七年级(下)数形结合数学专题训练

合集下载

人教版初一数学下册数形结合小专题复习课

人教版初一数学下册数形结合小专题复习课
A. (7,0) B. (0,7) C. (-3,0) D. (7,0)或(-3,0)
2.点A、B、C的坐标分别为(1,1),(4,1),
(4,3),点D与A、B、C四个点围成长方形,则
点D的坐标为( A )
A.(1,3)
B.(0,3)
C.(3,1)
D.(1,-3)或(1,3)
点拨:求坐标建议画出简易坐标 系来分析,这样更加直观.
华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边 飞;数缺形时少直觉,形少数时难入微;数形结合百般好, 隔裂分家万事休。”这充分说明了数形结合在数学学习中的重 要性,是中考数学的一个重要数学思想。
【在坐标中的应用】
1. A、B两点都在x轴上,AB=5,A点的坐标为(2,0),
则点B的坐标为( D )
(1)在图中画出平移后的△A1B1C1; (2)直接写出△A1B1C1各顶点的坐标.
y
(3)求△ABC的面积
C
A
B
O
x
y
FC
E
A
B
D
O
C1
x
A1
B1
解 (1) 如图所示
(2) A1(4,-2),B1(1,-4),C1(2,-1) (3) S△ABC=S正方形BDEF-S△ABD-S△ACE-S△BCF
a
Ob
a (a>0)
点拨: a 2 =∣a∣=
0 (a=0) -a (a<0)
解:由数轴可得a<0,a+b<0
a b a2 ab a (a b ) ( a ) a b+a b
【在面积中的应用】
1.如图,已知点A、B、C的坐标分别为(2,3),(2, -2),(-2,1),求△ABC的面积.

七年级数学竞赛题:数形结合谈数轴

七年级数学竞赛题:数形结合谈数轴

七年级数学竞赛题:数形结合谈数轴数学是研究数和形的学科,在数学里数和形是有密切联系的.我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是-种重要的数学思想.运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:1.利用数轴能形象地表示有理数;2.利用数轴能直观地解释相反数;3.利用数轴比较有理数的大小;4.利用数轴解决与绝对值相关的问题.例1 已知数轴上有A 、B 两点,A 、B 之间的距离为l ,点A 与原点0的距离为3,那么所有满足条件的点B 与原点0的距离之和等于 . (北京市“迎春杯”竞赛题) 解题思路 确定A 、B 在数轴上的位置,求出A 、B 两点所表示的有理数.例2已知有理数a 、b 、c 在数轴上的对应位置如下图:则1-c +c a -+b a -化简后的结果是( ).(湖北省初中数学竞赛选拔赛试题)(A)b -l (B)2a -6—1(C)l+2a -b -2c (D)1—2c+b解题思路 从数轴上获取关于a 、b 、c 的相关信息,判断代数式c —l ,a -c ,a -b 的正负性.例3 a 、b 、c 在数轴上的位置如图所示:试判定b a b a +-,b a b a -+,cba cb a -+之间的大小关系. 解题思路 推断各分数分子、分母的正负性及大小关系。

……….例4(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B两点之间的距离表示为|AB|.当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,|AB|=|OB|=|b|=|a-b|;当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|—|OA|=|b|—|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|.综上,数轴上A、B两点之间的距离|AB|=|a-b|.(2)回答下列问题:.①数轴上表示2和5的两点之间的距离是______,数轴上表示一2和一5的两点之间的距离是_______,数轴上表示1和一3的两点之间的距离是_______;②数轴上表示x和-1的两点A和B之间的距离是_____,如果∣AB∣=2,那么x为______;③当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是______;④求∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-1997∣的最小值..(2002年南京市中考题)解题思路通过观察图形,阅读理解代数∣a-b∣所表示的意义,来回答所提出的具体问题.例5某城镇沿环形路有五所小学,依次为-小、二小、三小、四小、五小,它们分别有电脑15、7、1l、3、14台,现在为使各校电脑台数相等,各调几台给邻校:-小给二小,二小给三小,三小给四小,四小给五小,五小给-小,若甲小给乙小-3台,即为乙小给甲小3台,要使电脑移动的总台数最小,应作怎样安排?(湖北省荆州市竞赛题) 解题思路通过设未知数,把调动的电脑总台数用相关代数式表示,解题的关键是,如何将实际问题转化为类似“例4”的问题加以解决..1.已知数轴上表示负有理数Ⅲ的点是点M,那么在数轴上与点M相距∣m∣个单位的点中,与原点距离较远的点对应的数是_______.(第十五届江苏省竞赛题)2.如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为______.3.在数轴上表示数a的点到原点的距离为3,则以a-3=______.4.已知a>0,b<O且以a+b<O,那么有理数a,b,-a,∣b∣的大小关系是_____________.(用“<”号连接)(北京市“迎春杯”竞赛题)5.已知有理数以在数轴上原点的右方,有理数b在原点的左方,那么( ).(A)ab<b (B)ab>b (C)a+b>0 (D)a-b>O6.如图,a、b为数轴上的两点表示的有理数,在a+b,b—2a,∣a-b∣,∣b∣-∣a∣中,负数的个数有( ).(“祖冲之杯”邀请赛试题)(A)1 (B)2 (C)3 (D))47.有理数a 、b 、c 在数轴上的位置如图所示,式子|a|+|b|+|a+b||b-c|化简结果为( ).(A)2a+3b -c (B)3b -c (C)b+c (D)c -b8.如图所示,在数轴上有六个点,且AB=BC=CD=DE=EF ,则与点C 所表示的数最接近的整数是( ).(A)-l (B)0 (C)1 (D)2(第十二届“希望杯”邀请赛试题)9.已知a 、b 、c 、d 为有理数,在数轴上的位置如图所示:且6∣a ∣=6∣b ∣=3∣c ∣=4∣d ∣=6,求∣3a -2d ∣—∣3b —2a ∣+∣2b -c ∣的值.10.电子跳蚤落在数轴上的某点K 0,第-步从K 。

(完整版)数形结合思想例题分析(最新整理)

(完整版)数形结合思想例题分析(最新整理)
数形结合思想例题分析
数形结合思想例题分析
一、构造几何图形解决代数与三角问题: 1、证明恒等式:
例 1 已知 x 、 y 、 z 、 r 均为正数,且 x2 y2 z2 , z
求证: rz xy.
C
x2 r2 x2
y A
r
x
B z
分析:由 x2 y2 z2 , 自然联想到勾股定理。由 z x2 r 2 x2. 可以联想到
则 G、E、D 三点共线时,GE+ED=DG 最短。作出图形,延长 DB 至 F,使 BF//AG 且
BF=AG,连接 GF.
2
则在 Rt△DGF 中,DF=1+2=3,GF=AB=2
D
1 a Eb B
2
DG DF 2 GF 2 32 22 13
G
2
F
CE+DE 的最小值是 13.
即 a2 4 b2 1 的最小值是 13.
AB CF > AC BE
当A 90时 , AB CF = AC BE .
3 /5
数形结合思想例题分析
综上: AB CF AC BE.
小结:以上两种证明方法,分别采用了三角法与代数法,较之纯几何证法来,易于想到。
例 7 如图,在正△ABC 的三边 AB、BC、CA 上分别有点 D、E、F.若 DE BC,EF AC,FD AB 同时成立,
射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。
证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然 后利用图形的几何性质去解决恒等式的证明问题。
2、证明不等式:
例 2 已知:0< a <1,0< b <1. 求证

