航空知识

合集下载

《航空知识》课件

《航空知识》课件

起落架结构
解释起落架的结构和功能,包括起落 架的收放、转向和刹车等系统,以及 它们在飞机起降过程中的作用。
航空材料
01
02
03
材料分类
介绍航空材料的基本分类 ,如金属、复合材料、陶 瓷等,以及它们在飞机制 造中的应用。
材料特性
解释航空材料的特性要求 ,如高强度、轻质、耐腐 蚀等,以及如何通过材料 选择来满足这些要求。
军事应用
战斗机
用于空中格斗、对地攻击和侦察等任务,是现代战争中的重 要武器装备。
军用运输机
用于快速投送兵力和物资,提高军队的机动性和作战能力。
民用航空
客机
用于商业客运,是人们长途出行的首 选交通工具。
货机
用于航空货运,能够快速运输大量货 物,满足物流和电商的需求。
太空探索
载人航天
通过载人航天器实现人类进入太空、空间站建设和太空漫步等任务。
合作等。
国际航空法的意义
03
保障各国领空安全,促进国际航空事业的发展,维护国家主权
和利益。
飞行规则
飞行规则的定义
飞行规则是规定航空器飞行、运行和管理的法律规范,是保证航 空器安全、有效和经济飞行的必要条件。
飞行规则的主要内容
飞行气象条件、飞行时间与休息制度、飞行高度与速度限制、空 中交通规则等。
飞行规则的意义
材料加工工艺
介绍航空材料的加工工艺 ,如铸造、锻造、焊接等 ,以及它们在飞机制造过 程中的作用。
02
航空发展历程
早期飞行器
滑翔机
人类最早的飞行器,依靠 空气动力学原理,利用自 然风力进行飞行。
热气球
利用加热空气产生浮力原 理,可控制飞行高度和方 向。

航空知识归纳

航空知识归纳

航空知识归纳航空领域是一个科技发展迅猛的行业,涉及到许多专业术语和概念。

本文将会对航空知识进行归纳总结,让读者对于航空相关领域有更全面的了解。

一、航空的起源与发展航空的起源可以追溯到人类对于自由飞翔的梦想。

古代的人们通过观察鸟类的飞翔,开始尝试模仿制造能够飞行的器具。

直到莱特兄弟的飞行实验成功,人类才真正迈入了航空时代。

随着科技的不断发展,航空工业开始迅速崛起,各种类型的飞机相继问世。

二、航空器分类与原理航空器可以按照飞行方式的不同进行分类,主要包括固定翼飞机、直升机和无人机。

固定翼飞机是最常见的飞行器,其基本原理是利用机翼产生升力来支持飞行。

直升机则是通过旋翼的旋转产生升力和推力来实现垂直起降。

无人机则是近年来发展迅猛的一种新型航空器,其飞行依靠无线遥控或者自主导航系统。

三、航空器的关键部件与系统航空器的关键部件与系统是保证飞行安全的重要组成部分。

其中,发动机是驱动飞机进行飞行的核心,常见的有喷气式发动机和螺旋桨发动机。

机翼和机身是飞机的主要支撑结构,起到承载飞机重量和产生升力的作用。

此外,航空器还配备有航电系统、液压系统和燃油系统等关键部件和系统,确保飞机的正常运行。

四、航空安全与飞行规章航空安全是航空业最重要的关注领域之一,涉及到飞行员培训、飞行规章以及飞机维护等多个方面。

飞行员培训需要经过严格的选拔和训练,包括理论知识和实际飞行技能的学习。

飞行规章是保证飞行安全的重要法规,其中包括航空器的适航要求、飞行员的飞行操作规范等内容。

此外,飞机的定期维护和检修也是确保飞行安全的关键环节。

五、航空导航与空中交通管理航空导航和空中交通管理是保证航空器飞行顺利进行的重要系统。

航空导航系统包括雷达、GPS等设备,用于飞行器的定位和导航。

空中交通管理负责规划和管理航空器飞行的航线和航班,并确保飞机之间的安全距离。

这些系统的运用使得航空器能够在广阔的天空中安全地航行。

六、航空航天技术的应用与发展航空航天技术的应用涵盖了众多领域,如民航、军事、科学研究等。

航空知识相关知识点总结

航空知识相关知识点总结

航空知识相关知识点总结航空知识是指与航空相关的一切知识,包括飞机、航空器、航空工程、航空技术、航空制造、航空运输、航空管理、航空安全、航空法规等方面的知识。

航空知识的学习和掌握对于从事航空业务的人员和广大航空爱好者来说至关重要。

下面将从航空器、航空技术、航空运输等多个方面进行航空知识的总结。

一、航空器知识1. 飞机结构飞机的主要结构包括机翼、机身、尾翼、发动机等部分。

机翼是飞机的承载结构,可以提供升力和减小飞行阻力;机身是飞机的主要部分,包括机舱和货舱;尾翼包括水平安定面和垂直尾翼,用于控制飞机的姿态和航向;发动机是飞机的动力装置。

2. 飞机分类根据用途和设计特点,飞机可以分为民用飞机和军用飞机;按飞行原理分类可以分为固定翼飞机和直升机;按航程分类可以分为短程、中程和长程飞机;按机翼形式分类可以分为高翼、低翼和中翼等。

