利用导数处理与不等式有关的问题

合集下载

高考中利用导数证明不等式的一些策略

高考中利用导数证明不等式的一些策略

高考中利用导数证明不等式的一些策略1与lnx分开来考虑,即将f(x)分解为两个函数的和:f(x)=lnx+2ex-1.然后分别对这两个函数求导,得到f'(x)=1/x+2ex>0,说明f(x)在定义域上单调递增,且f(0)=1,因此f(x)>1成立。

评注:对于这种需要分离成两个函数的不等式,可以先观察不等式的特征,尝试将其分解为两个函数的和或差,然后分别对这些函数求导来证明不等式。

类型三、需要构造辅助函数的不等式1.利用辅助函数构造上下界例3(2016年全国卷1第23题改编)已知a,b,c>0,证明:(a+b+c)(1/a+1/b+1/c)≥9分析:将(a+b+c)(1/a+1/b+1/c)展开,得到a/b+b/a+a/c+c/a+b/c+c/b+3≥9.观察不等式中的每一项,可以发现这些项都可以表示为三个数的和,因此可以构造辅助函数f(x)=ln(x)+1/x-1,然后对f(x)求导,得到f'(x)=1/x^2-1,f'(x)>0当且仅当x1,因此f(x)在(0,1)和(1,∞)上分别是减函数和增函数。

接着,将a/b+b/a+a/c+c/a+b/c+c/b分别表示为f(ab)+f(ac)+f(bc)+3,然后应用均值不等式,得到f(ab)+f(ac)+f(bc)≥3f((abc)^(2/3))=3ln(abc)+3/(abc)^(2/3)-3.将此式代入原不等式中,得到3ln(abc)+3/(abc)^(2/3)≥6,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3.再次利用辅助函数,构造g(x)=lnx+(1/3)x^(-2/3)-2/3,对其求导得到g'(x)=1/x-(2/9)x^(-5/3),g'(x)>0当且仅当x9/4,因此g(x)在(0,9/4)和(9/4,∞)上分别是减函数和增函数。

由于a,b,c>0,因此abc>0,因此可将不等式中的abc替换为x,得到g(abc)≥0,即ln(abc)+(1/3)/(abc)^(2/3)-2/3≥0,即ln(abc)+(1/3)/(abc)^(2/3)≥2/3,因此原不等式成立。

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。

利用导数处理与不等式有关的问题

利用导数处理与不等式有关的问题

利用导数处理与不等式有关的问题作者:杨忠来源:《新课程·中学》2014年第08期摘要:导数是研究函数性质的一种重要工具。

在处理与不等式有关的综合性问题时往往需要利用函数的性质。

因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。

下面具体讨论导数在解决与不等式有关的问题时的作用。

关键词:导数;不等式;问题一、利用导数证明不等式1.利用导数得出函数单调性来证明不等式我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.具体有如下几种形式:由本例可知用函数单调性证明不等式时,如何选择自变量来构造函数是比较重要的.2.利用导数求出函数的最值(或值域)后,再证明不等式导数的另一个作用是求函数的最值,因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把证明不等式问题转化为函数求最值问题.例3:已知函数f(x)=(a+1)lnx+ax2+1.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)设a≤-2,证明:对任意x1,x2∈(0,+∞),f(x1)-f(x2)≥4x1-x2.【解题思路】利用导数考察函数的单调性,注意对数求导时定义域,第Ⅱ问构造函数证明函数的单调性.二、利用导数解决不等式恒成立问题不等式恒成立问题,一般都会涉及求参数范围,往往把变量分离后可以转化为m>f(x)(或m参考文献:赵大鹏.3+X高考导练:数学[M].中国致公出版社,2004-06.作者简介:杨忠,男,1979年5月出生,本科,就职学校:辽宁省大连市金州高级中学,研究方向:数学教学.。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

导数的应用——利用导数证明不等式

导数的应用——利用导数证明不等式

导数的应用——利用导数证明不等式导数是微积分中的重要概念,它不仅在数学中有广泛的应用,还能帮助我们解决一些实际问题。

利用导数来证明不等式是导数的另一个重要应用之一、在本文中,我们将探讨如何使用导数来证明一些不等式。

在开始之前,我们需要回顾一下导数的定义。

对于函数f(x),如果在特定点x处的导数存在,那么导数的定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,f'(x)表示函数f(x)在点x处的导数。

证明不等式的基本方法是比较函数在一些区间内的导数大小关系。

如果可以证明在这个区间内,一个函数的导数始终大于另一个函数的导数,那么我们可以推断出,这个区间内的一个函数始终大于另一个函数,从而得到不等式的证明。

下面将通过一些具体的例子来说明如何利用导数证明不等式。

例1:证明当x>0时,e^x>1+x首先,我们定义函数f(x)=e^x-(1+x),我们需要证明当x>0时,f(x)>0。

对于上述函数,我们可以计算它的导数f'(x)=e^x-1、现在我们只需要证明当x>0时,f'(x)>0即可。

对于x>0,显然有e^x>1,因此f'(x)=e^x-1>1-1=0,即f'(x)>0。

由此可知,当x>0时,f(x)是递增函数。

由此得到,f(x)>f(0),即e^x-(1+x)>1-(1+0)=0。

因此,当x>0时,e^x>1+x。

例2:证明当 x>-1 时,(1+x)^n>1+nx在这个例子中,我们需要证明当 x>-1 时,(1+x)^n>1+nx,其中 n是正整数。

我们定义函数 f(x) = (1+x)^n-(1+nx),我们需要证明当 x>-1 时,f(x)>0。

同样地,我们计算这个函数的导数f'(x)=n(1+x)^(n-1)-n。

函数导数不等式综合问题

函数导数不等式综合问题

函数导数不等式综合问题领悟高考:导数的引入使得研究函数的手段更丰富,研究更深入,给函数问题的设计背景增添了活力。

所以函数导数不等式问题一般是高考题中综合性很强的题目,单纯考查函数、不等式的试题很少,通常注重不等式与函数、导数以及数列、解析几何、三角等知识的综合,充分体现在知识交汇点设置水平试题的特点,考查综合使用知识的水平。

