博弈的扩展式表述
博弈类型及其表述形式
1博弈的分类博弈模型一般分为合作博弈( cooperative game )和非合作博弈( non- cooperativegame),如图。
合作博弈是以单个参与者的可能行动集合为基本元素,而非合作博弈是以参与人群的可能联合行动集合为基本元素( Martin and Ariel Rub in stein ,2000, P2),也就是说,在合作博弈中,博弈中所有参与者都独立行动,不存在有约束力的合作、联合或联盟的关系,而在非合作博弈中,在一些参与者之间存在着有约束力的合作、联合或联盟的关系,并因为这种关系影响到博弈的结局。
合作博弈强调的是团体理性( collectiverati on ality )、效率、公正和公平;非合作博弈强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是低效率或无效率的(张维迎,1996,P5)。
20世纪50年代,合作博弈的研究达到鼎盛期,同时开始出现对非合作博弈的研究,此后,博弈论的研究主流逐步转向在非合作博弈领域。
有些人认为非合作博弈模型比合作博弈更“基本”,但有些人认为两者不相上下(Martin and Ariel Rubinstein ,2000,P2)。
合作博弈,有时也叫做联盟博弈( coalitional game ),一般根据有无转移支付而分为两类:可转移支付联盟博弈( coalitio nal game with tran sferable payoff )和不可转移支付联盟博弈(coalitional game with non-transferable payoff )。
可转移支付也叫有旁支付(side payment ),可转移支付联盟博弈假设博弈中各参与者都用相同的尺度来衡量他们的赢得,且各联盟的赢得可以按任意方式在联盟成员中分摊;否则,就是不可转移支付联盟博弈。
可转移支付合作博弈合作博弈不可转移支付合作博、非合作博弈非合作博弈的分类主要从两个角度进行划分。
信息经济学部分习题解答
解:设金钱总数为M。
对赌徒i,战略空间Si=[0,M],si∈Si,支付
函数ui为
ui
si 0
if if
si M
i
si M
i
所有满足∑isi≤M的选择都是纳什均衡。纳什均 衡有无穷多个。
5.(库诺特博弈)假定有n个库诺特寡头企业,每 个企业具有相同的不变单位成本c,市场逆需求 函数是p = a - Q,其中p是市场价格,Q = ∑jqj是 总供给量,a是大于零的常数。企业i的战略是 选择产量qi最大化利润 πi=qi(a-Q-c),给定其他 企业的产量q-i,求库诺特-纳什均衡。
2
q2
14q12q220
求解可得 q 14q24 116
假设企业1第一阶段投资引进新技术。此时
两个企业的边际成本下降到1,利润函数为:
1 1 q 1 4 q 2 q 1 q 1 f
2 1 q 4 1 q 2 q 2 2 q 2
一阶最优条件为
1
q1
142q1q210
求 故解当可1得9q 6 1 fq 22 1 1 31644 q2 q11 f3 2 q1 25122 时10,99 引6 f进新技术
解:根据问题的假设可知各企业的利润函数为
i piq ciqaqijn iqjqiciq
其中i=1,…,n。
将利润函数对qi求导并令其为0得:
i
qi
n
a
ji
qj
c2qi 0
解得各企业对其他企业产量的反应函数为:
n
qi aji qj c/2
根据n个企业之间的对称性,可知 q1 *q2 *qn * 必然成立。代入上述反应函数可解得:
q
2
再代入企业1的反应函数,得
博弈论讲义2-完全信息动态博弈
2.1 博弈的扩展式表述 2.2 扩展式博弈的策略与均衡 2.3 完美信息扩展式博弈的SPNE 2.4 子博弈精练下的策略性行动
动态博弈:参 与人行动有先 后顺序,且后
2.5 子博弈精炼NE应用举例
2.6 重复博弈
行动者能够观
察先行动者选 择的行动。
有限次重复博弈