3. 飞机性能飞机性能包括最大起飞重量、续航里程、巡航速度、爬升率、飞行高度等指标,这些指标可以影响飞机的运行和使用。

4. 飞机驾驶飞机驾驶包括飞行员的驾驶技术、导航技术、飞行规章等方面的知识,需要飞行员经过专门的培训和考试才能取得飞行执照。

5. 飞机飞行原理飞机的飞行原理是空气动力学的基础理论,主要包括升力、阻力、推力和重力等四个要素,了解这些理论可以帮助人们更好地理解飞机的飞行。

二、航空技术知识1. 航空材料航空材料包括金属材料、复合材料和聚合物材料等,这些材料都具有轻量、高强度、耐热、耐腐蚀等特点,适用于飞机制造。

2. 飞行控制系统飞行控制系统是飞机的关键系统,包括飞行操纵系统、动力控制系统、气动控制系统等,用于控制飞机的飞行姿态和方向。

3. 航空电子设备航空电子设备包括雷达、导航设备、通讯设备、自动驾驶仪等,这些设备可以提高飞机的飞行安全性和效率。

4. 航空制造技术航空制造技术包括飞机设计、飞机制造、飞机装配、飞机检测等方面的知识,需要结合工程学、材料学、机械学等多个学科的知识。

中考航空知识点总结大全

中考航空知识点总结大全

中考航空知识点总结大全一、航空基础知识1. 飞行原理飞机的飞行基本原理是利用动力装置产生推力和机翼产生升力来克服重力和风阻,使飞行器在大气中进行运动。

2. 空气动力学空气动力学是研究空气在物体表面的流动以及对物体产生的升力、阻力、侧向力等作用的学科。

3. 机身结构机身结构包括机翼、机身、起落架等部分,其设计和制造需要考虑到飞机的重量、强度和空气动力学性能。

4. 飞行仪表飞行仪表包括高度表、气速表、指示器等,这些仪表在飞行中提供有关飞机状态和位置的重要信息。

二、飞行器类型1. 固定翼飞机固定翼飞机是以机翼产生升力,由发动机推动的飞行器,包括客机、货机、军用机等。

2. 直升飞机直升飞机通过旋翼产生升力,能够垂直起降和悬停,适用于需要小范围快速运输的地区。

3. 水陆两栖飞机水陆两栖飞机可以在水面和陆地上起降,通常用于海岸巡逻、救援等任务。

4. 无人机无人机是一种无人驾驶的飞行器,广泛应用于航空摄影、农业喷洒、灾害勘察等领域。

三、飞行规则1. 飞行管制飞行管制是指对航空器在地面和空中的运行进行指挥、监控和协调的一系列措施和规定。

飞行通信包括地面无线电台与飞机通信、飞机之间的通信等,其中使用的标准短波频率、应急通信频率等是飞行中必须了解的知识。

3. 空域管理空域管理是指对航空器在空中飞行的空域进行规划和管理,以确保航空安全和空中交通的有序进行。

四、飞行器系统1. 动力系统飞机的动力系统包括发动机、推进器、燃油系统等部分,其设计和工作原理对飞机的性能和航程有着重要影响。

2. 控制系统飞机的控制系统包括操纵面、操纵杆、操纵线等部分,用于控制飞机的飞行姿态和航向。

3. 电气系统飞机的电气系统包括发电机、电动机、蓄电池等部分,提供飞机整体的电力供应。

4. 仪表系统飞机的仪表系统包括飞行仪表、导航仪表、发动机仪表等,用于飞行员在飞行中监控飞机的状态和性能。

五、飞行安全知识1. 天气预报天气预报是飞行前必须了解的信息,包括气象条件、气温、风速等,以便决定是否适合飞行。

科学探究航空知识点总结

科学探究航空知识点总结

科学探究航空知识点总结一、飞行原理1. 卡夫特定律卡氏的定律是通过科学的方法总结和规律飞行员道出的一句俗语:“机翼下的气流速度增加,压力降低;机翼上的气流速度减慢,压力增加。

”卡氏的定律最重要的贡献是把飞行问题引入了流体动力学研究的范畴。

2. 升力产生原理升力产生原理是飞机起飞和飞行的基础。

当飞机在不同的速度和攻角下,可以产生不同大小的升力,这是由于空气流经机翼两侧造成了压力差异,从而形成了升力。

3. 空气动力学空气动力学是研究空气的流动和与物体的相互作用的学科。

在航空科学中,空气动力学是用来研究飞机的气动特性、飞行器性能和气动设计方法的科学。

二、航空器结构1. 机翼机翼是飞机的主要承载结构,用来产生升力。

不同类型的飞机有不同形状的机翼,如直翼、后掠翼、前掠翼等。

2. 发动机发动机是提供飞机推进力的设备。

根据发动机的工作原理,可以分为活塞发动机和喷气发动机。

喷气发动机的原理是利用燃料燃烧产生高温高压气体,通过喷口喷出,产生推力。

3. 机身机身是飞机的主要承载结构,同时也包含了飞行舱、货舱等重要部分。

机身的结构必须具有足够的强度和刚度,以支撑机翼和发动机。

三、飞行器控制1. 俯仰、横滚、偏航飞机的姿态由俯仰、横滚、偏航三个自由度控制。

俯仰是飞机绕纵轴旋转,横滚是绕机翼的轴旋转,偏航是绕垂直轴旋转。

2. 飞行控制表面飞机通过不同的控制表面来实现不同的控制,如升降舵、方向舵、副翼等。

这些控制表面能够改变飞机在空气中的运动状态。

3. 飞行控制系统飞行控制系统由操纵杆、踏板、发动机驱动装置、液压引导装置等组成。

通过操纵杆、踏板,飞行员可以控制飞机的姿态、方向和高度。

四、航空器系统1. 起落架系统飞机的起落架是用于地面行驶和起降的设备。

根据飞机的类型和用途,起落架有不同的形式,如固定起落架、收放起落架等。

2. 燃油系统燃油系统主要用于存储和供应飞机的燃料。

它包括燃油箱、油泵、传输管道等,确保飞机在飞行过程中有足够的燃料供应。

航空知识

航空知识
1000公斤 空空导弹;火箭弹;炸弹
封面
目录
封底
航空产品介绍-歼8
中文名称 歼-8 英文名称 J-8 / F-8 次型/级 研制时间 1964-1969
首飞时间 1969年 定型时间
国家 研制单位 参仿原型 飞机类型
制造数量 用途
中国 沈阳飞机工业集团
轻型喷气式超音速 战斗机
夺取制空权
乘员
1人
机长X机高 最大升限 巡航高度 巡航速度 最大爬升率 最大航程 活动半径 正常起飞重量 全机空重
机长X机高 18.9米X4.8米
实用升限 18000米
巡航高度
巡航速度 1162公里/小时
雷达反射面积
最大航程 活动半径
3000公里(带副油箱) 1250公里
正常起飞重量 27000千克
第四代隐形战斗机
全机空重 12500千克
载弹量
7000公斤
夺取制空权,对地 攻击
武器装备
空空导弹;反辐射导弹,激 光制导炸弹,火箭弹;炸弹
2、歼机教练机
歼教-1、歼教-5、歼教-7、歼教-9(山鹰)、L-15
3、歼击轰炸机(战斗轰炸机) 歼轰7(飞豹)、SU34、F111
4、攻击机(强击机)
强5、A10、SU25
5、轰炸机
轰6(战神)、B2、B52、图160、图95
6、预警机
空警2000、空警500、费尔康、E3(鹰眼)、爱立眼
7、运输机
歼击机组成系统
6、航电系统 7、燃油系统 8、逃生系统 9、火控系统(火控雷达+武器发射系统) 10、动力系统
封面
目录
封底
航空产品介绍-歼击机结构
封面
目录
封底

