含水量的多少直接影响土壤的介电常数,使雷达回波对土壤湿度反映极为敏感,据此可建立后向散射系数和土壤水分含量之间的函数关系。

国内李杏朝据微波后向反射系数法,用x波段散射计测量土壤后向反射系数,与同步获得的X 波段、HH极化机载SAR图像一起试验监测土壤水分;田国良等在河南也应用此方法也进行土壤水分研究。

主动微波遥感土壤水分精度较高,且可以全天候使用,成为监测水分最灵活、最适用、最有效的方法,随着大量的主动微波遥感器的卫星(ERS系列、EOS、SAR、Radar sat、ADEOS、TRMM 等)的发射升空,将使微波遥感的成本不断下降,逐渐被应用于实践1.1.2 被动微波遥感监测法原理同主动微波遥感法。

值得指出,植被在地表过程研究中的影响突出,为了消除植被的影响,必须同时重视植被的遥感监测,建立相关的计算模型。

Teng等通过实验得出在浓密植被覆盖区土壤湿度监测中应避免使用19GHZ波段,此时SMMR 的6.6GHZ波段比SSM/I的19GHZ在遥感监测土壤湿度信息方面的精度更高。

说明在植被较密时,为了消除植被对土壤湿度反演的影响,应尽量选择波段较长的微波辐射计。

1.2 作物植被指数法采用此方法是基于植被在可见光部分叶绿素吸收了70%-90%红光,反射了大部分绿光,而由于叶肉组织的作用,后行叶片在近红外波段的反射较强。

基于深度学习的土壤水分遥感反演技术研究

基于深度学习的土壤水分遥感反演技术研究

基于深度学习的土壤水分遥感反演技术研究土壤水分是影响植物生长及农业生产的关键因素之一,然而土壤水分空间和时间上的变化却相对较为复杂和难以获取。

近年来,随着遥感技术的发展和深度学习算法的广泛应用,基于深度学习的土壤水分遥感反演技术逐渐成为研究热点。

一、土壤水分遥感反演技术的现状传统的土壤水分遥感反演技术主要基于经验模型和物理模型。

经验模型主要基于统计学原理和实验数据建立的经验模型,如多元回归模型、神经网络模型等;物理模型则基于土壤水分的物理性质,如电磁学、微波散射等进行反演。

但是,这些方法在模型的构建和实施过程中存在一些局限性,如模型复杂、精度难以保证等问题。

基于深度学习的土壤水分遥感反演技术则针对传统方法的不足,通过神经网络的结构优化、特征提取及数据处理等方面的创新,提高了土壤水分的反演精度。

这种方法无需设置太多的先验知识和预定参数,而是通过大量高质量的数据学习土壤水分与遥感数据的关系,从而取得更高的准确率。

二、深度学习在土壤水分反演中的应用深度学习通常包括卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent Neural Network,RNN)和变换器(Transformers)等。

它们可以从大量土壤水分遥感图像中学习出高性能的土壤水分反演模型,从而反演出更加精确的土壤水分信息。

其中,CNN常用于遥感图像的特征提取,它可以使用卷积层和池化层等操作,提取图像的空间特征。

此外,在反演精度上表现较好的RCNN模型则将CNN和RNN相结合,使得模型可以对时序数据进行处理,从而更准确地反演土壤水分含量。

三、深度学习的发展趋势虽然目前基于深度学习的土壤水分遥感反演技术已经取得了很大的进展,但同时也存在许多问题需要解决。

比如,如何处理遥感数据中的噪声、影像遥感分辨率等影响反演精度的问题。

未来基于深度学习的土壤水分遥感反演技术还需要继续进行算法创新和模型优化,以进一步提高模型的精度和泛化能力。

吉林省人民政府办公厅关于印发吉林省空气、水环境、土壤环境质量巩固提升三个行动方案的通知

吉林省人民政府办公厅关于印发吉林省空气、水环境、土壤环境质量巩固提升三个行动方案的通知

吉林省人民政府办公厅关于印发吉林省空气、水环境、土壤环境质量巩固提升三个行动方案的通知文章属性•【制定机关】吉林省人民政府办公厅•【公布日期】2021.02.24•【字号】吉政办发〔2021〕10号•【施行日期】2021.02.24•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】环境保护综合规定正文吉林省人民政府办公厅关于印发吉林省空气、水环境、土壤环境质量巩固提升三个行动方案的通知吉政办发〔2021〕10号各市(州)人民政府,长白山管委会,长春新区、中韩(长春)国际合作示范区管委会,各县(市)人民政府,省政府各厅委办、各直属机构,驻吉中直有关部门、单位:《吉林省空气质量巩固提升行动方案》《吉林省水环境质量巩固提升行动方案》《吉林省土壤环境质量巩固提升行动方案》已经省委、省政府同意,现印发给你们,请结合实际,认真贯彻落实。

吉林省人民政府办公厅2021年2月24日吉林省空气质量巩固提升行动方案为深入贯彻十九届五中全会精神,巩固我省“十三五”大气污染防治工作成果,落实“十四五”大气生态环境保护规划目标任务,解决大气生态环境领域突出问题,补短板、强弱项,持续改善大气生态环境质量,结合实际,制定本方案。

一、主要目标到2021年底,全省地级及以上城市环境空气质量优良天数比率力争达到90%以上;细颗粒物(PM25)浓度控制在32微克/立方米以下;臭氧(O3)浓度上升的趋势得到遏制;重污染天气比率控制在1%左右。