海萨尼公理:当存在外生不确定性时,假定所有参与人对N的选择具有相同 的先验概率,且这种概率分布是共同知识。
版权所有
余向华
2
房地产开发博弈的 一种可能的扩展 开发 式表述
N
大 信息集
开发
A
参与人(A,B,N)
结:初始结 不开发
枝:行动 N
小
结:决策结 小
大
1/2
1/2
1/2
1/2
B
不开发
B
不开发 开发
B
开发
x
不开发
B
开发
x’
不开发
•
(-3,-3)
(1,0) (0,1)
(0,0)
•
版权所有
余向华
17
如何写出下面扩展式博弈的纯策略? 男
足球
芭蕾
女
芭蕾
x
足球
女
芭蕾
x’
足球
(1,2)
(-1,-1)(0,0)
(2,1)
版权所有
余向华
18
又例
1 上 2 h2(1) 右 h1(2) 左 h1(3) h1(1) 下 2 h2(2) 右
集上可选行动的个数, ∑pij =1)。
行为策略中,不同信息集上的概率分布是相互独立的;
完全信息动态博弈
-3 1
-3, 0,
-3 0
1, 0,
0 1
1, 0,
0 0
这里有3个纯战略Nash均衡,分别是 {开发,{不开发,开发}} (均衡结果:A
14
开发,B不开发) {开发,{不开发,不开发}} {不开发,{开发,开发}} 在每一个均衡,给定对方的战略,自己 的战略是最优的(效用最大) 均衡结果是(开,不开) , (开,不开) , (不开,开) 。注意均衡与均衡结果不同。 一般定义:扩展式博弈的战略 令 H i 为第 i 个参与人的信息集的集合,
1
选择什么行动, 而不是简单的, 与环境无关的 行动选择。 为了说明,我们考虑房地产开发博弈的 例子。有两个开发商A和B,互为竞争对手,决 定是否进行房地产开发。但他们不是同时行 动,且后行动者可以观察到先行动者的行动。 假定博弈的行动顺序如下: (1)开发商A先行 动,选择开发或不开发; (2)在A决策后,自 然选择市场需求大小; (3) 开发商B在观察到A 的决策和市场需求(自然的行动)后,决定开 发或不开发。 如图是房地产开发博弈的博弈树。
4
路径: (path)从初始结到终点结,由结 和枝所组成的系列。 扩展式 (extensive form) 是对博弈的一种描述,满足以下条件: (1)由结和枝组成的整体结构,由单个 起始结开始到终点结, 中间无闭合的圈。 即没 有以下结构
11
1
(所有前列结全排序) (2)必须说明每个结点属于某个参与人。 (3)在自然选择的结上,有自然选择不同 枝的概率。 (4)有划分每个参与人的结的信息集。 (每个信息集是决策结集合的一个子集, 满足 (a)每个决策结都是同一个参与人的决
11
1
U 2 L R L R 1 D
第二节完全信息动态博弈(1)
一 博弈扩展式表述
只包含一个决策结的信息集称为单结信息集, 如果博弈树的所有信息都是单结的,该博弈称 为完美信息博弈。
完美信息博弈意味着博弈中没有任何两个参与 人同时行动,且后行动者知道所有前序行动 (任何两个决策结都无虚线相连)。
自然总是假定是单结的,因为自然在参与人决 策之后行动等价于自然在参与人之前行动但参 与人不能观测到自然的行动。
第二节 完全信息动态搏弈 -子博弈精炼纳什均衡
一 博弈扩展式表述 二 子博弈精练纳什均衡 三 应用举例
一 博弈扩展式表述
战略式主要用于描述和分析静态博弈,给出的是 参与人有什么战略可供选择,用博弈支付矩阵表示; 扩展式主要用于描述和分析动态博弈,给出的是参与 人的相机行动规则(依据条件选择行动),用博弈树 表示。
如果市场上只有一栋楼需求大时可卖18亿需求小时可卖11亿博弈战略表述40004000800000800000不开发开发商a开发不开发开发30003000100000100000不开发开发商b开发商a开发不开发开发开发商b需求小的情况需求大的情况博弈的战略式表述一博弈扩展式表述由战略组合决定的每个参与人的支付进入者进入不进入0300在位者市场进入阻挠博弈树不可置信威胁合作4050斗争100开发不开发12121212开发不开发开发不开发开发不开发开发不开发4480331008000100参与人abn战略支付参与人集合参与人行动顺序参与人的行动空间参与人的信息集参与人的支付函数外生事件的概率分布房地产开发博弈结决策结结终点结结初始结信息集一博弈扩展式表述博弈树的基本构造包括决策结和终点结两类