备考要点:1.会用导数工具研究函数的单调区间和极值(最值),并能以此为工具讨论函数的其他方面的性质;2.能使用导数工具解实际用题,并能对不等式相关问题,能透过函数观点借助于导数工具实行处理。

常见题型:(1)用导数研究函数的单调性、极值、最值等问题,极值问题要用表格分析,要注意x 的取值范围;(2)以对数函数(常用对数为主)为背景,结合对数运算,以考查对数函数的性质及图象等;(3)在导数背景下研究不等式的证明、利用导数求最值解决恒成立问题,注意对数函数的定义域;(4)以方程或二次函数为背景,结合考查函数、方程和不等式的知识,重视代数推理水平;(5)用函数、不等式性质或导数研究数列、解析几何、实际应用中的最值问题。

典例解析:例1已知某公司生产某品牌服装的年固定成本为10万元,每生产千件需另投入2.7万元,设该公司年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为)(x R 万元,且⎪⎪⎩⎪⎪⎨⎧>-≤<-=).10(31000108),100(3018.10)(22x x xx x x R(1)写出年利润W (万元)关于年产品x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这个品牌服装的生产中所获年利润最大?(注:年利润=年销售收入—年总成本)分析:关键在于建立数学模型和目标函数,抽象出具体的数学问题,化归为研究目标函数的最值。

解析:(1)当100≤<x 时,10301.8)7.210()(3--=+-=x x x x xR W ; 当10>x 时,x xx x xR W 7.23100098)7.210()(--=+-=。

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法

导数综合不等式恒成立问题主参换位法
当我们在解题时,经常会遇到需要证明一些不等式的问题。

而对于仅包含导数的不等式,我们可以使用主参换位法来进行求解。

主参换位法是一种基于函数的单调性来推导不等式的方法。

它的基本思想是通过构造一个合适的函数作为主参,在这个函数上进行主参换位,然后通过对比这个函数与原函数的大小关系,来得到原不等式的结论。

具体的步骤如下:
1. 将原不等式表示成导数的形式,即将不等式两边求导。

2. 构造一个主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

3. 对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

4. 比较主参函数与原函数的大小关系,得到原不等式的结论。

下面以一个例子来说明主参换位法的应用:
例:证明对于任意实数x,有x^2 + 3 >= 4x。

解:首先将原不等式表示成导数的形式,即求导。

导数的形式为:2x >= 4。

然后我们构造主参函数,使其在有关区间上的导数始终大于等于原函数的导数。

主参函数的形式为:2x。

接下来我们对主参函数进行主参换位,即将主参函数表示出关于原函数的形式。

主参换位得到:2x - 4 >= 0。

最后我们比较主参函数与原函数的大小关系,得到原不等式的结论。

原不等式的结论为:2x - 4 >= 0,即 x^2 + 3 >= 4x。

导数与不等式有关的问题

导数与不等式有关的问题

导数与不等式有关的问题1.已知函数f (x )=ax +x ln x 在x =e -2(e 为自然对数的底数)处取得极小值.(1)求实数a 的值;(2)当x >1时,求证:f (x )>3(x -1).解:(1)因为f (x )=ax +x ln x ,所以f ′(x )=a +ln x +1,因为函数f (x )在x =e-2处取得极小值,所以f ′(e -2)=0, 即a +ln e -2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2,所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增,所以f (x )在x =e -2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0).g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e.所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增,所以g (x )在(1,+∞)上的最小值为g (e)=3-e>0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).2.已知函数f (x )=ln x +a x. (1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a .解:(1)因为f ′(x )=1x -a x 2=x -a x 2(x >0),所以当a ≤0时,f (x )在(0,+∞)上单调递增,函数f (x )无最小值.当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2),由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ),则g ′(x )=(x -a )⎣⎡⎦⎤1x 2-1(2a -x )2=-4a (x -a )2x 2(2a -x )2<0, 所以g (x )在(0,a )上单调递减,g (x )>g (a )=0,即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1),由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1,故x 1+x 2>2a .3.已知函数f (x )=kx -ln x -1(k >0).(1)若函数f (x )有且只有一个零点,求实数k 的值;(2)求证:当n ∈N *时,1+12+13+ (1)>ln(n +1). 解:(1)∵f (x )=kx -ln x -1,∴f ′(x )=k -1x =kx -1x (x >0,k >0).当0<x <1k时,f ′(x )<0;当x >1k时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,1k 上单调递减,在⎝⎛⎭⎫1k ,+∞上单调递增,∴f (x )min =f ⎝⎛⎭⎫1k =ln k ,∵f (x )有且只有一个零点,∴ln k =0,∴k =1.(2)证明:由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号,∵n ∈N *,令x =n +1n ,得1n >ln n +1n, ∴1+12+13+...+1n >ln 21+ln 32+...+ln n +1n =ln(n +1),故1+12+13+ (1)>ln(n +1). 4.已知三次函数f (x )的导函数f ′(x )=-3x 2+3且f (0)=-1,g (x )=x ln x +a x(a ≥1). (1)求f (x )的极值;(2)求证:对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).解:(1)依题意得f (x )=-x 3+3x -1,f ′(x )=-3x 2+3=-3(x +1)(x -1),知f (x )在(-∞,-1)和(1,+∞)上是减函数,在(-1,1)上是增函数,所以f (x )极小值=f (-1)=-3,f (x )极大值=f (1)=1.(2)证明:易得x >0时,f (x )最大值=1,由a ≥1知,g (x )≥x ln x +1x (x >0),令h (x )=x ln x +1x(x >0),则h ′(x )=ln x +1-1x 2=ln x +x 2-1x 2,注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)上是增函数,h (x )最小值=h (1)=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).5.(2020·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞.综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ).(1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围.解:(1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞).(2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x 2-2x x -ln x在区间[1,e]上有解. 令h (x )=x 2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. 因为x ∈[1,e],所以x +2>2≥2ln x ,所以h ′(x )≥0,h (x )在[1,e]上单调递增,所以x ∈[1,e]时,h (x )max =h (e)=e (e -2)e -1,所以a ≤e (e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e (e -2)e -1.。

