最新人教版高中数学必修三几何概型优质教案

合集下载

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计

人教版高中必修3(B版)3.3.1几何概型教学设计
一、教学目的
1.理解几何概型的概念和性质。

2.掌握分段讨论和间断函数的求解方法。

3.能够解决常见的几何问题,如角平分线、垂心、垂线等问题。

4.培养学生的逻辑思维和推理能力。

二、教学重点
1.了解几何概型的性质。

2.学会运用几何概型的思想解决几何问题。

三、教学难点
1.掌握分段讨论和间断函数的求解方法。

2.学会几何问题中常用的一些策略和方法。

四、教学资源
1.人教版高中数学(B版)教材。

2.电脑和投影仪。

3.黑板、彩色粉笔。

五、教学过程设计
1. 导入环节
引导学生回忆上一节学习的内容,如线段平分线、角平分线等概念,以及它们的性质和应用。

2. 理论讲解
1.讲解几何概型的概念和性质。

2.介绍分段讨论和间断函数的求解方法。

3.讲解如何运用几何概型的思想解决几何问题。

3. 练习环节
1.给学生提供一些几何问题,引导他们通过分析和运用几何概型的思想
来解决问题。

2.带着学生复习之前学过的几何知识,解决一些常见问题。

4. 总结反思
让学生回顾本节课学到的内容,提出问题、分享经验,帮助大家理解几何概型和解题思路。

同时告诉学生,几何问题虽然看似简单,但需要不断地练习和思考。

六、教学评价
1.在练习环节中观察学生的解题方法和策略,以及对几何概型的掌握程
度。

2.根据课堂互动、讨论和回答问题的表现,对学生进行评价。

3.希望学生课后主动做一些练习,加深对几何概型的理解和应用。

最新高中数学 3.3.1 几何概型教案 新人教A版必修3

最新高中数学 3.3.1 几何概型教案 新人教A版必修3

几何概型
【教材分析】
几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.
【学情分析】
学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟.学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清.另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.
【教学目标】
知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率.
过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法.
情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界. 【重点难点】
教学重点: 几何概型的基本特征及如何求几何概型的概率.
教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量.
【教法学法】问题解决的教学模式,分层实现教学目标.
【教学基本流程】温故知新

创设情境

新知探究

形成概念

典例分析

巩固深化

课堂梳理

布置作业
学生分析:。

最新人教版必修三高中数学8.几何概型教学设计

最新人教版必修三高中数学8.几何概型教学设计

备课人授课时间课题 3.3.1几何概型(2)课标要求正确理解几何概型的概念;掌握几何概型的概率公式教学目标知识目标(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式;技能目标会求各种几何概型的概率情感态度价值观会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点理解几何概型的定义、特点,会用公式计算几何概率难点如何转化为几何概型求概率教问题与情境及教师活动学生活动学过程及方法一.导入新课(1)几何概型的概念是什么?(2)几何概型的特点是什么?今天我们学习如何求几何概型的概率二.研探新知(典例分析)一、长度型几何概型例1取一根长度为3米的绳子,拉直后在任意位置剪断,求剪得两段的长都不小于1米的概率。

解析:从每一个位置剪断绳子,都是一个基本事件,剪断位置有无穷多个点,因此,基本事件有无穷多个,而且每一个基本事件都是等可能的,所以事件发生的概率只与剪断的绳子的长度有关,符合几何概型的条件。

设事件A=“剪得两段的长都不小于1米”,把绳子三等分,当剪断位置处在中间一段上时,事件A发生,而中Aμ=μΩ=1()3AP AμμΩ==60xOT∠1教问题与情境及教师活动学生活动学过程及方法解析:以O为起点作射线OA是随机的,因而射线OA落在任何位置都是等可能的,落在xOT∠内的概率只与xOT∠的大小有关,符合几何概型的条件。

设事件A=“射线OA落在xOT∠内。

事件A的几何度量是060,区域Ω的几何度量是0360,所以,由几何概率公式得601()3606AP AμμΩ===点评:角度型几何概型实质上仍然是长度型几何概型。

变式练习在圆心角为090的扇形中,以圆心O为起点作射线OC,则使得AOC∠和BOC∠都不小于030的概率为多少?(答案:13)三、面积型几何概型例3 如图在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m远向此投镖。

《必修三《几何概型》教案

《必修三《几何概型》教案

《必修三《几何概型》教案教案:几何概型一、教学目标1.知识与技能:-了解几何概型的基本概念和相关属性;-掌握计算几何概型的可能性和概率;-能够运用几何概型解决实际问题。