航空知识点总结

航空知识点总结

航空知识点总结航空业是一门高度复杂的行业,涉及到航空工程、航空制造、航空运输、航空安全等多个领域。

深入了解航空知识对于想要从事航空相关行业的人来说非常重要。

本文将对航空知识进行总结,分为航空工程、航空制造、航空运输和航空安全四个部分。

一、航空工程1. 飞机的构造:飞机主要由机翼、机身、机尾、发动机和起落架等部分组成。

机翼可以分为固定翼和旋翼两种类型,旋翼主要用于直升机。

机身承担了飞机的载荷,同时也安放了乘客和货物。

发动机是飞机的动力源,起落架用于飞机的着陆和起飞。

2. 飞机的动力系统:飞机的动力系统分为螺旋桨和喷气发动机两种,螺旋桨发动机主要用于小型飞机,而喷气发动机则用于大型喷气机。

3. 飞机的控制系统:飞机的控制系统主要包括操纵系统、油压系统和液压系统。

操纵系统用于控制飞机的姿态和方向,油压系统和液压系统用于传递动力和控制飞机的各种执行器。

4. 飞机的自动导航系统:自动导航系统可以帮助飞行员进行飞行、导航和着陆,大大降低了飞行的难度和危险。

5. 飞机的气动力学:气动力学研究了飞机在空气中的运动规律,包括升力、阻力、滚转、俯仰和偏航等。

了解气动力学可以帮助飞行员更好地掌握飞行技术。

6. 飞机的材料与制造工艺:飞机的材料主要包括金属、塑料、复合材料和陶瓷等,制造工艺包括冷拔、热处理、成形和焊接等。

二、航空制造1. 飞机的设计与研发:飞机的设计与研发是航空制造的核心内容,包括飞机的结构设计、动力系统设计、控制系统设计、航电系统设计等。

2. 飞机的制造流程:飞机制造流程包括材料准备、零部件加工、部件装配、总装调试和试飞验证等。

3. 航空零部件制造:航空零部件制造包括发动机、机翼、机身、机尾、起落架、舱门等各种零部件。

4. 航空材料与工艺:航空材料要求具有高强度、高韧性、耐腐蚀、耐高温、低密度等特点,航空制造工艺要求高精度、高可靠性、高效率。

5. 航空制造质量控制:航空制造质量控制包括材料质量控制、工艺质量控制和产品质量控制等多个环节。

中考航空知识点总结归纳

中考航空知识点总结归纳

中考航空知识点总结归纳一、航空基本知识1. 飞机的基本构造飞机主要由机翼、机身、发动机和起落架等部分组成。

机翼是飞机的主要承载部分,能够产生升力;机身包含机舱和货舱,是飞机的主体结构;发动机提供飞机的动力;起落架用于起飞和降落时支撑飞机。

2. 飞机的起飞、巡航、降落飞机的起飞需要达到必要的起飞速度并产生足够的升力,通常在跑道上加速并起飞。

巡航是飞机在空中以恒定的速度和高度飞行,通常在巡航高度上进行。

降落是飞机从巡航状态降低高度并最终着陆在跑道上。

3. 飞机的驾驶和导航飞机的驾驶员通过控制飞机的方向舵、副翼和升降舵等部件来控制飞机的姿态和飞行状态。

导航是通过飞行员使用雷达、GPS、仪表和导航设备来确定飞机的位置和航向。

二、航空安全知识1. 飞机起降时的安全注意事项在飞机起降时,乘客需要系好安全带并听从机组人员的指令。

在飞行过程中,遵守机舱规定,不擅自打开舱门并遵守机组人员的指示。

2. 飞机紧急情况处理在飞机发生紧急情况时,乘客需要冷静应对,听从机组人员的指示。

通常飞机会配备应急滑梯和救生设备,乘客需要按照机组人员的指示迅速疏散并使用这些设备。

3. 飞机的安全设施飞机通常配备灭火器、救生衣、救生艇和应急设备等,以应对紧急情况。

乘客需要熟悉并掌握这些安全设施的使用方法。

三、航空文化知识1. 航空发展历程航空发展历程可追溯到20世纪初,经历了飞艇时代、螺旋桨飞机时代和喷气式飞机时代等阶段。

随着科技的发展,航空业得到了飞速的发展,成为现代交通运输的重要组成部分。

2. 航空业的发展前景随着经济的发展和技术的进步,航空业将会持续壮大。

新一代飞机将更加环保和节能,同时航空科技也将带来更加便捷和安全的飞行体验。

四、航空常识1. 飞机的分类飞机根据用途和结构可以分为民航飞机、军用飞机、货运飞机、直升机等。

根据机翼的形状和位置可以分为定翼飞机和旋翼飞机。

2. 航空事故航空事故是指飞机在起飞、飞行或着陆过程中发生的意外事件。

航空知识

航空知识

航空(aviation),一种复杂而有战略意义的人类活动,指飞行器在地球大气层(空气空间)中的飞行(航行)活动 [1]。

英文航空一词来源于拉丁文鸟(avia)或空气(aero)。

从事飞行活动的飞行器,也称航空器,分为轻于空气的航空器和重于空气的航空器两类。

前者如气球、飞艇等,利用空气静浮力升空;后者如飞机、直升机等,则利用空气动力升空。

以下是一些航空知识:1、地球同步轨道的高度是35800千米,顾名思义,他运行一周的时间和地球自转的时间相同,和地面保持相对静止。

同步轨道有很多用途,主要是用于通讯和定位,理论上只需要三颗就可以完成全球通讯,除了同步轨道,还有一种极轨道,他的轨道倾角是90度,多数勘测和定位卫星使用极轨,他能实现覆盖全球的扫描。

2、其实,运载火箭主打两种燃料,液氧液氢和液氧煤油。

助推火箭、1、2级火箭多数是液氧煤油火箭。

氢燃烧释放的能量比煤油高,但制取氢需要大量的能源,且液氢属于低温液体,不易保存和运输。

为了摆脱地心引力将卫星送上轨道,火箭要达到第一宇宙速度,在发射阶段,火箭在大气中飞行,速度不断提升,并且一级比一级质量要轻,起飞阶段要消耗大量燃料,所以使用液氢是不现实的,煤油更容易获得且污小。

在最后阶段,靠液氢燃烧释放的巨大能量加速。

3、美国航天飞机在返回过程中是纯粹的滑行,他的喷口其实是用来让发射时的火箭保持平衡,而苏联则不同,暴风雪号的主发动机被安装在质子号运载火箭上,而暴风雪号有自己的小型动力系统。

4、大家耳熟能详的太空望远镜是哈勃,它也为我们拍的了成千上万张美丽的星空图片,但是他找到的行星少之又少,开普勒望远镜为行星而生,它靠凌日,通俗理解就是行星遮住所在的恒星,虽然亮度变化只要千分之一,但它依然能分辨得出,目前它已经找出数千颗行星了。

航空知识

航空知识

一,所谓“航空”,就是人类在地区大气层中的活动,所使用的飞机,直升机,飞艇和气球等飞行器统称为(航空器)所谓“航天”就是人类冲出地球大气层,到宇宙太空中去活动,即(宇宙航行)它所使用的是(航天器)及其(运载火箭)。