导数方法解决函数不等式的综合问题

导数方法解决函数不等式的综合问题

利用导数证明不等式
导数与不等式证明的 关系
通过构造函数并利用导数的性质, 可以证明某些不等式成立。
证明步骤
首先根据不等式构造一个适当的 函数,然后利用导数的性质分析 该函数的性质,从而证明原不等 式。
示例
证明不等式$e^xgeq x+1$对任 意实数$x$成立。构造函数 $f(x)=e^x-(x+1)$,求导得到 $f'(x)=e^x-1$。当$x<0$时, $f'(x)<0$,函数单调递减;当 $x>0$时,$f'(x)>0$,函数单调 递增。因此,函数在$x=0$处取 得最小值0,即$f(x)geq 0$恒成 立,从而证明了原不等式。
利用导数求最值
导数与函数最值的关系
求解步骤
示例
当函数在某点处取得极值时,该点处 的导数为0或不存在。通过求解导数 等于0的点,可以找到函数的潜在极 值点。
首先求出函数的导数,ቤተ መጻሕፍቲ ባይዱ后令导数等 于0解出潜在极值点,最后通过比较 这些点的函数值来确定最值。
求函数$f(x)=x^3-3x^2+4$在区间$[-2,3]$内 的最大值和最小值。通过求导得到 $f'(x)=3x^2-6x$,令$f'(x)=0$解得$x=0$或 $x=2$。比较这两点及区间端点的函数值,得 到最大值为$f(3)=4$,最小值为$f(0)=4$。
03
函数不等式类型及解法
一元函数不等式解法
确定函数单调性
通过求导判断函数的单调性,从而确定不等式的解集 范围。
寻找临界点
令导数等于零,找到函数的临界点,判断函数在这些 点的变化情况。
判断函数值
根据临界点将函数分成若干区间,判断每个区间上函 数的正负,从而得到不等式的解集。

利用导数证明不等式应该注意的几个问题

利用导数证明不等式应该注意的几个问题

利用导数证明不等式应该注意的几个问题作者:刘闯来源:《新校园·理论(上旬刊)》2011年第07期函数与不等式、导数知识的综合交汇,一直是高考重点考查的内容。

笔者在研究与导数有关的不等式证明问题时发现,这类问题入手点大都相同,但具体处理方式差别却很大。

下面谈一谈利用导数证明不等式常见的几个问题,希望对学生有所帮助。

一、通过二次求导,判断函数的单调性证明不等式f(x)>g(x),一般步骤是:作差、变形、判断符号,但如果作差后,差的正负判断起来比较困难,那么问题可转化成“只需证明f(x)-g(x)的最小(大)值大(小)于0”。

例1 已知x∈[1,+∞],求证ex>x2。

证明:令,f(x)=ex-x2,f'(x)=ex-2x.令g(x)=ex-2x,g'(x)=ex-2x,∵x∈[1,+∞)∴ex≥x>2∴g'(x)>0,g(x)为[1,+∞)的增函数。

∴g(x)≥g(1)=e-2>0.∴f'(x)>0 f(x)为[1,+∞)的增函数∴f(x)≥f(1)=e-1>0 ∴ex>x2点评:本题的出发点是通过判断f'(x)符号,求f(x)的单调区间,进而求f(x)的最小值。

但f'(x)符号无法直接判断,所以需要再次求导,利用f'(x)的单调性求f'(x)的最小值,从而判断f'(x)的符号。

二、利用函数的最值,构造出新的函数不等式先证明一个结论,再利用已证明的结论去证明另一个不等式,这是高考的一个热点题型。

例2 f(x)=in(1+x2)+ax,a(1)求f(x)的单调区间;(2)证明(1+)(1+)(1+)…(1+)(1)解:f'(x)=当a≤-1时,f'(x)≤0∴f(x)为R上的减函数,当-1(2)证明:由(1)当a=-1时,f(x)=in(1+x2)-x为减函数。

∴x>0时,f(x)∴in(1+x2)∴in(1+)+in(1+)+in(1+)+…+in(1+)∴(1+)(1+)(1+)…(1+)点评:本题关键在于能否利用第一问的结论对a赋值, 构造出新的函数不等式。

