九年级数学上册周测(3)
2022年九年级数学上册第二章一元二次方程测试卷3新版北师大版
第二章一元二次方程测试卷(3)一、选择题(每题3分,共36分)1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.(3分)关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>13.(3分)方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关4.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11 B.10 C.11或10 D.不能确定5.(3分)某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.20% B.27% C.28% D.32%6.(3分)餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×1007.(3分)某超市1月份的营业额是200万元,第一季度的营业额共1000万元,如果每月的增长率都是x,根据题意列出的方程应该是()A.200(1+x)2=1000 B.200(1+2x)=1000C.200+200(1+x)+200(1+x)2=1000 D.200(1+3x)=10008.(3分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.则该矩形草坪BC边的长是()A.12 B.18 C.20 D.12或209.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣210.(3分)已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=()A.﹣1或3 B.3 C.﹣1 D.无法确定11.(3分)已知关于x的方程(m+3)x2+5x+m2﹣9=0有一个解是0,则m的值为()A.﹣3 B.3 C.±3 D.不确定12.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2二、填空题(每题3分,共12分)13.(3分)关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元二次方程.14.(3分)一元二次方程x2=2x的根是.15.(3分)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2= ,x1x2= ,x12+x22= .16.(3分)如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是xm,根据题意可列方程为.三、解答题17.(18分)解方程:(1)2x2﹣6x+3=0(2)(x+3)(x﹣1)=5(3)4(2x+1)2=9(2x﹣1)2.18.(10分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?19.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.20.(12分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿AB 边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C 以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q 相距6厘米?参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【考点】一元二次方程的定义.【专题】方程思想.【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>1【考点】根的判别式;一元二次方程的定义.【分析】因为关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.故选:C.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(3分)方程x2﹣kx﹣1=0根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【考点】根的判别式.【分析】求出方程的判别式后,根据判别式与0的大小关系来判断根的情况.【解答】解:∵方程的△=k2+4>0,故方程有两个不相等的实数根.故选A【点评】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11 B.10 C.11或10 D.不能确定【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【专题】计算题;一次方程(组)及应用.【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选C.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.5.(3分)某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.20% B.27% C.28% D.32%【考点】一元二次方程的应用.【专题】增长率问题.【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1﹣x)倍,连降两次就是降到原来的(1﹣x)2倍.则两次降价后的价格是150×(1﹣x)2,即可列方程求解.【解答】解:设平均每次降价的百分率为x,则可以得到关系式:150×(1﹣x)2=96x=0.2或1.8x=1.8不符合题意,舍去,故x=0.2答:平均每次降价的百分率是20%.故选A.【点评】本题考查数量平均变化率问题.原来的数量(价格)为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.6.(3分)餐桌桌面是长为160cm,宽为100cm的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.若设垂下的桌布宽为xcm,则所列方程为()A.(160+x)(100+x)=160×100×2 B.(160+2x)(100+2x)=160×100×2C.(160+x)(100+x)=160×100 D.2(160x+100x)=160×100【考点】由实际问题抽象出一元二次方程.【分析】本题可先求出桌布的面积,再根据题意用x表示桌面的长与宽,令两者的积为桌布的面积即可.【解答】解:依题意得:桌布面积为:160×100×2,桌面的长为:160+2x,宽为:100+2x,则面积为=(160+2x)(100+2x)=2×160×100.故选B.【点评】本题考查的是一元二次方程的运用,要灵活地运用面积公式来求解.7.