N
大
小
A
开发 不开发
1/2 1/2
A
开发
博弈论策略的扩展式和战略式表述
博弈论策略的扩展式和战略式表述下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!博弈论策略的扩展式与战略式表述:深度解析博弈论,作为经济学、社会学、心理学等领域的核心理论工具,主要研究决策者在相互影响的环境下如何做出选择。
博弈的扩展式表述
03:23:30 经济管理学院 曹正勇 1
03:23:30 经济管理学院 曹正勇 10
RECALL) 5,完美回忆(PERFECT RECALL) 完美回忆( 指没有参与人会忘记自己以前知道的 事情, 事情,所有参与人都知道自己以前的选 择. 见下例: 见下例:
03:23:30
经济管理学院 曹正勇
11
参与人不具完美回忆的两个例子
03:23:30 经济管理学院 曹正勇 12
�
6
03:23:30
经济管理学院 曹正勇
7
以下按理对信息集进行直观的解释: 以下按理对信息集进行直观的解释:
03:23:30
经济管理学院 曹正勇
8
下例中: 下例中:B有2个信息集 ,每个信息集对应两个决策结
03:23:30
经济管理学院 曹正勇
9
4,完全且完美信息博弈 单结信息集. 只包含一个决策结的信息集称为单结信息集. 如果博弈树的所有信息集都是单结的, 如果博弈树的所有信息集都是单结的,该博弈称为 完美信息博弈. 注意:完美信息博弈意味着博弈中没有任何两 注意: 个参与人同时行动,并且所有后行动者能确切 确切地知 个参与人同时行动,并且所有后行动者能确切地知 道前行动者选择了什么行动,所有参与人都观测 都观测到 道前行动者选择了什么行动,所有参与人都观测到 自然的行动. 自然的行动.
完美信息博弈意味着博弈中没有任何两个参与人同时行动并且所有后行动者能确切地知道前行Байду номын сангаас者选择了什么行动所有参与人都观测到自然的行动
博弈论的extensive form
博弈论的extensive form博弈论是研究具有相互冲突和合作元素的情境下的决策制定的数学理论。
在博弈论中,一个游戏(博弈)可以被表示为扩展式(extensive form)或标准式(normal form)。
扩展式博弈也被称为树形结构,它详细地描述了游戏的所有可能的决策过程和时间顺序。
在扩展式博弈中,每个玩家根据游戏的历史(从根节点到当前决策点的路径)做出选择。
这种表示方法允许捕捉到玩家之间的行动顺序和信息传递,非常适合描述具有时间序列和信息不完全的动态决策过程。
扩展式博弈的主要组成部分包括:1. 历史(History):历史是一个有序集合,表示从博弈的开始到当前决策点所采取的行动序列。
在扩展式博弈的树形结构中,历史从根节点开始,每个节点代表一个决策点,节点之间的路径代表了行动的历史。
2. 玩家函数(Player Function):玩家函数P(h) 定义了在历史h 之后做出决策的玩家。
在扩展式博弈中,玩家函数确保了在每一个决策点,只有一个玩家负责做出选择。
3. 纯策略(Pure Strategy):纯策略是玩家在每个决策点上可能采取的行动集合。
一个玩家在扩展式博弈中的纯策略可以被表示为一个函数,该函数将历史映射到一个具体的选择上。
4. 博弈长度(Length of the Game):博弈长度l(G) 是指从根节点到叶节点的最长路径长度,它代表了博弈的持续时间。
扩展式博弈的优点在于它能够精确地描述玩家之间的决策顺序和信息结构,但它也有可能变得非常复杂,尤其是在参与者数量多或者决策序列长的情况下。
尽管如此,扩展式博弈是分析具有时序特征和信息不完全的决策问题的有力工具,特别是在经济学、政治学、心理学和人工智能等领域。
