线性递推数列的特征方程
人教A版高中数学必修五 特征方程法求解递推关系中的数列通项
高中数学学习材料 (灿若寒星 精心整理制作)特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,na 为常数列,即0101,;xb a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特征根法
(45) 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
数列递推关系
数列递推关系数列递推关系是数学中一个重要的概念,它描述了数列中的每个元素与它的前一个或前几个元素的关系。
在数学和应用数学中,数列递推关系被广泛用于解决各种问题,比如计算机科学、物理学、经济学等领域。
数列递推关系有两种形式:线性递推和非线性递推。
线性递推是指数列中的每个元素都是前几个元素的线性组合。
比如斐波那契数列就是一个著名的线性递推数列,它的每个元素都是前两个元素的和。
非线性递推则指数列中的每个元素与它前几个元素之间存在非线性关系,比如几何数列和指数数列。
线性递推关系可以通过数学公式来描述,比如斐波那契数列的公式为An = An-1 + An-2,其中An表示数列中第n个元素,An-1表示第n-1个元素,An-2表示第n-2个元素。
这个公式表达了斐波那契数列中每个元素与前两个元素之间的关系。
非线性递推关系则无法用简单的公式来表示,通常需要通过递归或迭代的方式来计算。
比如几何数列的递推关系为An = An-1 * r,其中r为公比,表示数列中每个元素与前一个元素的比值。
这个递推关系说明了几何数列中每个元素与前一个元素之间的关系。
数列递推关系在实际问题中的应用非常广泛。
比如在计算机科学中,递推关系常被用于算法设计和性能分析。
在物理学中,递推关系可以描述连续物理系统的运动规律。
在经济学中,递推关系可以解释市场供求关系和经济变量之间的相互作用。
总之,数列递推关系是数学中一个重要的概念,它描述了数列中每个元素与它的前一个或前几个元素的关系。
它可以通过线性递推和非线性递推两种形式来表示。
数列递推关系在各个学科中都有广泛的应用,对于理解和解决实际问题都具有重要意义。
特征根法求通项公式
特征方程法 解递推关系中 通项公式一、(一阶线性递推式)若已知数列}{n a 的项满足d ca a b a n n +==+11,,其中求这个,1,0≠≠c c 数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,这里提出一种易于掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程称之为,d cx x +=特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中是以为}{n b c 公比的等比数列,即01111,x a b c b b n n -==-.证明:因为由特征,1,0≠c 方程得作换.10cdx -=元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列是以为}{n b c 公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说说说说明定理1的应用.例1.已知数列满}{n a 足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列是以为}{n b 31-公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列满}{n a 足递推关系:,N ,)32(1∈+=+n i a a n n 其中为虚数i 单位。
数列特征根和不动点法解题原理
数列特征根和不动点法解题原理一、数列特征根法。
1. 原理。
- 对于二阶线性递推数列a_n + 2=pa_n+1+qa_n(p,q为常数,n∈ N^*),其特征方程为x^2=px + q。
- 设特征方程的两个根为x_1,x_2。
- 当x_1≠ x_2时,数列a_n的通项公式为a_n=C_1x_1^n+C_2x_2^n,其中C_1,C_2由初始条件a_1,a_2确定。
- 当x_1 = x_2时,数列a_n的通项公式为a_n=(C_1+C_2n)x_1^n,同样C_1,C_2由初始条件确定。
2. 例题。
- 例1:已知数列{a_n}满足a_n + 2=3a_n+1-2a_n,且a_1=1,a_2=3,求数列{a_n}的通项公式。
- 解:特征方程为x^2=3x - 2,即x^2-3x + 2=0。
- 分解因式得(x - 1)(x - 2)=0,解得x_1=1,x_2=2。
- 所以a_n=C_1×1^n+C_2×2^n=C_1+C_2×2^n。
- 由a_1=1,a_2=3可得C_1+2C_2=1 C_1+4C_2=3。
- 用第二个方程减去第一个方程得2C_2=2,解得C_2 = 1。
- 把C_2=1代入C_1+2C_2=1得C_1=-1。
- 所以a_n=-1 + 2^n。
- 例2:已知数列{a_n}满足a_n + 2=2a_n+1-a_n,a_1=1,a_2=2,求a_n。
- 解:特征方程为x^2=2x - 1,即x^2-2x + 1 = 0。
- 解得x_1=x_2=1。
- 所以a_n=(C_1+C_2n)×1^n=C_1+C_2n。
- 由a_1=1,a_2=2可得C_1+C_2=1 C_1+2C_2=2。
- 用第二个方程减去第一个方程得C_2=1。
- 把C_2=1代入C_1+C_2=1得C_1=0。
- 所以a_n=n。
二、数列不动点法。
1. 原理。
- 对于一阶分式递推数列a_n + 1=frac{pa_n+q}{ra_n+s}(p,q,r,s为常数,r≠0),令x=(px + q)/(rx + s),这个方程称为不动点方程。
数列递推公式的特征方程
数列递推公式的特征方程数列递推公式的特征方程,这个听上去就有点高大上的东西,实际上是数学中的一块“蛋糕”。
咱们平时生活中,也许没太注意,但它就像是你身边那块潜力巨大的蛋糕,稍微用心一挖,就能挖出不少甜蜜来。
嘿,想想啊,数列不就是一个个数字排成的队伍吗?有时候它们像是跟随在老师后面的小学生,个个都得听话;有时候又像是在比赛的运动员,拼命想超越前面的选手,特别刺激。
咱们先从简单的数列说起。
比如斐波那契数列,那可是数学界的明星。
你看看,前两个数加起来就能得到第三个数,简直是合作无间。
数列的每一步都是在遵循某种规则,就像是舞蹈的每一个动作,得配合得当,才能跳得美丽。
可要是跳错了,那可真是“丢人现眼”了。
数列的递推公式就是帮助我们找到这些规则的钥匙,它帮我们搞清楚,下一步应该怎么走。
说到特征方程,别急,听我慢慢来。
它就像是你在玩拼图,拼出一个完整的画面。
你需要先找到每一块的形状和位置,才能把它们完美组合。
特征方程就是这种形状的指引,让你知道如何去把数列的每一个部分都组合起来。
用点数学术语来说,就是把数列的递推关系转化成一个多项式,之后再寻找它的根,这样一来,数列的行为就一目了然了,真是个“聪明”的方法。
特征方程也不是随便就能搞定的。
就像你想要吃到那块蛋糕,首先得知道它在哪。
首先要搞清楚方程的形式,得把数列的递推关系整理成标准的形式,这可是一门“艺术”。
有些方程可能比较简单,像是1、2、3,直接就能找出规律;而有些方程可就复杂了,像是“九九乘法表”那样,得花些功夫才行。
不过,没关系,努力总是会有回报的,对吧?再说了,解特征方程就像是解谜游戏,找出根的过程充满了惊喜和挑战。
每当你找到一个根,心里那种成就感,简直就像是找到藏在沙发缝里的硬币,嘿嘿,那种感觉太妙了!找到所有根之后,咱们就可以写出数列的通项公式了,简直像是打开了宝藏的门,里面全是金灿灿的数字和规律,闪闪发光。
不过呀,有些数列的特征方程可能还涉及到复数,听起来有点吓人,其实也没啥大不了的。
利用特征方程巧解分式递推数列问题
x2 + 3 2 , 即 x + 2x - 3 = 0, 得 x1 = - 3 , 2( x + 1)
x2 = 1 .