2.态度与价值观:-培养学生对几何概型的兴趣和好奇心;-培养学生合作、探究和创新精神。

二、教学重点和难点1.重点:-几何概型的基本概念和相关属性;-计算几何概型的可能性和概率。

2.难点:-运用几何概型解决实际问题。

三、教学过程1.教学准备:-教师准备PPT、绘制几何概型相关图形。

2.导入与引入:-向学生提问:“大家了解什么是几何概型吗?”-学生回答后,教师进行引导,介绍几何概型的基本概念和相关属性。

3.概念讲解:-讲解几何概型的基本概念,例如:平面上点、线、面,三维空间中体等;-讲解几何概型的相关属性,例如:相似、相等等;-通过示例和图像说明几何概型的应用,如建筑设计、工程测量等。

4.练习与讨论:-让学生通过绘制几何概型图形,进行练习;-学生分组讨论几何概型的相关问题,例如:如何计算不同形状的房屋占地面积等。

5.案例分析:-教师给出一个实际生活中的案例,例如:如何计算一个无规则形状的花坛的面积;-学生利用几何概型的知识和技巧,分析并解决这个问题;-学生分组展示自己的解决过程和答案,并进行讨论。

6.解决问题与拓展:-继续给学生出一些难度适中的问题,让学生运用几何概型的知识和技巧解决;-引导学生思考如何拓展几何概型的应用领域,发现几何概型在日常生活中的其他应用。

四、课堂小结-教师对本课的教学内容和学生的表现进行总结;-检查学生对几何概型的掌握情况,回答学生提出的问题;-引导学生对几何概型的学习进行反思和思考。

五、作业布置-布置相关练习题,要求学生运用几何概型的知识和技巧解答;-要求学生写一篇小结,总结几何概型的基本概念和相关属性。

六、教学反思-分析课堂教学过程中的不足和问题;-总结有效的教学方法和策略,为下一节课的教学做好准备。

人教版高中数学必修三 第三章 概率几何概型的教学设计

人教版高中数学必修三 第三章 概率几何概型的教学设计

几何概型的教学设计(一)知识回顾、温故知新1、什么叫基本事件?试验中可能出现的结果2、古典概型的两个基本特点是什么?(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.3、在古典概型下,如何计算随机事件A出现的概率?(二)创设情景,引入课题问题1.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?问题2.转盘上有8个面积相等的扇形。

转动转盘,求转盘停止转动时指针落在白色区域部分的概率。

问题3.在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率。

思考:1、试验中的基本事件是什么?有多少个基本事件?2、每个基本事件的发生是等可能的吗?3、符合古典概型的特点吗?能用古典概型描述该事件的概率吗?为什么?思考:如何求出上述问题的概率呢?【学生活动】根据生活经验学生通过思考,不难得出答案:问题1利用长度比来计算概率问题2利用面积比来计算概率问题3利用体积比来计算概率思考:上面三个随机试验有什么共同特点?结论:(1)一次试验可能出现的结果有无限多个;(2)每个结果的发生都具有等可能性.(三)、探究新知、建构模型由上面问题的研究我们可以探讨1、几何概型的概念:如果每个事件发生的概率只与构成该事件区域的几何度量(长度、面积或体积等)成正比,则称这样的概率模型为几何概率模型,简称为几何概型.2、在几何概型中,事件A的概率计算公式3、几何概型的基本特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.4、对比古典概型与几何概型的基本特点,找出他们的异同点(四)知识深化,强化技能对于几何概型问题,求解的关键是确定事件A对应的几何图形,利用图形的几何度量来求随机事件的概率。

例1、一海豚在水池中自由游弋,水池是长30m,宽20m的长方形,求此刻海豚嘴尖离岸不超过2m的概率.本题由学生独立思考,代表发言,生生补充,教师评价完成解题过程。