二、重点任务(一)深入推进秸秆禁烧和氨排放控制。

1.全面推进秸秆综合利用。

持续提高“五化”利用能力,重点推进保护性耕作技术,全省实施面积力争达到2800万亩;以“秸秆变肉”工程为抓手加快推进饲料化利用,实现利用量850万吨;稳步推进秸秆生物质发电、秸秆成型燃料加工和燃煤供热锅炉生物质改造,实现利用量863万吨;积极推进秸秆新型建材、制浆造纸等原料化利用,实现利用量65万吨;有序推进秸秆基料化利用,扩大食用菌基料化生产规模,发展秸秆基质育苗产业,扩大绿色种植面积,实现利用量31万吨。

遥感土壤水分反演原理

遥感土壤水分反演原理

遥感土壤水分反演原理遥感土壤水分反演是指通过遥感技术获取土壤水分信息的过程。

传统的土壤水分监测方法如土壤取样和化验等,在时间和空间分辨率上受到限制,难以满足大范围和高时空分辨率的要求。

遥感技术具有高时空分辨率、全天候覆盖和定量化等优势,成为研究土壤水分的重要工具之一遥感土壤水分反演主要基于微波辐射原理,利用地球表面发射和散射的微波辐射特性与土壤水分含量之间的关系来计算土壤水分。

常用的遥感土壤水分反演方法有基于微波亮温的统计关系、基于微波散射的统计关系和基于机器学习的方法。

基于微波亮温的统计关系方法是通过统计分析亮温与土壤水分的关系建立反演模型。

该方法通常使用单通道或多通道的微波亮温数据,结合地表温度和植被指数等辅助信息,例如威斯特指数(VI)。

通过对不同土壤类型和植被覆盖条件下的地表亮温数据进行统计和回归分析,建立土壤水分与亮温之间的经验关系。

然后,根据遥感获取的亮温数据,利用建立的统计模型计算土壤水分。

基于微波散射的统计关系方法是通过微波辐射在土壤水分变化时的散射特性来进行反演。

散射特性与土壤的复介电常数有关,而复介电常数与土壤含水量之间存在一定的关系。

该方法通常使用合成孔径雷达(SAR)数据,根据雷达回波的散射特征来计算土壤含水量。

根据不同土壤类型和植被覆盖条件下的SAR数据,通过统计和回归分析建立土壤水分与散射特性之间的关系模型。

然后,根据遥感获取的SAR数据,利用建立的统计模型计算土壤水分。

基于机器学习的方法是利用机器学习算法来建立土壤水分与遥感数据之间的映射关系。

机器学习算法主要包括支持向量机(SVM)、人工神经网络(ANN)、随机森林(RF)等。

该方法通常使用多源、多时相的遥感数据,结合地表观测和土壤采样数据,通过机器学习算法训练模型,建立土壤水分与遥感数据之间的非线性关系。

然后,根据遥感获取的数据,利用已训练好的模型进行土壤水分反演。

总结起来,遥感土壤水分反演原理主要基于微波辐射特性与土壤水分含量之间的关系,通过统计和回归分析建立土壤水分与遥感数据之间的模型,或者利用机器学习算法进行非线性映射,从而实现对土壤水分的反演。

土壤水分遥感反演方法概述

土壤水分遥感反演方法概述

性研 究难 题 之一 。随着 遥 感 技 术 的 发展 , 仅 大 面 不
积 土壤水 分 实 时动 态 监测 成 为 可 能 , 且 随着 其 他 而 相 关学科 的 发 展 , GI GP 如 S, S以及 “ S 集 成 的 日 3” 益 成熟 , 使得 土壤 水 分 的遥 感反 演 精 度 得 到 了很 大 的提高 。回顾几 十 年 的 发展 历 程 , 土壤 水 分 遥 感反 演 相继 出现 多 种方 法 , 在 相 应 的 领域 得 到 了很 好 并

现 当月 的距 平植 被指 数 与当月 降水量 距平 百分 率相
基金 项 目 : 福建 省教 育厅科 技项 目“ 于多 源遥感 信 息的景 观 尺度 转换 及 动态 变 化模 拟研 究 ” 2 O KO 2 、 建省 海 峡 西 岸资 源 环 基 (O 5 2 )福 境科 技创 新能 力建设 “ 新世 纪优 秀人 才资 助项 目” 科技 部 国际交 流项 目: 态环境 的遥 感研究 ( B 0 6 。 、 生 B 0 8 ) 作者简 介 : 肖斌 , 1 8  ̄) 男 , ( 9 2 , 汉族 , 江西 信丰 , 士研究 生 。地图 学与 地理信 息系 统 硕
的验证 和应 用 。
在 有植 被 的地 区 , 壤 中含 水 量 多少 直 接 关 系 土
到 土壤上 植 被覆盖 的生长状 况 。对 于同一 种植 被来
说 , 同等条 件下 , 在 土壤 供 水 充 足 则 生长 茂 盛 , 之 反 则 会 出现脱 水而 病变 , 而 导致 植 被 冠 层 光谱 信 息 从
被 指 数 法 、 惯 量 法 、 度 一 植 被 指 数 法 、 波 法 等 方 法 的优 缺 点 及 适 用 范 围 , 热 温 微 并对 土 壤 水 分 遥 感 反 演 方 法及 发 展

土壤水分遥感反演研究进展

土壤水分遥感反演研究进展

土壤水分遥感反演研究进展一、本文概述Overview of this article随着遥感技术的快速发展,其在土壤水分监测方面的应用日益广泛,成为研究土壤水分动态变化的重要手段。