利用导数证明不等式考点与题型归纳

利用导数证明不等式考点与题型归纳

利用导数证明不等式考点与题型归纳考点一单变量不等式的证明方法一移项作差构造法证明不等式ln x ae 1[例1]已知函数f(x)= 1 —~x,g(x)= 'e x + X— bx(e为自然对数的底数),若曲线y= f(x) 与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直.(1)求a, b的值;2(2)求证:当 x> 1 时,f(x) + g(x)> -xIn x[解]⑴因为f(x)= 1 —-^,In x— 1所以f (x)= 7 , f' (1) =— 1.ae 1 ae 1因为 g(x)= e x + x— bx,所以 g (x)= — e x—x^—b.因为曲线y= f(x)与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直,所以 g(1) = 1,且 f' (1) g- (1) = — 1,即 g(1) = a + 1— b= 1, g' (1) = — a — 1 — b= 1,解得 a=— 1, b=— 1.e 1(2)证明:由(1)知,g(x)= —孑+ x + x,小2^ A In x e 1贝 y f(x)+g(x) > x?1—T—e x— x+X》0.令 h(x) = 1 —皿—€—1+ x(x> 1),x e x则 h'(x)=—+e+x2+1=少+當+1.In x e因为 x> 1,所以 h' (x)=卡+1>o,所以h(x)在[1 ,+s)上单调递增,所以h(x)>h(1) = 0,即 1-也-e—丄+x> o,x e xx2 所以当 x> 1 时,f(x) + g(x)>x.[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二隔离审查分析法证明不等式1 [例2] (2019长沙模拟)已知函数f(x)= ex2- xln x•求证:当x> 0时,f(x)v xe x+ -.1 1 1[证明]要证 f(x)v xe x+-,只需证 ex — In x v e x+ ,即 ex - e x< In x+ .ex —e ex ex1令 h(x) = In x +—(x>0),贝U h' (x)= ex易知h(x)在0, e上单调递减,在e,上单调递增,则h(x)min = h 1 = 0,所以In1x+ex》°.再令0(x)= ex— e x,贝U O' (x) = e— e x,易知O(x)在 (0,1)上单调递增,在(1,+^ )上单调递减,则O(X)max= 0(1) = 0,所以ex —e x< 0.x 1因为h(x)与«x)不同时为0,所以ex — e x< In x+ £,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例 3]已知函数 f(x)= ax— In x— 1.(1)若f(x)》0恒成立,求a的最小值;e x(2)求证:—+ x+ In x— 1 > 0;xx[解](1)f(x) >0 等价于 a >(3)已知k(e x + x2)> x— xIn x恒成立,求k的取值范围. In x+ 1x1 — Inx所以k》- e- x T + x人In x+1…, In x令 g(x) = X~(x>0),贝V g (x)=—立,所以当 x€ (0,1)时,g' (x)> 0,当 x€ (1 ,+s)时,g' (x)v 0,则g(x)在(0,1)上单调递增,在(1 ,+s)上单调递减,所以g(x)max= g(1) = 1,则a > 1, 所以a的最小值为1.⑵证明:当a= 1时,由(1)得x> In x+ 1,即 t> In t + 1(t> 0).e—x令~x~ = t,则—x— In x= In t,e—x所以——> —x— In x+ 1,xe-x即一+ x+ In x — 1 > 0. x—xe 、⑶因为k(e-x+ x2) >x— xIn x恒成立,即 k—— + x > 1 — In x恒成立,xe- x二 + x + In x— 1+1,e—x由⑵知■— + x+ In x— 1> 0恒成立,入—xe+ x+ In x— 1x所以一二 ---------------- + K 1,所以k> 1.e—故k的取值范围为[1 , + g).[解题技法]导数的综合应用题中,最常见就是e x和In x与其他代数式结合的难题,对于这类问题, 可以先对e x和In x进行放缩,使问题简化,便于化简或判断导数的正负•常见的放缩公式如下:(1)e x> 1 + x,当且仅当x= 0时取等号;(2)e x>ex,当且仅当x = 1时取等号;1(3)当x>0时,e x> 1 + x+ ?x2,当且仅当x= 0时取等号;(6)当 x> 1 时, 2 x— 1x+ 1 < In x<x— 1x,当且仅当x= 1时取等号.X1 +⑷当x>0时,e x>討+ 1,当且仅当x= 0时取等号;X— 1⑸一 < In x< x — K X2— x,当且仅当 x= 1时取等号;X考点二双变量不等式的证明[典例]已知函数 f(x)= In x— 2ax2+ x, a € R.(1)当a = 0时,求函数f(x)的图象在(1, f(1))处的切线方程;⑵若 a =— 2,正实数 X1, x2 满足 f(X1)+ f(X2)+ X1x2= 0,求证:1 [解](1)当 a= 0 时,f(x)= In x+ x,则 f(1) = 1,所以切点为(1,1),又因为 f ' (x) = - +入1,所以切线斜率k= f (1) = 2,故切线方程为 y— 1 = 2(x— 1),即卩2x— y— 1 = 0.(2)证明:当 a=— 2 时,f(x)= In x+ x2 + x(x> 0).由 f(X1 ) + f(X2) + X1X2= 0,即 In X1 + x1+ X1 + In X2 + x2+ x2 + X1X2 = 0,从而(X1+ X2)2 +(X1+ X2) = X1X2 — In(X1X2),令 t= X1X2,设©(t) = t — In t(t> 0),则© (t)= 1 —1 =一,易知©(t)在区间(0,1)上单调递减,在区间(1,+^)上单调递增,所以©(t) > ©(1) = 1,所以(X1+ X2)2 + (X1+ X2) > 1 ,V5 — 1 因为 X1> 0, X2> 0,所以 X1+ X2> —2 —成立.[解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;2 4a x — a 石 2v 0,二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]a已知函数f(x) = In x+ .x(1)求f(x)的最小值;⑵若方程f(x)= a 有两个根x i , X 2(x i v x 2),求证:x i + X 2> 2a.1 a x — a解:(1)因为 f' (x) = x — x 2= x^(x> 0),所以当a w 0时,f(x)在(0 ,+R )上单调递增,函数无最小值.当a > 0时,f(x)在(0, a)上单调递减,在(a ,+^)上单调递增.函数f(x)在x= a 处取最小值f(a)= In a+ 1.⑵证明:若函数y= f(x)的两个零点为X 1, x 2(X 1V x 2),由(1)可得 O v X 1V a v X 2.令 g(x) = f(x) — f(2a — x)(0 v x v a),丄 1则 g ' (x)= (x — a) X 2— 2a — x 2 所以g(x)在(0, a)上单调递减,g(x)>g(a) = 0,即 f(x) > f(2a — x).