人教版七年级下册:数学思想方法专题练习

人教版七年级下册:数学思想方法专题练习

七年级下册数学思想方法专题练习目录一、转化思想...................................... 错误!未定义书签。

1.“新知识”向“旧知识”转化.................... 错误!未定义书签。

a.将三元一次方程组转化为二元一次方程组. .......... 错误!未定义书签。

b.将新定义转化为所学知识解题............................. 错误!未定义书签。

c.多项式乘多项式转化为单项式乘多项式............... 错误!未定义书签。

2.“未知”向“已知”转化........................ 错误!未定义书签。

a.将判断线段相等或角相等问题转化为判定三角形全等问题错误!未定义书签。

b.添加辅助线应用平行线的性质解题............ 错误!未定义书签。

3.“复杂”向“简单”转化........................ 错误!未定义书签。

a.利用平移的性质进行平移转化................ 错误!未定义书签。

b.将不规则图形面积转化为规则图形的面积...... 错误!未定义书签。

二、分类讨论思想.................................. 错误!未定义书签。

1.对字母、未知数的取值范围分不同情况讨论........ 错误!未定义书签。

2.对图形的位置、类型的分类讨论.................. 错误!未定义书签。

3.对问题的题设条件需分类讨论.................... 错误!未定义书签。

4.从图象中获取信息进行分类讨论 (9)5.对求解过程中不便统一表述的问题进行分类讨论.... 错误!未定义书签。

三、数形结合思想................................. 错误!未定义书签。

1.数转化为形.................................... 错误!未定义书签。

数形结合的典型例题初中

数形结合的典型例题初中

数形结合的典型例题初中示例文章篇一:哎呀,一提到数形结合,这可真是初中数学里超级有趣又超级重要的一部分呢!就说那次,老师在黑板上出了一道题:已知一个二次函数图像经过点(1,0)、(3,0)和(0,3),求这个二次函数的解析式。

我一开始看着题目直发懵,心里想着:“这可咋整啊?”同桌小明倒是很快有了思路,他悄悄跟我说:“你看,这几个点不就是关键线索嘛!”我还是一脸茫然。

老师看到大家都有点不知所措,就笑着说:“同学们,咱们来画画图呀,这不就是数形结合嘛!”于是,我们在纸上画出了坐标系,把那几个点标了上去。

这一标,我好像突然开窍了!这不就像是在地图上找宝藏的标记一样嘛,这些点就是我们寻找函数解析式这个“宝藏”的线索。

我赶紧和旁边的小红讨论起来:“你说,这几个点连起来像不像一个三角形?”小红白了我一眼说:“别瞎想啦,咱们得正经解题。

”经过一番琢磨,我发现通过这几个点的位置关系,可以设出二次函数的一般式y = ax² + bx + c ,然后把点的坐标代进去,就能算出a、b、c 的值啦!这就好像是搭积木,每个点就是一块积木,我们得把它们巧妙地组合起来,才能搭出完整的“函数大厦”。

还有一次,有道题是比较两个数的大小,一个是根号5,一个是2。

这可把我难住了,这两个数看起来没啥直接的联系呀!这时候,老师又提醒我们:“画画图呀!”我恍然大悟,在数轴上把根号5 的大概位置标了出来,一下子就看出来它比2 大啦!数形结合就像是给我们开了一扇神奇的窗户,让原本抽象的数学变得清晰可见。

它能让我们在数学的世界里畅行无阻,就像有了导航一样,再也不怕迷路啦!总之,数形结合在初中数学里可太重要啦,它能帮我们轻松解决好多难题,让数学变得有趣又简单,难道不是吗?示例文章篇二:哎呀,说到数形结合,这在咱们初中数学里可太重要啦!就比如说,有这么一道题,让咱们求一个函数图象与坐标轴围成的面积。

光看数字和公式,是不是觉得脑袋都大啦?可要是把数和形结合起来,那就完全不一样喽!老师在黑板上画出那个函数图象的时候,就好像给我们打开了一扇神奇的大门。

七级数学下册 专题训练一 实数中与数轴有关的数形结合的综合运用课件 沪科版精品

七级数学下册 专题训练一 实数中与数轴有关的数形结合的综合运用课件 沪科版精品

4.如图所示,数轴上 A,B 两点表示的数分别为 3和 6.3,则 A,B 两 点之间表示整数的点共有( B )
A. 6 个
B.5 个
C. 4 个
D.3 个
5.在数轴上与表示 5的点的距离最近的整数点所表示的数是 ____2____.
最新中小学课件4Biblioteka 类型之三 利用数轴求对称点
6.如图所示,数轴上表示 2, 5的对应点分别为 C,B,点 C 是 AB 的中点,则点 A 表
A. 点 A 的左边
B.点 A 与点 B 之间
C. 点 B 与点 C 之间
D.点 C 的右边
最新中小学课件
6
9.已知实数 a,b,c 在数轴上的位置如图所示,化简|a+b|-|c-b|的
结果是( A )
A. a+c
B.-a-2b+c
C. a+2b-c
D.-a-c
10.实数 a,b 在数轴上的位置如图所示,化简:|a-b|- a2-|a+b|.
解:由数轴可知 a>0,b<0,|b|>a,
∴|a-b|- a2-|a+b|=a-b-a-[-(a+b)]=a
最新中小学课件
7
11.实数a,b,c在数轴上的位置如图所示,化简: |a-b|-|c-a|+|b-c|-|a|.
解:由数轴上a,b,c的位置关系可知: a<b<0<c, ∴|a-b|-|c-a|+|b-c|-|a|= b-a-(c-a)+(c-b)-(-a)= b-a-c+a+c-b+a=a
示的数是( C )
A. - 5
B.2- 5
C. 4- 5
D. 5-2
7.M 为数轴上表示 2的点,将点 M 绕原点旋转 180°到点 N,则点 N 所表示的数