∴
{
an +1 + 3 = an +1 - 1 =
a2 ( a n + 3) 2 n + 3 +3 = , 2( an + 1) 2( an + 1) a2 ( a n - 1) 2 n + 3 -1 = . 2( an + 1) 2( an + 1) a +3 (a - 1)
第5 期
高中数学教与学
利用特征方程巧解分式递推数列问题
方志平
( 广东省惠州市第一中学, 516007 )
采用数学归纳法可以解分式递推数列问 然而解法过于繁琐 , 而且在猜想通项公式 题, 时也易出错 . 本文提出一种易于掌握的解法 — — — 特征方程法 ( 又称不动点法 ) . 命题 一、 分式线性递推数列 如果数列 { a n } 满足下列条件 : 已
由于特征方程 x =
∴ 实根 x1 = x2 = 2 ,
{ a 1- 2 }是等差数列.
n
二、 分式非线性递推数列 分式非线性递推式 关系 a n +1 = aa + b 2 aa n + c
2 n
x2 是由递推 若 x1 ,
2 ( a, b, c 均不为 0 , 且c +
4 ab > 0 ) 所作的特征方程 x = 不相等的 实 根 , 则 数 列 lg
2 t = 即 rt + st = pt + q,
px + q 2 , 即 rx + ( s - p) x - q = 0 . rx + s
特征根法求数列通项原理
特征根法求数列通项原理特征根法是解线性递推方程的一种重要方法,可以用于求数列通项。
在本文中,我将详细介绍特征根法的原理,并展示如何利用此方法求解数列的通项。
一、特征根法的基本原理特征根法基于以下核心思想:解线性递推方程,一般需要首先找到数列的通解,然后根据已知初始条件来确定特定的通解。
特征根法通过构造特征方程,寻找数列的特征根,进而求解通解的方法。
设数列的通项表示为:an = c1 * λ1^n + c2 * λ2^n + ... + ck * λk^n其中,c1, c2, ..., ck是待定系数,λ1, λ2, ..., λk是数列的特征根。
现在,让我们来详细讨论特征根法的求解步骤。
二、求解步骤1.根据已知的递推关系式,得到数列的特征方程。
对于一般的线性递推方程,形如:an = a1 * an-1 + a2 * an-2 + ... + ak * an-k其特征方程可表示为:x^k - a1 * x^(k-1) - a2 * x^(k-2) - ... - ak = 02.求解特征方程的根。
通过求解特征方程的根来得到数列的特征根。
这里需要用到一些代数求根的方法,比如因式分解、配方法等。
3. 根据特征根,构造数列的通解。
特征根λ1, λ2, ..., λk 对应的解分别为c1 * λ1^n, c2 * λ2^n, ..., ck * λk^n。
由于特征根可能为复数,所以通解可能包含实部和虚部。
4. 利用已知的初始条件,确定数列的具体通解。
根据已知的初始条件(比如前几项的值),代入数列的通解方程,并解出待定系数 c1,c2, ..., ck。
这样,我们就得到了数列的特定通解。
三、一个具体的求解例子为了更好地理解特征根法的求解步骤,我们来看一个具体的例子。
假设数列的递推关系为:an = 2 * an-1 - 3 * an-2,其中a0 = 2, a1 = 5步骤1:得到特征方程。
特征方程为:x^2-2x+3=0。
特征方程法求解递推关系中的数列通项
特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列{a n }的项满足a j = b,a n 4 = ca n • d ,其中c = 0, c = 1,求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx • d,称之为特征方程;借助这个特征方程的根快速求解通项公式•下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为 x 0,则当x 0 = a 4时,a n为常数列,即a n 二a i ;当X o 二a i 时,a^ b n ' x o ,其中{b n }是以c 为公比 的等比数列,即 b n = b 4c n J,b 4 =a 4-x 0.pl证明:因为c = 0,1,由特征方程得x 0——.作换元b n = a n - x 0,贝U 1 -c n 1当X 。
=a 1时,b 1 =0 ,数列{b n }是以c 为公比的等比数列, 故b n =b1C _; 当 x ° 二a 1 时,d =0 , {b n }为 0 数列,故 a * =a 1,n • N.(证毕) 下面列举两例,说明定理 1的应用.1例1•已知数列{a n }满足:a n^^a -2,- N,a—,求a n.13 解:作方程x x -2,则x 0. 3 2b"a n「x0 © d—注乂a .cd1 -c二 c(a n -X °) = cb n . 11一2 -3 一2 +X — a-fl等的比公为11 1 n4丁 3) ,a n-3b n —3叫-」)n‘, n N. 2 2 2 3b n列是例2.已知数列{a n}满足递推关系:a n ^(2a n - 3)i, n,N,其中i为虚数3单位。
当a i 取何值时,数列{a .}是常数数列?a^ :-,a 2二:给出的数列:a n 爲方程x 2- px -q =0,叫做数列 :a n / 的特征方程。
数列特征值法
数列特征值法数列特征值法是一种用于求解数列的方法,通过求解数列的特征值,可以得到数列的一些重要性质和规律。
在数学和统计学中,数列是一组按照特定规律排列的数值,对于研究数列的性质和规律,特征值法提供了一种有效的分析工具。
我们来介绍一下数列的特征值。
数列的特征值是指数列中出现的特殊数值,它们对于数列的性质和规律具有重要的意义。
通过求解数列的特征值,我们可以得到数列的周期、极值、趋势等重要信息。
在应用数列特征值法进行数列分析时,我们首先需要确定数列的递推关系式。
递推关系式是指数列中相邻两项之间的关系式,它描述了数列中各项之间的演化规律。
常见的递推关系式包括线性递推、二次递推、等比递推等。
接下来,我们以一个具体的数列为例,来说明数列特征值法的应用过程。
考虑以下数列:1, 3, 5, 7, 9, ...我们观察数列的前几项,可以发现数列中的每一项都是前一项加2得到的。
因此,我们可以得到数列的递推关系式为:an = an-1 + 2,其中a1 = 1。
接下来,我们需要求解数列的特征值。
根据递推关系式,我们可以得到特征方程an - an-1 - 2 = 0。
解这个特征方程,可以得到特征方程的根为2和-1。
因此,数列的特征值为2和-1。
有了数列的特征值,我们就可以得到数列的一些重要性质。
首先,我们可以求解数列的通项公式。
根据特征值的定义,我们知道数列的通项公式可以表示为:an = C1 * 2^n + C2 * (-1)^n,其中C1和C2为常数。
我们可以求解数列的周期。
对于数列1, 3, 5, 7, 9, ...来说,由于特征值为2和-1,所以数列的周期为2。
通过数列的特征值,我们还可以得到数列的极值和趋势。
对于数列1, 3, 5, 7, 9, ...来说,由于特征值为2和-1,所以数列是递增的,并且没有极值。
在实际应用中,数列特征值法可以应用于各种数学和统计学问题中。
例如,可以用来分析股票价格的变化趋势,预测未来的价格走势;可以用来研究人口增长等社会现象的规律;还可以用来分析自然界中的一些周期性现象,如天体运动等。
递推数列的特征方程法探究
递推数列的特征方程法探究作者:蔡军军来源:《中小学教学研究》2014年第04期数列问题在高考中有着非常重要的地位,其中数列求通项公式,通常作为各省市的高考压轴题出现。
而递推数列的通项公式求解,往往令师生最为头疼。
那么,什么是递推数列,包含哪些类型.一般而言,数列求通项公式,都有哪些方法策略?下面,我对这几方面做些研究、探索不足之处,敬请同行批评指正。
一、递推数列的分类递推数列,顾名思义是指可以通过递推找出其规律的数列。
用通俗的一句话来解释“递推”就是:知道他的过去,就知道他的现在.知道他的过去和现在,就知道他的将来。