高中数学必修三(3.3.1几何概型)教案新人教A版必修3

高中数学必修三(3.3.1几何概型)教案新人教A版必修3

每一个位置剪断都是一个基本事件 , 剪断位置可以是长度为 3 m的绳子上的任意一点 , 也是等
可能的 , 射中靶面内任何一点都是等可能的 , 但是硬币落地后只出现四种结果 , 是有限的 ; 而
剪断绳子的点和射中靶面的点是无限的 ; 即一个基本事件是有限的 , 而另一个基本事件是无
限的 .
(4) 几何概型 .
验是不够的 , 还必须考虑有无限多个试验结果的情况 . 例如一个人到单位的时间可能是 8:00
至 9 : 00 之间的任何一个时刻;往一个方格中投一个石子
, 石子可能落在方格中的任何一
点……这些试验可能出现的结果都是无限多个 . 这就是我们要学习的几何概抛掷一枚均匀硬币两次 , 求两次出现相同面的概率?
70 m 外射箭 . 假设射箭都能射中靶面内任何一点都是等可能的
. 问射中黄心的概率为多少?
(3) 问题 (1)(2) 中的基本事件有什么特点 ?两事件的本质区别是什么 ?
(4) 什么是几何概型 ?它有什么特点 ?
(5) 如何计算几何概型的概率 ?有什么样的公式 ?
(6) 古典概型和几何概型有什么区别和联系 ?
(2) 试验 1. 取一根长度为 3 m 的绳子 , 拉直后在任意位置剪断 . 问剪得两段的长都不小于 1 m
的概率有多大?
试验 2. 射箭比赛的箭靶涂有五个彩色得分环 . 从外向内为白色 , 黑色 , 蓝色 , 红色 , 靶心是金
色. 金色靶心叫“黄心” . 奥运会的比赛靶面直径为
122 cm, 靶心直径为 12.2 cm. 运动员在
.
教学方法:
讲授法
课时安排:
1 课时
教学过程:
一、导入新课:
1 、复习古典概型的两个基本特点: ( 1)所有的基本事件只有有限个; (2)每个基本事

高中数学人教版必修3几何概型教学设计

高中数学人教版必修3几何概型教学设计

高一数学课课题:几何概型(第二节 )讲课教师:杨全讲课班级:高一(15)一、教材解析与设计企图:本节课是在展开模拟实验思想方法基础上,学习差别于古典概型特色的概率问题,1、古典概型的两个特色:(1)试验中所有可能出现的基本领件为有限个(2)每个基本领件出现的可能性相等.2、在生活实质中遇到的问题,它们的事件特色满足(1)试验中所有可能出现的基本领件为无穷个(2)每一个基本领件发生的可能性都相等。

如何计算这种问题的概率?能否转变成熟知数学识题去解决。

让学生在制作数学模型并展开模拟实验操作的前提下,踊跃地参加到课堂教课中,展现他们的模拟相关数据与建模思想,提炼出解决问题的可行方法,经过学生着手实验和自主研究活动,亲自体验数学识题转变的全过程,促进学生对知识内容的整体掌握和学生学习能力的提高。

二、教课目标知识与技术:使学生认识并能初步运用几何概型的相关知识解决一些简单问题;过程与方法:在学习模拟实验思想方法基础上,经过信息技术与知识结构的整合,在建立数学模型基础上,提炼出解决问题的可行方法,使学生从生活实质问题中进一步感悟几何概型的特色与应用。

感情、态度与价值观:利用议论激励手段,增强师生学习活动的交流,创建友善的课堂文化。

让学生在自主学习过程中亲自体验数学在生活中的重要性。

三、教课过程:﹙一﹚、问题的提出向一个正方形内随机地投一个点,且该点落在正方形内任意一点都是等可能的。

求点落在该正方形内切圆内的概率。

它是古典概型的问题吗?1、实验活动展现:向一个正方形内随机地投一个点,且该点落在正方形内任意一点都是等可能的。

求点落在该正方形内切圆内的概率。

(与面积相关的几何概率问题)内切圆的面积( a)2 2P(A )4正方形的面积a2我国古代有名数学家祖冲之早在1500 多年前就算出的近似值,这是我国古代数学家的一大成就。

你能用设计一种模拟方法预计圆周率的值吗?2、模型演示:(与长度相关的几何概率问题)先看以下问题:有两个转盘。

人教A版高中数学必修3《几何概型》教案

人教A版高中数学必修3《几何概型》教案

参赛课题:几何概型使用教材:普通高中课程标准实验教科书数学必修3(人教A版)《几何概型》教案说明一、《几何概型》在教材中的地位本节课是高中数学(必修3)第三章概率的第三节几何概型的第一课时,是在学习了古典概型情况下教学的。

它是对古典概型内容的进一步拓展,主要是要把概率问题与几何问题完美的结合,用数形结合的思想,通过建立基本事件与相应点的对应,实现从有限到无限形式上的转化,使等可能事件的概念从有限向无限延伸,进而建立合理的几何模型解决相关概率问题。