人教版七下数学 期末难点突破8 代几综合(二)数形结合——角度问题

人教版七下数学 期末难点突破8 代几综合(二)数形结合——角度问题

人教版七下数学期末难点突破8 代几综合(二)数形结合——角度问题1.如图所示,点A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(−3,2).(1) 直接写出点E的坐标;(2) 在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①当t=秒时,点P的横坐标与纵坐标互为相反数;②求点P在运动过程中的坐标(用含t的式子表示,写出过程);③当3<t<5时,设∠CBP=x∘,∠PAD=y∘,∠BPA=z∘,试问x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.2.如图1,在平面直角坐标系中,A,B在坐标轴上,其中点A(0,a),B(b,0)满足∣a−3∣+√b−4=0.(1) 求A,B两点的坐标;(2) 将AB平移到CD,点A对应点C(−2,m),CD交y轴于点E,若△ABC的面积等于13,求点E的坐标;(3) 如图2,若AB∥CD,C,D也在坐标轴上,F为线段AB上一动点(不包括点A,点B),连接OF,FP平分∠BFO,∠BCP=2∠PCD,试探究∠COF,∠OFP,∠P之间的数量关系.答案1. 【答案】(1) (−2,0)(2) ① 2②当0≤t≤3时,点P在线段BC上时,点P的坐标(−t,2),当3≤t≤5时,点P在线段CD上时,点P的坐标(−3,5−t);③能确定,如图,过点P作PF∥BC交AB于点F,∵BC∥AD,∴PF∥AD,∴∠1=∠CBP=x∘,∠2=∠DAP=y∘,∴∠BPA=∠1+∠2=x∘+y∘=z∘,∴z=x+y.【解析】(1) 根据题意,可得三角形OAB沿x轴负方向平移3个单位得到三角形DEC,∵点A的坐标是(1,0).∴点E的坐标是(−2,0).(2) ① ∵点C的坐标为(−3,2),∴BC=3,CD=2,∵点P的横坐标与纵坐标互为相反数,∴点P在线段BC上,∴PB=CD,即t=2,∴当t=2秒时,点P的横坐标与纵坐标互为相反数.2. 【答案】(1) A(0,3),B(4,0).).(2) E(0,−72(3) 过点P,O作AB的平行线,设∠OFP=∠BFP=x,∠PCD=y,∠PCB=2y,解得∠COF=2x+3y,∠P=x+y,∴∠COF+∠OFP=3∠P.。

七年级数学下册专题提升七关于数式图形的规律型问题校本作业新版浙教版含答案

七年级数学下册专题提升七关于数式图形的规律型问题校本作业新版浙教版含答案

七年级数学下册专题提升七关于数式图形的规律型问题校本作业新版浙教版含答案专题提升七关于数式、图形的规律型问题1. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,设n表示正整数,下面符合上述规律的等式是()A. (n+2)2-n2=4n+1B. (n+1)2-(n-1)2=4nC. (n+2)2-n2=4n+4D. (n+2)2-n2=2(n+1)2. 对x,y定义一种新运算“※”,规定:x※y=mx+ny(其中m,n均为非零常数),若1※1=4,1※2=3,则2※1的值是()A. 3B. 5C. 9D. 113.根据如图中箭头的指向规律,从2014到2015再到2016,箭头的方向是以下图示中的()4.平移一个四边形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中的规律,第20个图案中,小四边形◇的个数是()A. 64 B. 200 C. 400 D. 8005. 一个运算程序如图所示:则y6的运算结果是()A.2116B. 43C. 21D.64276. 规定新运算“*”的意义是:a*b=(a 2-b 2)÷(a+b ),则2018*[7*(-1)]的值等于 .7.给定下面一列分式:yx 3,-25y x ,37y x ,-49y x ,…(其中x ≠0),则第7个分式为.8.这样铺地板:第一块铺2块,如图1,第二次把第一次的完全围起来,如图2;第三次把第二次的完全围起来,如图3;…依此方法,铺第5次时需用块地板才能把第四次所铺的完全围起来.9. 一列数a 1,a 2,a 3,…,a n ,其中a 1=-1,a 2=111a -,a 3=211a -,…,a n =111--n a ,则a 2= ,a 1+a 2+a 3+…+a 2018= .10. 任意大于1的正整数n 的三次幂均可“分裂”成n 个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…,按此规律:(1)53= ;(2)若n 3分裂后其中有一个奇数是3001,则n 的值为 .11. 我们把分子为1的分数叫做理想分数,如21,31,41,…,任何一个理想分数都可以写成两个不同理想分数的和,如21=31+61;31=41+121;41=51+201;51= ;…根据对上述式子的观察,请你思考:如果理想分数n 1=a 1+b1(n 是不小于2的整数),那么b-a= . (用含n 的式子表示)12. 对于正数x ,规定f (x )=x +11,例如:f (4)=411+=51,f (41)=4111+=54,则f (2017)+f (2016)+…+f (2)+f (1)+f (21)+…+f (20161)+f (20171)=.13. 如图,P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为21的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形P 3,P 4,…,P n ,…. 记纸板P n 的面积为S ·,则S 2= ;S n -S n+1= .14. 将一张长为12.6cm ,宽为acm 的长方形纸片按图折叠出一个正方形并剪下,称为第一次操作;将余下的长方形纸片再次折叠出一个正方形并剪下,称为第二次操作;如此操作下去,若每一次剪下后的长方形纸片只能折出一个正方形,则当第五次操作后,剩下图形的长与宽之比为2∶1,则a 的值为 .15. 观察下列等式:第1个等式:a 1=311?=21×(1-31);第2个等式:a 2=531?=21×(31-51);第3个等式:a 3=751?=21×(51-71);第4个等式:a 4=971?=21×(71-91);…请解答下列问题:(1)按以上规律列出第5个等式:a 5==;(2)用含有n 的代数式表示第n 个等式:a n ==(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.16.(1)你能求出(a-1)(a 99+a 98+a 97+…+a 2+a+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情况入手,分别计算下列各式的值:(a-1)(a+1)= ,(a-1)(a 2+a+1)= ,(a-1)(a 3+a 2+a+1)= ,……由此我们可得到:(a-1)(a 99+a 98+a 97+…+a 2+a+1)= .(2)利用(1)中的结论,完成下列计算:①2199 +2198+2197+…+22+2+1;②(-2)49+(-2)48+(-2)47+…+(-2)+1.参考答案专题提升七关于数式、图形的规律型问题1—4. CCCD5. B 【点拨】y1=1-91=98,y2=98×(1-161)=98×1615=65,y3=65×2524=54,y4=54×3635=97,y5=97×4948=2116,y6=2116×6463=43.6. 2010 【点拨】a*b=(a 2-b 2)÷(a+b )=(a+b )(a-b )÷(a+b )=a-b ,∴7*(-1)=7-(-1)=8,2018*8=2018-8=2010.7. 715yx8. 349.21 100721 【点拨】a1=-1,a2=)1(11--=21,a3=2111-=2,a4=211-=-1,…,a2016=2,a2017=-1,a2018=21,∴a1+a2+a3+…+a2018=(-1+21+2)×672-1+21=100721.10. (1)21+23+25+27+29(2)55 【点拨】由规律可得,n3分裂后的第一个奇数为n (n-1)+1,55×54+1=2971,56×55+1=3081,∴n=55.11.61+301 n 2-1 12. 2016.513.83π (21)2n+1π 【点拨】S1=21π12=21π,S2=21π-21π(21)2=21π-81π=83π,Sn=21π-21π(21)2-21π(41)2-…-21π[(21)n-1]2,Sn+1=21π-21π(21)2-21π(41)2-…-21π[(21)n-1]2-21π[(21)n ]2,∴Sn-Sn+1=21π[(21)n ]2=21π·(21)2n =(21)2n+1π.14. 7.8 【点拨】∵每一次剪下后的长方形纸片只能折出一个正方形,∴①长:a ,宽12.6-a ;②长:12.6-a ,宽:2a-12.6;③长:2a-12.6;宽:25.2-3a ;④长:25.2-3a ;宽:5a-37.8;⑤长:5a-37.8;宽:63-8a ,∵长与宽之比为2∶1,∴5a-37.8=2(63-8a ),a=7.8. 15. (1)1191? 21×(91-111)(2))12)(12(1+-n n 21×(121-n -121+n )(3)a1+a2+a3+a4+…+a100=21×(1-31)+21×(31-51)+21×(51-71)+21×(71-91)+…+21×(1991-2011)=21(1-31+31-51+51-71+71-91+…+1991-2011)=21(1-2011)=21×201200=201100 16. (1)a 2-1 a 3-1 a 4-1 a 100-1(2)①2199+2198+2197+…+22+2+1=1212200--=2200-1②(-2)49+(-2)48+(-2)47+…+(-2)+1=121)2(50----=-31250-。