根据递推式不同,一般可将递推数列分为以下4类:■二、递推数列的特征方程法引理(一)一阶线性递推数列引理1.已知数列{an}满足a1=b,an+1=pan+q(p≠0且p≠1,p,q是常数),称方程x=px+q为数列{an}的特征方程,设特征方程的根为x0,则①当x0=a1时,数列{an}为常数列;②当x0≠a1时,数列{an-x0}是以p(p≠0)为公比的等比数列.简证:设特征方程x=px+q,得根为x0=■,又an+1=pan+q (1)x0=px0+q (2),由(1)-(2)得,an+1-x0=p(an-x0),若a1=x0=■,则a1=a2=a3=……=an=■,即数列{an}为常数列;若a1≠x0,则■=■=p(非零常数),即数列{an-x0}是以p为公比的等比数列,证毕。
(二)二阶线性递推数列引理2.已知数列{an}满足an+2=pan+1+qan(p≠1,p,q是常数),a1=a,a2=b,称方程x2=px+q为数列{an}的特征方程,设特征方程的根为x1,x2。
则①当x1≠x2时,数列{an}的通项为an=c1x1n+c2x2n,其中c1,c2由初始值决定;②当x1=x2时,数列{an}的通项为an=(c1+c2n)x1n,其中c1,c2由初始值决定。
简证:设特征方程x2=px+q有两个根为x1,x2,则x1+x2=px1·x2=-q,故由an+2=pan+1+qan得,an+2=(x1+x2)an+1-(x1·x2)an,即an+2-x1an+1=x2(an+1-x1an)。
数列的递推特征方程法
数列的递推特征方程法特征方程法是通过构造特征方程,然后求解特征方程得到通解的一种方法。
下面我们将详细介绍特征方程法在数列递推中的应用。
首先,让我们来回顾一下数列的一般形式。
一个数列可以表示为:aₙ=c₁aₙ₋₁+c₂aₙ₋₂+...+cₙaₙ₋ₙ其中aₙ表示数列的第n项,c₁,c₂,...,cₙ为常数,k为递推阶数。
为了求解递推关系,我们首先要确定数列的特征方程。
特征方程的核心思想是假设数列的n项与前面的k项有关,然后构造一个特征方程来描述这个关系。
假设数列的特征方程为:xₙ-c₁xₙ₋₁-c₂xₙ₋₂-...-cₙ₋₁x₁-cₙ=0其中x₁,x₂,...,xₙ为变量。
我们可以通过观察数列的递推关系来确定特征方程中的系数。
具体方法如下:1.观察递推关系中的系数c₁,c₂,...,cₙ;3.求解特征方程,得到特征根。
特征方程的解,也称为特征根,是特征方程的根,通常由它的重根个数决定数列的通解形式。
当特征根都是互不相等的实数时,数列的通解可以表示为:aₙ=A₁r₁ⁿ+A₂r₂ⁿ+...+Aₙrₙⁿ其中A₁,A₂,...,Aₙ为常数,r₁,r₂,...,rₙ为特征根。
当特征根中存在共轭复根时,数列的通解可以表示为:aₙ = (A₁r₁ⁿ + A₂r₂ⁿ + ... + Aₙrₙⁿ)cos(ωn) + (B₁r₁ⁿ + B₂r₂ⁿ+ ... + Bₙrₙⁿ)sin(ωn)其中A₁,A₂,...,Aₙ,B₁,B₂,...,Bₙ为常数,r₁,r₂,...,rₙ为特征根,ω为共轭复根的辐角。
通过特征方程法,我们可以求解出数列的通解。
在实际问题中,根据已知的数列前几项,我们可以构造数列的递推关系并使用特征方程法求解出数列的通解。
然后根据题目给出的条件,我们可以求解出具体的系数,从而得到数列的具体形式。
总结起来,特征方程法是通过构造特征方程来求解数列的递推关系的一种方法。
通过特征方程的解,我们可以得到数列的通解,并根据题目给出的条件得到数列的具体形式。
特别解析特征方程法求解递推关系中的数列通项
特别解析:特征方程法求解递推关系中的数列通项一、一阶线性递推式设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式;定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n 证毕例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位;当1a 取何值时,数列}{n a 是常数数列 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、二阶线性递推式定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程;若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组;当21x x =时,数列{}n a 的通项为11)(-+=n n x B A a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组;例3:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式;解法一待定系数、迭加法由025312=+-++n n n a a a ,得)(32112n n n n a a a a -=-+++, 且a b a a -=-12;则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列, 于是:11)32)((-+-=-n n n a b a a ;把n n ,,3,2,1⋅⋅⋅=代入,得:a b a a -=-12, )32()(23⋅-=-a b a a , ••• ,21)32)((---=-n n n a b a a ;把以上各式相加,得:])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-; a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--;解法二特征根法:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x ;32,121==x x , ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A ; 又由b a a a ==21,,于是:⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a三、分式递推式定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,,那么,可作特征方程hrx q px x ++=. 1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在;2当特征方程有两个相异的根1λ、2λ时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第2部分,则有:∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a1若,51=a 求;n a 2若,31=a 求;n a 3若,61=a 求;n a 4当1a 取哪些值时,无穷数列}{n a 不存在解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第1部分解答.1∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a 2∵.,311λ≠∴=a a ∴λλr p rn a b n --+-=)1(11令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. 3∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ 4、显然当31-=a 时,数列从第2项开始便不存在.由本题的第1小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2.∴当11351--=n n a 其中N ∈n 且N ≥2时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.定理3证明:分式递推问题:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r ha r qr ph -≠≠≠1,0,,那么,可作特征方程hrx qpx x ++=.1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.2当特征方程有两个相异的根1λ、2λ称作特征根时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第1部分. 