此节内容也是新课标中增加的,反映了《新课标》对数学知识在实际应用方面的重视.同时也暗示了它在概率论中的重要作用,以及在高考中的题型的转变。

二、《几何概型》教学目标定位1、教学目标1)知识目标通过解决具体问题让学生感知用图形解决概率问题的思路,体会几何概型计算公式及几何意义。

2)能力目标通过多个问题的分析及试验让学生理解几何概型的特征,归纳总结出几何概型的概率计算公式,渗透有限到无限,转化与化归及数形结合的思想。

3)情感目标教会学生用数学方法去研究不确定现象的规律,帮助学生获取认识世界的初步知识和科学方法。

2、教学目标的设置意图几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

三、《几何概型》的重难点分析1、教学重点:几何概型概念及计算公式的形成过程.2、教学难点:将实际问题转化为数学问题,建立几何概率模型,并求解。

3、诊断分析:本节课让学生动手操作,亲身体验感受基本事件的个数不可数的情形下,从而引起思维的困惑,进而引导学生利用数形结合的思想,通过建立等量替代的关系,实现有限和无限之间的对应转化,从而解决了无限性难以计算的问题,让学生理解这样的对应是内在的,逻辑的,因此建立的度量公式是合理,这是本节课的难点所在,也是学生难以理解的地方。

高中数学优质教学设计2:3.3.1几何概型 教案

高中数学优质教学设计2:3.3.1几何概型 教案

§3.3.1 几何概型教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

教学过程:一、复习引入T1:计算随机事件概率的方法有哪些?T2:古典概型的特征是什么?T3:如何计算古典概型的概率?二、创设情景,引入新课1.玩转盘游戏游戏规则:甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 数据的统计:1)请每一位同学以左边的转盘,做20次试验,统计指针指向B 的次数,并计算指针指向B 的频率。

2)教师以右边的转盘,分别做100、200、400、700次试验,统计指针指向B 的次数,并计算指针指向B 的频率。

2.学生活动(分组讨论) 分析下列三个题目,回答问题:1)如图,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 求甲获胜的概率?2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

人教版高中数学必修三(教案)3.3几何概型(2课时)

人教版高中数学必修三(教案)3.3几何概型(2课时)

第一课时 3.3.1 几何概型教学要求:结合已学过两种随机事件发生的概率的方法,更进一步研究试验结果为无穷多时的概率问题理解几何概型的定义与计算公式.教学重点:初步体会几何概型的意义.教学难点:对几何概型的理解.教学过程:一、复习准备:1. 回忆基本事件的两个特点:(1)任何两个基本事件是互斥的。

(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.回忆古典概型有两个特征:有限性和等可能性.3.提出问题:在现实生活中,常常遇到试验结果是无穷多的情况,那又怎样计算呢?二、讲授新课:1. 教学:几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability )简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果不是有限个.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故3()5g P A ==Ω的长度的长度 例2.某个人午觉醒来,他打开收音机。

想听电台报时,求他等待的时间不多于10分钟的概率.分析:在0到60分钟任一时刻打开收音机是等可能的,但0到60分钟之间有无穷个时刻,不能用古典概型的公式计算,,因为是等可能的,所以他在哪一时段打开收音机的概率只与该时段的长度有关而与位置无关,这符合几何概型的要求.)3. 小结: 如何利用几何概型事件和随机模拟方法来求一些求知量?三、巩固练习:1.(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.答案:592.猪八戒每天早上7点至9点之间起床,求它在7点半之前起床的概率.(将问题转化为时间长度)1. 作业:P137,A 组第1题第二课时 3.3.2均匀随机数的产生教学要求:让学生知道如何利用计算机Excel 软件产生均匀随机数关利用随机模拟方法估计求知量.教学重点:体会随机模拟中的统计思想.教学难点:如何把求未知量的问题转化为几何概型概率的问题.教学过程:一、复习准备:1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.二、讲授新课:1.教学:均匀随机数的产生操作方法与整数值随机数产生的方法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。

高中数学新人教版A版精品教案《3.3.1 几何概型教学设计》

高中数学新人教版A版精品教案《3.3.1  几何概型教学设计》

几何概型教学设计(高中数学必修3第三章第3节第一课时)一、教材分析1、教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。

《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。

2、教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。

难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

通过数学建模解决实际问题。

[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。

教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。

此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。

二、教学目标1、[知识与技能目标](1)体会几何概型的意义。

(2)了解几何概型的概率计算公式2、[过程与方法目标]通过转盘游戏,将有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。