七年级数学绝对值数形结合题目就最大和最小值

七年级数学绝对值数形结合题目就最大和最小值

七年级数学中,绝对值数与数形结合的题目是关于寻找最大和最小值的问题。

通过对数形的理解和绝对值数的运用,我们可以通过具体的例题来深入探讨这一主题。

1. 理解绝对值数和数形的关系在数学中,绝对值是一个数离原点的距离,它不考虑数的正负。

而数形指的是可以用图形表示的数学概念,例如直角三角形、圆形等。

绝对值数与数形结合的题目通常是利用绝对值符号来求解数形的性质或特点,进而求得最大和最小值。

2. 通过例题深入探讨例题一:一个数的绝对值与这个数本身的乘积最大是多少?解析:假设这个数为x,根据绝对值的定义可知该题实质上就是求x和-x的乘积的最大值。

通过观察可以得出结论,当x取0时,这个乘积最小为0;而当x取正数或负数时,乘积始终为负数。

最大值为0。

例题二:求解一个绝对值数与一个给定数相加的最大值和最小值。

解析:设给定数为a,绝对值数为x。

根据题目要求,可以列出不等式|x + a|的最大值和最小值。

通过分情况讨论,当a为正数时,最小值为0,最大值为2a;当a为负数时,最小值为2a,最大值为0。

3. 总结与回顾通过以上例题的探讨,我们可以得出结论:绝对值数与数形结合的题目往往涉及到对绝对值性质和数形性质的综合运用,通过巧妙地利用绝对值数的非负性和数形的图像直观性,可以快速而准确地求解最大和最小值问题。

这种方法既能够提高学生对绝对值概念的理解,也能够培养他们的逻辑思维能力和数学应用能力。

4. 个人观点和理解在教学中,我认为教师应该引导学生通过练习和实践,不断加深对绝对值数和数形结合题目的理解和掌握。

通过引导学生分析解题思路,帮助他们建立数学模型,并鼓励他们勇于尝试不同的解题方法,从而提高他们的数学解决问题能力和创造性思维。

以上是我对七年级数学中绝对值数与数形结合题目求最大和最小值的文章撰写,请查看后如有需要,欢迎进一步讨论。

绝对值数与数形结合题目是数学中一个重要的内容,通过深入理解和掌握这一主题,能够帮助学生提高数学思维能力,培养解决问题的能力。

七年级(下)数形结合数学专题训练

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。

2、 方 法 : 画 示 意 图 、 平 移 。

三、典型题目 (一)基础知识训练1.如图,数轴上 A,B 两点表示的数分别是1和 2 ,点 A 关于点 B 的对称点是点 C,则点 C 所表示的数是.在 x 轴上,到原点距离为 5 的坐标.2.( 1)请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A,B 两 点 的 坐 标 分 别 为( 4,1),( 1, -2) ;( 2)在( 1)的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M,在 BM 的 延 长 线 上 截 取 MC=BM.①写出点 C 的坐标;②平移线段 AB 使点 A 移动到点 C,画出平移后的线段 CD,并写出点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已 知 直 角 坐 标 平 面 内 两 点 A( -2,-3)、B( 3,-3),将 点 B 向 上 平 移 5 个 单 位 到 达 点 C,求: (1)A、B 两点间的距离; (2)写出点 C 的坐标; (3)四边形 OABC 的面积. 4.在 平 面 直 角 坐 标 系 中 ,四 边 形 ABCD 的 顶 点 坐 标 分 别 为 A( 1,0),B( 5,0),C( 3, 3),D(2,4),求四边形 ABCD 的面积 5.计算图中四边形 ABOD 的面积. 6.已知点 A(-4,-1),B(2,-1) (1)在 y 轴上找一点 C,使之满足 S△ABC=12.求点 C 的坐标(写必要的步骤); ( 2)在 直 角 坐 标 系 中 找 一 点 C,能 满 足 S△ ABC=12 的 点 C 有 多 少 个 ? 这 些 点 有 什 么 特 征 ?来源于网络7.如图,每个小正方形的边长为单位长度 1. (1)写出多边形 ABCDEF 各个顶点 A、B、C、D、E、F 的坐标,说出各点到两坐标轴的 距离;并总结坐标平面内的点到坐标轴距离公式。

七年级数学绝对值数形结合(含答案)

七年级数学绝对值数形结合(含答案)

绝对值数形结合【1、数轴与实际问题】例1 5个城市的国际标准时间(单位:时)在数轴上表示如下,那么北京时间2006年6月17日上午9时应是( )A 、伦敦时间2006年6月17日凌晨1时B 、纽约时间2006年6月17日晚上22时C 、多伦多时间2006年6月16日晚上20时D 、首尔时间2006年6月17日上午8时解:观察数轴很容易看出各城市与北京...的时差例2在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所。

已知青少年宫在学校东300米处,商场在学校西200米处,医院在学校东500米处。

将马路近似地看成一条直线,以学校为原点,以正东方向为正方向,用1个单位长度表示100米。

① 在数轴上表示出四家公共场所的位置。

② 计算青少年宫与商场之间的距离。

解:(1)(2)青少年宫与商场相距:3-(-2)=5 个单位长度 所以:青少年宫与商场之间的距离=5×100=500(米) 练习1、如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( ) A 、R 站点与S 站点之间 B 、P 站点与O 站点之间 C 、O 站点与Q 站点之间 D 、Q 站点与R 站点之间解:判断公交车在P 点右侧,距离P :(-1.3)+3=1.7(km),即在原点O 右侧1.7处,位于Q 、R 间城市名称 时差 北京时间 当地时间纽约 -5-8=-13 17日上午9时 9-13=-4,24-4=20,17日晚上20时 多伦多 -4-8=-12 17日上午9时 9-12=-3,24-3=21,17日晚上21时伦敦 0-8=-8 17日上午9时 9-8=1,16日凌晨1时 首尔9-8=+117日上午9时9+1=10,16日上午10时国际标准时间(时)98-5-4首尔北京伦敦多伦多纽约x商场医院青少年宫学校而公交车距Q 站点0.7km ,距离Q :0.7+1=1.7(km),验证了,这辆公交车的位置在Q 、R 间2、如图,在一条数轴上有依次排列的5台机床在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,点P 建在哪?最小值为多少?解: (此题是实际问题,涉及绝对值表示距离,后面会有更深入的理解) 此题揭示了,问题过于复杂时,要“以退为进”,回到问题 的起点,找出规律。

x数形结合常见例题

x数形结合常见例题

数形结合例题分析实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

如等式()()x y -+-=21422一、联想图形的交点例1. 已知,则方程的实根个数为01<<=a a x x a |||log |()A. 1个B. 2个C. 3个D. 1个或2个或3个分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B )。