作交换N ,∈-=n a d n n λ, 则λλ-++=-=++h ra q pa a d n n n n 11hra hq r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλλλλλr h rd q p h r r p d n n -+--+--=])([)(2 ①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将rpx =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2r hp -=λ ∴,122=++=---+=-+h p p h rrh p p rr h p h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp rd d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n rp rb b n n λ故数列}{n b 是以r p r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp rn b b n λ其中.11111λ-==a db 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第2部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra qpa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a hq r p a c n n n λλλλ ⑤由第1部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n rp h q a r p hq a rp r p c n n n λλλλλλ ⑥∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程.∴222111,λλλλλλ-=---=--rp hq r p h q将上两式代入⑥式得当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp rp 21λλ--.此时对于N ∈n 都有当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n所以.N ,112∈--=n c c a n n n λλ证毕注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra qpa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a b a c a d+⋅+=⋅+......① 其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ. 定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++---=⋅---.定理2: 若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+-+-.例109·江西·理·22各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++. 1当14,25a b ==时,求通项n a ;2略. 例2 已知数列{}n a 满足*1112,2,n n a a n N a -==-∈,求通项n a . 例 3 已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a例4已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a2.已知数列{}n a 满足2112n n n a c a c a ++=+② 其中12,c c 为常数,且*20,c n N ≠∈. 定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n nn a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩. 定理4: 若12λλλ==,则12()nn a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩. 例5已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 例6已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a例7:已知数列{}n a 满足12212,8,44n n n a a a a a ++===-,求通项n a .。
[数学]特征方程求线性递推方程的通项公式
[数学]特征⽅程求线性递推⽅程的通项公式问题引⼊设有递推⽅程 f(n)=k1*f(n-1)+k2*f(n-2),已知k1,k2及f(0),f(1),给定n求f(n)解法1.O(n)直接递推2.O(m³ * log2n)矩阵快速幂(m为矩阵⼤⼩)3.求f(n)通项公式,O(log2n)快速幂(或光速幂)求通项公式法1:可以⽤求数列通项公式得⾼中技巧...法2:⽤特征⽅程前提:已知线性递推⽅程;已知f中某两项步骤:1.上述递推式的特征⽅程为x²=k1*x+k2(⽤x²替换f(n),x替换f(n-1),1替换f(n-2)),解此⼀元⼆次⽅程的两解x1,x2;2.f(n)的通项公式为f(n)=α*x1n+β*x2n,只需解出α,β;(若x1为k重根,其系数为α+βn+γn2...+ωn k-1)3.带⼊已知得两项⽐如f(0),f(1)得关于α,β得⼆元⼀次⽅程组,即可解出α,β。
举例:1.f(n)=f(n-1)+f(n-2),f(0)=0,f(1)=1,求f(n)通项公式(斐波那契数列)特征⽅程为x²=x+1,解得x=(1±√5)/2;f(n)=α*[(1+√5)/2]n+β*[(1-√5)/2]n;带⼊ f(0)=1,f(1)=1,得α=√5/5,β=-√5/5;所以f(n)=√5/5*[(1+√5)/2]n-√5/5*[(1-√5)/2]n;2.f(n)=233*f(n-1)+666*f(n-2),f(0)=0,f(1)=1,求f(n)通项公式特征⽅程为x²=233*x+666,解得;则f(n)=α*x1n+β*x2n带⼊f(0)=0,f(1)=1,得所以f(n)=关于光速幂例题扩展--⾮线性递推⽅程求通项公式 参考⽂章:。
高考数学总复习考点知识专题讲解4 数列的递推与通项公式
高考数学总复习考点知识专题讲解 专题4 数列的递推与通项公式一、数列的前n 项和S n 与a n 的关系(和式代换)类型1 已知n S 与n 的关系式,记为()n S f n =,它可由和式代换⎩⎨⎧≥-==-2,1,11n S S n Sa n nn 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11S a =,求1a 的值;(2)2n ≥时,由1n n n a S S -=-,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎩⎨⎧≥-==-2,1,11n S S n S a n nn .【例1】已知数列{}n a 满足12323(1)(2)n a a a na n n n +++⋯=++,求数列{}n a 的通项公式.已知n S 与n a 的关系式,记为(),0n n f a S =,求它的通项公式n a ,一般有两种思路: (1)消n S :容易直接求n a 的情况,可利用阶差公式:()12n n n S S a n --=≥,消去n S ,转化为等差或等比数列直接求出n a ;(2)消n a :难以直接求n a 的情况,可利用阶差公式:()12n n n a S S n -=-≥,消去n a ,得出n S 与1n S -的递推关系式,先求出n S 后,即可转化为“第1种情形”,从而间接求出n a ,如例3.在求解具体的题目时,应根据条件灵活恰当地选择两种方法,确定变形方向.通常情况下,先求n S 要比直接求n a 麻烦;但也有时先直接求n a 会比先求n S 麻烦得多. 类型2 消n S【例2】设数列{}n a 的前n 项和为n S ,且342n n S a =-.