PCB设计常用规则.doc
PCB布线设计规范精选全文
可编辑修改精选全文完整版印制电路板设计规范一、适用范围该设计规范适用于常用的各种数字和模拟电路设计。
对于特殊要求的,尤其射频和特殊模拟电路设计的需量行考虑。
应用设计软件为Protel99SE。
也适用于DXP Design软件或其他设计软件。
二、参考标准GB 4588.3—88 印制电路板设计和使用Q/DKBA—Y004—1999 华为公司内部印制电路板CAD工艺设计规范三、专业术语1.PCB(Print circuit Board): 印制电路板2.原理图(SCH图):电路原理图,用来设计绘制,表达硬件电路之间各种器件之间的连接关系图。
3.网络表(NetList表):由原理图自动生成的,用来表达器件电气连接的关系文件。
四、规范目的1.规范规定了公司PCB的设计流程和设计原则,为后续PCB设计提供了设计参考依据。
2.提高PCB设计质量和设计效率,减小调试中出现的各种问题,增加电路设计的稳定性。
3.提高了PCB设计的管理系统性,增加了设计的可读性,以及后续维护的便捷性。
4.公司正在整体系统设计变革中,后续需要自主研发大量电路板,合理的PCB设计流程和规范对于后续工作的开展具有十分重要的意义。
五、SCH图设计5.1 命名工作命名工作按照下表进行统一命名,以方便后续设计文档构成和网络表的生成。
有些特殊器件,没有归类的,可以根据需求选择其英文首字母作为统一命名。
对于元器件的功能具体描述,可以在Lib Ref中进行描述。
例如:元器件为按键,命名为U100,在Lib Ref中描述为KEY。
这样使得整个原理图更加清晰,功能明确。
5.2 封装确定元器件封装选择的宗旨是1. 常用性。
选择常用封装类型,不要选择同一款不常用封装类型,方便元器件购买,价格也较有优势。
2. 确定性。
封装的确定应该根据原理图上所标示的封装尺寸检查确认,最好是购买实物后确认封装。
3. 需要性。
封装的确定是根据实际需要确定的。
总体来说,贴片器件占空间小,但是价格贵,制板相同面积成本高,某些场合下不适用。
PCB工程设计规则
1.0目的为使产品工程部PE在设计菲林和MI时有规可循,执行统一规则标准;特制定本规则;从而更好的辅助生产提高品质和效率。
2.0范围适用于本公司产品工程部对所有PCB板的设计3.0职责及权限3.1 产品工程部:本设计规则的制定修改由工程师主办,经理审批。
3.2 工艺工程部:负责提供板菲林设计的数据。
3.3 品质部:检查及监督本指引的执行及实行情况,并给予纠正。
4.0定义无5.0内容修改号﹕02页码﹕4 of 21文件名称PE设计规则CIRCUITS CO.,LTD.序号工序项目制作要求注意事项5.2 钻孔孔径补偿PTH孔补偿值NPTH孔补偿值孔铜(um) 喷锡沉金、沉银、沉锡、OSP 电金所有表面处理0≤孔铜≤20 / / 0.07-0.11mm0.05mm15≤孔铜<25 0.11-0.15mm 0.09-.13mm 孔铜>20um则APQP25≤孔铜<35 0.14-0.19mm 0.11-0.15mm孔铜≥35 APQP过孔≥0.3mm时,则按PAD的大小来确定是否正常补偿过孔钻咀,但须保证纵横比≤6:1钻孔能力类型最小钻咀最大钻咀最小槽刀最大槽刀孔径公差最小孔位公差二钻孔径公差二钻孔位公差PTH 0.15mm 6.5mm 0.55mm 6.5mm ±0.05mm ±0.05mm ±0.05mm ±0.10mmNPTH 0.15mm 6.5mm 0.55mm 6.5mm ±0.05mm ±0.05mm ±0.05mm ±0.10mm 有孔径公差1:有孔径公差的钻咀预大:即将公差改为中值然后再正常预大,例如0.9+0.1/-0mm的喷锡板:0.95mm+0.15mm.扩孔孔径>6.5mm须扩孔,须按要求正常预大,如10mm的NPTH孔钻咀为3.175mm,备注栏备注“扩孔到10.05mm”8字孔8字孔钻第二个孔时加钻除尘孔,设计比原钻咀整体小0.1mmm,且排在刀具的最后短槽补偿要求1:短槽定义:槽长≤两倍槽宽的槽为短槽2:短槽预大:槽宽正常预大,槽长正常预大后再加大0.05mm例如:0.6*1.1mm的槽喷锡板预大为:0.75*1.3mm.,3:且需要添加预钻孔,预钻孔大小为槽长的一半减0.05mm,4:预钻孔位置和槽孔两侧最外的点相切。
PCB板设计规则
一、PCB设计的总则如下:外观大方:器件选择合适,布局布线合理,尺寸比例协调,文字说明清晰。
电路可靠:良好的连线方式,合适的封装与焊盘尺寸,较强的电磁兼容能力。
接口友好:符合通常的操作习惯,向操作者提供意义明确的提示。
工艺良好:能为批量化生产提供良好的加工条件。
二、说明:1、使用软件此文档所涉及的软件为Protel 99 se SP6 版。
该软件主要包含4 个模块:SCH、PCB、PLD SIM模块,文档中的操作以PCB模块为准。
2 、尺寸标准此文档所涉及的尺寸均采用英制,以mil 为单位。
英制与公制的转换公式如下:100 mil = 2.54 mm 即 4 mil 〜0.1mm三、电路元素:1 、电路板(CircuitBoard )电路板是安装电路元件的载体。
按功能区分,可分为单面板、双面板、多层板等。
按材质区分,可分为纸基板、环氧聚脂板。
除上述说明外,电路板的厚度也是制作时的主要选择参数,其厚度有0.5mm- 2.0mmo一般情况下,邦定板、单面板选择较薄的尺寸,双面板、大面积板选择较厚的尺寸。