火箭从飞机上发射一,运载火箭一般从发射台上发射,也可从飞机上发射1990年4月5日美国的(飞马座)火箭首次经过改装的B52轰炸机上发射成功。

火箭被送至1.3万米的高空释放5秒种后。

火箭下降了近100米。

然后点火,9分钟后将一颗质量为191千克的卫星送入高584千米,倾角为94度的极地轨道。

2003年1月25日和4月28日,飞马座火箭有成功的发射两次。

至此飞马座火箭已成功发射33次,只有3次失败。

火箭为什么要从飞机上发射一是便宜,火箭的发射费用仅为同规模地面发射的一半,二是运载能力可提高一倍,三0机可以在不同地点的机场起飞,飞到地面上空任何地点发射不受地理位置的限制。

一旦地面发射设施遭到破坏。

速采用这种方式发射侦察,通行卫星。

四是从空中发射可以提高隐蔽性。

正因为如此,美,俄两国都看好这种发射方式。

然而,空中发射也受飞机载重的影响,只能发射小型火箭,只能用专用飞机发射,飞机的维修飞永恒奥,而且不能经常使用。

三种航天器的区别载人航天器家族中有三个成员:载人飞船、空间站和航天飞机,人类就是乘坐它们摘星揽月的。

载人飞船独立往返于地面和空间站之间,如同人类沟通太空的渡船。

它能够与空间站或者是其他航天器对接后进行联合飞行。

但是,飞船容积小,所载消耗性物资有限,不具备再补给的能力,所以它的太空运行时间有限,仅能够使用一次。

与载人飞船相比,空间站容积大、载人多、寿命长,可综合利用,是发展航天技术、开发利用宇宙空间的基础设施。

航天飞机是一种多用途航天器。

它能满足发射、修理和回收卫星以及运送人员、物资等需要,可多次重复使用,降低了运载成本。

[NextPage]。

航空知识文案短句

航空知识文案短句

航空知识文案短句目录:1. 航空的起源与发展2. 航空的重要性与影响3. 不同类型的飞行器4. 航空运输的安全措施5. 航空业的未来发展趋势6. 航空旅行中的常见问题与解决方法7. 飞行员的职责与训练要求内容:1. 航空的起源与发展航空的起源可以追溯到人类对于飞翔的渴望。

从最早的热气球到现代的喷气式飞机,航空技术和设备经过了长时间的发展。

航空在国际贸易、旅游业等方面发挥着重要作用,也成为了人们连接世界的重要方式之一。

2. 航空的重要性与影响航空对于世界各国的经济发展和人民生活产生着重要的影响。

航空运输不仅加速了人员和货物的运输速度,也促进了文化交流和国际合作。

此外,航空业也为各行各业创造了大量的就业机会。

3. 不同类型的飞行器飞行器可以分为固定翼飞机、直升机、滑翔机和无人机等多种类型。

不同的飞行器具有各自的特点和用途。

固定翼飞机适用于长途航行,直升机适用于垂直起降和复杂环境,滑翔机可以在没有动力的情况下在空中飞行,无人机则具有多种应用领域。

4. 航空运输的安全措施航空运输非常注重安全。

航空公司会严格执行安全检查和维护程序,以确保飞机的可靠性和安全性。

飞行前的检查、乘客安检、飞行员的专业训练等都是航空运输中的重要安全措施。

5. 航空业的未来发展趋势航空业正向着更环保、更高效的方向发展。

随着科技的进步,电动飞机和太阳能飞机等新型飞行器正在不断研发和应用。

此外,航空业还在努力减少对环境的不良影响,推动绿色航空的发展。

6. 航空旅行中的常见问题与解决方法在航空旅行中,乘客可能会遇到行李丢失、航班延误等问题。

针对这些问题,乘客可以及时与航空公司进行沟通,并了解自己的权益和应对措施。

此外,合理规划行程、提前安排时间等也能帮助乘客避免不必要的麻烦。

7. 飞行员的职责与训练要求飞行员是航空运输中不可或缺的角色。

他们需要经过严格的训练,熟悉飞行器的操作和各种紧急情况的处理。

飞行员的职责包括确保飞行安全、遵守航空规章等。

航空知识科普

航空知识科普

航空知识科普
航空知识科普
一、解释航空交通
航空交通是指利用飞机、直升飞机或其他航空器实现的空中有效运输服务。

它涵盖空中运输服务,以及航空服务交易,包括商业、客运、货物、隐形航空活动,也包括航空飞行培训、航空票务,以及技术维护服务等。

二、航空知识科普
1、飞行高度
飞行的高度是指飞机安全飞行所必需的最低高度,也即在任何情况下都不可低于这个高度,也就是说,飞机大概在这个高度以下飞行不安全,容易出现危险情况。