博弈论(整理过名词解释和简答)
博弈论(整理过名词解释和简答)一、名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。
2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。
3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。
4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。
在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。
7、均衡:所有参与人的最优战略组合。
8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。
9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。
10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。
11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。
12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。
13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。
博弈论(名词解释和简答)
博弈论名词解释:1、博弈:一些个人、团体或其他组织,在一定的规则约束下,依据所掌握的信息,同时或者先后,一次或者多次从允许选择的行为或战略进行选择并加以实施,并从中各自取得相应结果或收益的过程。
2、囚徒困境:从博弈中的两个利益主体出发选择行为,结果是既没有实现两人总体的最大利益,也没有真正实现自身的个体最大利益,比如经济领域的寡头竞争、公共产品的供给。
3、非合作博弈与合作博弈:人们行为相互作用时,当事人能达成一个具有约束力的协议,也就是合作博弈,反之,就是非合作博弈。
4、常和博弈:是指博弈双方的得益总和为非零的常数变和博弈:是指在不同的策略组合或者结果下,所有博弈方的得益总和一般是不相同的零和博弈:是指在博弈中,一方的得益就是另一方的损失,所有博弈方的得益总和为零5、博弈论:研究决策主体的行为及其相互决策和均衡问题的学科。
在经济学中,博弈论是研究经济主体的决策相互影响6、战略:参与人在给定信息集的情况下的行为规则的完备描述。
7、均衡:所有参与人的最优战略组合。
8、均衡路径:如果一个博弈有几个子博弈,一个特定的纳什均衡决定了原博弈树上唯一的一条路径,或者说是一个纳什均衡结果在博弈树中所形成的路径。
9、占优均衡:无论其他参与人选择什么战略,参与人的某一种战略均是最优的。
10、重复剔除劣战略的占优均衡:首先找到某个参与人的劣战略(假定存在),把这个劣战略删除掉,重新构造一个不包含已删除的劣战略的新的博弈,然后再删除这个新的博弈中的某个参与人的劣战略,一直重复这个过程,直到只剩下唯一的战略组合为止。
11、纳什均衡:给定你的策略,我的策略是最好的策略;给定我的策略,你的策略也是最好的策略,即双方在给定的战略上不愿意改变自己的策略。
12、混合战略:如果一个战略规定参与人在给定信息情况下以某种概率随机选择不同的行为,我们称该战略为混合战略。
13、子博弈:从单结信息集开始至博弈结束的过程,由一个决策结x和所有的后续决策结T(x)构成,满足条件:(1)决策结x是单结信息集;(2)在一个信息集的决策结必须是同一个决策结的后续结。
经典:博弈论-完全信息动态博弈
2、博弈的扩展式表述的要素
博弈的扩展式表述包含以下要素: (1) 参与人集合:i=1,2,…,n。此外,用N代表虚拟
参与人——自然。 (2) 行动顺序:谁在什么时候行动。 (3) 参与人的行动空间: (4) 参与人的信息集: (5) 参与人的策略集: (6) 参与人的支付函数: (7)外生事件的概率分布。