设计时,电路板需划分为不同的层。
以双面板为例,可分为:TopLayer (元件面层):电路板正面,可布信号线。
BottomLayer (焊接面层):电路板背面,可布信号线。
Top Overlayer (元件面丝印层):电路板正面的丝网印刷,可布元件标识符、说明文字。
Bottom Overlay (焊接面丝印层):电路板背面的丝网印刷,当仅单面放置元件时,此层可不用。
Mechanical1 Layer (机械尺寸层):标注尺寸,或设定电路板外观,或设置板上的安装孔。
Keepout Layer (禁止布线层):设置自动布线算法中不允许放置信号线的区域。
Multi Layer (钻孔层):设置焊盘、过孔的钻孔尺寸。
对于电路板的外形,应根据应用场合、安装尺寸作具体的分析与考虑。
一般应用时,可将电路板设计成具有黄金分割比的长方形,四角应具有按一定比例的圆弧。
PCB布局、布线基本规则
PCB布局、布线基本规则(PCB)又被称为印刷电路板(Printed Circuit Board),它可以实现(电子元器件)间的线路连接和功能实现,也是(电源电路)设计中重要的组成部分。
今天就将以本文来介绍PCB板布局布线的基本规则。
元件布局基本规则按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时(数字电路)和(模拟)电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装(元器件);卧装电阻、电感(插件)、电解(电容)等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;元器件的外侧距板边的距离为5mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;(电源)插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要(信号)线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
元件基本布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;(cpu)入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
(完整word版)PCB设计常用规则
PCB设计常用规则1、电气规则(electrical rules)电气设计规则用来设置在电路板布线过程中所遵循的电气方面的规则,包括安全间距、短路、未布线网络和未连接引脚这四个方面的规则:(1)、安全间距规则(clearance)安全距离的各项规则以树形结构形式展开,用鼠标单击安全距离规则树中的一个规则名称,如polygon clearance,则对话框的右边区域将显示这个规则使用的范围和规则的约束特性盘、过孔等的安全距离是0。
5mm。
(2)、短路规则(short-circuit)该规则设定电路板上的导线是否允许短路,在该规则的约束对话框中的constraints区域中选中allow short circuit复选框,则允许短路,反之则不允许短路。
——-一般保持默认不改(3)、未布线网络规则(unrouted net)该规则用于检查指定范围内的网络是否布线成功,如果网络中有布线不成功的,该网络上已经布完的导线将保留,没有成功布线的将保持飞线。
---一般保持默认不改 (4)、未连接引脚规则(unconnected)该规则用于检查指定范围内的元器件引脚是否连接成功.默认是一个空规则,如果有需要设计有关的规则,可以添加。
2、布线规则(routing rules)布线规则主要是与布线设置有关的规则,共有以下七类:(1)、布线宽度(width)该规则用于布线时的布线宽度的设定.用户可以为默写特定的网络设置布线宽度,如电源网络。
一般每个特定的网络布线宽度规则需要添加一个规则,以便于其他网络区分.constraints区域内含有粉色框中的三个宽度约束,即:最小宽度、首选宽度和最大宽度(分别为从左到右的顺序说明)。
该区域中还有四个可选项,即:分别检查导线/弧线的最小/最大宽度、检查敷铜连接的最小/最大宽度、特性阻抗驱动的线宽、只针对层集合中的层即可布线层(分别为从上到下顺序说明).(2)、布线方式(routing topology)该规则用于定义引脚之间的布线方式.此规则有七种布线方式,从上到下的顺序依次表示布线方式为:以最短路径布线、以水平方向为主的布线方式(水平与垂直比为5:1)、以垂直方向为主的布线方式(垂直与水平比为5:1)、简易菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、中间驱动的菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、平衡菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、放射状布线方式。
PCB设计规则(DRC)
PCB设计规则(DRC)
PCB设计规则(DRC)设置设计规则(DRC)(一)、PCB设计的基本原则:PCB设计规则分为10个类别1、
布局原则(1)、元件的布局要求均衡,疏密有序,避免头重脚轻。