例2. 解不等式x x +>2令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

{|}x x -≤<22练习:设定义域为R 函数⎩⎨⎧=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>><c b D c b C c b B c b A 答案C二、联想绝对值的几何意义例1、已知0>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如果P 与Q 有且仅有一个正确,试求c 的范围。

因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即21>c 而P :函数x c y =在R 上单调递减,即1<c∴由题意可得:1210≥≤<c c 或 三、联想二次函数 例1、已知关于x 的方程m x x =+-542有四个不相等的实根,则实数m 的取值范围为分析:直接求解,繁难!。

初中数学专题复习数形结合(含答案)

初中数学专题复习数形结合(含答案)

专题复习三数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

初一数学培优之数形结合

初一数学培优之数形结合

初一数学培优之数形结合阅读与思考数学是研究数和形的学科,在数学里数和形是有密切联系的,我们常用代数的方法来处理几何问题;反过来,也借助与几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想.运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在一下几个方面:1.利用数轴能形象地表示有理数; 2.利用数轴能直观地解释相反数; 3.利用数轴比较有理数的大小;4.利用数轴解决与绝对值相关的问题.例题与求解【例1】 已知数轴上有A ,B 两点,A ,B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于_____________.(北京市“迎春杯”竞赛试题)解题思路:确定A ,B 在数轴上的位置,求出A ,B 两点所表示的有理数.【例2】 在数轴上和有理数c b a ,,对应的点的位置如图所示.有下面四个结论:①0<abc ,②c a c b b a -=-+-,③0))()((>---a c c b b a ,④bc a -<1,其中,正确的结论有( )个.A .4B .3C .2D .1(“希望杯”邀请赛试题)解题思路:从数轴上得到101<<<<-<c b a ,再对代数式进行逐以一判断.【例3】 如图所示,已知数轴上点C B A ,,所对应的数c b a ,,都不为0,且C 是AB 的中点.如果0222=-+--+--+c b a c b c a b a ,试确定原点O 的大致位置.解题思路:从化简等式入手,而2ba c +=是解题的关键.【例4】 (1)阅读下面材料:点B A ,在数轴上分别表示实数,,b a B A ,两点之间的距离表示为AB .当B A ,两点中有一点在原点时,当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边|AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |;②如图3,点A 、B 都在原点的左边,|AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |;③如图4,点A 、B 在原点的两边,|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |; 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |. (2)回答下列问题:①数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是______________,数轴上表示1和-3的两点之间的距离是________________; ②数轴上表示x 和-1的两点A 和B 之间的距离是______________,如果|AB |=2,那么x 为_________; ③当代数式|x +1|十|x -2|取最小值时________,相应的x 的取值范围是___________.④求1997...321-++-+-+-x x x x 的最小值.(江苏省南京市中考试题)解题思路:通过观察图形,阅读理解代数式b a -所表示的意义,来回答所提出的具体问题.【例5】 某城市沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校,现规定一小给二小,二小给三小,三小给四小,四小给五小,五小给一小,要使电脑调动台数最小,应该做怎样的安排?(湖北省荆州市竞赛试题)解题思路:通过设未知数,把调动的电脑台数用相关代数式表示出来.解题的关键是怎样将实际问题转化为求n a x a x a x y -+•••+-+-=21的最小值.【例6】 如图,A 是数轴上表示-30的点,B 是数轴上表示10的点,C 是数轴上表示18的点,点C B A ,,在数轴上同时向正方向运动.点A 运动的速度是6个单位长度/秒,点B 和点C 运动的速度是3个单位长度/秒.设三个点运动的时间为t (秒). (1)当t 为何值时,线段AC =6(单位长度)?(2)t ≠5时,设线段OA 的中点为P ,线段OB 的中点为M ,线段OC 的中点为N ,求2PM -PN =2时t 的值.(湖北省荆州市竞赛试题)解题思路:(1)C B A ,,三点在数轴上同时向正方向运动,分别当A 点运动到C 点左侧和右侧两种情况来分析求解.(2)先将N M P ,,三个点在数轴上表示的数分别写出来,因点M 始终在点N 左侧,则分为“点P 在N M ,左边”,“点P 在N M ,之间”,“点P 在N M ,右边”三种情况来求解.能力训练A 级1.已知数轴上表示负数有理数m 的点是点M ,那么在数轴上与点M 相距m 个单位的点中,与原点距离较远的点对应的数是______________.(江苏省竞赛试题)2.如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么B A ,两点的距离为______________.3.点B A ,分别是数3-,21-在数轴上对应的点,使线段AB 沿数轴向右移动到''B A 的中点对应数3,则点'A 对应的数是________________,点A 移动的距离是____________.(“希望杯”邀请赛试题)4.已知0>a ,0<b 且0<+b a ,那么有理数b a b a ,,,-的大小关系是_________________________.(用“<”号连接)(北京市“迎春杯”竞赛试题)5.在数轴上任取一条长度为911999的线段,则此线段在数轴上最多能盖住的整数点的个数是( ). A .1998 B .1999 C .2000 D .2001(重庆市竞赛试题)6.如图,b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( ) A .1 B .2 C .3 D .4(“祖冲之”邀请赛试题)7.有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( ). A .c b a -+32 B .c b -3 C .c b + D .b c -8.如图所示,在数轴上有六个,且EF DE CD BC AB ====,则与点C 所表示的数最接近的整数是( ).A .-1B .0C .1D .2(“希望杯”邀请赛试题)9.已知d c b a ,,,为有理数,在数轴上的位置如图所示:且64366====d c b a ,求c b a b d a -+---22323的值.10.电子跳蚤落在数轴上的某点o K ,第一步从o K 向左挑一个单位到1K ,第二步由1K 向右跳2个单位到2K ,第三步由2K 向左跳3个单位到3K ,第四步由3K 向右跳4个单位到4K ,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点100K 所表示的数恰是19.94.则电子跳蚤的初始位置o K 点所表示的数是_________________.11.如图,已知B A ,分别为数轴上两点,A 点对应的数为-20,B 点对应的数为100. (1)求过B A ,中点M 对应的数.(2)现有一只电子蚂蚁P 从B 点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数.(3)若当电子蚂蚁P 从B 点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.B 级1.有理数c b a ,,在数轴上的位置如图所示:则化简c c a b b a ------+11的结果为_____________________. 2.电影<<哈利·波特>>中小哈利·波特穿墙进入“站台439”的镜头(如示意图中M 站台),构思奇妙,给观众留下深刻的印象.若B A ,站台分别位于-2,-1处,NB AN 2=,则N 站台用类似电影里的方法称为“_________________站台”(《时代学习报》数学文化节试题)3.在数轴上,若N 点与原点O 的距离是N 点与三〇若对应的点之间的距离的4倍,则N 点表示的数是_________________.(河南省竞赛试题) 4.若0,0<>b a ,则使b a b x a x -=-+-成立的x 的取值范围是__________________.(武汉市选拔赛试题)5.如图,直线上有三个不同的点C B A ,,,且BC AB ≠,那么,到C B A ,,三点距离的和最小的点为( ).A .B 点外 B .线段AC 的中点 C .线段AC 外一点D . 无穷多个(“希望杯”邀请赛试题)6.点)(,,,,321为正整数n A A A A n ⋅⋅⋅都在数轴上,点在原点O 的左边,且11=O A ,点2A 在点1A 的右边,且212=A A ,点3A 在点2A 的左边,且323=A A ,点4A 在点3A 的右边,且434=A A ,•••,依照上述规律,点20092008,A A 所表示的数分别为( ) .A .2008,-2009B .-2008,2009C .1004,-1005D .1004,-1004(福建省泉州市中考试题)7.设11++-=x x y ,则下列四个结论中正确的是().A .y 没有最小值B .只有一个x 使y 去最小值C .有限个x (不止一个)使y 去最小值D .有无穷多个x 使y 取最小值(全国初中数学联赛试题)8.如图,数轴上标出若干个点,每相邻两个点相距1个单位,点D C B A ,,,对应的数分别是整数d c b a ,,,,且92=-a b ,那么数轴的原点对应点是( ).A .点AB .点BC .点CD .点D(“新世纪杯”广西初中数学竞赛试题) 9.已知y y x x +---=-++15912,求y x +的最大值和最小值.(江苏省竞赛试题)10.如图,在环形运输线路上有F E D C B A ,,,,,六个仓库,现有某种货物的库存量分别是50吨、84吨、80吨、70吨、55吨和45吨.要对各仓库的存货进行调整,使得每个仓库的存货量相等,但每个仓库只能相相邻的仓库调运,并使调运的总量最小.求各仓库向其他仓库的调运量.11.如图,数轴上标有12+n 个点,它们对应的整数是n n n n n ,1,2,,2,1,0,1,2,),1(,--⋅⋅⋅--⋅⋅⋅---.为了确保从这些点中可以取出2006个,使任何两个点之间的距离都不等于4.求n 的最小值.(“华罗庚金杯”少年邀请赛试题)。