求数列{}n a 的通项公式.【例3】设数列{}n a 的前n 项和为n S ,*226()n n S a n n N =+-∈.求数列{}n a 的通项公式.【例4】已知正整数列}{n a 的前n 项和为n S ,且对任意的自然数满足1n a =+.求}{n a 的通项公式.类型3 消n a【例5】(2022•天津模拟)已知数列}{n a 的前n 项和为n S ,且满足()1+202n n n a S S n -=≥,211=a ,求n a .【例6】在正项数列}{n a 中,n S 是数列}{n a 的前n 项和,且1+2n n na S a =,求n a .【例7】已知数列{}n a 中,13a =,前n 项和1(1)(1)12n n S n a =++-.求数列{}n a 的通项公式.二、数列的前n 项积n T 与a n 的关系已知n T 与n 的关系式,记为()n T f n =,它可由积式代换⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n 直接求出通项n a ,但要注意验证1n =与2n ≥两种情况能否统一,具体分三步进行: (1)1n =时,由11T a =,求1a 的值; (2)2n ≥时,由1-=n nn T T a ,求得n a 的表达式; (3)检验1a 的值是否满足(2)中n a 的表达式. ①若满足,则合写;②若不满足,则写成分段函数的形式:⎪⎩⎪⎨⎧≥==-2,1,11n T T n T a n n n .【例8】已知数列{}n a 满足(1)*2122()n n n a a a n N +=∈.求数列{}n a 的通项公式.三.累加法:适用于邻项差结构11()()n n n n a a f n a a f n ---=⇔=+ 累加法是利用:11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,将问题转化为基本数列求和,从而得到所求数列的通项.以下为三种累加后可裂项相消求和的题型:①若()f n 是关于n 的分式函数,()1111()()f n n n k k n n k==-++;②若()f n 是关于n 的对数函数,()1ln(1)ln(1)ln f n n n n =+=+-;③若()f n是关于n 的无理式函数,()1f n k=.④若()f n 是关于n 的一次函数,()f n kn b =+,累加后可转化为等差数列求和; ⑤若()f n 是关于n 的二次函数,()2f n an bn c =++,累加后可分组求和; ⑥若()f n 是关于n 的指数函数,()n f n p =,累加后可转化为等比数列求和; 【例9】在数列{a n }中,a 1=1,a n +1=a n +1n -1n +1,求a n .【例10】已知数列{a n }满足a 1=1,a n =a n -1+n +1-n (n ≥2),求a n .【例11】已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求n a .四.累乘法:适用于邻项商结构()()11nn n n a f n a a f n a --=⇔=⋅ 累乘法是利用:13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅,将问题转化为基本数列求和,从而得到所求数列的通项.【例12】已知数列{}n a 中,12a =,12n n n a a n++=,求数列{}n a 的通项公式;【例13】设{}n a 是首项为1的正项数列,2211(1)0n n n n n a a a na ++++-=(*∈N n ),求{}n a 的通项公式.五、跳跃等差数列通项公式——形如d a a n n =-+2类型定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足d a a n n =-+2条件的数列{}n a 为跳跃等差数列.1.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是d n a d n a d k a a a k n 21)121()1(11112-+=-++=-+==-;②当n 为偶数时,可令k n 2=(k N *∈),反解得2nk =,于是d n a d n a d k a a a k n 22)12()1(2222-+=-+=-+==.综上所述,⎪⎪⎩⎪⎪⎨⎧-+-+=为偶数为奇数n d n a n d n a a n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.2.待定系数法:此类型题由于1a 和2a 作为数列奇数项和偶数项首项,会使得数列一些变形出现一些计算难度,故可以采用待定系数法来求统一的通项公式,考虑首项的因素,需要在原始的待定系数的前面加上()n 1-.具体操作如下:n a 1221,4,23n n a a a a n -===+≥n a【例14】(2014•新课标1卷理)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{n a }为等差数列?并说明理由.衍生1 等和数列——形如c a a n n =++1类型1.“等和数列”定义: 在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.2.若c a a n n =++1(c 为常数),则数列}{n a 为“等和数列”,它是一个周期数列,周期为2,其通项分为奇数项和偶数项来讨论.衍生2 类等和数列——形如)(1n f a a n n =++类型处理思路:等和数列、类等和数列可以归结为跳跃等差数列问题,其基本思路是生成、相减;与“差型”的生成、相加(累加法)的思路刚好相呼应.当()b dn n f a a n n +==+++12时,则()b n d a a n n +-=++11,两式相减得:d a a n n =-+2,故{}n a 是公差为d 的跳跃等差数列,通过分奇偶项讨论进而将问题转化为{}12-n a 与{}n a 2是等差数列,然后求通项. 【例15】已知数列{}n a 的首项1a a =,1354n n a a n ++=-,求数列{}n a 的通项公式.六、跳跃等比数列通项公式——形如q a ann =+2类型1.定义:2+n a 与n a 不是数列{}n a 中连续的项,故此我们称满足q a a nn =+2条件的数列{}n a 为跳跃等比数列.2.分奇偶讨论法:通过对数列下标n 进行换元,分为奇数项与偶数项两种情况分而治之. ①当n 为奇数时,可令12-=k n (k N *∈),反解得21+=n k ,于是21112111112--+--⋅=⋅=⋅==n n k k n q a q a qa a a ;②当n 为偶数时,可令k n 2=(k N *∈),反解得2n k =,于是222122122---⋅=⋅=⋅==n n k k n q a q a qa a a .综上所述,⎪⎩⎪⎨⎧⋅⋅=--为偶数为奇数n qa n qa a n n n 222121.注意换元后,要将最后的结果还原成关于n 的表达式.【例16】已知数列{}n a 满足*212(),N ,1,2n n a qa q n a a +=≠∈==1,且233445,,a a a a a a +++成等差数列.求数列{}n a 的通项公式.衍生1 等积数列——形如p a a n n =⋅+1类型1.“等积数列”定义: 在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.2.若p a a n n =⋅+1(p 为常数),则数列}{n a 为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.衍生2 类等积数列——形如)(12n f a a n n =⋅++类型处理思路:等积数列、类等积数列可以归结为跳跃等比数列问题,其基本思路是生成、相除;与“商型”的生成、相乘(累乘法)的思路刚好相呼应.若()n f 为n 的函数时,可通过逐商法得)1(1-=⋅+n f a a n n ,两式相除后,通过分奇偶项讨论将问题转化为{}12-n a 与{}n a 2是等比数列,然后再求通项.1.