令 x = X 1 v a,贝V f(x 1) >f(2a — X 1),所以 f(x 2) = f(x 1) >f(2a — X 1),由(1)可得f(x)在(a, + g )上单调递增,所以X 2>2a — X 1,故 X 1 + X 2> 2a. 考点三证明与数列有关的不等式a [典例]已知函数f(x)= In(x+ 1) + 二..X. I 厶(1)若x>0时,f(x)> 1恒成立,求a 的取值范围;1 1 1 1 *⑵求证:ln(n+ 1)>3+ 5171…+ 2^+1 (n C N ).a[解](1)由 In(x+ 1)+ > 1,得x+ 2a> (x+ 2) — (x+ 2)1 n(x+ 1).令 g(x) = (x+ 2)[1 — In(x+ 1)],x+ 2 1则 g ' (x)= 1 — In (x+ 1) —=— In (x+ 1)—-x+ 1 x + 1 当x>0时,g' (x) v 0,所以g(x)在(0,+g)上单调递减.所以g(x)v g(0) = 2,故a的取值范围为[2 , + ).2(2)证明:由(1)知 In(x+ 1) + > 1(x> 0),x+ 2所以 In(x+ 1) > xx+ 2令 x = k(k> 0),得 In k+ 1>k+2k+ 1 即In1 > 一2 3所以 In” + In^+ In 4n + 11 1 1 13+…+ In => 1+1+尹…+ 乔,即 ln(n + 1)>3 +1 + 7+・・・+-^(n € N *).3 5 72n + 1[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数 n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的. 此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式 (或与指数有关的不等式),还要注意指、对数式的互化,如e x > x+ 1可化为In(x+ 1)v x 等.[题组训练](2019 长春质检)已知函数 f(x)= e x ,g(x)= In(x+ a) + b. (1) 若函数f(x)与 g(x)的图象在点(0,1)处有相同的切线,求a ,b 的值;(2)当b = 0时,f(x) — g(x) > 0恒成立,求整数 a 的最大值;(3) 求证:In 2 + (In 3 - In2)2+ (In 4 - In 3)3+ — + [ln(n + 1) — In n]n v -^(n € N *). e i 解:⑴因为函数f(x)和g(x)的图象在点(0,1)处有相同的切线,所以 f(0) = g(0)且f' (0)=g' (0),ii又因为 f' (x)= e x , g' (x)= ,所以 1 = In a+ b,1 = ;,x+ aa解得 a= 1, b= 1.⑵现证明 e x > x+ 1,设 F(x)= e x - x-1,则 F ' (x)= e x - 1,当 x € (0, + )时,F' (x) > 0,当x € (—a, 0)时,F ' (x)v 0,所以F(x)在(0 ,+s )上单调递增,在(一a, 0)上单调 递减,所以F(x)min = F(0) = 0,即F(x)> 0恒成立,即 e x>x+ 1.同理可得 In(x+ 2)w x+ 1,即 e x> In(x+ 2),当 a w 2 时,ln(x + a) w ln(x+ 2) v e x,所以当a w 2时,f(x) — g(x) > 0恒成立.当 a >3 时,e0v In a,即 e x- In(x+ a)> 0 不恒成立.故整数a的最大值为2.—n+ 1⑶证明:由⑵知e x>ln(x+2),令x= —,—n+1一n+ 1则e~~^~ >ln一n—+2,——n -k 1即 e-n + 1> In ----------- + 2n= [ln(n + 1) - In n]n,n所以 e°+ e-1 + e-2+ …+ e一n+ 1>In 2+ (In 3 — In 2)2+ (In 4— In 3) 3+ …+ [ln(n+ 1) — Innn],11—』1 e 又因为 e0 + e-1+ e-2+ ••• + e-n+1= 1 v —= ,1-;1-1 e-1e ee 所以 In 2 + (In 3 - In 2) 2+ (In 4 — In 3)3+ …+ [ln(n+ 1)-In n]n v e- 1[课时跟踪检测]11. (2019 唐山模拟)已知 f(x)= qx2— a2ln x, a>0.⑴求函数f(x)的最小值;f x — f 2a 3⑵当x>2a时,证明:>尹x— 2a 2解:⑴函数f(x)的定义域为(0 ,+^),a2 x+ a x— a f (x) = x — x=当 x € (0, a)时,f' (x)v 0, f(x)单调递减;当 x € (a ,+s)时,f' (x)> 0, f(x)单调递增.1所以当x= a时,f(x)取得极小值,也是最小值,且f(a) = ~a2— a2ln a.(2)证明:由⑴知,f(x)在(2a, + )上单调递增,3则所证不等式等价于 f(x) — f(2a) — ^a(x— 2a) > 0.“ 3设 g(x) = f(x) — f(2a) — 2a(x— 2a),则当x>2a时,, , 3 a2 32x+ a x— 2a2x > 0,g (x) = f (x) — 2a = x—— ^a所以g(x)在(2a,+s)上单调递增,当 x>2a 时,g(x)>g(2a)= 0,3即 f(x) — f(2a) — ?a(x— 2a)>0,f x — f 2a 3故> "a.x— 2a 22.(2018黄冈模拟)已知函数f(x)=亦x— e—x(入€ R). (1)若函数f(x)是单调函数,求入的取值范围;x2 ⑵求证:当 0v X1 v x2 时,e1 — x2 — e1 — X1> 1 —:.1解:⑴函数f(x)的定义域为(0 ,+8 ),••f(x)= An x— e—x,+ xe— x~X~,•••函数f(x)是单调函数,••• f' (x)w 0或f' (x) > 0在(0 ,+s)上恒成立,+ xe x①当函数f(x)是单调递减函数时,f' (x)< 0, •------------------- < 0,即X+ xe—x< 0,疋xe—x Xx X一 1令y(x)=—孑,贝y y (x)=-e^,当 0 v x v 1 时,y (x) v 0;当 x> 1 时,y (x) >0,则y x)在(0,1)上单调递减,在(1 ,+8 )上单调递增,•••当x> 0时,y x)min=y i) =x+ xe②当函数f(x)是单调递增函数时,f' (x)>0,•••------------------- >0,即入 + xe—x》0, xe—xx由①得y(x)= —吞在(o,1)上单调递减,在(1, + 8)上单调递增,又■ y(0) = 0,当 x综上,入的取值范围为1——8(2)证明:由(1)可知,当f(x)= — ein X — e— x在(0, + 8 )上单调递减,X1 X2 ln X2>1 —门■-0 v x i v X2,1 1•••f(X1)>f(x2),即一:ln X1 — e— X1 >— ?ln X2 — e— X2,•'el — X2— el — x i > In x i — In X2.X2 X2要证e1—X2—e1 — 11>1—X1,只需证In X1—ln X2>1—门即证11 1令 t= X11,t€ (0,1),则只需证 In t> 1 —-,• - f(x)min ==In k,1t —12 13令 h(t) = In t+ f — 1,则当 0v t v 1 时,h'⑴v 。