(新)初中七年级数学《数形结合—数轴压轴题》教学复习讲义典型试题汇编

(新)初中七年级数学《数形结合—数轴压轴题》教学复习讲义典型试题汇编

第6讲数形结合——数轴压轴题【板块一】数轴上的行程问题方法技巧此类问题一般已知起点、路程(距离)、速度,在运动后满足一定距离条件,求点运动后所表示的数.一般较为简单的问题可用算术方法先求运动时间,再求运动路程,从而得点表示的数,此类问题一般有多种情况,注意分类讨论,但这里建议采用设未知数,用绝对值表示数轴上两点间的距离的方法列式计算,一来比较简洁通用,二来不易掉解,这类问题也可能交换部分题设和结论反过来求,方法反之亦然.【例1】如图,数轴上A,B两点所对应的数分别为-8,4,A,B两点各自以一定的速度同时运动,且点A运动速度为2个单位/秒.(1)若A,B两点相向而行,在原点处相遇,求点B运动的速度(2)若A,B两点从开始位置上同时按照(1)中的速度向数轴正方向运动,多少秒钟后,A,B与原点距离相等?【例2】如图,A,B分别为数轴上的两点,点A对应的数为-10,点B对应的数90.现有一电子蚂蚁P 从A出发,以3个单位/秒的速度向右运动,同时另一只电子妈蚁Q恰好从B点出发,以5个单位/秒的速度向左运动,求经过多长时间两只电子妈蚁在数轴上相距20个单位?针对练习11.已知,在一条东西向的双轨铁路上理面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD =4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向东方向为正方向面数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速维续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且│a+8│与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,同再行驶多少秒钟,两列火车的车头A,C相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟内,他的位置P到两列火车头A,C的距离和加上到两列火车超B,D的距离和是一个不变的值(即P A+PB+PC+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.【板块二】数轴上的和差倍分问题方法技巧此类问题一般由一些已知点和未知点(或者已知点运动形成未知点)构成,它们的距离满足一定数量关系,如和差倍分等,根据条件计算未知点表示的数,此类问题一般可采用设未知数,用绝对值表示出数轴上两点间的距离,再根据距离之间的数量关系列方程计算的方法.【例3】如图,数轴上点A,B表示的数分别为-10和10,C为数轴上一点(1)若AC+BC=28,求C点表示的数;(2)若2AC=3BC,求C点表示的数.【例4】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+3|+(b+3a)2=0,设P从A点出发以3个单位每秒向右运动,点Q同时从B点出发以2个单位每秒向左运动,当AP+BQ=2PQ时,求运动时间.OA【分析】设时间为t秒,由绝对值和平方的非负性先求出A、B两点表示的数,然后用含t的式子表示出P、Q两点表示的数,进而表示出AP、BQ、和PQ,根据AP+BQ=2PQ建立方程求解.针对练习21.数轴上,A、B两点表示的数分别为-4和3.(1)点C在数轴上,点C到A、B两点的距离之和为11,求点C在数轴上所对应的数;(2)若A点、B点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,且3秒后,2OA=OB,求点B的速度.【板块三】数轴上的动点定值问题方法技巧 设参计算法设动点表示的数(若是行程问题一般设运动时间),从而表示出线段长(两点间的距离),计算可解. 【例5】如图,在数轴上A 、B 、C 三点表示的数分别为-10、10、50,A 、B 、C 三点同时运动,点A 以1个单位每秒的速度向左运动,点B 、C 分别以2个单位、5个单位每秒的速度向右运动,请问:BC -AB 的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.CBA例6 如图,数轴上A 、B 两点所对应的数分别为-8、4, A 、B 两点分别以2个单位/秒和1个单位/秒的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发也向数轴负方向运动,且 C 点总在A 、B 两点之间,并在运动过程中始终有BC AC =12,设运动t 秒钟后,点A 、B 、C 运动后的对应点分别为A 1、B 1、C 1 下列两个结论:①AA 1+BB 1的值不变;②CC 1AA 1的值不变 ,请选择正确的结论,并求其值.例7 如图,点A 在数轴上表示的数为-10,C 、D 为数轴上两个动点,点D 在点C 的右边,且CD =16,M 为AD 中点,N 为AC 的中点,当C 、D 运动时, M 、N 两点的距离即M N 的长是否改变?若不变求出其值;若变化说明理由.DMN﹣10A C针对练习31. 如图,已知数轴上有A 、B 、C 三个点,他们表示的数分别为是18,8,-10 (1)填空:AB = ,BC =A CB 188﹣10(2)若点A 以每秒1个单位长度的速度向右运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向左运动,试探索:BC -AB 的值是否随着时间t 的变化而变化?请说明理由;(3)现有动点P ,Q 都从A 点出发,点P ,以每秒1个单位长度的速度向终点C 移动;当点P 移动到B 点时,点Q 才从A 出发,并以每秒3个单位的速度向左移动,且当点P 到达C 点时,点Q 就停止移动,设点P ,移动的时间为t 秒,试用含t 的代数式表示P ,Q 两点间的距离。