博弈的收益矩阵
(1)高需求
开发 开发商A 不开发
(2)低需求
开发 开发商A 不开发
开发商B
开发
不开发
2, 2
4, 0
0, 4
0, 0
开发商B
开发
不开发
-1, -1
1, 0
0, 1
0, 0
博弈分类
按开发商博弈的先后顺序分: 静态博弈:两个开发商同时决策,或后决策者不
能观察到先行动者的行动。 动态博弈:博弈有先后顺序,且后决策者能观察
完全信息动态博弈图示:N A B
开发 (2,2)
高需求
○
A
N
低需求
开发 不开发 开发 不开发
不开发 (4,0)
开发 (0,4) B 不开发 (0,0)
开发 (-1,-1) 不开发 (1,0)
开发 (0,1) 不开发 (0,0)
(4)不完全信息动态情形:ANB
开发商A不清楚市场的需求状态,决定是否开发; 开发商B 在观察到市场需求和A的决策后决定是否开发。
到先行动者的行动后再行动。 按开发商是否知道市场需求状态分:
完全信息博弈:若两个开发商都知道市场需求状 态(高需求或低需求)。
不完全信息博弈:由自然决定市场的需求状态, 两开发商不知道。 共同知识:在市场各种可能状态和各开发商不同策 略组合下的得益矩阵是双方的共同知识。
扩展式博弈优质内容
1.战略式博弈从本质上来讲是一种静态模型
• 战略式博弈从本质上来讲是一种静态模型, 它假设所有的参与人同时选择战略并实现 博弈在各种情形下的结果,至于博弈中参 与人何时行动,战略式博弈并不考虑。
• 虽然战略式博弈也可用来对动态博弈进行 建模,但从所得到的模型中,我们无法直 观地观察到动态博弈所具有的动态特性。
• 此时,可以采用博弈树对一个扩展式博弈 进行描述;
• 博弈树:就是由结和有向枝构成的“有向 树”。
企有最业“上1开端的发的选”一择和个点(用空心圆 “表不示开),发表”示,博弈的开始 。 分表别示用博标弈有达到 “该开点发时”企和业的 “所不得开,发其”中的, 有支向付枝向表量示中。的 第一个数字表 示企业1的所得, 第二个数字表 示企业2的所 得。
(4) 给出了博弈中各企业的支付。
• 除了“企业2行动时是否观测到企业1的选 择”这一点暂时无法从上图中知道以外, 完全信息动态的“新产品开发博弈” 扩 展式描述所需要的信息,都可以从上图中 得到。
• 问题:如何在博弈树中,将“企业2行动 时是否观测到企业1的选择”这一信息表 示出来?
• 在完全信息动态的“新产品开发博弈” 中,企业2决策时,企业1已经做出选 择。此时,企业2面临的决策情形就 有以下两种:
(1) 企业2知道企业1的选择;
(2) 企业2不知道企业1的选择。
• 对于第一种情形,企业2知道企业1的选择, 即知道企业1选择了“开发”还是“不开 发”,因此,企业2知道博弈是从x1到了x2 还是从x1到了x3。
• 对于第二种情形,企业2不知道企业1的选 择,即不知道博弈是从x1到了x2还是从x1到 了x3。
其中,对
si : Hi Ai (Hi )
博弈的描述
后,局中人 1 从 52 张纸牌中抽出一张牌,自己看完 牌的颜色后,决定是停牌( fold )还是加注 (raise) 。 若是停牌,需要将牌出示给 2 看,然后博弈结束。 此时,牌若是红色,局中人1赢,否则,则1输。若 是加注,局中人 1 需再拿出一元钱作为赌注,然后 局中人 2 决定是放弃( pass )还是追随 (meet) ,若 放弃,局中人1赢,博弈结束;若追随,则2需要也 拿出一元钱作为赌注,然后,1出示牌,若红色,1 赢,否则,1输。
Rf
Fr
Ff
(-2,2)
(1,-1)
(-1,1)
24
三、扩展式博弈的标准式表述
第一步:找出参与人的策略
参与人1的策略 S1={Rr,,Rf,Fr,Ff} 参与人2的策略 S2={M, P}
25
三、扩展式博弈的标准式表述
第二步:计算每一个策略组合下的报酬
策略组合(Rf, M)下参与人1和2的报酬
8
一、扩展式博弈(续5)
2、构成扩展式的要素
局中人集合