土壤水分遥感反演,即通过遥感手段获取地表土壤水分信息的过程,已成为遥感科学与农业科学交叉领域的研究热点。

本文旨在综述土壤水分遥感反演的研究进展,探讨不同遥感数据源、反演算法及其在实际应用中的优缺点,为进一步提高土壤水分遥感反演的精度和效率提供参考。

With the rapid development of remote sensing technology, its application in soil moisture monitoring is becoming increasingly widespread, becoming an important means of studying the dynamic changes of soil moisture. Remote sensing inversion of soil moisture, which is the process of obtaining surface soil moisture information through remote sensing methods, has become a research hotspot in the intersection of remote sensing science and agricultural science. This article aims to review the research progress of soil moisture remotesensing inversion, explore different remote sensing data sources, inversion algorithms, and their advantages and disadvantages in practical applications, and provide reference for further improving the accuracy and efficiency of soil moisture remote sensing inversion.本文首先介绍了土壤水分遥感反演的基本原理和方法,包括遥感数据源的选择、预处理、反演算法的设计与实施等。

吉林中部地区土壤水分遥感反演与应用

吉林中部地区土壤水分遥感反演与应用
r , 1

2 . 2 表 观热 惯量 的计 算
2 . 2 . 1 亮度 温度 的确 定

1n 一 一
t o p2 一 +f l z+
日较差 的测量而获得。 以吉林 中部地 区为研 究区, 根据 表观热 惯量反演土壤 水分含 量的原理 , 选取春 播时期 的四月份 时相 , 利用 MO D I S _ L 1 B数据计算模 型中的相关参量 , 进 而计算表观热惯量值。将计算结果 与土壤水分含 量实测值进行 线性回 归分 析, 结果通过 了置信度 0 . 0 1的显著水平 t 检 验, 相关系数 R= 0 . 8 3 1 , 并分析土壤类型对土壤 水分含量差异 的影响 , 结果 与表观 热惯量反 演土壤水分 的计算结果一致。 关键词 MO D I S数据 表观热惯量 土壤水分 土壤 类型 吉林 中部
量, 通 过建 立热惯 量 与 土壤 水 分 问 的关 系模 型来 估
算 土壤含 水 量 。P r i c e在 地 表 能 量平 衡 方 程 的基
3期
杨东旭 , 等: 吉林 中部地 区土壤水分遥感反演与应用
5 6 5
础上 , 简化 了潜 热蒸散模 式 , 引入 地表综合参 数
的概 念 J , 提 出式 ( 2 ) 模式。
结、 地下 水位 上升 及 土壤 矿 物 质 中 的水 分 , 此外 , 由 于不 同类型 的土壤 保 水 能 力不 同 , 土 壤 类 型也 是 造 成土 壤水分 含量差 异 的 因素 之一 。 现选取 研究 区 为 吉林 中部平 原 区 , 该 地 区东 部 分 布有少 量 丘 陵 。区 内分 布 的 土 壤 类 型 主 要 有 淋 溶黑 土 、 典型黑土和草甸黑钙土 , 典 型 黑 土 分 布 在