人教版数学七年级:数形结合思想专题复习课件(共17张PPT)

人教版数学七年级:数形结合思想专题复习课件(共17张PPT)

2001-2003年高考试题中对数形结合的考查统计表
年份
2001 15
2002 15
2003 14
题数
权重
60%
62%
63%
1、集合M={(x,y)|x=3cosθ,y=3sinθ,0 θ π },
N={ (x,y)| y= x + b},若M∩N=φ 则b满


分析:点集M表示的图形是半圆,点 集N表示为直线,它随b值变化位置不 断变化。本题即转化为b取何值时两图 形没有公共点,由图形变化可得结论。 y 故有: b>b 2 或 b<b 1 b2
a2 c2 b a2 b2 c
b2 c2 a


C tg =
tg =
B
tg tg tg =
a b a c b c
2 2
2
2
b c a
2
2
=

(b c )( a c )( a b ) 2 abc
2 2 2 2 2 2
2bc 2ac 2ab abc 2
y=x+b
b3 即b>3
2
或b<-3
L2
L3
o
L1
x
问题:b取何值时M∩N分别 有两个子集;四个子集。
b1
(A) 0 (B) 1 (C) 2 (D) 随a值变化而变化 2 x 分析:构造两个函数y= a 与y= - x +2x+a 由两个函数交点个数求得方程解的个数
2、关于 x 的方程 a = - x +2x+a, (a>0且a 1)解的个数是( C)
3.设函数 f ( x ) x 1 ax , 其中 a >0.解不等式f (x)≤1

数形结合例题选集

数形结合例题选集

数形结合一、在一些命题证明中得应用举例:1、证明勾股定理:解析:上图中,四个小三角形(阴影部分)得面积加上中间小正方形得面积等于大正方形得面积,化简后得到勾股定理。

2、证明乘法公式(平方差与完全平方):解析:在上图中,利用正方形与小正方形面积得转化,能更进一步理解平方差公式与完全平方公式得运算过程以及公式得本质问题。

3、证明基本不等式:解析:如上图所示,直角三角形斜边上得中线等于斜边得一半,长度为,根据直角三角形得相似关系,可以得到直角三角形斜边上得高得长度为,显然在直角三角形中,斜边上得中线得长度会大于等于高,利用这样简洁明了得几何图解,对基本不等式得理解也就更加简单了。

4、证明正(余)弦定理:解析:(1)如上图所示,; 即;根据圆得性质(等弧对等角); 综上,得正弦定理:。

(2)根据勾股定理22222222cosB c a b cosB c c CE AC BE AB )()(,即⋅--=⋅--=-;整理可得余弦定理:;同理得出cosA 、cosC 得余弦定理、5、证明结论解析:如上图所示,根据y=tanx 、y =x、y=si nx 在上得图像可瞧出tanx >x 〉sinx,、当然,实际考试作图不可能如此精确,那么转化到右图得单位圆中,当时,角得终边始终在第一象限内,根据三角函数线可知,蓝线表示正弦线,红线表示正切线,再根据弧长公式,即图中黑色弧线得长度表示x,显而易见。

红线长度>弧线长度〉蓝线长度,即t anx >x>sinx,。

6、证明两角差得余弦公式:解析:如上图所示,根据三角比得定义及单位圆得定义可知单位圆上得点得坐标表示、左图中,,将B点旋转至(1,0)处(右图所示)。

此时,,因为线段AB得长度没有发生变化,即,化简:。

当然也可以用向量得方法证明,利用向量数量积定义,证明更加简洁。

如左图,。

二、在考试中得具体应用:1、与函数得综合运用,主要体现在求零点、交点、解得个数及参数范围等方面: 例1(14奉贤)已知定义在R上得函数y=f(x)对任意x都满足f(x+2)=-f(x),当只有四个零点,则a得取值范围就是答案:解析:根据已知条件,f(x)得周期为4,先画f(x)一个周期图像,当1x<3时,,由此画出[-1,3)得图像,此为一个周期,图像如下,只有四个零点即f(x)与y=只有四个交点,需分类讨论:(1)当0<a<1时,有两个界值,如下图所示:此时5个交点,代入点(-5,—1),解得a=此时3个交点,代入点(3,—1),解得a=(2)当a〉1时,也有两个界值,如下图所示:此时3个交点,代入(-3,1),解得a=3。