分奇偶讨论法:()B An n n q n f a a +++==12,则B n A n n q a a +-+=)1(1,两式相除得:A nn q a a =+2,故 {}n a 是公比为A q 的跳跃等比数列,⎪⎩⎪⎨⎧⋅=⋅⋅=⋅=∴----为偶数为奇数n q a q a n q a q a a A n n A n n A An 222221211211)()(.}{n a n n a a a 2,111=⋅=+七.斐波那契数列定义:一个数列,前两项都为1,从第三项起,每一项都是前两项之和,那么这个数列称为斐波那契数列,又称黄金分割数列;表达式2110,1,1--+===n n n F F F F F ()n N +∈通项公式:n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦(又叫“比内公式”,是用无理数表示有理数的一个范例)证明:线性递推数列的特征方程为:21x x =+,解得:1x =,2x 则1122n n n F c x c x =+∵121F F ==∴112222112211c x c x c x c x =+⎧⎨=+⎩解得:1c =;2c =∴n nn F ⎡⎤⎥=-⎥⎝⎭⎝⎭⎦斐波那契数列的一些性质:求和问题:①12-=+n n a S ;②n n a a a a a 212531=+++- ;③1122642-=++++n n a a a a a . 证明:①()()()1111112112122+=++++=+-++-+-=-=-++++++n n n n n n n n n n S a a a a a a a a a a a S S a ,故12-=+n n a S ,此证明方法也是错位相减的一种特例.②()()()n n n n n a S a a a a a a a a a a a 22212232432111231=+=+++++++=+++---- ,此证明过程也需要利用①的结论.③()()()11212122254321242-==+++++++=++++---n n n n n a S a a a a a a a a a a .这三个式子用数学归纳法证明也非常简单,无需强化记忆,每次列出前几项比划一下,考试中如果出现需要这些结论的,拿出前几项及时推导即可.平方和问题:122221+=+++n n n a a a a a (根据面积公式推导,如下图)构造正方形来设计面积,()()433221321232221a a a a a a S S S a a a =++=++=++,以此类推,也可以用数学归纳法证明,知道一个大致的方向即可. 裂项问题:⎪⎪⎭⎫⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=++++------123222423312222123242311111111111111n n n n n n n a a a a a a a a a a a a a a a a a n n n n n a a a a a a a 212212221211111----=⎪⎪⎭⎫ ⎝⎛-+. 注意:如果是斐波那契数列的部分项求和也可以,比如⎪⎪⎭⎫⎝⎛-=++++++-++++n m m m n m n m m m m m a a a p a a p a a p a a p 1112312 ,前提就是必须隔项,否则无法裂项相消.【例17】已知数列{}n a 满足:113a =,213a =,*11(,2)n n n a a a n N n +-=+∈…,则132435202120231111a a a a a a a a +++⋯+的整数部分为() A .6B .7C .8D .9【例18】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n --=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅B .12321n n a a a a a +++++=-C .1352121n n a a a a a -++++=-D .()121)4(3n n n n c c a n a π--+-≥=⋅【例19】斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列{}n a 满足10a =,21a =,()*21n n n a a a n ++=+∈N ,若记1352019a a a a M ++++=,2462020a a a a N ++++=,则2022a =________.(用M ,N 表示)【例20】(2022•天河区期末)意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:1,1,2,3,5,8,13,…….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列数称为斐波那契数列.下面关于斐波那契数列a n 说法正确的是( ) A .a 12=144B .a 2022是偶数C .a 2022=a 1+a 2+a 3…a 2022D .a 2022+a 2024=3a 2022【例22】(2023•荆州期末)2022年11月23日是斐波那契纪念日,其提出过著名的“斐波那契”数列,其著名的爬楼梯问题和斐波那契数列相似,若小明爬楼梯时一次上1或2个台阶,若爬上第n 个台阶的方法数为b n ,则( ) A .b 7=21B .b 1+b 2+b 3+b 5+b 7=51C .b 12+b 22+…+b n 2=b n •b n +1﹣1D .b n ﹣2+b n +2=3b n八.不动点与蛛网图(无需通项的无敌技能) 知识点一函数迭代和数列的关系已知函数)(x f y =满足+1=()n n a f a ,则一定有+1211=()()()n n n n a f a f a f a -==,故函数)(x f y =通过反复迭代产生的一系列数构成了数列{}n a 或者记为{}{}n n b x 、,而数列的每一项与函数迭代的关系可以如下表所示: 下面以函数21y x =+和数列121n n a a +=+①数列的递推式和函数的迭代式是有着相同的法则的,故数列的任何一项()+1,n n a a 都在函数)(x f y =上.②数列的通项公式是函数对1a 迭代1-n 次的结果,即11()n n a f a -=,每一次由于迭代产生出的因变量成为下一次迭代的自变量.③数列的首项1a 对整个数列有很大的影响,当迭代不断重复出现同一结果时,我们将其称为不动点.知识点二函数的迭代图像——蛛网图函数的迭代图像,简称蛛网图或者折线图,函数)(x f y =和直线y x =共同决定. 其步骤如下:1.在同一坐标系中作出)(x f y =和y x =的图像(草图),并确定不动点.(如图1所示)图1 图22.在找出不动点之后,确定范围,将不动点之间的图像放大,并找出起始点1a (如图2所示)3.由1a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()12,a a . 4.由()12,a a 向y x =作平行于x 轴的直线与y x =相交,并确定交点()22,a a . 5.由()22,a a 向)(x f y =作垂直于x 轴的直线与)(x f y =相交,并确定交点()23,a a . 重复4,5,直至找到点()1,n n a a +的最终去向.【例23】设数列{}n a 满足11(0),n a a a a +=>=证明:存在常数M ,使得对于任意的*n N ∈,都有n a M ≤.【例24】首项为正数的数列{a n }满足2*11(3),,4n na a n N +=+∈若对*n N ∈,一切都有1n n a a +>,求a 1的取值范围.知识点三蛛网图与数列的单调性定理1:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一上凸的图形时,(如图9)则数列)(1n n a f a =+在两个不动点之间的区间是递增的,即1n n a a +>,在两不动点以外的区间则是递减的,即1n n a a +<.定理2:)(x f y =的单调增区间存在两个不动点x 1,x 2(x 1<x 2),且在两个不动点之间形成一下凹的图形时,(如图10)则数列)(1n n a f a =+在两个不动点之间的区间是递减的,即1n n a a +<,在两不动点以外的区间则是递增的,即1n n a a +>.图9 图10综上可得,当)(x f y =的单调增区间位于上凸内或者下凹外时,即当迭代起点1a 位于此区域时,一定有1n n a a +>同理,当迭代起点1a 位于单调增区间的上凸外或者下凹内时,一定有1n n a a +<.知识点四摆动数列以及由求导构造函数单调性来解决数列问题由反比例(递减函数)函数迭代构成的摆动数列,如图11所示,当)(x f 在区间为减函数时,和直线x y =相交于不动点,那么由此函数迭代构成的数列为摆动数列,即奇数项和偶数项构成相反的单调性,但都螺旋靠近不动点,极限也是不动点。