(2)、元件布局应按照元件的关键性来进行,先布置
关键元件如微处理器、DSP、FPGA、存储器等,按照数据线和地址线的走向,就近原则布置元件。
(3)、存储器模块
尽量并排放置,以缩短走线长度。
(4)、尽可能按照信号流
向进行布局。
注意:零件布局,应当从机械结构散热、电磁干扰、将来布线的方便性等方面综合考虑。
先布置与机械尺寸有关的器件,并锁定这些器件,然后是大的占位置的器件和电路的核心元件,再是外围的小元件。
2、布线原则(1)、一定要确保导线的宽度达到导线的载流要求,并尽可能宽些,留出余量。
电源和地的导线要更宽,具体数值视实际情况而定。
地线>电源线>导线(2)、导线间最小间距是由线的绝缘电阻和击穿电阻决定的,在可能的情况下尽量定得大一些,一般不能小于12mil。
(3)、设计布线时,走线尽量少拐弯,力求线条简单明了。
(4)、微处理器芯片的数据线地址线应
尽量平行布置。
(5)、输入端与输入端边线应避免相邻平行,以免产生反射干扰,必要时应加线隔离。
两相邻的布线要相互垂直。
平行容易产生寄生耦合。
(6)、利用包地,覆铜等
工艺提高PCB的稳定性和抗干扰性。
(二)重点规则1、零件(元件)之间最小距离。
1、零件方向。
2、零件放置所在层。
3、导线的宽度。
4、导线所在层。
PCB设计规范
PCB设计规范二O 一O 年八月目录一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词说明- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34一.PCB 设计的布局规范(一)布局设计原则1.距板边距离应大于5mm。
PCB叠层设计规范文档
PCB叠层设计规范文档层压设计规则作者:刘军喜2010/10/201.0设计规则:1.1非客户指定结构设计、非阻抗板压板结构设计1.1.1底铜厚度≤1OZ板最外层介电层(L1-2,LN-LN-1层)厚度设计为2.8-14.6MIL,其它层介电层设计为3-14.6MIL;1.1.2无耐高压测试要求的板压板结构设计a、3oz≥底铜厚度≥2OZ介电层厚度设计至少大于4.5MIL;b、4oz≥底铜厚度≥3OZ介电层厚度设计至少大于6.5MIL;c、底铜厚度≥5oz的板需工程出工程评估给工艺组评估后再确定。
1.1.3有耐高压测试板要求的板,根据客户高压要求设计具体的压合结构,通常高压测试在2000V-2800V时,介电层设计至少大于6MIL,具体客户要求的板材TG、CTE、CTI、耐CAF等详细情况需工程出工程评估给工艺组评估后再确定。
备注:介电层指PP层,含core介电层,介电层厚度及core厚度均指中值,不含公差,当厚度>5MIL时公差按IPC4101三级公差进行控制;当厚度≤5MIL 时,公差按±0.5MIL控制;超IPC4101三级公差的MI备注要求特别控制及备料.1.2 客户指定结构板、阻抗板压板结构设计若客户指定结构,工程组在接单时尽量与客户沟通按以上要求设计,当不能满足以上要求时,出工程评估单给工艺评估.1.3板边尺寸设计制作标准1.3.1所有板MI设计开料尺寸需比压合后成型尺寸单边大0.1~0.2″,同时预留开料刀具损耗每刀0.1″。
1.3.2四层板板边一般设计为≥0.5″,特殊情况下可以做到0.4″,但必须满足以下条件:A、非阻抗板;B、介电层厚<8.0MIL;C、内层铜厚<2OZ;1.3.3六层及以上板按照板边≥0.75″控制,六层板特殊情况下可做0.6″(min),但需满足上述a、b、c条件。
1.3.4两张及以上芯板压合的四层板板边设计要求同六层板。
1.3.5 OPE系统设计单元边到开料边一般为≥0.9″,最小可生产0.80″。
PCB设计常用规则
PCB设计常用规则1.布局规则:-尽量把信号线距离外部干扰源保持一定的距离,例如电源线或传感器线。
-确保电源和地线的位置合理,避免产生不必要的电源噪声。
-按模拟和数字信号分类,使其互相之间的交叉干扰最小化。
-有时会需要将辐射敏感部件放在较远的位置,以降低敏感部件的辐射噪声和互相干扰。
-尽量减少思路级距离,以避免布线时的冲突。
正确的放置元件和电源是设计的基础。
2.电源规则:-为模拟和数字设计分别提供独立且稳定的电源线路。
-尽量避免共地,尤其是大电流回流路径和精密模拟电路的共地。
-采用足够大的电流轨迹和电源引脚,以确保电流正常通行。
-确保地线有足够的导电面积,以减小接地的电阻。
3.信号完整性规则:-严格控制信号和层间距离,以减少信号之间的串扰。
-控制信号线的长度,在高速传输中,尽量保持信号长度的匹配性,以降低信号传输的延迟差异。
-使用正确的终端和阻抗匹配技术来降低信号波形失真。
-对于时钟线,尽可能地短并采用分布式布局,以减少时钟偏移和抖动。
4.焊盘和引脚规则:-控制软硬连板的距离,以确保焊盘的可靠性和质量。
-使用足够大的焊盘或足够的焊盘面积,以确保良好的焊接性能。
-确保SMT元件的引脚尺寸、间距和与焊盘的配对,以确保正确的组装。
5.热管理规则:-确保散热器或冷却体与芯片之间有足够的热接触面积。
-调整散热板上的负载分布,以确保散热板的温度均匀分布。
-处理高功率芯片的散热问题时,考虑加入热沉或风扇以提高散热效果。
除了上述规则外,还有其他一些更加具体的规则需要根据具体的设计需求进行调整。
例如,高频线路的规则会更严格,需要更小的封装和更短的线路,以减少信号衰减和串扰。