根据国际民航组织的规定,机组必须保持飞机以最小的安全高度飞行,以免与其他飞机发生碰撞。

2、机组
机组是指飞行时在机舱内的人员,具体包括飞行指挥员(或又称航空机长)、副驾驶(也又称副机长),如果有的话还有机务员和乘务员。

机组成员应具备高度的责任感和良好的技能,以确保乘客安全出行。

3、机务
机务是指涉及飞机维护和保养的工作,包括定期检查、定检和其他大修等。

例如定期检查,根据机型不同,机务部门会给出相应的检查指南,以确保飞机在飞行中处于最佳状态。

为确保机务系统的可靠
性,飞行机务人员也应对所有机务活动负责。

三、总结
航空交通是指利用飞机、直升飞机或其他航空器实现的空中有效运输服务,又称航空服务。

航空知识科普包括飞行高度、机组和机务等。

它们是旅客安全出行的重要保障,是保证航空交通可靠性的重要要素。

小小飞行员航空知识

小小飞行员航空知识

小小飞行员航空知识飞行对于许多孩子来说是一种神秘而激动人心的事物,而作为小小飞行员,了解航空知识是非常重要的。

在本文中,我们将介绍几个关键的航空知识点,帮助小小飞行员们更好地了解飞行。

一、飞行器的类型飞行器分为固定翼飞机和旋翼飞机两种类型。

固定翼飞机是我们通常所见到的商用客机和小型飞机,其翅膀是固定的,通过空气动力学原理来产生升力。

旋翼飞机则是直升机的代表,其通过旋转的旋翼来产生升力和推力。

二、飞行器的部件飞行器主要由机身、机翼、动力装置和操纵装置等部件组成。

机身是飞行器的主要结构,一般包括驾驶舱、客舱和货舱等区域。

机翼是固定翼飞机的主要部件,它负责产生升力和控制飞行。

动力装置一般是发动机,可以是喷气式发动机或者涡轮螺旋桨发动机。

操纵装置包括方向舵、副翼和升降舵等,用于控制飞行器的姿态和方向。

三、飞行的基本原理飞行的基本原理是通过空气动力学原理产生升力,用推力驱动飞行器前进。

升力是指飞行器受到的向上的力,由机翼产生。

推力则是指飞行器的动力装置产生的向前的力,使得飞行器能够前进。

通过合理控制飞行器的升力和推力,可以实现平稳的飞行状态。

四、飞行员的工作飞行员是飞行器的控制者和指挥者,他们的工作包括操纵飞行器、保持飞行安全和导航等。

在飞行过程中,飞行员需要熟练掌握飞行器的操纵技巧,包括起飞、飞行和降落等。

同时,他们还需要根据飞行计划进行导航,并随时保持对飞行环境的监控,确保飞行的安全。

五、飞行的安全知识飞行的安全是至关重要的,小小飞行员们需要了解一些飞行的安全知识。

首先,要定期检查飞行器的机械部件,确保其正常运行。

其次,要在飞行前查看天气预报和飞行计划,确保飞行条件良好。

此外,在飞行过程中要遵守飞行规则,保持与其他飞行器的距离,避免碰撞。

六、航空的发展航空作为一项重要的交通工具和技术,不断发展和进步。

随着科技的进步,飞行器的性能和安全性得到了大幅提升。

航空业也成为了国家经济发展的重要支柱之一,为人们提供了更为便捷和快速的出行方式。

航空知识概论

航空知识概论

飞机飞行原理1.什么称作空气的压力,空气的温度和空气的密度?它们之间存在什么关系?空气压力(P)是作用在单位面积上且方向垂直于此面积的力空气温度(T)是描述空气分子运动猛烈程度的指标空气密度(ρ)是指空气所占空间内单位体积的质量它们之间的关系是P = ρRT其中R 为空气常数。

2.什么叫作不行压流体?什么叫作可压流体?当压力或温度变化时流体会随着转变自身的体积或密度,对这种变化反响很小的流体称为不行压流体,反之,对这种变化反响大的称为可压流体。

3.何谓声速?通过声速大小的比较对流体的可压缩性可作出何种推断?声音在流体中的传播速度称为声速。

流体的可压缩性越大,声速越小,可压缩性越小,声速越大。

4.何谓飞行马赫数和飞行雷诺数?各具有什么物理意义?飞行马赫数:飞行速度与飞行高度上的声速的比值。

飞行马赫数越大,空气受到的压缩程度越大。

反之亦然。

飞行雷诺数:表示惯性力与粘性力的比值。

飞行雷诺数越大,说明空气粘性作用越小,反之亦然。

5.什么称作物体的临界马赫数?在流场中,物体四周流体最大流速点到达声速,此时对应来流的马赫数称为该物体的临界马赫数。

6.低速飞机与超音速飞机在外形上有哪些不同?低速飞机与超音速飞机在外形上大致有以下一些不同:低速飞机超音速飞机机翼平面外形平直翼,梯形翼等后掠翼,三角翼等机翼展弦比大小机翼后掠角0或很小大机翼翼型圆头,尖尾尖头,尖尾机翼翼型相对厚度大小机翼梢根比大小机身长细比小大机身头部外形短粗,圆头瘦长,尖头7.何谓飞机的最小平飞速度和最大平飞速度?飞机能够保持某一固定高度在空中作等速直线飞行的最小速度称为最小平飞速度。

在水平直线飞行条件下,在肯定距离内发动机推力为最大状态飞机所能到达的最大平衡飞行速度,称为最大平飞速度。

8.何谓飞机的巡航速度?何谓飞机的航程?飞机每公里耗油量最小的飞行速度称为巡航速度。

在载油量肯定的条件下,以巡航速度飞行所能飞跃的距离称为航程。

飞机的根本构造1.对飞行器机体构造的一般要求是什么?空气动力要求:保证飞行器具有良好的空气动力外形以及必要的准确度和外表质量;质量和强度刚度要求:在保证足够的强度和刚度的条件下质量最轻;使用维护要求:要求使用便利,便于检查,维护和修理;工艺和经济性要求:制造简洁,生产本钱低,周期短。