浙教版七年级(下)数学专题训练(三) 运用二元一次方程组解决有关图形与图表信息问题

浙教版七年级(下)数学专题训练(三) 运用二元一次方程组解决有关图形与图表信息问题

专题训练(三)运用二元一次方程组解决有关图形与图表信息问题▶类型之一实物信息类1.如图3-ZT-1,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220 cm,此时木桶中水的深度是cm.图3-ZT-1▶类型之二几何信息类2.(2021杭州上城区期末)如图3-ZT-2,在长方形ABCD中,放入8个完全相同的小长方形.(1)每个小长方形的长和宽分别是多少厘米?(2)图中阴影部分的面积为多少平方厘米?图3-ZT-23.某铁件加工厂用如图3-ZT-3①所示的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图②所示的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)(1)如果加工竖式铁容器与横式铁容器各1个,那么共需要长方形铁片张,正方形铁片张;(2)现有长方形铁片2021张,正方形铁片1179张,如果加工成这两种铁容器,刚好铁片全部用完,那么加工竖式铁容器、横式铁容器各多少个?(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成长方形铁片和正方形铁片,已知每张铁板可做成3张长方形铁片或4张正方形铁片,也可以将一张铁板裁出1张长方形铁片和2张正方形铁片.若充分利用这些铁板加工成铁盒,则最多可以加工成多少个铁盒?图3-ZT-3▶类型之三表格信息类4.(2021乐清期末)杂交水稻的发展对解决世界粮食不足问题有着重大的贡献,乐清某超市购进A,B 两种大米销售,其中两种大米的进价、售价如下表:类型进价(元/袋) 售价(元/袋)A种大米20 30B种大米30 45(1)该超市在6月份购进A,B两种大米共90袋,进货款恰好为2200元.①求这两种大米各购进多少袋;②据6月份的销售统计,两种大米的销售总额为1200元,求该超市6月份已售出大米的进货款为多少元.(2)为刺激销量,超市决定在同时购进A,B两种大米且进货款仍为2200元的情况下,7月份增加购进C种大米作为赠品,进价为每袋10元,并推出了“买3袋A种大米送1袋C种大米,买3袋B种大米送2袋C种大米”的促销方案.若7月份超市的购进数量恰好满足上述促销搭配方案,此时购进三种大米各多少袋?▶类型之四对话信息类5.小甘到文具超市去买文具.请你根据如图3-ZT-4中的对话信息,求每支中性笔和每本笔记本的价格分别是多少元.图3-ZT-46.在五一期间,小兰和小亮等随家长一同到某公园游玩,下面是小兰与爸爸的一段对话.请你根据图3-ZT-5中的信息,解答下列问题:(1)小兰他们一共去了几个成人,几个学生?(2)请你帮忙算一算,用哪种方式购票更省钱.图3-ZT-5详解详析1.802.解:(1)设小长方形的长为x cm,宽为y cm.依题意,得解得答:每个小长方形的长和宽分别是10 cm,2 cm.(2)因为每个小长方形的长和宽分别是10 cm,2 cm,所以图中阴影部分的面积为18×(12+2)-8×2×10=92(cm2).答:图中阴影部分的面积为92 cm2.3.解:(1)4+3=7(张),1+2=3(张).故答案为7,3.(2)设加工竖式铁容器x个,横式铁容器y个.依题意,得解得答:加工竖式铁容器101个,横式铁容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块.依题意,得解得因为在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,所以共做长方形铁片75+1=76(张),正方形铁片36+2=38(张).又因为76÷4=19,38÷2=19,所以可做铁盒19个.答:最多可以加工成19个铁盒.4.解:(1)①设A种大米购进x袋,B种大米购进y袋.依题意,得解得答:A种大米购进50袋,B种大米购进40袋.②设6月份售出A种大米m袋,B种大米n袋.依题意,得30m+45n=1200,化简,得2m+3n=80,所以20m+30n=10(2m+3n)=10×80=800.答:该超市6月份已售出大米的进货款为800元.(2)设7月份该超市购进A种大米a袋,B种大米b袋,则购进C种大米a+b袋.依题意,得20a+30b+10a+b=2200,化简,得7a+11b=660,所以b=60- a.又因为a,b,a+b均为正整数,所以a既是3的整数倍,又是11的整数倍,b是3的整数倍,所以或当a=33,b=39时,a+b=×33+×39=11+26=37;当a=66,b=18时,a+b=×66+×18=22+12=34.答:购进A种大米33袋,B种大米39袋,C种大米37袋;或购进A种大米66袋,B种大米18袋,C 种大米34袋.5.解:设每支中性笔和每本笔记本的价格分别是x元,y元.根据题意,得解得答:每支中性笔和每本笔记本的价格分别是2元,6元.6.解:(1)设小兰他们一共去了x个成人,y个学生.根据题意,得解得答:小兰他们一共去了8个成人,4个学生.(2)如果购买团体票,按16人计算,共需35×0.6×16=336(元).∵336<350,∴购买团体票更省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系------数形结合思想的平台
一、知识点:
1.平面直角坐标系的定义;
2.坐标平面内点的坐标的定义;
3.各象限内及坐标轴上点的坐标的特征;
4.一三(二四)象限角平分线上的坐标特点;
5.与坐标轴平行的直线上的点的坐标的特征;
6.一维、二维坐标;
7、点的坐标与点到坐标轴的距离之间的关系,
8、坐标平面内线段长度与线段两端点坐标之间的关系;
9、面积割补法;
10、绝对值的性质;
11、图形面积公式;
12、平移的性质;
二、基本思想方法:
1、思想:数形结合思想、分类讨论思想、方程思想、算术法。

2、方法:画示意图、平移。

三、典型题目
(一)基础知识训练
1.如图,数轴上A,B两点表示的数分别是1和2,点A关于点B的对称点是点C,则点C所表示的数是.在x轴上,到原点距离为5的坐标.
2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2);
(2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM.
①写出点C的坐标;
②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标.
(注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式)
3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求:
(1)A、B两点间的距离;
(2)写出点C的坐标;
(3)四边形OABC的面积.
4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积
5.计算图中四边形ABOD的面积.
6.已知点A(-4,-1),B(2,-1)
=12.求点C的坐标(写必要(1)在y轴上找一点C,使之满足S
△ABC
的步骤);
(2)在直角坐标系中找一点C,能满足S
=12的点C有多少个?这
△ABC
些点有什么特征?
7.如图,每个小正方形的边长为单位长度1.
(1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。

(2)点C与E的坐标什么关系?
(3)直线CE与两坐标轴有怎样的位置关系?
(4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积?
8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC;
(2)将△ABC向左平移4个单位,作出平移后的△A′B′C′;
(3)点B′到x、y轴的距离分别是多少?
9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b.(1)求A、B、C三点的坐标,并在坐标系中描出各点;
(2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.
10.如图所示,长方形ABCD在坐标平面内,点A的坐标是A(2,1),
且边AB、CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.
(1)求B、C、D三点的坐标;
(2)怎样平移,才能使A点与原点重合?
11.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.
11.如图,△O AB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE.如果CB=1,那么OE的长为.
12.如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x 轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.(1)若|x+2y-5|+|2x-y|=0,试分别求出1秒钟后A、B两点的坐标;
(2)设∠BAO的邻补角和∠ABO的邻补角的平分线相交于点P,
问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.
13.如图,是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法,写出一个关于a、b的恒等
式.
14.已知关于x的不等式组3x+m<0
x>−5
的所有整数解的和为-9,求m的取值范围.
15.小明和小斌到郊外旅游,小明骑自行车,小斌骑电动车,同时出发
沿相同路线前往.如图,l1,l2分别表示小明和小斌前往目的地所走的路程S与所用的时间t的关系.
(1)他们中谁先到目的地?早到多少时间?
(2)小明和小斌的速度分别是多少?
(3)当他们中第一人到达目的地时,另一人还差几千米到达目的地?
16.“龟兔赛跑”:龟跑得慢,但坚持不懈;而兔跑得快,看不起龟,中途睡觉,醒来龟已到终点.下列哪个图象能大致表示“龟兔赛跑”中路程s与时间t的关系()
A.B.C.D.
17.如图,是一辆汽车的速度随时间变化的图象,请你根据图象提供的信息填空:
(1)汽车在整个行驶过程中,最高速度是千米/时;
(2)汽车第二次减速行驶的“时间段”是;
(3)汽车出发后,8分钟到10分钟之间的运动情况如何?.
18.某人骑自行车沿直线旅行,先前进了akm,休息了一段时间后又按原路返回bkm(b<a),再前进ckm,则此人离出发点的距离s与时间t 的关系示意图是()
A.B.C.D.
19.如图1,在平面直角坐标系中,四边形OBCD各个顶点的坐标分别是O(0,0),B(2,6),C(8,9),D(10,0);
(1)三角形BCD的面积=
(2)将点C平移,平移后的坐标为C′(2,8+m);
=32,求m的值;
①若S
△BDC′
②当C′在第四象限时,作∠C′OD的平分线OM,OM交于C′C于M,作∠C′CD的平分线CN,CN交OD于N,OM与CN相交于点P(如图2),求∠P
∠OC′C+∠ODC
的值.。

相关文档
最新文档