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法

利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。

在证明不等式时,利用导数是一种常见的方法。

下面将介绍几种常用的利用导数证明不等式的方法。

一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。

具体步骤如下:1.求函数的导数。

2.找出导数存在的区间。

3.求出导数的零点即函数的极值点。

4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。

例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。

则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。

这种方法的特点是简单直观,容易理解和操作。

但是要求函数的导数存在,在一些特殊情况下可能无法使用。

二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。

利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。

具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。

2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。

3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。

4.判断f'(c)的符号,从而确定不等式的成立条件。

Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。

但是要求函数在区间上连续,在一些特殊情况下可能无法使用。

三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。

浅谈利用导数解决不等式问题

浅谈利用导数解决不等式问题

·42·丝 路 视 野导数是解决数学问题的重要工具,在函数、不等式、三角函数、数列、向量等知识中多次出现,是高考考试的重点与热点,它的使用使好多问题变得非常的简单,我们在学习中应该有意地注意应用导数来解决问题,体会导数的工具性作用,下面我就以试题为例来说明如何利用导数解决不等式问题,供大家参考。

一、利用导数解决不等式恒成立问题例1.已知函数)(x f (x)=x3+x-6,若不等式m 2-2m+3对于所有满足x∈[-2,2]恒成立,求实数m的取值范围。

分析:试题中的恒成立问题,我们可以等价地转化为三次函数的最值问题,从而利用导数来解决,即不等式 )(x f (x)≤m2-2m+3对于所有的x∈[-2,2]恒成立,只需m 2-2m+3大于等于)(x f (x)在[-2,2]上的最大值。

解:∵)(x f (x)=x 3+x-6,∴)(x f '(x)=3x 2+1>0,即函数)(x f (x)在x∈[-2,2]内是增函数。

∴)(x f (x)在x∈[-2,2]上的最大值在x=2时取得,即)(x f max (a)=4。

∴m 2-2m+3≥4,解得m≤1-21−或m≥1+21−,即实数m的取值范围为(-∞,1-21−]∪[1+21−,+8)。

二、利用导数解决不等式的证明问题例2.已知x∈(0,+∞),证明不等式xx x n x 11111<+<+。

分析:试题中要求证明不等式,我们可以考虑构造函数,利用导数说明函数的单调性,从而判断函数值的大小,进而证明不等式。

证明:我们直接构造函数来解决有些困难,我们可以作变量代换,使问题变得简单一些,令t xx =+=+111x ,则11−=t x ,∵x>0,∴t>1,则原不等式1111 t n t t ①,构造函数)(x f (t)=t-1-1tn,∵)(x f t(t)=1-t 11−,t∈(1,+∞),∴)(x f t (t)>0,即函数)(x f (t)在t∈(1,+∞)单调递增的,∴)(x f (t)<)(x f (1)=0,即t-1<1tn,不等式①右半部分成立;再构造函数t nt t g 111)( ,∵22111)(tt t t t g t −=−=,又t∈(1,+∞),∴g t (t)>0,即函数g(t)在t∈(1,+∞)上单调递增,∴g(t)>g(1)=0,即1tn-1+t t f t 11)(−= >0,∴1tn>1-t11−,即不等式①左半部分成立,∴不等式①成立,即原不等式x x x n x 11111<+<+成立,命题得证。