航空知识大全

航空知识大全

航空知识大全航空知识大全航空知识是现代社会中必备的常识之一。

了解航空知识不仅可以丰富我们的知识储备,还可以帮助我们更好地理解航空事业的发展和相关概念。

下面是一些基本的航空知识,希望能对大家有所帮助。

一、起飞和降落1. 起飞:飞机起飞前需要进行一系列的准备工作,包括确认机舱门关闭、尾翼锁紧、机身平衡等。

然后飞机将在跑道上加速,达到起飞速度后,机翼产生升力,飞机离地并开始爬升。

2. 降落:飞机降落时,需要先放下起落架,并下降至目标跑道高度。

接近跑道时,飞行员会逐渐减小速度,使飞机慢慢接近地面。

最后,飞机轮胎触地,刹车系统开始工作,将飞机完全停稳。

二、航空器构造1. 机身:飞机的主要部分,包括客舱、货舱、机翼等。

2. 机翼:飞机两侧的翅膀,可以产生升力,并支撑飞机的重量。

3. 发动机:飞机的动力源,可以产生推力推动飞机前进。

4. 起落架:飞机在地面行驶和起降时用来支撑飞机的结构。

5. 尾翼:包括垂直尾翼和水平尾翼,用于飞机的稳定和方向控制。

三、航班及航空公司1. 航班:指航空公司根据某一特定航线计划好的航空服务,包括出发地、目的地、时间、停靠城市等信息。

2. 航空公司:提供航空运输服务的企业,包括国内航空公司和国际航空公司。

3. 飞行员:飞机的驾驶员,负责驾驶飞机的起飞、降落、巡航等过程。

四、飞行安全1. 飞行高度:飞机在飞行过程中,通常在大气层中飞行,根据需要可以改变高度。

2. 飞行速度:飞机的速度通常以马赫数表示,马赫数1表示飞机的速度等于音速。

3. 遇险情况:在飞行过程中,如果遇到不可预料的情况,如机械故障、天气恶劣等,飞机可能面临冲撞、坠落等危险,乘客和机组人员需要按照紧急逃生的程序行动。

五、航空特点和术语1. 大气阻力:飞机在飞行过程中,会受到大气的阻力,需要消耗燃料来克服这种阻力。

2. 空气动力学:研究飞机在空气中的运动和力学性质的学科。

3. 航程:飞机在一次飞行中所行驶的距离。

4. 班次:航空公司在一条航线上安排的飞行计划。

常识航空知识点总结

常识航空知识点总结

常识航空知识点总结航空知识是指有关飞机、飞行器和航空领域的知识,包括航空工程、飞行技术、航空法规、飞行领域的安全标准等。

一、航空工程知识点1.飞机结构飞机的结构包括机翼、机身、尾翼、发动机等部件。

机翼是飞机的主要承载部件,其结构包括翼桁、翼肋、翼皮等部分。

机身是飞机的主要承载部件,结构包括龙骨、壳体、隔离布局等部分。

尾翼包括垂直尾翼和水平尾翼,主要用于保持飞机的稳定性和操纵性。

发动机是飞机的动力装置,主要用于提供推力和驱动飞机的旋翼。

2.航空材料航空材料主要包括金属、复合材料和塑料等。

金属材料主要用于飞机的结构部件,如铝合金、钢材等。

复合材料主要用于提高飞机的强度和减轻飞机的重量,如碳纤维、玻璃纤维等。

塑料材料主要用于飞机的内饰装饰和附件部件,如塑料壳体、玻璃钢材等。

3.航空润滑航空润滑主要是指飞机的润滑系统和润滑油。

飞机的润滑系统包括油泵、油箱、管道等部件,用于为飞机提供润滑油。

润滑油主要用于减少飞机的摩擦,保护飞机的发动机和润滑系统。

4.飞机的动力装置飞机的动力装置主要包括涡轮喷气发动机、螺旋桨发动机等。

涡轮喷气发动机主要用于大型客机和货机,能够提供大推力和高速飞行。

螺旋桨发动机主要用于小型飞机和通用飞机,能够提供较小的推力和较低的速度。

5.飞机的液压系统飞机的液压系统主要用于控制飞机的起落架、襟翼、方向舵等部件。

液压系统包括液压泵、油箱、油管、液压缸等部件,用于为飞机提供液压动力。

6.飞机的电气系统飞机的电气系统主要用于为飞机提供电力和控制信号。

电气系统包括发电机、电池、电线、开关等部件,用于提供飞机的电力和控制信号。

7.飞行控制系统飞行控制系统主要用于控制飞机的起飞、飞行和降落。

飞行控制系统包括操纵杆、襟翼、升降舵、方向舵等部件,用于控制飞机的姿态和航向。

8.飞机的轻合金材料轻合金材料主要用于减轻飞机的重量,提高飞机的有效载荷和航程。

轻合金材料包括镁合金、铝合金、钛合金等,用于飞机的结构和部件。

空中乘务专业中的航空知识与航空文化

空中乘务专业中的航空知识与航空文化

空中乘务专业中的航空知识与航空文化航空业是现代社会不可或缺的一部分,而空中乘务专业则是航空业中的重要组成部分。

作为空中乘务人员,除了具备良好的服务技能和沟通能力外,对航空知识与航空文化的了解也是必不可少的。

本文将从航空知识和航空文化两个方面,探讨空中乘务专业中的重要内容。

一、航空知识1. 航空器种类与结构航空器主要分为固定翼飞机、直升机和无人驾驶飞行器。

固定翼飞机是最常见的航空器,其结构包括机翼、机身、机尾和发动机等部分。

直升机则是通过旋翼产生升力和推进力的飞行器。

无人驾驶飞行器是指没有人操控的飞行器,通常用于军事侦察、科学研究等领域。

2. 飞行原理与航空气象飞行原理是指飞机在空中飞行时所依据的物理原理,包括升力、阻力、推力和重力等。

航空气象则是研究大气现象对飞行的影响,如气温、气压、湿度、云层和风力等。

了解飞行原理和航空气象对空中乘务人员在应对突发状况时具有重要意义。

3. 安全与紧急情况处理空中乘务人员需要掌握各类安全操作规程和紧急情况处理方法,如火警、紧急迫降、氧气面罩使用等。

此外,了解紧急出口位置、救生设备的使用以及紧急滑梯的操作也是必备的技能。

二、航空文化1. 航空历史与发展航空历史与发展是航空文化的重要组成部分。

从莱特兄弟的飞行实验到现代航空技术的高速发展,了解航空历史对于培养空中乘务人员的职业荣誉感和责任感具有重要作用。

2. 航空礼仪与服务文化航空礼仪和服务文化是空中乘务人员必须具备的素质。

航空礼仪包括对乘客的问候、引导和服务等方面,而服务文化则涉及到航空公司的服务理念、服务标准和服务技巧等。

通过培养良好的航空礼仪和服务文化,空中乘务人员能够提供高质量的服务,满足乘客的需求。

3. 航空文学与影视作品航空文学与影视作品是了解航空文化的一种途径。

从《追风筝的人》到《机器人总动员》,航空题材的文学作品和电影作品可以让人感受到航空业的魅力和激情。

空中乘务人员可以通过阅读和观看这些作品,进一步了解航空文化的内涵与价值。

航空知识普及

航空知识普及
以航空为主题的电影、电视剧、纪录片等。
航空音乐
以航空为主题的音乐作品,如飞行主题的歌曲等。
文学作品
以航空为主题的文学作品,如小说、诗歌等。
航空艺术与影视作品
感谢您的观看
THANKS
铝合金
轻质、高强度、易于加工,广泛应用于飞机结构。
航空材料
02
航空交通管理
空中交通管制
空中交通管制概述:空中交通管制是为了确保空中交通安全、有序和快速流动而进行的。它包括对航空器的航行许可、飞行计划、飞行跟踪和交通咨询等方面的管理。
航行情报服务
航行情报服务的概述:航行情报服务是为航空器提供飞行所需的各类情报资料,包括气象、地形、航路、设施等,以确保飞行安全和效率。
航空事件
重要的航空事件和里程碑,如人类首次登月、商业航班等。
航空历史与博物馆
飞行体验
航空公司推出的主题航班,如音乐主题航班、电影主题航班等。
主题航班
航空旅游景点
航空旅游产品
01
02
04
03
航空公司推出的旅游产品,如包机服务、私人飞机租赁等。
提供给游客的飞行体验服务,如跳伞、热气球等。
世界各地的航空旅游景点,如航空博物馆、飞机餐厅等。
航空旅游与体验
航空展览会
全球各地的航空展览会,展示最新的飞机、技术等。
航空主题活动
如飞行表演、航空摄影比赛等。
航空节日
全球各地的航空节日,如国际航空航天节、飞行器展览节等。
虚拟现实体验
利用虚拟现实技术让游客体验飞行的感觉。
航空主题活动与节日
航空艺术
以航空为主题的艺术作品,如绘画、雕塑等。
影视作品
国际航空法规
各国政府根据国际法规制定符合本国实际的航空法规,如中国的《民用航空法》和《航空安全保卫条例》。

航空知识汇总

航空知识汇总

航空知识汇总1、什么是电子客票?电子机票是普通纸质机票的电子形式,电子票将票面信息存储在订座系统中,可以像纸票一样执行出票、作废、退票、换、改转签等操作。

与传统纸质机票相比,电子客票具有明显的优势,主要在于:(1)可直接通过互联网在线支付票款,无需送票、取票。

减少因送票、付款等带来的繁琐手续及额外费用。

(2)乘客只需要记住航班号和起飞时间,凭借有效身份证件就能在机场办理登机手续,不存在丢失机票的问题。

"无纸化"乘机,轻松环保,绿色健康。

2、电子客票的报销及电子客票行程单?(1)电子客票行程单全称为"航空运输电子客票行程单",是由国家税务总局监制,与民航总局联合发文批准的记录电子客行程、运价信息的单据,用作旅客报销凭证,不作为通过机场安检以及登机的凭证。