通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。

3、[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。

三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。

四、教学过程提出问题引入课题一、复习旧知巩固旧知回顾古典概型的特征和概率公式二、提出问题引入课题口答1:在区间[0,9]上任取一个整数a,则]3,0[∈a的概率为提出问题2:在区间[0,9]上任取一个实数a ,则]3,0[∈a的概率为通过学生回顾古典概型的特征和概率公式,从学生熟悉并且容易解决的一个古典概型问题,稍加修改,转变成为一个几何概型的问题,学生思考后仍然解决不了,从而引出课题以境激情建构概念三、创设情境构建概念转盘游戏:如图所示,规定指针指向金额区域表示中奖问题1:图1中转盘中奖的概率是多少?(图1)问题2:若换成图2的转盘,中奖概率是多少(蓝红区域面积比为3:2)(图2)问题3:再换成图3的转盘,中奖概率是多少呢通过等分猜想引入几何概型,学生猜想依次得到概率。

人教版高中数学必修3-3.3《几何概型》参考教案1

人教版高中数学必修3-3.3《几何概型》参考教案1

3.3.1 几何概型教学目标:1、学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型及古典概型;3、提高学生判断与选择几何概型的概率公式的能力。

教学重点与难点:重点:1、几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择教学方法:“学生为主体,教师为主导”的探究性学习模式板书设计:教学过程:【知识回顾】古典概型的特点及其概率公式: (1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

古典概型包含基本事件的个数、事件的概率公式:基本事件的总数【课前练习】(赌博游戏):甲乙两赌徒掷色子,规定掷一次谁掷出6点朝上则谁胜,请问甲、乙赌徒获胜的概率谁大?学生分析:色子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;学生求解:1;6p =甲16p =乙。

(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?① ②学生分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;2、利用B 区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B 区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长 法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积 【问题猜想】1.两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?2.你是如何解决这些问题的?3.有什么方法确保所求的概率是正确的?学生对比分析:。

最新人教版高中数学必修3《几何概型》说课稿

最新人教版高中数学必修3《几何概型》说课稿

人教版高中数学必修3《几何概型》说课稿《几何概型》说课稿开本节课是人教版普通高中课程标准试验教科书数学(必修3)第三章第三节几何概型(第一课时)。

下面从四个方面来说说对这节课的分析和设计:一、教学背景分析:1、教材的地位和作用“几何概型”这一节是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是基本事件数从有限向无限的延伸。

这部分内容是新增加的内容,介绍几何概型主要是为更广泛地满足随机模拟的需要。

这充分体现了数学与实际生活的紧密关系,来源生活,而又高于生活。

学好几何概型可以有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

2、教材处理:根据学生的状况及新课程标准,对教材作了如下处理:开头的问题,设计成往正方形内撒豆问题,以便于学生更容易地抽象出几何概型的定义及其计算公式。

例题、习题的选用,尽可能地选用能更加激发学生思维,易于拓展的题目3、学情分析:我班学生基础一般,在古典概型向几何概型的过渡时学生应该会比较好地接受到,但对于如何建立具有实际背景的随机事件与几何区域的联系时,预计学生会有一些困难。

但只要引导得当,使学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,理解几何概型,完成教学目标,是切实可行的。

4、教学目标分析:根据本节课教材的特点、新课标教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面(知识与技能, 过程与方法, 情感态度与价值观)确定了教学目标.重视几何概型概念的形成过程和对概念本质的认识;强调几何概型的特点,培养学生对生活数学的抽象概括能力。

(1)、知识与技能:①、理解几何概型的定义、特点;掌握几何概型的概率计算公式:②、会区分古典概型与几何概型;③、学会将实际问题转化为几何概型问题来解决。

(2)、过程与方法:①、从有限个等可能结果推广到无限个等可能结果,通过撒豆问题,引入几何概型定义和几何概型中概率计算公式,感受数学的拓展过程;②、通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3 几何概型§3.3.1 几何概型一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。

三、重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.四、课时安排1课时五、教学设计(一)导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.(二)推进新课、新知探究、提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31. 第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.(三)应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型; (2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6. 打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P (A )=(60-40)/60=1/3.即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G.设晚餐在x (6≤x≤7)时开始,晚报在y (5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y )对应.于是试验的所有可能结果就与G 中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P (A )=87 的面积的面积G g . 变式训练在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.(四)知能训练1.已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A 的概率为P(A)=111. 2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)=62=31. 3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=ar a a a r -=的长度的长度],0[],(.(五)拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g :x≤2l sinφ(见下图右).所求概率是P=的面积的面积Ωg ππφφπa l a d l 22/sin )2/(0=••=⎰.注:因为概率P 可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N 次,(或一次投针若干枚,总计N 枚),统计与平行线相交的次数n,则P≈n/N.又因a 与l 都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.(六)课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.(七)作业课本习题3.3A组1、2、3.。

相关文档
最新文档