植被覆盖地表土壤水分遥感反演

植被覆盖地表土壤水分遥感反演

植被覆盖地表土壤水分遥感反演一、概述植被覆盖地表土壤水分遥感反演是当前遥感科学与农业科学交叉领域的重要研究方向。

随着遥感技术的不断进步,利用遥感手段对植被覆盖地表下的土壤水分进行反演,已经成为监测土壤水分动态变化的有效手段。

本文旨在深入探讨植被覆盖地表土壤水分遥感反演的基本原理、方法进展及实际应用,以期为相关领域的研究和实践提供有益的参考。

植被覆盖地表土壤水分遥感反演的基本原理在于,通过遥感传感器获取地表植被和土壤的综合信息,进而利用特定的反演算法提取出土壤水分含量。

这一过程中,植被覆盖对遥感信号的影响不可忽视,如何有效去除植被覆盖的影响,成为植被覆盖地表土壤水分遥感反演的关键问题。

在方法进展方面,近年来国内外学者提出了多种植被覆盖地表土壤水分遥感反演方法,包括基于植被指数的反演方法、基于热惯量的反演方法、基于微波遥感的反演方法等。

这些方法各有特点,适用于不同的研究区域和植被类型。

随着深度学习等人工智能技术的快速发展,其在植被覆盖地表土壤水分遥感反演中的应用也逐渐受到关注。

在实际应用方面,植被覆盖地表土壤水分遥感反演在农业、生态、环境等领域具有广泛的应用前景。

通过实时监测土壤水分状况,可以为农业生产提供科学的灌溉指导,提高水资源的利用效率也可以为生态环境监测和评估提供重要的数据支持,有助于维护生态平衡和可持续发展。

植被覆盖地表土壤水分遥感反演是一项具有重要意义的研究工作。

随着遥感技术的不断进步和反演算法的不断优化,相信这一领域的研究将会取得更加丰硕的成果。

1. 背景介绍:植被覆盖地表土壤水分的重要性及其在农业、生态和环境监测中的应用。

植被覆盖地表的土壤水分是地球水循环的重要组成部分,它直接影响着植被的生长和生态系统的平衡。

在农业领域,土壤水分是作物生长的关键因素之一,其含量和分布直接影响着作物的产量和品质。

准确获取植被覆盖地表的土壤水分信息,对于指导农业生产、优化水资源管理具有重要意义。

在生态方面,土壤水分与植被覆盖度之间存在着密切的相互作用关系。

区域土壤水分遥感反演方法研究

区域土壤水分遥感反演方法研究
摘 要: 土壤水分 是陆地表面参数化 的一个关键变量 . 土壤水 分含量随 时空的转换而变化 , 对地面 、火气问 的热量 平
衡、土壤温度及农 田墒情等都会产生 明显 的影 响. 传统的土壤水分测量方法采样速度慢 、费用 高、代 表性 差, 无法满
足实时、大范围监测的需要. 遥感监测土壤水 分克服 了以上的缺点, 利用遥感技术监测土壤 水分是 目前定量遥感 研究 的前沿和难题之 一. 结了 目前 国内外遥 感计算土壤 含水量 的主要 方法和研究进 展, 总 同时 进行 了对 比研 究, 对不 同方
法 的 原 理 及应 用情 况 进 行 分 析 , 出这 些 方 法 的适 用 条 件 、存 在 问题 及 改进 措 施 . 指
关键词 : 土壤水分: 监测 : 遥感 模型
土 壤 水 分 与 干 旱 的遥 感 监 测 是 目前 遥 感 技 术 应 法 是通 过测 量 土 壤 表 面 发射 或 反 射 的 电磁 能 量, 究 研 用研 究 的前 沿 领域 , 公认 的世 界性 研 究难 题 之一 . 遥 感信 息与 土 壤湿 度 间 的关 系 , 土 壤 湿度 与遥 感 是 在 建立 地 球 系统 中, 地表 土 壤 水 分 是 陆地 和 大气 能量 交 换 过 数据 间 的信 息模 型, 而 反演 出土 壤水 分 . 时效快 、 从 其
维普资讯
第2卷 6
第1 期 新疆 地 Nhomakorabea质
中 图 分 类 号 :6 7 P 2
20 0 8年 3月
M a .0 8 t2 0
Vb .6 N O 1 1 2 .
OL OGY X I J AN G GE N I
文 童 编 号 :10 .8 52 0 l 117 1 0O 84 f0 80 —0 -0 l

土壤湿度信息遥感研究

土壤湿度信息遥感研究

其 中 :。A , 经 验 系 数 。 崔 彩 霞 … 等 研 究 表 明 在 ,.A 为
MO I D S的 1 7个热 波段 中 , , 。 , 通 道分 析地表 热
变 化 范围较 小 时 , 和 的 散点 图 呈 现梯 形 分 布 特 征 。 w 基 于 w 一 特 征空 间 Snhh提 出 了温 度植 被干 旱 指数 ado
s me a e . e tr s l h w t a h r s ag e t o n cin b t e h V i ol i h d t n to oo ia aa a d c n it o r a T s e ut s o h t e e i r a n e t ewe n t e T D1w t s i t t aa a d mee r lgc l t n o s — s t c o h l d s e t t h o a cu lc n i o n h t e le la ta o d t n. wi i
( olg fG o x l ainS i c n eh o g ,inU ies y C a gh n10 2 , hn ) C l eo e E po t ce ea dT c n l y Jl nv ri , h n c u 3 0 6 C ia e r o n o i t
Ab t a t olmo s r s te p o e so g c l rlp o u t n a d a p iai n o e y i ot n a tr Dee mi e t e st ai n o sr c :S i it e i h r c s fa r u t a r d ci n p l t fa v r mp ra tfco . tr n h i t f u i u o c o u o co ae u p y T e mo e fd o g tmo i rn sa l h d b y o e ain b t e ru h n e ftmp r t r / e ea in r p w trs p l . h d l r u h n ti g i e t bi e y wa fr lt ewe n d o g ti d x o o o s s o e e au e v g tt o

反演算法的原理和应用

反演算法的原理和应用

反演算法的原理和应用一、引言反演算法是一种通过观测数据来推断和估计物理模型参数的方法。

在地球科学、物理学、工程学等领域,反演算法被广泛应用于实际问题的求解。

本文将介绍反演算法的原理和应用,并通过列点的方式详细展开。

二、反演算法的原理反演算法的原理是基于观测数据和模拟模型之间的关系进行推断和估计。

其核心思想是通过迭代计算,不断调整模拟模型的参数,使其与观测数据的拟合程度达到最优。

反演算法的具体步骤包括: 1. 定义问题:明确反演的目标、观测数据的特点和模拟模型的参数。

2. 构建目标函数:建立观测数据和模拟模型参数之间的关系,定义目标函数用于评估模型的拟合程度。

3. 选择优化方法:选择合适的优化方法,通过迭代计算来逐步调整模拟模型的参数。

4. 迭代计算:根据优化方法,通过迭代计算来逐步调整模拟模型的参数,使目标函数达到最小化。

5. 结果评估:对得到的模拟模型参数进行评估,确定其可靠性和适用性。

三、反演算法的常见应用反演算法在各个领域都有广泛的应用,以下列举了一些常见的应用场景: - 地震勘探:通过记录地震波的传播路径和到达时间,反演地下地质结构和岩性分布。