线性递推数列的特征方程
具有形如X n 二1 bX n ①的递推公式的数列用叫做 线性递推数列将①式两边同时加上-『人1,即:整理得:by = 令巴二/「丫人为等比数列,则其公比q“-y 且满足 y-a2 即满足:y=ayb ②设②式具有两个不相等的实数根 r ,s ,贝y :Yn — x n 1 - 以 n ^③Z n 二焉 i _SX n ④分别是公比为a-r , a-s 的等比数列,并得:且由③、④可得:又由韦达定理可得:于是有:(X 2 -rx i )(a -r)n4 -化 - sx i )(a -s)n ‘s -r X 2 一 rX i n4 X 2 一 SX i n4 s 一—: ------------------------------ r X 2 -凶 n X 2 —S^ n s 「一2 r r 2 +b 9r n C 2s n由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、二项和2 2 方程y =a y b 的两根有关。
也就是说,只需知道 X 1, X 2和方程y =a y b 的Y n -Z n X n s —r X 2 凶(a-rT-^^a-s 严 s 「r s -r-b r -rs 2 b两根r , S ,即可得出线性递推数列的通项公式。
可见方程 y 二ay b 包含 了线性递推数列的重要信息,故将之称为线性递推数列的 特征方程 例:(斐波拉契数列)已知数列 用满足:X| =X 2=1 且 X nq2 =X n"X n (n >1, N)求数列 g }的通项公式。
解:该数列属于线性递推数列,其特征方程为:x^x 1 1 .,5 1 - 一5r = s —解之得: 2 , 25 .故所求通项公式为: X n=C 1『^ 故可设数列的通项公式为+ C 2 IX1 = C 1 又=1 X2gi 、5C2 I' c -迈 C 51 2 解得: 5,。
K阶线性递归数列,非线性递归数列
一、K 阶线性递归数列1. 递推公式:1+1+2+11+++++=n k k n k n k n a λa λa λa -2.特征方程:k k k k λx λxλx +++=2211 --(I )3.通项公式: (1)若(I )的解n k k n n k x c x c a x x x ++=,,1121 互不相同,那么(II ) (2)若(I )的解的某个根为重根(m x x x ==21)则(II )中对应的m 项换为n m m m x n c n c n c )+++(02211 --例1.,n n n a a a ,a a +=1==1+2+21求通项公式。
例2.n n n n a a a a a ,a ,a 2016+=1=1=0=2+3+321--,-,求通项公式。
(提示:0=5+2+=0321a ,)(c )c n c (a nn n ﹣) 二、线性分式数列 1.递推公式:d ca b a a a n n n ++•=1+;2.特征方程:dcx b ax x ++=(I ) 3.若(I )式有解21≠x x ,则数列{12x a x a n n --}等比,若21=x x ,则{11x a n -}等差,若实数解,可能是周期数列。
三、非线性递归数列1.递推公式:1()n n a pa f n +=+,()f n 为一些基本初等函数。
(1)()f n 为一次函数:即1n n a pa bn c +=++,构造1[(1)]n n a n u p a n u λλ+++=+-+,(2)()f n 为二次函数,构造:221(1)(1)()n n a n u n v p a n un v λλ++++++=+++(3)()f n 为二次以上函数,类比构造;(4)()f n 为指数函数:即1n n n a pa q +=+,构造)μq λa (p μq λa n n n n ++=++1+1+例1 (04年联赛四川省初赛) 数列{}n a 满足11a =,122(2)n n a a n n -=+-≥,求通项n a . 分析:令:12[(1)]n n a n u a n u λλ-++=+-+整理:122n n a a n u λλ-=+-+由待定系数:122u λλ=⎧⎨-+=-⎩,得:10u λ=⎧⎨=⎩所以:12[(1)](2)n n a n a n n -+=+-≥即:{}n a n +是以11a +为首项,2为公比的等比数列,得:2nn a n =- 例2 已知数列{}n a 满足11a =,212n n a a n +=+,求通项n a .分析:令:221(1)(1)2()n n a n u n v a n un v λλ++++++=+++ 整理:212(2)n n a a n u n v u λλλ+=++-+-- 由待定系数:2200u v u λλλ=⎧⎪-=⎨⎪--=⎩,得:246u v λ=⎧⎪=⎨⎪=⎩所以:2122(1)4(1)62246n n a n n a n n ++++++=+++ 即:2{246}n a n n +++是以1246a +++为首项,2为公比的等比数列, 得:12132246n n a n n -=⋅---例3 已知数列}a {n 满足1a 425a 3a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式. 解:设)y 2x a (3y 2x a n n 1n 1n +⋅+=+⋅+++将425a 3a n n 1n +⋅+=+代入上式, 得:)y 2x a (3y 2x 425a 3n n 1n n n +⋅+=+⋅++⋅++,y 32x 3y 42)x 25(n n +⋅=++⋅+.令⎩⎨⎧=+=+y 3y 4x 3x 25,则⎩⎨⎧==2y 5x ,得:)225a (3225a n n 1n 1n +⋅+=+⋅+++ 由013121225a 11≠=+=+⋅+及⑦式,得0225a n n ≠+⋅+,则3225a 225a n n 1n 1n =+⋅++⋅+++,故数列}225a {n n +⋅+是以13121225a 11=+=+⋅+为首项,以3为公比的等比数列,因此1n n n 313225a -⋅=+⋅+,则225313a n 1n n -⋅-⋅=-.例4、已知数列}{n a 满足⎩⎨⎧=≥+=+1)2(211a n na a n n ,求通项n a 。
递推数列特征方程法
递推数列特征方程一、问题的提出递推(迭代)是中学数学中一个非常重要的概念与方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想与方法。
在递推数列中占有重要一席的斐波那契数列,又称兔子数列,是学生非常乐意探讨的递推问题,许多学生都会不约而同地向教师提出,这个数列有通项公式吗?如有,怎样求它的通项公式?笔者就曾碰到过一位喜爱钻研的学生,带着参考书上的解法而向我请教:已知斐波那契数列,3,2(,11121=+===-+n a a a a a n n n …),求通项公式n a 。
参考书上的解法是这样的: 解 此数列对应特征方程为12+=x x 即012=--x x ,解得251±=x , 设此数列的通项公式为n n nc c a )251()251(21-++=,由初始条件121==a a 可知,⎪⎪⎩⎪⎪⎨⎧=-++=-++1)251()251(1251251222121c c c c ,解之得⎪⎪⎩⎪⎪⎨⎧-==515121c c , 所以⎥⎦⎤⎢⎣⎡--+=n n n a )251(251(55)。
这位学生坦率地表示,尽管参考书上介绍了利用特征方程求通项公式的一些结论,用上述方法得到的通项公式也是正确的,但他还是“看不懂”。
换句话说,这种解法的依据是什么?特征方程是怎样来的?我虽然深知这是特征方程惹的祸,但由于现行教材只字未提特征方程,我也从未在课堂上作过补充,如果将有关利用特征方程求递推数列通项的一些结论直接呈现出来,或者以“高考不作要求”为由来搪塞,学生是难以接受的,也是不负责任的。