模拟和数字信号的传输速率不同,需要采取不同的规则来控制布线和层间距离。
各种规则的合理应用,可以提高PCB的可靠性、稳定性和性能。
(完整word版)PCB设计规范
先进制造技术研究所智能车辆技术研究中心嵌入式硬件PCB设计规范(初稿)整理编制:王少平1、目的1.1 本规范规定车辆中心PCB设计规范, PCB设计人员必须遵循本规范。
1。
2 提高PCB设计质量和设计效率,提高PCB的可生产性、可测试、可维护性.2、设计任务2。
1 PCB设计申请流程硬件设计工程师按照本设计规范要求完成PCB设计,提交给嵌入式硬件开发组组长进行审核,审核通过后递交硬件评审小组评审,评审通过后才能进行PCB制作,并将设计图纸归档。
2.2 设计过程注意事项2。
2.1 创建PCB板,根据单板结构图或对应的标准板框,创建PCB设计文件;注意正确选定单板坐标原点的位置,原点的设置原则:(1)单板左边和下边的延长线交汇点;(2)单板左下角的第一个焊盘。
2.2。
2 布局(1) 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性. 按工艺设计规范的要求进行尺寸标注。
(2) 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区,如下图所示。
(3)综合考虑PCB性能和加工的效率选择加工流程加工工艺的优选顺序为:元件面单面贴装—〉元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)—>双面贴装—>元件面贴插混装、焊接面贴装。
(4)布局操作的基本原则a、遵照“先大后小,先难后易"的布置原则,即重要的单元电路、核心元器件应当优先布局;b、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件:c、连线尽可能短,关键信号线最短,高电压、大电流信号与小电流,低电压的弱信号完全分开,模数信号分开,高低频信号分开,高频元器件的间隔要足够;d、相同结构电路部分,尽可能采用“对称式”标准布局;e、按照均匀分布、重心平衡、版面美观的标准优化布局;f、器件布局栅格的设置,一般IC器件布局时,栅格应为50~100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;g、电路板推荐布局。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB设计规则
设计元器件1.看清楚FOOTPRINT图是TOP VIEW还是BOTTOM VIEW,库中元器件均是以TOP VIEW图设计的。
2.特别要注意PIN1(A1)的位置。
3.PAD的大小可以适当做大些,以便于焊接。
但应注意PAD与PAD的距离不要小于8MIL,PAD的直径一般为HOLE的1.5倍。
4.MOUNTING HOLE一般做镀通孔,GUIDE PIN 一般做非镀通孔。
放置元器件1.要注意OUTPATTERN可放置元器件的范围。
2.根据OUTPATTERN,HANDLER等要求来确定PIN1(A1)的位置(如左下角或右上角)。
若多个DUT,还需注意它们之间的相对位置以及距离。
3.先放置DUT,再放置DUT周围的电路。
4.DECOUPLING CAP应尽可能靠近DUT PIN,有可能可将CAP直接放在DUT反面。
当然客户有要求一些元器件靠近DUT时,我们也必须照做。
5.根据SCHEMA TIC放置元器件,尽量要使走线流畅。
6.将ANALOG信号的元器件与DIGITAL信号的元器件分开放置,最好各放一边,便于后面GROUND,POWER的分割。
连线1.连线要尽可能短,尽可能直,尽可能光滑,拐角要求大于90度,一般走135度。
2.线距要求大于等于3倍线宽,尤其对于高速走线和重要走线。
如果空间允许,线距当然越大越好。
线与PAD的距离要大于6MIL。
3.要避免Y型连线,如果实在需要,请确保Y型连线其中一根尽可能短。
4.要避免在走线上打VIA孔,会引起阻抗的不连续。
5.要注意TC连接范围,不同TESTER不同客户会有不同要求。
6.若有等长线的要求,就应根据客户多少PICO SECOND的要求来确定这些等长线之间的最大差距,先确定最长的线,再调其它的线。
7.对于Differential pair,都会要求等长,一般要求+/-2Ps。
间距则根据是CLOSE COUPLING 还是LOOSE COUPLING来确定,前者一般为8MIL,后者一般为3倍线宽。
pcb设计中的20个规则
pcb设计中的20个规则PCB 设计中的20 个规则PCB(Printed Circuit Board)是电子产品中不可或缺的组成部分,它在电子元件之间传递电力和信号。
PCB 设计的质量直接关系到整个电子产品的性能和可靠性。
要达到优质的PCB 设计,需要遵守一系列的规则和原则。
本文将逐步回答PCB 设计中的20 个主题。
1. PCB 布局规则首先,需要确定PCB 的尺寸和层数。
根据设计需求,选择适当的PCB 材料和板厚。
同时,考虑到电流流动的路径,合理布置电子元件和导线。
2. 电源和地线规则电源线和地线的布局要合理,避免交叉干扰。
电源线和地线的宽度要足够,以确保电流流动可靠。
3. 高频布局规则对于高频电路,要特别注意信号的传输和反射。
布局时要尽量缩短信号路径,降低信号的传输时间和传输损耗。