(2)购买了电子客票的旅客凭电子客票行程单进行报销。

电子客票行程单遗失不补,不能挂失。

(3)旅客可以在网指定机场或者通过邮寄的方式领取。

如果您要求邮寄,我们将在航班起飞当日或次日寄出行程单,通常在7-14个工作日内送达。

如果您在航班起飞后7个工作日内仍未收到邮寄的行程单,请致电金色世纪网,我们会进行相关的处理。

(4)行程单的有效打印期限为:客票全部航段未使用并查验客票状态为“open for use”状态,一年之内都可以打印,客票全段全部使用后7天内可以打印行程单。

4、飞机票需要什么证件?中国旅客购票,须提供本人居民身份证,并填写《旅客定座单》;外国游客,华侨,港,澳,台胞购票。

须出示有效护照回乡证台胞证,居留证,旅行证或公安机关出示的其它有效身份证件,并填写《旅客定座单》购买儿童票(两周岁-12周岁)、婴儿票(两周岁以内),应提供儿童、婴儿出生年月的有效证明。

重病旅客购票,须持有医疗单位出具的适于乘机的证明,经承运人同意后方可购票。

购买承运人规定的优惠票,应提供规定的证明5、有效的乘机身份证件有哪些?有效乘机身份证件的种类包括:中国籍旅客的居民身份证、临时身份证、军官证、武警警官证、士兵证、军队学员证、军队文职干部证、军队离退休干部证和军队职工证,港、澳地区居民和台湾同胞旅行证件;外籍旅客的护照、旅行证、外交官证等;民航总局规定的其它有效乘机身份证件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ETOPS:双发飞机延伸航程运行双发飞机延伸航程运行:ETOPS (Extended Twin-engine OPerationS)ETOPS是国际民航管理机构专门为了保证双发飞机安全飞行而提出的一项特别的要求。

当双发飞机的一台发动机或主要系统发生故障时,要求飞机能在剩余一台发动机工作的情况下,在规定时间内飞抵最近的备降机场(改航机场diversion airport)。

这就是通常所说的ETOPS要求。

比如,获得“180分钟ETOPS”就是指飞机单发失效的情况下飞往备降机场所规定的时间不能超过180分钟。

这样就要求该飞机在航路选择上应满足要求。

ETOPS主要应用在跨洋飞行,因为此时可供选择的备降机场较少,如果没有ETOPS能力,意味着飞机需要选择尽量靠海岸线的航路飞行,以确保安全。

简单而言,ETOPS能力越强,意外着航空公司可以利用双发飞机开辟更多的直飞跨洋航线。

ETOPS的目的是提供高水平的安全性,便于双发飞机不受先前限制的与四发和三发飞机一样续航。

中国民用航空仪表着陆系统Ⅱ类运行规定(一)精密进近:使用仪表着陆系统(ILS)、微波着陆系统(MLS)或精密进近雷达(PAR)提供方位和下滑引导的仪表进近。

(二)非精密进近:使用全向信标台(VOR)、导航台(NDB)或航向台(LLZ,或ILS下滑台不工作)等地面导航设施,只提供方位引导,不具备下滑引导的仪表进近。

(三)超障高(OCH):以跑道入口的标高平面为测算高的基准,按照适当的超障准则确定的最低高。

(四)决断高(DH):在精密进近中,以跑道入口的标高平面为基准规定的高,航空器下降至这个高,如果不能取得继续进近所需的目视参考,必须开始复飞。

(五)能见度(VIS):白天能看到和辨别出明显的不发光物体或晚上能看到明显的发光物体的距离。

(六)跑道视程(RVR):航空器在跑道中线上,驾驶员能看到跑道道面标志或跑道边灯或中线灯的最大距离。

(七)机场运行最低标准:机场适用于起飞或着陆的限制,对于起飞,用能见度(VIS)或跑道视程(RVR)表示,如果需要应包括云高;目视飞行仪表飞行(精密和非精密)对于精密进近着陆,用能见度(VIS)或/和跑道视程(RVR)和决断高(DH)表示;对于非精密进近着陆,用能见度(VIS)、最低下降高(MDH)和云高表示。

(八)精密进近和着陆运行类别Ⅰ类(CATI)运行:决断高不低于60米(200英尺),能见度不小于800米或跑道视程不小于550米的精密进近和着陆。

Ⅱ类(CATⅡ)运行:决断高低于60米(200英尺),但不低于30米(100英尺),跑道视程不小于350米的精密进近和着陆。

ⅢA类(CATⅢA)运行:决断高低于30米(100英尺),或无决断高,跑道视程不小于200米的精密进近和着陆。

ⅢB类(CATⅢB)运行:决断高低于30米(100英尺),或无决断高,跑道视程小于200米,但不小于50米的精密进近和着陆。

ⅢC类(CATⅢC)运行:无决断高和无跑道视程的精密进近和着陆。

(十一)无障碍区(OFZ):由内进近面、内过渡面、中止着陆面和部分升降带所包围的空间,在这个空间内,除少量规定的项目外,没有任何固定的障碍物穿透。

(十二)机场机动区:机场用于航空器起飞、着陆和滑行的区域,不包括停机坪。

(十三)机场活动区:机场用于航空器起飞、着陆和滑行的区域,包括机动区和停机坪。

(十四)机场控制区:根据安全需要,在机场内划定的人员、车辆进入受到限制的区域。

(十五)排灯:紧密地排在一条横线上的三个或三个以上的航空地面灯。

(十六)灯的失效:当由于某些原因,光束偏离规定的垂直或水平方向或平均光强低于规定的新灯平均光强的50%时,该灯即为失效。

(十七)灯光系统的可靠性:指全部装置在规定的允许误差范围内运行,并且该系统维持在可用状态的概率。

飞机进近类别的定义根据批准的航空器最大着陆重量,以着陆形态的失速速度的1.3倍将航空器分为ABCDE 五类。

一般一种航空器只能属于一个类别,当航空器需要以大于该类别速度范围上限的速度机动时,则自动升级到上一级类别。

A类-指示空速小于169km/h(91kt);B类-指示空速169km/h(91kt)或以上但小于224km/h(121kt);C类-指示空速224km/h(121kt)或以上但小于261km/h(141kt);D类-指示空速261km/h(141kt)或以上但小于307km/h(166kt);E类-指示空速307km/h(166kt)或以上但小于391km/h(221kt);【失速速度:飞机的升力系数随飞机迎角的增加而增大。