行动顺序
依赖行动的报酬 采取行动时掌握的信息 外生事件的概率分布
9
一、扩展式博弈(续)
3、扩展式的严格定义
节点:xm 枝: ( xm1 , xm ) 路径: {( x1 , x2 ), ( x2 , x3 ),, ( xm1 , xm )}
(2,-2)
(1,-1)
0
1
(1,-1)
(-2,2)
raise 2
(1,-1) (-1,1)
7
一、扩展式博弈(续4)
一个人不可能在他不知道有哪些选择的情 况下作出有意义的选择。 为了保证局中人在博弈的任何节点总是知 道他面临的选择,如果两个决策节属于同 一局中人的同一个信息集,那么他们的行 动分支就必须相同。
完全信息动态博弈
乙 借 不借 甲 借
乙
不借
甲 (1,0)
(1,0)
分
不分
分
不分
(2,2) (2,2) (0,4) 打
乙 不打 (0,4)
不可信的许诺 (1,0)
可信的威胁
先来后到博弈
在市场经济活动中常常有这样一种现象,当某个厂商先行开 拓或占领了某个市场以后,其他厂商为丰厚的利润所吸引也 会随后跟进。这时,先占领市场者大多都不会无动于衷,而 是利用自己先行一步的优势对后来者进行打击。但这种打击 往往需要付出一定代价,当然如果能够达到挤走后来者的目 的,它就会长期地独占或垄断市场,所以长期地看先到者还 是合算的。那么,当一个先到者面临一个后来者争夺市场的 威胁时,空间应该如何抉择呢?
* A t A n n * Bi t Bi i 1 i 1
(a v c) 2 (2n 1)(a v c) 2 , ] 解得: t [ 2 4n(n 1)b 4n(n 1) b
(a bQ v c)Q n(a w v)[a v nw (n 1)c] b(n 1) 2
Bi qi a bQ w v bqi 0 awv qi ( n 1)b Q qi
i 1 n
n( a w v ) ( n 1)b
子博弈精炼纳什均衡的应用举例
斯坦克尔伯格(Stackelberg)寡头竞争模型 如同在库诺特模型中一样,在斯坦克尔伯格模型中,企业的行动也 是选择产量。不同的是,在斯坦克尔伯格模型中,企业1(称为领头 企业,leader)首先选择产量q1,企业2(称为尾随企业,follower) 观测到q1,然后选择自己的产量q2,此时他们选择的产量以及所得 利润分别是多少?
第六讲 博弈的扩展式表述
完美信息动态博弈
战略式表述的局限:忽略参与人的行动 顺序
NE的缺陷:部分NE包含不可置信的战略
精练NE的思路:利用(准确反映参与人 行动顺序的)扩展式表述剔除包含不可 置信战略的NE
Selten(1965) 子博弈精练(subgame perfect)NE (SPNE)
子博弈:(完美信息博弈中),每一个 决策结及其后续结构成一个子博弈
博弈本身构成自身的一个子博弈
房地产开发博弈中的三个子博弈
自身
两个只有开发商B决策的单人博弈
B
B
开发
不开发
开发
不开发
-3,-3
1,0
子博弈B1
0,1
0,0
子博弈B2
SPNE:一个战略组合
(1)它是整个博弈的NE
(2)其相关行动规则在每一子博弈上都 是NE
一个在(从最后一个决策结开始的)子 子博弈中NE所对应的战略构成的(从倒 数第二个决策结开始的)(新的)子博 弈的NE的特点:
(1)它将是从倒数第二个决策结开始的 子博弈的NE
(2)它将满足从最后一个决策结开始的 子博弈的NE的要求
以此类推
直到从初始结(initial node)开始的原博 弈
“灵活务实型”
不论A开发还是不开发,B都不开发,记为(不 开发,不开发)
含义:不论博弈到达B的哪一个信息集,B都选 择不开发
“木呐保守型”
B的战略空间: ((开发,开发);(开发, 不开发);(不开发,开发);(不开发,不 开发)) 房地产开发博弈的战略式表述:
开发商B
A 开发
第6章:扩展式博弈及其均衡)
开发
-0.3,-0.3 -0.3,-0.3 0.1,0 0,0.1 0,0 0,0.1
0.1,0 0,0
A
不开发
注意:均衡与均衡结果是不同的!!!