4. 信号完整性规则为了保持信号完整性和稳定性,要避免信号线上的过长导线和开关电源等干扰。
5. 差分线规则差分线是一对完全对称的信号线,用于传输差分信号。
他们的布局和长度必须保持一致,以保持信号的完整性。
6. 设备排列规则在布局时,应考虑到散热要求和组件之间的间距。
电子元件之间的间距要足够,使其易于维修和散热。
7. 分离高频和低频电路规则为了避免高频信号对低频信号产生干扰,应将高频和低频电路分开布局,并使用阻隔板进行隔离。
8. 封装规则选择适合电子元件封装的规格和尺寸,并根据元件的特性和引脚进行布局。
确保元件之间的间距和间隙足够。
9. 阻焊规则在PCB 设计中,阻焊层的设计也是非常重要的。
阻焊层可以保护电路板,增强其耐腐蚀性,并减少焊接时的短路。
10. 引脚定位规则引脚的布局应尽量按照方便焊接和维修的原则,确保引脚之间的距离足够,没有交叉干扰。
11. 信号引线规则信号引线应尽量短,以减少信号的传输时间和损耗。
同时,应避免重要信号线的并行走线和交叉走线。
12. 导线宽度规则导线宽度是根据电流流动来决定的。
需要根据电流大小和设计要求选择合适的宽度,以保证电流的正常流动。
PCB走线常用的规则
PCB走线常用的规则PCB走线常用的规则:1:低频的的数字信号线,10-20mil就可以了。
高频信号线要走等长的蛇形线。
2:电源,地线。
一般来说根据系统的功耗需求而定。
一般数字系统基本上走30-50mil。
如果电流再大的可以根据实际情况加粗或者增加电源管理散热处理等。
3:模拟信号和数字信号的隔离。
尤其是模拟地和数字地最好在两片地之间串联一个或者几个磁阻。
关于PCI卡的PCB布线规则感觉不错,转载在此,只为传播更多知识!PCI卡的布线比较讲究,这是PCI信号的特点决定的。
在常规性的高频数字电路设计中我们总是力求避免阻抗不匹配造成的信号反射、过冲、振铃、非单调性现象,但是PCI信号却恰恰是利用了信号的反射原理来传输物理信号,为使能够合理利用信号反射同时又尽力避免较大的过冲、振铃和非单调性等副作用,PCI-SIG在PCI规范中对PCB物理实现做了一些规定。
PCI-SIG推荐PCI卡使用四层PCB板,PCI-SIG规定的PCI连接器的信号分布也正是为便于四层板布线而优化定义的。
PCI-SIG对PCI控制器的引脚分布也做了一个推荐性的示意图,实际上AMCC、PLX、OXFORD等PCI控制器生产商也执行了这个推荐,在这个推荐的pin分布下,使用两层PCB板实际上也是很方便布线的,但是如果PCI卡系统硬件很复杂,需要多个电源分割层面的情况下还是多层PCB更好。
PCI卡上任何一个PCI信号仅能连接到一个负载(包括也不能另外连接到一个上拉电阻)。
除了CLK,RST,INTA#~INTD#,JTAG这些pin之外,所有pin从金手指与卡座的接触点算起到负载端不得大于1.5inch;CLK信号长度为2.5+-0.1inch,这个长度有点长,所以许多情况下需要绕弯走线以达到长度要求,这就是为什么常常在PCI卡上见到CLK的蛇形走线的原因;对其余几个pin没有特殊规定。
多层PCB时信号走线不要跨越不同的电源层面(至少,存在分割电源层面的那一层应位于PCB的另一面),这也就是为什么常常见到PCI卡上A面金手指走上来的所有信号往往都打个过孔走到B面(元件面)的原因。
PCB设计规范大全
PCB设计规范大全PCB设计规范大全1,目的规范印制电路板(以下简称PCB)设计流程和设计原则,提高PCB设计质量和设计效率,保证PCB 的可制造性、可测试、可维护性。
2,范围所有PCB 均适用。
3,名词定义3.1原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。
3.2网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。
3.3布局:PCB 设计过程中,按照设计要求,把元器件放置到板上的过程。
3.4模拟:在器件的IBIS MODEL 或SPICE MODEL 支持下,利用EDA 设计工具对PCB 的布局、布线效果进行模拟分析,从而在单板的物理实现之前发现设计中存在的EMC 问题、时序问题和信号完整性问题,并找出适当的解决方案。
3.5 SDRAM :SDRAM 是Synchronous Dynamic Random Access Memory(同步动态随机内存)的简称,同步是指时钟频率与CPU 前端总线的系统时钟频率相同,并且内部的命令的发送数据和数据的传输都以它为准;动态是指存储数组需要不断刷新来保证数据不丢失;随机是指数据不是线性一次存储,而是自由指定地址进行数据的读写。
3.6 DDR :DDR SDRAM 全称为Double Data Rate SDRAM ,DDR SDRAM 在原有的SDRAM 基础上改进而来。
DDR SDRAM 可在一个时钟周期内传送两次数据。
3.7 RDRAM :RDRAM 是Rambus 公司开发的具有系统带宽的新型DRAM ,它能在很高的频率范围内通过一个简单的总线传输数据。
RDRAM 更像是系统级的设计,它包括下面三个关键部分:3.7.1 基于DRAM 的Rambus(RDRAM );3.7.2 Rambus ASIC cells (专用集成电路单元);3.7.3 内部互连的电路,称为Rambus Channel(Rambus 通道);3.8 容性耦合:即电场耦合,引发耦合电流,干扰源上的电压变化在被干扰对象上引起感应电流而导致电磁干扰。