当迎角增加到某一数值后,升力系数不升反降,导致飞机升力迅速小于飞机重力,飞机便很快下坠,这种现象称为失速。

】燃油每次航班起飞前签派员和机长必须确认,飞机装载的燃油量必须足以完成计划的飞行航段、航线机动、以及计划的备降航段、等待航线的耗油量。

(1)地面燃油消耗量包括起飞前启动发动机、滑行,及辅助动力装置消耗的燃油量。

(2)航段耗油量用于起飞、爬升到巡航高度、巡航、下降及进近并着陆使用的燃油量。

(3)航线机动油量用于不能按飞行计划的巡航高度或航迹飞行,而产生的变更,预报高空风值的偏差,或其他航线飞行所无法预料的情况。

航线机动油量以下降顶点燃油流量为基础,计算整个航程的总飞行时间10%的油量。

(4)备份油量(备降油量和等待油量之和)备降油量飞往备降机场的油量,包括在目的地机场复飞、爬升、保持远程巡航速度巡航、下降至备降机场,在备降机场进近和着陆的油量。

等待油量国内飞行在备降机场上空后,还能以正常巡航消耗率飞行45分钟的油量。

国际飞行在备降机场上空450米,标准温度条件下以等待速度飞行30分钟的油量。

(5)额外油量国内航线燃油政策国内飞行,签派放行飞机或使飞机起飞时,该飞机应载有能够完成下列飞行的足够燃油:(1)飞往被签派的目的地机场;然后(2)飞往签派放行单中目的地机场的最远备降机场并着陆;(3)还能以正常巡航燃油消耗率飞行45分钟。

国际和地区航线燃油政策国际和地区航线飞行,必须为目的地机场选择至少一个备降机场签派放行飞机或使飞机起飞时,该飞机应当载有能够完成下列飞行的足够燃油:(1)飞往目的地机场并在该机场着陆;(2)以下降顶点燃油流量为基础,计算整个航程的总飞行时间10%的油量;(3)然后,飞至签派放行单中指定的最远备降机场并着陆;(4)以等待速度在备降机场上空450米高度上,在标准温度条件下飞行30分钟。

机场高高原机场:海拔高度2438m(8000英尺)及以上的机场。

高原机场:海拔高度1500m(4922英尺)及以上,但低于2438m(8000英尺)的机场。

特殊机场(符合下列因素之一):(1)机场位于山谷、山腰或山顶,周围地形复杂;(2)进近助航设施或进近程序不标准;(3)机场标高1500m(4922英尺)及以上,且导航设施只能提供非精密进近程序;(4)当地气象条件异常;(5)具有异常特性或性能限制;(6)机场只有单一的导航设施和程序;(7)无合适的目的地备降机场,需要航线上选择一预定点飞往备降机场;(8)需要制定起飞一发失效应急程序;(9)因受地形限制,机场只有单向着陆的跑道,需要制定一发失效的决断高度/高、最低下降高度/高或为低高度复飞制作专门的复飞应急程序;(10)因地形原因导致非标准的进近着陆程序和起飞离场程序;(11)机场标高2438m(8000英尺)及以上。

形成运行计划的依据由定期航班、非定期航班和非盈利飞行(训练飞行、试验飞行和调机飞行)组成。

运行控制的优先顺序为:专机飞行、特殊或紧急任务飞行、定期航班、非定期航班、训练飞机。

有重要客人的航班在同等条件下,相对优先。

大面积航班延误大量航班延误在同等的条件下,航班放行顺序:(1)专机、特殊任务;(2)重要旅客航班;(3)有宵禁等时间限制的航班;(4)国际航班;(5)大型、宽体客机(按旅客人数);(6)基地进出港衔接航班;(7)航班出港时间顺序;(8)机位的远近等。

飞机性能飞机性能分析包括机场和航线的适航性、飞机起飞着陆性能、起飞应急程序、航线分析、航线安全性、延误运行(ETOPS)分析、飞机性能监控和载重平衡等方面。

起飞:飞机从开始滑跑至离开地面爬升到35英尺高度并达到起飞安全速度V2的过程;起飞距离:飞机从开始滑跑至爬升到35英尺高度所通过的水平距离。

起飞滑跑距离:飞机从开始滑跑至离地经过的距离;可用起飞滑跑距离(TORA)Take-off Run Available适宜于飞机起飞时作地面滑跑使用的跑道长度。

可用起飞滑跑距离TORA=跑道长度RWY -跑道末端内移可用起飞距离(TODA)Take-off Distance Available可用起飞滑跑距离加上净空道的长度。

TODA=TORA+净空道长度CWY。

可用加速停止距离(ASDA)Accelerate Stop Distance Available可用起飞滑跑距离加上停止道的长度。

ASDA=TORA+停止道长度SWY。

可用着陆距离(LDA)Landing Distance Available适宜于飞机着陆时作地面滑跑使用的跑到长度。

可用着陆距离LDA=RWY-跑道入口内移跑道有效长度从跑道进近端得超障面与跑道中心线的交点至跑道最远端的距离。

超障面:与水平面成1:20的斜率从跑道向上倾斜,与跑道周围规定区域内的所有障碍物相切或越过其上的平面。

几种起飞速度决断速度(V1)起飞过程中,临界发动机停车时,驾驶员可选择继续起飞或中断起飞,决定继续起飞或中断起飞的临界速度成为决断速度。

抬前轮速度(V R)飞机开始抬前轮的速度。

在该速度抬前轮可使飞机在起飞终点达到高于起飞表面35英尺的高度并能使速度达到起飞安全速度,抬前轮速度不小于决断速度也不小于105%*空中最小操纵速度。

对给定的条件(飞机重量、飞机构形和环境温度等),继续起飞和全发起飞均使用相同的抬前轮速度值。

起飞滑跑过程中,飞机前轮离地时的瞬时速度。

起飞安全速度(V2)起飞终点应达到的速度。

为保证安全,起飞安全速度不小于1.13倍失速速度和1.1倍空中最小操纵速度。

起飞安全速度又称起飞爬升速度(Takeoff Climb Speed),用符号V2表示,是当飞机在一发失效时达到离地面上空35英尺时应达到的最小爬升速度,以校正空速表示,由申请人选定,以提供按FAR/JAR 25.121(b)所要求的爬升梯度。

此外,起飞安全速度不得小于和VR加上在飞机达到高于起飞表面10.7米高度时所获得的速度的增量。

失速速度(V S)起飞轨迹飞机从起飞安全速度至调整飞机外形上升至安全度(1500英尺)并加速到出航时的爬升速度的过程,共分为四个阶段。

(1)从飞机离地高度35英尺至起落架完全收起,在这一段内飞机除需保持正梯度外无其他性能上的要求。

相关文档
最新文档