- 医学成像:通过测量人体内部的放射性染料或磁场变化,反演出人体内部的结构和器官分布。

- 遥感成像:通过分析卫星或飞机拍摄的图像,反演出地表的植被分布、土壤含水量等地理信息。

- 气象预报:通过分析气象观测数据,反演出大气环流、风速、温度等气象参数,进而进行天气预报。

- 水文模拟:通过观测水文数据,反演土壤水分分布、地下水位等水文参数,用于水资源管理和防洪措施的制定。

四、反演算法的优缺点反演算法作为一种模型参数估计方法,具有以下优点: - 高效性:反演算法能够很快地估计出模型参数,提高问题求解的效率。

- 灵活性:反演算法可以适应不同类型的观测数据和模拟模型,具有较强的通用性。

- 可靠性:反演算法通过迭代计算和模型评估,可以得出相对可靠的模型参数估计结果。

土壤水分遥感监测及其在农业中的应用研究

土壤水分遥感监测及其在农业中的应用研究

土壤水分遥感监测及其在农业中的应用研究一、引言土壤水分是农业生产中的重要变量之一,对作物的生长发育、产量和品质有着重要影响。

传统的土壤水分监测方法需要人工采集土壤样本,不仅费时费力,且监测结果具有局限性和不确定性。

遥感技术的出现为土壤水分监测提供了新的方法。

本文主要探讨土壤水分遥感监测及其在农业中的应用研究。

二、土壤水分遥感监测方法1. 微波遥感方法微波遥感方法是利用微波能量与土壤水分之间的相互作用关系确定土壤水分含量的方法。

根据微波能量在土壤中传播的不同特性,可分为主动微波遥感和被动微波遥感。

2. 热红外遥感方法热红外遥感方法是利用土壤表层温度的反演来获取土壤水分信息的方法。

这种方法基于土壤和水的热容、导热性、热传输等物理参数存在差异,通过在不同时间和空间尺度下对地表温度进行监测并进行多元回归计算,反演土壤水分含量。

三、土壤水分遥感应用研究1. 土壤水分监测利用遥感技术可以快速获取大范围的土壤水分信息,并能够及时反馈给农民和农业机构。

这为科学决策提供了重要的依据,促进了水资源的合理利用。

2. 水分定量评估定量评估作物生长的水分需求对于科学制定农业生产计划和决策有着重要的意义。

利用遥感技术和地理信息系统技术结合,可定量描绘土地利用和覆盖度、土地类型、土层类型、土地坡度、土地坡向等因素与土壤水分含量之间的关系。

3. 灾害监测和预警干旱是影响我国农业生产的主要天气灾害之一。

利用遥感技术可以对土壤水分、气象、土地利用等关键因素进行监测和预测,提供更加准确的干旱预警和救灾措施。

四、遥感技术在农业中的应用前景发展遥感技术在农业中的应用,将有望形成一种绿色、高效、节约的现代农业生产方式。

可以提高资料的获取效率,更加全面准确地掌握农业生产中关键参数的变化趋势,为农业生产可持续发展提供坚实基础。

五、结论土壤水分监测技术的发展,有助于了解水资源状况,为全球的涉水管理提供基础数据,更好地利用土地和水资源。

遥感技术的应用,将为农业生产提供更加全面、准确、高效的信息支持,为实现精准农业和智慧农业提供了强有力的技术支撑。

遥感影像在土壤质量监测中的应用

遥感影像在土壤质量监测中的应用

遥感影像在土壤质量监测中的应用土壤是地球表面生态系统的重要组成部分,其质量直接关系到农业生产、生态环境和人类的可持续发展。

随着科技的不断进步,遥感技术凭借其高效、大面积、实时等优势,在土壤质量监测中发挥着越来越重要的作用。

遥感影像能够获取大面积的地表信息,包括土壤的光谱特征、纹理特征和空间分布等。

通过对这些信息的分析和处理,可以推断出土壤的物理、化学和生物性质,为土壤质量的评估和管理提供有力的支持。

在土壤物理性质监测方面,遥感影像可以用于评估土壤质地和结构。

例如,高分辨率的遥感影像能够清晰地显示土壤表面的粗糙度和颗粒大小分布,从而间接反映土壤质地的粗细。

此外,通过多光谱或高光谱影像,可以获取土壤水分含量的信息。

水分会影响土壤的反射光谱,根据这一特性,科学家们能够建立相关模型来估算土壤的含水量,这对于农业灌溉管理和水资源的合理利用具有重要意义。

对于土壤化学性质的监测,遥感影像也表现出了巨大的潜力。

例如,通过分析特定波段的光谱数据,可以推测土壤中的有机质含量。

有机质在可见光和近红外波段具有独特的吸收和反射特征,利用这些特征建立的定量模型能够较为准确地估算有机质的含量。

同样,土壤中的氮、磷、钾等营养元素的含量也可以通过遥感影像进行一定程度的监测。

虽然其精度可能不如实验室分析,但在大尺度的土壤肥力评估和分区管理中具有不可替代的作用。

遥感影像在监测土壤污染方面也具有独特的优势。

工业活动、农业化学品的过度使用以及废弃物的排放等都可能导致土壤污染。

一些污染物在遥感影像上会表现出特殊的光谱特征,通过与正常土壤的对比,可以发现污染区域的存在和范围。

此外,结合地理信息系统(GIS)技术,可以对污染区域进行精确的定位和分析,为污染治理提供科学依据。