SA = A(h(O))
= {开发,不开发 ; }
SB = A(h(x1)) × A(h(x2 )) ={{开发,开发},开发,不开发}, { {不开发,开发},不开发,不开发} { }
定义1:设 S = (s , s ,..., s , S*为扩 ) 展式的一个Nash均衡,当且仅当 ∀i ∈Γ
* * 1 * 2 * n
s ∈argmaxUi (si , s−i )
* i * si∈Si
或者∀si ∈Si, i (si , s ) ≥ Ui (si , s )。 U
* −i * −i
所有参与人的一个纯战略组合
s = (s1, s2 ,..., sn )
决定了博弈树上的一个路径,例如(开发, {不开发,开发})决定了博弈路径: A (0.1,0) 开发 B 不开发
战略组合(不开发,{开发,开发})决定了 博弈路径: A (0,0.1) 不开发 B 开发
不同的纯战略组合可能决定同一个路 径,例如,战略组合(开发,{不开发, 开发})和(开发,{不开发,不开发}) 决定了: A (0.1,0) 开发 B 不开发
∀x1, x2 ∈ X ,
≺
x1 ≺ x2 ⇔ x1在 2之 x 前
1)传递性(transitivity):
≺满足:
∀x1, x2 , x3 ∈ X , 若 1 ≺ x2,x2 ≺ x3,则 x x1 ≺ x3
2)反对称性(asymmetricity):
∀x1, x2 ∈ X , 若 1 ≺ x2, x 则 x2 ≺ x1 不 立 成 。
4.1博弈的扩展式表述方法
博弈论之博弈的扩展式表述方法21面旗子游戏A B两名对手之间有21面旗子,他们可以轮流移走这些旗子。
每次一方可以选择移走1支旗,2支旗或是3支旗。
不移旗,或是一次移动4支或4支以上的旗子是不允许的。
拿走最后1支旗的一方获胜,无论这支旗是最后1支,还是2支或是3支旗中的一支。
你的游戏策略是什么呢?21面旗子游戏A B21面旗子游戏A B 静态博弈动态博弈前向展望,后向推理参与人同时出招。
参与人的行动有先后顺序之分。
策略式表述博弈扩展式表述博弈博弈的扩展式表述参与人集合:i =1, … ,N ;参与人的行动顺序(the order of moves); 参与人的信息集(information set);信息集是对博弈过去发生历史的描述,表示参与人在做行动选择时,他对过去已经发生事实的了解。
记参与人i 的某个信息集为,k i = 1,…,K i 。
记参与人i 的信息集构成的集合为H i , 。
博弈的扩展式表述参与人集合:i =1, … ,N ;参与人的行动顺序(the order of moves);参与人的信息集(information set); 参与人的行动空间(action set) ;参与人i 的行动空间是定义在他的信息集上的可选行动集合。
记为 。
在信息集上的一个具体行动,记为 ,k i = 1,…,K i博弈的扩展式表述参与人集合:i=1, … ,N;参与人的行动顺序(the order of moves);参与人的信息集(information set);参与人的行动空间(action set) ;参与人的支付函数(payoff);描述各参与人在博弈结束后,各参与人的支付水平。
博弈的扩展式表述参与人集合:i=1, … ,N;参与人的行动顺序(the order of moves);参与人的信息集(information set);参与人的行动空间(action set) ;参与人的支付函数(payoff);外生事件的概率分布,即虚拟参与者“自然”的可能选择的概率分布。
4.3博弈扩展式向策略式表述的转化
博弈扩展式表述转化为策略式表述有时为了理论研究,借助策略式表述博弈的结果分析扩展式博弈,需要将扩展式博弈转化为策略式表述博弈。
扩展式博弈的策略定义是:参与人在其每一个信息集上都要给出一个行动方案。
扩展式博弈分析的重要工作内容就是确定每个参与人在其每个信息集上如何进行行动选择。