《利用导数解决不等式问题》教学设计

《利用导数解决不等式问题》教学设计

《利用导数解决不等式问题》教学设计《利用导数解决不等式问题》教学设计【学习目标】知识技能1、会利用导数作为工具证明不等式;2、能够构造函数,结合放缩和函数的单调性、最值达到证明目的过程方法:(1)在“分析、实验、讨论、总结”的探究过程中,发展学生自主学习能力;(2)强化数形结合思想情感态度:(1)培养学生的探究精神;(2)体验动手操作带的成功感【教学重点难点】1 灵活准确的构造函数2 利用可导函数解决不等式证明;【学情分析】导数之难,难在对函数单调性的认识并且导数工具的运用,充分体现了“数形结合思想”问题研究的核心就是“函数的单调性”结合本节试题的结构和内容分析,结合着高三年级学生他们的认知结构及其心理特征,归纳总结做题规律,使学生明确做题的方向。

我们都知道数学是一门培养人的逻辑思维能力的重要学科。

因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。

我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。

考虑到我校高三年级学生的现状,我主要采取引导加点拨的教学方法,让学生真正的参与教学中去,而且在堂活动中得到新的认识和体验,产生践行的愿望。

当然教师自身也是非常重要的教学资。

教师本人应该通过堂教学感染和激励学生,充分调动起学生参与活动的积极性,激发学生对解决难题问题的渴望,并且要培养学生以理论联系实际的能力,从而达到最佳的教学效果。

同时也体现了改的精神。

【教学过程】一、前思考:(引入题)1、利用导数能解决哪些问题?2、复习上节证明含对数和指数的不等式的两种常用方法:设计意图:利用提出问题吸引学生,由抽签法进行幸运抽奖活动,激发学习兴趣,达到调动学生积极性的目的若学生能说出导数除了能解决单调性和最值问题,还能解决不等式问题,则追问利用导数证明不等式常用的方法是啥;若学生不清楚,则用简单的例子引导他们,对于复杂一点的不等式问题又如何下手呢?从而引入授内容二、观察分析,初步探究例1.若函数=在R上可导且满足不等式x&gt;-恒成立,且常数a,b满足a&gt;b,求证:.a&gt;b【解】由已知x+&gt;0 ∴构造函数,则x+&gt;0,从而在R上为增函数。

利用导数证明不等式的方法

利用导数证明不等式的方法

利用导数证明不等式的方法导数是微积分中的重要概念,它可以用来研究函数在不同点的变化趋势。

在数学中,不等式是一种比较两个数或两个函数大小关系的方式。

结合导数和不等式的概念,我们可以利用导数来证明不等式。

让我们回顾一下导数的定义。

对于一个函数f(x),在某一点a处的导数f'(a)表示函数在该点处的变化率。

导数可以通过求取函数的极限来计算,也可以通过求取函数的斜率来计算。

导数的正负可以表示函数的增减性,即导数大于0表示函数在该点处递增,导数小于0表示函数在该点处递减。

利用导数证明不等式的方法主要有以下几种:1. 利用导数的正负性:假设我们要证明一个不等式f(x) > g(x),我们可以先求取函数f(x)和g(x)的导数,然后观察导数的正负性。

如果在某一区间上,f'(x) > g'(x),则可以得出在该区间上f(x) > g(x)。

举个例子,我们要证明对于所有的x,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。

首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。

然后观察导数的正负性,我们发现在所有的x上,f'(x) > g'(x),因此可以得出对于所有的x,f(x) > g(x)。

2. 利用导数的单调性:如果一个函数在某一区间上是单调递增或单调递减的,那么我们可以根据函数值的大小关系得出不等式的成立。

举个例子,我们要证明对于所有的x大于0,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。

首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。

然后观察导数的单调性,我们发现f'(x)是一个递增函数,因此可以得出在x大于0的区间上,f(x)也是一个递增函数。

又因为在x大于0的区间上,f(0) = 2大于g(0) = 1,所以可以得出对于所有的x大于0,f(x) > g(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数处理与不等式有关的问题关键词:导数,不等式,单调性,最值。

导数是研究函数性质的一种重要工具。

例如求函数的单调区间、求最大(小)值、求函数的值域等等。

而在处理与不等式有关的综合性问题时往往需要利用函数的性质;因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。

下面具体讨论导数在解决与不等式有关的问题时的作用。

一、利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。

因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。

即把证明不等式转化为证明函数的单调性。

具体有如下几种形式:1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立。

例1:x>0时,求证;x2x2--ln(1+x)<0证明:设f(x)= x2x2--ln(1+x) (x>0), 则f'(x)=2x1x-+∵x>0,∴f'(x)<0,故f(x)在(0,+∞)上递减,所以x>0时,f(x)<f(0)=0,即x2x2--ln(1+x)<0成立。

2、把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目的。

例2:已知:a,b∈R,b>a>e, 求证:a b>b a, (e为自然对数的底)证:要证a b>b a只需证lna b>lnb a 即证:blna-alnb>0设f(x)=xlna-alnx (x>a>e);则f '(x)=lna-a x ,∵a>e,x>a ∴lna>1,ax<1,∴f '(x)>0,因而f(x)在(e, +∞)上递增∵b>a,∴f(b)>f(a);故blna-alnb>alna-alna=0;即blna>alnb 所以a b>b a成立。

(注意,此题若以a为自变量构造函数f(x)=blnx-xlnb (e<x<b)则bf'(x)ln bx=-,f′(x)>0时bx,f'(x)0ln b<<时bxln b>,故f(x)在区间(e, b)上的增减性要由b e ln b 与的大小而定,当然由题可以推测b e ln b> 故f(x)在区间(e, b )上的递减,但要证明be ln b>则需另费周折,因此,本题还是选择以a 为自变量来构造函数好,由本例可知用函数单调性证明不等式时,如何选择自变量来构造函数是比较重要的。