除了直接监测土壤的性质和污染状况,遥感影像还可以用于评估土壤侵蚀和土地利用变化对土壤质量的影响。

土壤侵蚀会导致土壤表层的流失,改变土壤的结构和肥力。

通过多时相的遥感影像,可以监测土地表面的变化,计算土壤侵蚀的速率和程度。

遥感技术在农田土壤监测中的应用案例分析

遥感技术在农田土壤监测中的应用案例分析

遥感技术在农田土壤监测中的应用案例分析在现代农业的发展进程中,农田土壤的监测变得越来越重要。

准确、及时地了解土壤的状况对于提高农作物产量、保障粮食安全以及实现可持续农业发展具有关键意义。

遥感技术作为一种强大的工具,为农田土壤监测提供了高效、全面且非破坏性的解决方案。

本文将通过具体的应用案例,深入分析遥感技术在农田土壤监测中的实际应用。

一、遥感技术的基本原理遥感技术是通过非接触式的方式获取目标物体的信息。

它利用传感器接收来自地表物体反射或发射的电磁波,然后将这些电磁波信号转化为图像或数据。

不同的土壤特性会导致其对电磁波的反射和吸收有所差异,遥感技术正是基于这些差异来监测土壤的各种参数。

例如,可见光和近红外波段的遥感数据可以用于评估土壤的有机质含量、水分含量和土壤质地等。

而热红外波段则能够反映土壤的温度状况,这对于了解土壤的水分蒸发和热量交换非常重要。

二、具体应用案例(一)土壤水分监测在某个大型农田区域,为了精确掌握土壤水分的分布情况,采用了遥感技术。

通过搭载在卫星上的微波传感器,能够穿透云层和植被,获取大面积农田土壤的水分信息。

这些数据与地面实测数据相结合,建立了精准的土壤水分监测模型。

农民们根据监测结果,合理调整灌溉策略,在保障农作物生长需求的同时,避免了过度灌溉造成的水资源浪费和土壤盐碱化问题。

(二)土壤肥力评估在另一个农业产区,利用高光谱遥感技术对农田土壤的肥力进行评估。

高光谱传感器可以获取非常精细的光谱信息,从而捕捉到与土壤肥力相关的细微特征。

研究人员对采集到的光谱数据进行分析,建立了与土壤氮、磷、钾等养分含量的定量关系模型。

根据评估结果,农民有针对性地施肥,提高了肥料的利用效率,降低了农业生产成本,同时减少了因过量施肥对环境造成的污染。

(三)土壤污染监测在一个曾经遭受工业污染的农田地区,使用遥感技术来监测土壤的污染状况。

多光谱遥感图像能够显示出土壤中污染物的分布特征,结合地理信息系统(GIS)技术,对污染区域进行精确的定位和范围划定。

卫星遥感反演土壤水分研究综述

卫星遥感反演土壤水分研究综述

卫星遥感反演土壤水分研究综述
x
《卫星遥感反演土壤水分研究综述》
卫星遥感反演土壤水分研究综述是一篇有关土壤水分遥感反演
的研究文章,主要探讨了土壤水分遥感反演的历史、技术及其技术要素,以及使用卫星遥感反演土壤水分的方法与挑战。

土壤水分的遥感反演始于20世纪60年代,随着卫星上的技术的发展,对土壤水分的遥感反演越来越成熟,并且非常普及。

土壤水分遥感反演的技术可分为定性技术、定量技术和模型技术,它们各自通过不同的方法来反映土壤水分的状态。

定性技术和定量技术均基于空间分辨率,通过捕捉土壤水分反射特征的影像特征,进行定性和定量分析,从而得出土壤水分的状况。

模型技术则通过建立模型,根据其他相关变量,如土壤物理性质、气候因子、植物参数和地形特征,来反映土壤水分的分布状况,可以更加准确地反映土壤水分的状况。

卫星遥感反演土壤水分可以帮助农业和水资源管理人员了解当
前的土壤水分状况,为有效地管理水资源提供参考。

使用卫星遥感反演土壤水分的方法有多种,但仍存在许多挑战,包括数据稀缺性、反演技术分辨率限制、反演技术复杂性以及反演模型不确定性等。

因此,要想更好地利用卫星遥感反演土壤水分,必须创新反演技术,建立更精确、更准确的模型,优化数据采集,以及研究不同地区不同时间的土壤水分状况,以实现对土壤水分的准确反演。

总之,卫星遥感反演土壤水分是一项关键的研究,对土壤水分的
遥感反演技术更新和完善是持续发展的关键,本文主要讨论了土壤水分遥感反演的历史、技术及其技术要素,以及使用卫星遥感反演土壤水分的方法与挑战,为今后研究和发展提供了一定的理论基础。

利用遥感技术进行农田水分监测与智能调控

利用遥感技术进行农田水分监测与智能调控

利用遥感技术进行农田水分监测与智能调控引言:水是农业生产中不可或缺的资源,合理的灌溉管理对于农田的产量和质量至关重要。

然而,传统的灌溉管理方法往往存在效率低、水资源浪费等问题。

随着遥感技术的发展,利用遥感技术进行农田水分监测与智能调控成为了一种有效的解决方案。

本文将探讨利用遥感技术进行农田水分监测与智能调控的原理、方法以及应用前景。

一、利用遥感技术进行农田水分监测利用遥感技术进行农田水分监测的原理是通过获取卫星、飞机或无人机等平台所采集到的遥感影像数据,结合地面观测数据,对农田的水分状况进行定量化分析和监测。