LAYOUT设计一般规则
1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。
1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。
1.3 高速数字信号走线尽量短。
1.4敏感模拟信号走线尽量短。
1.5 合理分配电源和地。
1.6 DGND、AGND、实地分开。
1.7 电源及临界信号走线使用宽线。
1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。
2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。
2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。
Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。
2.3 初步划分完毕后,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。
2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。
2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如电容等阻流圈和。
PCB布线的基本规则与技巧
PCB布线的基本规则与技巧PCB(Printed Circuit Board,印刷电路板)布线是电子产品设计中非常重要的一环,它涉及到电路设计的优化、信号传输的质量以及电路板的可靠性等方面。
以下是一些PCB布线的基本规则与技巧。
1.分隔高频与低频信号:在布线过程中,应将高频和低频信号分隔开来,以减少相互干扰。
可以通过增加地线、使用地层或远离干扰源等方式实现。
2.避免信号线与电源线、地线交叉:信号线与电源线、地线交叉会引起互相干扰,影响信号的传输质量。
在布线时应尽量避免信号线与其他线路的交叉,并采取合适的措施进行隔离。
3.保持信号线的相互垂直:信号线之间保持垂直可以减少信号之间的干扰。
在布线时,应尽量使信号线垂直地通过其他信号线或电源线、地线。
4.尽量缩短信号线的长度:信号线的长度会对信号传输的延迟和损耗产生影响,因此在布线时应尽量缩短信号线的长度。
对于高频信号尤为重要。
5.使用平面与过孔进行地线连接:地线是电路板中非常重要的一条线路,它可以提供整个电路的参考电平。
在布线时,可以通过使用平面层与过孔来进行地线的连接,提高地线的连续性。
6.使用平面与过孔进行电源线连接:电源线的布线也是非常重要的,尤其是对于供电要求较高的芯片或模块。
在布线时,可以通过使用平面层与过孔来进行电源线的连接,减少电源线的阻抗。
7.控制线宽和线距:PCB布线中的线宽和线距对电路的阻抗、信号的传输速度以及电流的承载能力等都是有影响的。
在布线时要根据需要选择合适的线宽和线距,保证电路的性能。
8.避免信号环路:信号环路会引起信号的反馈和干扰,影响电路的正常工作。
在布线时应尽量避免信号环路的产生,可以采取断开一部分连接或改变布线路径等方式来解决。
9.保持信号对称性:对于差分信号线或时钟信号线,应保持信号的对称性。
在布线时应尽量使信号线的路径相同,长度相等,以减少差分信号之间的干扰。
10.考虑EMI(Electromagnetic Interference,电磁干扰):在布线过程中应考虑到电磁干扰的问题,采取一些措施来减少电磁辐射和干扰。
PCB设计走线常用规则
PCB设计走线常用规则信号完整性的工作,很大一部分基于PCB走线规则的设定以及走线优化。
仿真工作或者说后仿的工作都是基于PCB设计已经定型的情况下进行的,也就是说链路的相关风险已经固定了。
所以,设定规则来管控风险比出现风险解决来得更重要。
预防管控的能力是未来信号完整性工程师的必备基础技能。
预防管控PCB走线的风险,最最基础的知识就是熟知常用走线规则。
本文的思维导图:01线长匹配 Length Matching01.总长线长匹配&分层线长匹配总长线长匹配的5 mils已经在很多产品设计中有应用,这也是很多设计准则里提到的。
分层线长匹配的概念好像没有那么普遍,差分线的走法,BGA区域打过孔到内层,内层走线打过孔到终端,内层阻抗相对容易管控和差分线走线对称性缘故,一般情况下,表层两段距离相对比较短,所以长度的匹配一般在内层进行,也就是间接实行了分层线长匹配。
很多时候,这种分层线长匹配的概念在很多产品的设计中被忽略了。
02.就近补偿当长度不匹配发生时,推荐就近补偿,防止不连续的传播。
如何就近长度匹配,产品的分类不同,要求也不同,消费类产品没有给出相关建议,只是对BREAKOUT区域以及连接器的PIN区域,给出了相关建议的数值。
就近补偿的一些走线方式:03.匹配样式常见的匹配样式有蛇形线,PAD区域内走线等,蛇形线中3W2S 原则是很多产品设计中常用的绕线方法,通过这样的操作,来达到线长匹配。
3W2S有些相互关系的,建议还是搞清楚点。
相对于3W2S故意绕线来达到线长匹配,PAD区域走线匹配的方式对匹配所带来的影响更小。
需要注意的是:线长匹配最终目的是等时。