策略一般地,若参与人i 的信息集集合为H i ,信息集i ∈H i 上的行动集为A i (i ),该行动集上的行动为a i (i )∈A i (i ),则参与人i 的策略则可表示为h i k i ∈ Hi {a i (i )}若参与人在每个信息集上的行动可以随机化,则称该策略为行为策略(behavioral strategy ),可记为h i k i ∈ Hi {i (i )},其中,i (i )∈(A i (i ))策略——一个例子请写出右图所示的博弈树双方各自的策略。
1有2个信息集,第一个信息集有三个行动,第二个信息集有2个行动。
因此共有六个策略。
可记参与人1的策略集为S 1={Aa ,Ab ,Ba ,Bb ,Ca ,Cb }。
这样表示的含义,以策略Bb 为例,表示的是参与人1在第一个信息集选行动B ,第二个信息集选行动b 。
同理,参与人2有两个信息集的策略集可以表示为S 2={lL ,lR ,rL ,rR }支付函数的确定确定了一个策略组合,就确定了相关路径。
通过对相关路径结果的分析,就可以确定参与人在该策略组合下的支付值。
以Aa VS lL 为例,这个策略组合确定的路径为所以在策略组合{Aa , lL }对应的支付向量为(4,1)参与人1的策略集为S 1={Aa ,Ab ,Ba ,Bb ,Ca ,Cb },参与人2的策略集为S 2={lL ,lR ,rL ,rR }支付函数的确定分析策略组合{Ca , lL }对应的博弈路径。
参与人在博弈开始首先选择行动C ,然后到达虚拟参与人结点Chance 。
在Chance 点,两条路径出现的概率分别为1/4和3/4,对应的支付向量分别为(0, 0)和(8, 8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09:08:11 经济管理学院 曹正勇 1 2004年9月
1,博弈的扩展式与战略式的区别 博弈的扩展式表述"扩展" (1)博弈的扩展式表述"扩展"的主要是参与人 的战略空间. 的战略空间.
战略式表述简单地给出参与人有些什么战略可以 选择,而扩展式表述要给出每个战略的动态描述:谁 选择,而扩展式表述要给出每个战略的动态描述: 在什么时候行动,每次行动时有些具体行动可供选择, 在什么时道些什么.
2,博弈的扩展式表述包括的要素
09:08:11
经济管理学院 曹正勇
2 2004年9月
例1:房地产博弈 假定博弈顺序如下: 假定博弈顺序如下:
09:08:11
经济管理学院 曹正勇
3 2004年9月
A
图2.1
09:08:11 经济管理学院 曹正勇 4 2004年9月
3,博弈树的构造
09:08:11
09:08:11
经济管理学院 曹正勇
9 2004年9月
4,完全且完美信息博弈 单结信息集. 只包含一个决策结的信息集称为单结信息集. 如果博弈树的所有信息集都是单结的, 如果博弈树的所有信息集都是单结的,该博弈称为 完美信息博弈. 注意:完美信息博弈意味着博弈中没有任何两 注意: 个参与人同时行动,并且所有后行动者能确切 确切地知 个参与人同时行动,并且所有后行动者能确切地知 道前行动者选择了什么行动,所有参与人都观测 都观测到 道前行动者选择了什么行动,所有参与人都观测到 自然的行动. 自然的行动.
经济管理学院 曹正勇
5 2004年9月
09:08:11
经济管理学院 曹正勇
6 2004年9月
09:08:11
经济管理学院 曹正勇
7 2004年9月
以下按理对信息集进行直观的解释: 以下按理对信息集进行直观的解释:
09:08:11
经济管理学院 曹正勇
8 2004年9月
下例中: 下例中:B有2个信息集 ,每个信息集对应两个决策结
经济管理学院 曹正勇
11 2004年9月
09:08:11
经济管理学院 曹正勇
12 2004年9月
�
09:08:11
经济管理学院 曹正勇
10 2004年9月
RECALL) 5,完美回忆(PERFECT RECALL) 完美回忆( 指没有参与人会忘记自己以前知道的事情, 指没有参与人会忘记自己以前知道的事情, 所有参与人都知道自己以前的选择. 所有参与人都知道自己以前的选择. 见下例: 见下例:
09:08:11