具体的步骤包括:1. 遥感数据获取:利用卫星、飞机或无人机等平台获取高分辨率的遥感影像数据。

这些数据可以提供农田的空间分布信息,并反映出植被的生长状况和土壤的水分含量。

2. 影像预处理:对获取到的遥感影像数据进行预处理,包括辐射校正、大气校正和几何校正等。

通过这些处理步骤,可以消除影像中的噪声和伪迹,提高数据的准确性和可用性。

3. 植被指数计算:利用遥感影像数据计算植被指数,如归一化植被指数(NDVI)等。

植被指数可以反映出植被的生长状况,进而间接反映土壤的水分含量。

4. 土壤水分反演:通过建立遥感影像数据与实测土壤水分之间的关系模型,对农田土壤的水分含量进行反演。

常用的反演方法包括基于统计学的回归分析、基于机器学习的模型等。

5. 水分监测与分析:根据反演得到的农田水分数据,结合其他环境因素和作物需水量等信息,对农田的水分状况进行监测和分析。

可以通过时序变化分析、空间分布分析等方法,了解农田水分的动态变化和差异性。

二、利用遥感技术进行农田智能调控利用遥感技术进行农田智能调控的目的是根据农田水分监测结果,实现灌溉的精细化管理和智能化控制,提高水资源利用效率。

具体的方法包括:1. 水分调控模型:基于农田水分监测结果和作物需水量等数据,建立水分调控模型。

这些模型可以预测农田的水分状态,并给出相应的灌溉建议。

土壤水分变化量遥感反演算法

土壤水分变化量遥感反演算法

0 引 言
干旱是我 国主要的 自然灾害之一。土壤水分是反映干旱
关键 部分 : 件、 控 工具 条和对象库 。控件是 Ac I rG S用户界 面 的组成部分 , 它可 以嵌入到 应用程序 中使用 。工 具条 是 G S I 工具 的集合 , 可实现地 图与地理 信息的交互 。本 系统通过调 用工具条实现了平移 、 缩放 、 询等地图操作 , 查 并对其进 行 了
Ab tat oo ti p t lds b t no i w trc a g mon t rpgo t n e eo me t eid er v sr c:T ban sa a it u o f ol ae h n ea u t co rw ha dd v lp n r ,art ea i i r i s aa p o i l mo e frgo a ol tr ae nrmoesn igla raid xa dbo ssw su e .a dteag r h W Spo rmme d l inlsiwae sdo e t e s f8e n e n ima a sd n lo tm a rga o e b n e h i d
扩展 , 实现了定制应 用功能 。对象库 是可编 程 Ac b cs r j c 组 0 e
程度的一项重要指标 , 结合遥 感影像进行土 壤水分变化量 的 定量反演 可以提供一种客 观、 实时 的干旱 监测方法 。使用 目 前 已有的遥感图像处理 软件得到反演结果 , 骤繁多且操作 步 复杂 , 每次对参数进行更新都需要修改代码 , 且在软件更换 的 过程 中也有可能造成数据精度的损失 。因此 , 本文采用 E R sj
第3 1卷增 J u n f o u e p ia in o r a o mp trAp l t s l C c o

水土保持的遥感监测技术应用

水土保持的遥感监测技术应用

水土保持的遥感监测技术应用水土保持的遥感监测技术应用水土保持是指通过合理利用、科学管理和有效保护水资源和土壤资源,保持水土的稳定性和可持续性,防止水土流失和水土污染,从而实现土地资源的可持续利用。