02双带线 Dual-Stripline高速产品的轻薄化,PCB厚度限制了走线层数,就有了高速线走在相邻两层上,为了减少相互的串扰,走线的方法有间距管控(DDR 部分实现难度比较大),垂直走线(这种方法实现难度比较大),30度角走线(这种方法比较推荐)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB设计常用规则1、电气规则(electrical rules)电气设计规则用来设置在电路板布线过程中所遵循的电气方面的规则,包括安全间距、短路、未布线网络和未连接引脚这四个方面的规则:(1)、安全间距规则(clearance)全距离。
安全距离的各项规则以树形结构形式展开,用鼠标单击安全距离规则树中的一个规则名称,如polygon clearance,则对话框的右边区域将显示这个规则使用铜与文件中其他的对象如走线、焊盘、过孔等的安全距离是0.5mm。
(2)、短路规则(short-circuit)该规则设定电路板上的导线是否允许短路,在该规则的约束对话框中的constraints区域中选中allow short circuit复选框,则允许短路,反之则不允许短路。
---一般保持默认不改(3)、未布线网络规则(unrouted net)该规则用于检查指定范围内的网络是否布线成功,如果网络中有布线不成功的,该网络上已经布完的导线将保留,没有成功布线的将保持飞线。
---一般保持默认不改(4)、未连接引脚规则(unconnected)该规则用于检查指定范围内的元器件引脚是否连接成功。
默认是一个空规则,如果有需要设计有关的规则,可以添加。
2、布线规则(routing rules)布线规则主要是与布线设置有关的规则,共有以下七类:(1)、布线宽度(width)该规则用于布线时的布线宽度的设定。
用户可以为默写特定的网络设置布线宽度,如电源网络。
一般每个特定的网络布线宽度规则需要添加一个规则,以便于其他网络区分。
constraints区域内含有粉色框中的三个宽度约束,即:最小宽度、首选宽度和最大宽度(分别为从左到右的顺序说明)。
该区域中还有四个可选项,即:分别检查导线/弧线的最小/最大宽度、检查敷铜连接的最小/最大宽度、特性阻抗驱动的线宽、只针对层集合中的层即可布线层(分别为从上到下顺序说明)。
(2)、布线方式(routing topology)该规则用于定义引脚之间的布线方式。
此规则有七种布线方式,从上到下的顺序依次表示布线方式为:以最短路径布线、以水平方向为主的布线方式(水平与垂直比为5:1)、以垂直方向为主的布线方式(垂直与水平比为5:1)、简易菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、中间驱动的菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、平衡菊花状布线方式(需指定起点和终点,否则与shortest方式相同)、放射状布线方式。
---在自动布线时需要设置(3)、布线优先级别(routing priority)该规则用于设置布线的优先次序,优先级别高的网络或对象会被优先布线。
优先级别可以设置的范围是0到100,数字越大,级别越高。
可在routing priority 选项中直接输入数字设置或用其右侧的增减按钮来调节。
---在自动布线时需要设置(4)、布线板层(routing layers)该规则用于设置允许自动布线的板层,默认状态下其顶层为垂直走向,底层为水平走向(若要改变布线方向,则可执行auto route-->set up,再单击situs routing strategies对话框中的edit layer directions按钮,打开层布线方向设置对话框来设置走线方向)。
---在自动布线时需要设置(5)、布线转角(routing corners)该规则用于设置自动布线的转角方式,有45°,90°和圆弧转角三种布线方式。
---在自动布线时需要设置(6)、布线过孔类型(routing via style)该规则用于设置布线过程中自动放置的过孔尺寸参数,在constraints区域中设置过孔直径(via diameter)和过孔的钻孔直径(via hole size)。
---在自动布线时需要设置,同时在手动布线过程中按*键切换布线层时添加的过孔的大小也受此规则约束。
(7)、扇出布线控制(fanout control)该规则主要用于球栅阵列,无引线芯片座等种类的特殊器件的布线控制。
默认状态下,包含以下五种类型的扇出布线规则:fanout_BGA(球栅阵列封装扇出布线),fanout_LCC(无引脚芯片封装扇出布线),fanout_SOIC(小外形封装),fanout_small(元器件引脚少于五个的小型封装),fanout_default(系统默认扇出布线)。
以上五种类型的扇出布线规则选项的设置方法都相同,均在constraints区域:Fanout style:扇出类型,用于选择扇出过孔与SMT元器件的放置关系。
有auto(扇出过孔自动放置在最佳位置),inline rows(扇出过孔放置成两个直线的行),staggered rows(扇出过孔放置成两个交叉的行),BGA(扇出重现BGA),under pads(扇出过孔直接放置在SMT元器件的焊盘下)这5中选择。
Fanout direction:扇出方向,用于确定扇出的方向。