)(二)、利用导数求出函数的最值(或值域)后,再证明不等式。

导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立。

从而把证明不等式问题转化为函数求最值问题。

例3、求证:n ∈N *,n ≥3时,2n >2n+1证明:要证原式,即需证:2n -2n -1>0,n ≥3时成立 设f(x)=2x -2x -1(x ≥3),则f '(x)=2x ln2-2(x ≥3), ∵x ≥3,∴f '(x)≥23ln3-2>0∴f(x)在[3,+∞ )上是增函数,∴f(x)的最小值为f(3)=23-2×3-1=1>0所以,n ∈N *,n ≥3时,f(n)≥f(3)>0, 即n ≥3时,2n -2n -1>0成立,例4、x b22g (x)(1)(1)A a x =-+-的定义域是A=[a,b ),其中a,b ∈R +,a<b若x 1∈I k =[k 2,(k+1)2), x 2∈I k+1=[(k+1)2,(k+2)2) 求证:g(x )g (x )12I I k k 1++>4k(k 1)+(k ∈N *) 证明:由题知g '(x)=22x 22b 2b 223a a x x-+- g '(x)= 22x 22b 2b 223a a x x -+-=0时x 4-ax 3-a 2b 2+a 2bx=0 即(x 4-a 2b 2)-ax(x 2-ab)=0,化简得(x 2-ab)(x 2-ax+ab)=0所以x 2-ax+ab =0或x 2-ab=0,∵0<a<b,∴x 2-ax+ab =0无解由x 2-ab=0解得x =x=(舍)故g '(x)>0时x ∈, g '(x)<0时x ∈[a,,因而g(x)在上递增,在上递减所以是g A (x)的极小值点,又∵g A (x)在区间[a,b )只有一个极值 ∴g A)=221)-是g A (x)的最小值。

所以,g (x )1I k 的最小值为2(k 1)g ()2I k k+=2k 12221)2(1)2k k +-=-= g (x )2I k 1+的最小值为2k 2222(1)()k 1k 1+-=++又∵224k(k 1)k (k 1)+≥=++ ∴x 1∈I k =[k 2,(k+1)2), x 2∈I k+1=[(k+1)2,(k+2)2)时g(x )g (x )12I I k k 1++>4k(k 1)+(k ∈N *)成立 3、利用导数求出函数的值域,再证明不等式。

例5:f(x)=13x 3-x, x 1,x 2∈[-1,1]时,求证:|f(x 1)-f(x 2)|≤43证明:∵f '(x)=x 2-1, x ∈[-1,1]时,f '(x)≤0,∴f(x)在[-1,1]上递减.故f(x)在[-1,1]上的最大值为f(-1)=23最小值为f(1)=23-,即f(x)在 [-1,1]上的值域为22[,]33-;所以x 1,x 2∈[-1,1]时,|f(x 1)|23≤, |f(x 2)|23≤,即有 |f(x 1)-f(x 2)|≤|f(x 1)|+ |f(x 2)|224333≤+=二、利用导数解决不等式恒成立问题不等式恒成立问题,一般都会涉及到求参数范围,往往把变量分离后可以转化为m>f(x) (或m<f(x))恒成立,于是m 大于f(x)的最大值(或m 小于f(x)的最小值),从而把不等式恒成立问题转化为函数求最值问题。

因此,利用导数求函数最值是解决不等式恒成立问题的一种重要方法。

例6、已知函数a9f (x)((a R)x=+∈,对f(x)定义域内任意的x 的值,f(x)≥27恒成立,求a 的取值范围 解:函数f(x)的定义域为(0,+∞),由f(x)≥27对一切x ∈(0,+∞)恒成立 知a x +≥=x ∈(0,+∞)恒成立,即a ≥-x ∈(0,+∞)恒成立设h(x)=-则h '(x)=-h ′(x)=0解x 9= h ′(x)>0时,解得0<x<9′(x)>0时x>9所以h(x)在(0,9)上递增,在(9+∞)上递减,故h(x)的最大值为4h(99=,所以4a 9≥三、利用导数解不等式例8:函数ax(a 0)->,解不等式f(x)≤1解:由题知f '(x)a a =-=-①∵11-<<∴a ≥1时,f '(x)<1-a<0恒成立,故f(x)在R 上单调递减, 又f(0)=1,所以x ≥0时f(x)≤f(0)=1, 即a ≥1时f(x)≤1的解为 {x|x ≥0} ②0<a<1时,若f '(x)a a =-=-=0则x =ax=-f '(x)>0时解得x∈(,-∞∪)+∞,f '(x)f '(x)<0时解得x (∈故f(x)在(上单调递减, f(x)在(,-∞或)+∞上单调递增,又f(x)=1时解得x=0或x=2a 21a -,且0<a<1时2a 021a <<-所以0<a<1时f(x)≤1的解为{x|2a0x21a≤≤-}由上得,a≥1时f(x)≤1的解为{x|x≥0}0<a<1时f(x)≤1的解为{x|2a0x21a≤≤-}总之,无论是证明不等式,还是解不等式,只要在解题过程中需要用到函数的单调性或最值,我们都可以用导数作工具来解决。

这种解题方法也是转化与化归思想在中学数学中的重要体现。

参考资料:(1)赵大鹏:《3+X高考导练.数学》,中国致公出版社(2)王宜学:《沙场点兵.数学》,辽宁大学出版社(3)《状元之路.数学》。

相关文档
最新文档