遥感技术在水土保持的监测中起到了重要的作用,下面将以步骤思维的方式来介绍遥感技术在水土保持监测中的应用。

第一步:了解水土保持的背景和目标。

水土保持是一项综合性的工作,旨在保护土壤和水资源,防止水土流失和水环境污染。

在制定监测方案之前,需要明确监测的目标和需求,例如监测区域、监测指标等。

第二步:选择适合的遥感数据。

遥感技术通过获取地球表面的信息,可以提供多源、多时相的数据,因此可以提供全面、准确的水土保持监测数据。

在选择遥感数据时,需要考虑数据的空间分辨率、光谱分辨率等因素,以及数据的获取周期和覆盖范围。

第三步:进行遥感图像预处理。

遥感图像预处理是指对原始遥感数据进行校正、去噪、辐射定标等处理,以提高数据的质量和准确性。

常见的预处理方法包括大气校正、几何校正等。

第四步:提取水土保持相关的信息。

根据水土保持的监测目标和需求,可以利用遥感技术提取土地利用/覆盖类型、植被指数、土地变化等信息。

常用的遥感指标包括归一化植被指数(NDVI)、土地覆盖分类等。

第五步:分析和解释遥感数据。

根据提取的遥感信息,可以进行数据分析和解释,以了解水土保持的状况和问题。

例如,通过对比不同时期的土地利用/覆盖变化,可以评估土地变化对水土保持的影响;通过分析植被指数,可以评估植被覆盖的状况,进而评估土壤的保持能力。

第六步:制定水土保持措施。

根据分析和解释的结果,可以制定相应的水土保持措施。

例如,对于水土流失较为严重的区域,可以采取植被恢复、水土保持措施等,以减少土壤侵蚀;对于水土污染问题,可以采取合理施肥、农药使用管理等措施,以减少污染物的排放。

第七步:监测和评估措施的效果。

通过定期的水土保持监测,可以评估已采取措施的效果,并及时调整和改进措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量 也 大,昼 夜 温 度 变 化 小, 反之亦然[6],由于土壤热惯量与土壤水分间存在这
种相关关系,因此可以通过遥感技术获取土壤热惯
量,通过建立热惯量与土壤水分间的关系模型来估 算土壤含水量[7]。Price 在地表能量平衡方程的基
3期
杨东旭,等: 吉林中部地区土壤水分遥感反演与应用
式( 2) 中,S 为太阳常数( 1. 371 03 m - 2 ) ,τ 为大气
透过率,C1 为太阳赤纬( δ) 和地理纬度( φ) 的函数, ω 为地球自转的角频率,B 为表征土壤发射率、空气
比湿、土壤 比 湿 等 天 气 和 地 面 状 况 的 地 表 综 合 参
数,Td、Tn 为昼夜地表最高、最低温度( K) ,二者只 差用 ΔT 表示。由于地表参量 B 需要气象地面资
中图法分类号 S152. 8: 34;
文献标志码 A
热惯量法是热红外遥感方法大面积监测土壤 水分的主要研究手段之一。Waston 等[1]在 20 世纪 70 年 代 初 对 热 惯 量 法 做 出 开 创 性 工 作,80 年 代 Price 等[2]系统地总结了热惯量法的遥感成像机理。 在我国,张仁华[3]提出了表观热惯量模式; 隋洪智 等[4]通过简化能量平衡方法直接推算表观热惯量, 建立表 观 热 惯 量 与 土 壤 水 分 关 系 式; 余 涛、田 国 良[5]发展了 地 表 能 量 平 衡 方 程 的 一 种 新 的 化 简 方 法,可从遥 感 图 像 数 据 直 接 得 到 真 实 热 惯 量 值,进 而得到土壤水分空间分布特征。土壤水分含量的 影响因素 有 大 气 降 水 和 灌 溉 水、近 地 面 水 气 的 凝 结、地下水位上升及土壤矿物质中的水分,此外,由 于不同类型的土壤保水能力不同,土壤类型也是造 成土壤水分含量差异的因素之一。
2 热惯量模型
土壤热惯量是阻碍土壤表面温度昼夜变化的 惯性( 物理量) ,其表达式为:
P = 槡kρC
( 1)
式( 1) 中,P 为热惯量( J·m - 2 · K - 1 · s - 1 /2 ) ,k 为
土壤热导率,ρ 为土壤密度,C 为土壤比热容。由于
土壤热导率和比热容都随土壤水分的增加而增加,
P ATI
=
1 -A ΔT
( 3)
2 数据处理
2. 1 数据来源 现所使用的 2005 年 4 月 14 日白天及夜晚 MO-
DIS—L1B 数 据 来 源 于 美 国 国 家 航 空 航 天 局 ( NASA) 网站。中分辨率成像光谱仪( MODIS) 是新 一代对地观测仪器,具有 36 个波段,覆盖从可见光 到远红外比较宽的光谱范围,每天同一区域至少可 获得昼夜两幅影像。
杨东旭 邢立新 潘 军 王 静 曹 会 王 莹
( 吉林大学 地球探测科学与技术学院,长春 130026)
摘 要 表观热惯量法是热红外遥感监测土壤水分的重要方法之一. 土壤的表观热惯量可以通过对土壤反照率和地表温度
日较差的测量而获得。以吉林中部地区为研究区,根据表观热惯量反演土壤水分含量的原理,选取春播时期的四月份时相,
现选取研究区为吉林中部平原区,该地区东部 分布有少量丘陵。区内分布的土壤类型主要有淋 溶黑土、典 型 黑 土 和 草 甸 黑 钙 土,典 型 黑 土 分 布 在 山前洪积台地与松花江、辽河分水岭一代; 草甸黑 钙土分布在第二松花江校友和嫩江下游。丘陵地
2012 年 9 月 11 日收到 吉林省科技发展基金项目( 20094078) 资助 第一作者简介: 杨东旭( 1986— ) ,男,吉林长春人,地图学与地理信 息系统专业硕士研究生。E-mail: rock56ydx@ 163. com。
料,不方便 卫 星 的 实 时 监 测,如 果 假 设 研 究 范 围 内
气象条件一致,表观热惯量( ATI) 与真实热惯量 P 呈线性关系[9],所以通常使用表观热惯量 PATI 来代 替真实热惯量 P 进行土壤水分反演,即不考虑当地
纬度、太阳高度角、日地距离等因素,只考虑反照率
和温差,对热惯量方程进一步简化:
565
础上,简化了潜热蒸散模式,引入地表综合参数 B 的概念[8],提出式( 2) 模式。
Td
- Tn
=
2SτC1( 1 - A) ωP2 + β2 + 槡ωPB
( 2)
C1 = 1 /[sinδcosφ( 1 - tan2 δtan2φ) 1/2 +
acrcos( - tanδtanφ) cosδcosφ]。
分布着棕色森林土和沼泽土。在春季,该地区处在 枯水期,土壤类型是该季节制约土壤水分含量的主 要影响因素。
采用 MODIS 数据计算亮温值求解日温差,得出 表观热惯量,建立吉林中部地区土壤表层水分与表 观热惯量的一元线性回归方程,从而利用热惯量法 反演吉林 中 部 地 区 土 壤 表 层 水 分,根 据 计 算 结 果, 结合该地区不同类型土壤的分布,分析土壤类型对 土壤水分含量差异的影响。
土壤墒情数据是从 2005 年 4 月中旬各墒情站 点逢 8 的实测数据中选取的 10 个有效数据,因为该 区域作为吉林省的主要农产区,土地利用类型主要 是耕地,在 四 月 份 该 地 区 近 于 裸 地,并 处 在 非 灌 溉 期,旱田和 水 田 的 土 壤 水 分 含 量 差 异 非 常 小,因 此 在该季节土地利用类型对不同地区土壤水分含量 差异无影响; 四月份是该地区的枯水期,因此大气 降水对土壤水分含量的影响也较小。因此,选择四 月份为研究时相,有利于反映土壤自身的保水能力 是土壤水分含量的影响。
利用 MODIS_L1B 数据计算模型中的相关参量,进而计算表观热惯量值。将计算结果与土壤水分含量实测值进行线性回归分
析,结果通过了置信度 0. 01 的显著水平 t 检验,相关系数 R = 0. 831,并分析土壤类型对土壤水分含量差异的影响,结果与表观
热惯量反演土壤水分的计算结果一致。
关键词 MODIS 数据 表观热惯量 土壤水分 土壤类型 吉林中部
第 13 卷 第 3 期 2013 年 1 月 1671—1815( 2013) 03-0564-05
农业科学
科学技术与工程
Science Technology and Engineering
Vol. 13 No. 3 Jan. 2013 2013 Sci. Tech. Engrg.
吉林中部地区土壤水分遥感反演与应用
相关文档
最新文档