有disable(不扇出),in only(向内扇出),out only(想歪扇出),in then out(先向内扇出,空间不足时再向外扇出),out then in(先向外扇出,空间不足时再向内扇出),alternating in and out(扇出时先内后外交替进行)这6种选择。
Direction from pad:焊盘扇出方向选择项。
有away from center(以45°向四周扇出),north-east(以向北向45°扇出),south-east(以东南向45°扇出),north-west(以西南向45°扇出),north-west(以西北向45°扇出),toward center(向中心扇出)这6种选择。
Via placement mode:扇出过孔放置模式。
有close to pad(follow rules)---接近焊盘和centered between pads---两焊盘之间这2个选择。
---在自动布线时需要设置3、SMT规则(SMT rules)SMT规则主要针对的是表贴式元器件的布线规则,共有以下三类:(1)、表贴式焊盘引线长度(SMD to corner)该规则用于设置SMD元器件焊盘与导线拐角之间的最小距离。
这个距离决定了它与该焊盘相邻的焊盘的远近情况。
默认时这是一个空规则,你可以根据需要添加新规则。
(2)、表贴式焊盘与内电层的连接间距(SMD to plane)该规则用于设置SMD与内电层(plane)的焊盘或过孔之间的距离。
表贴式焊盘与内电层的连接只能用过孔来实现。
这个规则设置指出要离SMD焊盘中心多远才能使用过孔与内电层连接。
默认时这是一个空规则,你可以根据需要添加新规则。
(3)、表贴式焊盘引出线收缩比(SMD neck down)该规则用于设置SMD焊盘引出的导线宽度与SMD元器件焊盘宽度之间的比值关系(默认值为50%)。
默认时这是一个空规则,你可以根据需要添加新规则。
4、阻焊/助焊覆盖规则(mask rules)阻焊/助焊覆盖规则用于设置阻焊层、锡膏防护层与焊盘的间隔规则,总共有以下两类:(1)、阻焊层扩展(solder mask expansion)通常阻焊层除焊盘或过孔外,整面都铺满阻焊剂。
阻焊层的作用就是防止不该被焊上的部分被锡连接。
回流焊就是靠阻焊层来实现的。
阻焊层的另一个作用是提高布线的绝缘性,防氧化和美观。
在制作电路板时,先使用PCB设计软件设计的阻焊层数据制作绢板,再用绢板将阻焊剂(防焊漆)印制到电路板上。
当将阻焊剂印制到电路板上时,焊盘或过孔被空出,如果expansion输入的是正值,则焊盘或过孔空出的面积要比焊盘或过孔大一些,如果是负值,则可以将过孔盖油(一般将该值设置为-1.5mm)。
(2)、锡膏防护层扩展(paste mask expansion)在焊接表贴式元器件前,先给焊盘涂一层锡膏,然后将元器件粘在焊盘上,再用回流焊机焊接。
通常在大规模生产时,表贴式焊盘的涂膏时通过一个钢模完成的。
钢模上对应焊盘的位置按焊盘形状镂空,涂膏时先将钢模覆盖在电路板上,再将锡膏放在钢模上,用括板来回扩,则锡膏会透过镂空的部位涂到焊盘上。
PCB设计软件的锡膏层或锡膏防护层的数据就是用来制作钢模的,钢模上镂空的面积要比设计焊盘的面积小,该规则就是设置这个差值的最大值(即钢模上的镂空面积与设计焊盘的面积的差值,默认值为0)。
5、内电层规则(plane rules)内电层规则用于设置电源层和覆铜层(P,G)的布线,主要针对电源层和覆铜层与焊盘、过孔或布线等对象的连接方式和安全间距。
共有以下三类:(1)、电源层的连接类型(power plane connect style)该规则用于设置过孔或焊盘与电源层的连接类型。
Connect style连接类型有间隙连接、直接连接和不连接三种连接类型可供选择;conductors(导线数)表示选择间隙连接(relief connect)时,焊盘与内电层或覆铜层连接线的个数,有二线或四线这两个选择;conductors width用来设置连接线的宽度;air-gap用来设置间隙连接时的间隙宽度;expansion用来设置焊盘或过孔中线钻孔到间隙内侧的距离。
---在四层板或四层以上的板时可使用(2)、电源层安全间距(power plane clearance)该规则用于设置电源板层与穿过该层的焊盘或共空间的安全距离(焊盘或过孔的内壁与电源层铜片的距离)。
---在四层板或四层以上的板时可使用(3)、覆铜连接方式(polygon connect style)该规则用于设置覆铜与焊盘、过孔和布线之间的连接方法。
在constraints区域中,connect style和conductor width的设置与电源层的连接类型中相同,连接角度有45°和91°两种。
6、测试点规则(testpoint rules)测试点规则用于设置测试点的样式和使用方法。
有裸板测试点和装配测试点两种,在设计中一般都不用,所以就不介绍。
7、制造规则(manufacture rules)制造规则主要设置于电路板制造有关的内容。
共有以下九类:(1)、最小环宽(minimum annular ring)该规则用于设置最小环形布线宽度,即焊盘或过孔与其钻孔之间的半径之差。
(2)、最小夹角(acute angle)该规则用于设置具有电气特性布线之间的最小夹角,最小夹角应不小于90°,否则易在蚀刻后残留药物,导致过度蚀刻。
(3)、钻孔尺寸(hole size)该规则用于设置焊盘或过孔的钻孔直径的大小。