面对一头雾水的数学尖子,我在充分肯定其善于思考、勇于探索的可贵品质的同时,也在苦苦寻觅解答这一问题的良策。
其后不久,一次偶然的数学探究活动,竟使这一长期困惑我们教学活动的尴尬问题迎刃而解。
二、研究与探索问题的解决源于对一阶线性递推数列通项公式的探求: 若数列{}n a 满足),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列:设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1-=c dt ,当1≠c 时可得知数列⎭⎬⎫⎩⎨⎧-+1c d a n 是以c 为公比的等比数列, 将b a =1代入并整理,得()11---+=-c dc bd bc a n n n .将上述参数法类比到二阶线性递推数列,11-++=n n n qa pa a 能得到什么结论?仿上,我们来探求数列{}n n ta a ++1的特征: 不妨设)(11-++=+n n nn ta a s ta a ,则11)(-++-=n n n sta a t s a , 令⎩⎨⎧==-qst pt s ①(1)若方程组①有两组不同的实数解),(),,(2211t s t s ,则)(11111-++=+n n n n a t a s a t a ,即{}n n a t a 11++、{}n n a t a 21++分别是公比为1s 、2s 的等比数列, 由等比数列性质可得1111211)(-++=+n n n s a t a a t a , ∵,21t t ≠由上两式消去1+n a 可得(2)若方程组①有两组相等的解⎩⎨⎧==2121t t s s ,易证此时11s t -=,则211121111s a s a s a s a nn n n -=-∴++,即⎭⎬⎫⎩⎨⎧n n s a 1是等差数列,由等差数列性质可知()21112111.1s a s a n s a s a nn --+=,所以nns n s a s a s a s a s a a 1211122111211.⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛--=. (限于学生知识水平,若方程组①有一对共轭虚根的情况略)这样,我们通过参数方法,将递推数列转化为等比(差)数列,从而求得二阶线性递推数列的通项,若将方程组①消去t 即得02=--q ps s ,显然1s 、2s 就是方程q px x +=2的两根,我们不妨称此方程为二阶线性递推数列11-++=n n n qa pa a 的特征方程,于是我们就得到了散见于各种数学参考资料的如下结论:设递推公式为,11-++=n n n qa pa a 其特征方程为022=--+=q px x q px x 即,1、 若方程有两相异根1s 、2s ,则nnn s c s c a 2211+=;2、 若方程有两等根21s s =,则nn s nc c a 121)(+=.其中1c 、2c 可由初始条件确定。
斐波那契数列通项推导
斐波那契数列通项推导斐波那契数列:1、1、2、3、5、8、13、21、……如果设F(n)为该数列的第n项(n∈N+)。
那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2,,X2=(1-√5)/2则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2C1*X1^2 + C2*X2^2解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}(√5表示根号5)通项公式的推导方法二:普通方法设常数r,s使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]则r+s=1,-rs=1n≥3时,有F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]……F(3)-r*F(2)=s*[F(2)-r*F(1)]将以上n-2个式子相乘,得:F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]∵s=1-r,F(1)=F(2)=1上式可化简得:F(n)=s^(n-1)+r*F(n-1)那么:F(n)=s^(n-1)+r*F(n-1)= s^(n-1) + r*s^(n-2) + r^2*F(n-2)= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1) = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)=(s^n - r^n)/(s-r)r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}迭代法已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式解:设an-αa(n-1)=β(a(n-1)-αa(n-2))得α+β=1αβ=-1构造方程x²-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2所以an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2由式1,式2,可得an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有形如
21n n n
x ax bx ++=+ ①的递推公式的数列{}n x 叫做
线性递推数列
将①式两边同时加上1n yx +-,即:
2111
n n n n n x yx ax bx yx ++++-=+-
整理得:
211()()n n n n b
x yx a y x x y a +++-=--
-
令1n n n F x yx +=-为等比数列,则其公比q a y =-且满足
b
y y a =
-
即满足:2y ay b =+
②
设②式具有两个不相等的实数根r ,s ,则:
1n n n
Y x rx +=- ③ 1n n n
Z x sx +=- ④
分别是公比为a r -,a s -的等比数列,并得:
1
21()()n n Y x rx a r -=-- 1
21()()n n Z x sx a s -=--
且由③、④可得:
()n n n
Y Z s r x -=-
又由韦达定理可得:
r s a +=
rs b =-
于是有:
11
212111
2121
11
21221212
2121()()()() () () n n n n n n n n n n n
n n Y Z x rx a r x sx a s x s r s r x rx x x rx x sx s r s b r b C sx a r a s s r s r x rx x sx s r
s b s b r r r C s ------------==
----=-------=-+---++++-=
= ⑤
由以上推导可知,线性递推数列的通项公式⑤只与数列的第一、
二项和方程2y ay b =+的两根有关。
也就是说,只需知道1x ,2x 和方程2
y ay b =+的两根r ,s ,即可得出线性递推数列的通项公式。
可见方程2
y ay b =+包含了线性递推数列的重要信息,故将之称为
线性递推数列的特征方程。
例:(斐波拉契数列)已知数列{}n x 满足:
121
x x ==且
21 (1,)
n n n x x x n n N +++=+≥∈.求数列{}n x 的通项公式。
解:该数列属于线性递推数列,其特征方程为:2
1x x =+
解之得:
12
r =
,
12
s =
故可设数列的通项公式为
121122n
n
n x C C ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭
又1121x C C =+=⎝⎭⎝⎭
,2
2
21211122x C C ⎛⎫⎛⎫
=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
解得:
1C =
2C =.故所求通项公式为:
n n
n x ⎤⎥=-⎢⎥⎝⎭⎝⎭⎣⎦
.。