(3分)某超市1月份的营业额是200万元,第一季度的营业额共1000万元,如果每月的增长率都是x,根据题意列出的方程应该是()A.200(1+x)2=1000 B.200(1+2x)=1000C.200+200(1+x)+200(1+x)2=1000 D.200(1+3x)=1000【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:一月份月营业额+二月份月营业额+三月份月营业额=1000,把相关数值代入即可求解.【解答】解:二月份的月营业额为200×(1+x),三月份的月销售额在二月份月销售额的基础上增加x,为200×(1+x)×(1+x),则列出的方程是200+200(1+x)+200(1+x)2=1000,故选C.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.则该矩形草坪BC边的长是()A.12 B.18 C.20 D.12或20【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设草坪BC的长为x米,则宽为,根据面积为120平方米,列方程求解.【解答】解:设草坪BC的长为x米,则宽为,由题意得,x•=120,解得:x1=12,x2=20,∵墙为16米,∴x=20不合题意.故x=12.故选A.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.9.(3分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【专题】计算题.【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选D.【点评】本题考查了一元二次方程的解的应用,能运用巧妙的方法求出m+n的值是解此题的关键,题型较好,难度适中.10.(3分)已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=()A.﹣1或3 B.3 C.﹣1 D.无法确定【考点】换元法解一元二次方程.【分析】设y=m2+n2,原式化成关于y的一元二次方程,解方程即可求得.【解答】解:设y=m2+n2,则原式化为:y2﹣2y﹣3=0,(y﹣3)(y+1)=0,∴y=3或y=﹣1,∵m2+n2≥0,∴m2+n2=3.故选B.【点评】本题考查了换元法解一元二次方程,解题关键是能准确的找出可用替换的代数式m2+n2,再用字母y代替解方程.11.(3分)已知关于x的方程(m+3)x2+5x+m2﹣9=0有一个解是0,则m的值为()A.﹣3 B.3 C.±3 D.不确定【考点】一元二次方程的解.【专题】计算题.【分析】方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将x=0代入原方程即可求得m的值.【解答】解:把x=0代入原方程得m2﹣9=0;解得:m=±3;故选C.【点评】本题考查的是方程的根即方程的解的定义;注意该题没有说明该方程是一元二次方程,所以也能是一元一次方程,所以m的值是±3.12.(3分)若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2【考点】抛物线与x轴的交点.【专题】压轴题.【分析】因为x1和x2为方程的两根,所以满足方程(x﹣a)(x﹣b)=1,再由已知条件x1<x2、a<b结合图象,可得到x1,x2,a,b的大小关系.【解答】解:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,任意画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2.故选:C.【点评】本题考查了一元二次方程根的情况,结合图象得出答案是解决问题的关键.二、填空题(每题3分,共12分)13.(3分)关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m ≠1 时为一元二次方程.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:由关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,得m﹣1≠0,解得m≠1.故答案为:m≠1.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.(3分)一元二次方程x2=2x的根是x1=0,x2=2 .【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先移项,再提公因式,使每一个因式为0,从而得出答案.【解答】解:移项,得x2﹣2x=0,提公因式得,x(x﹣2)=0,x=0或x﹣2=0,∴x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法:解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(3分)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2= 3 ,x1x2= 1 ,x12+x22= 7 .【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得到x1+x2=3,x1x2=1,再利用完全平方公式变形得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=1,x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故答案为3,1,7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.16.(3分)如图,在一块矩形的荒地上修建两条互相垂直且宽度相同的小路,使剩余面积是原矩形面积的一半,具体尺寸如图所示.求小路的宽是多少?设小路的宽是xm,根据题意可列方程为(30﹣x)(20﹣x)=×30×20 .【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的种植花草部分是一个长方形,根据长方形的面积公式列方程求解即可.【解答】解:设道路的宽应为x米,由题意有(30﹣x)(20﹣x)=×30×20.故答案为:(30﹣x)(20﹣x)=×30×20.【点评】此题主要考查了一元二次方程的应用,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.三、解答题17.(18分)解方程:(1)2x2﹣6x+3=0(2)(x+3)(x﹣1)=5(3)4(2x+1)2=9(2x﹣1)2.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【专题】计算题;一次方程(组)及应用.【分析】(1)方程利用公式法求出解即可;(2)方程整理后,利用因式分解法求出解即可;(3)方程利用平方根定义开方即可求出解.【解答】解:(1)这里a=2,b=﹣6,c=3,∵△=36﹣24=12,∴x==,解得:x1=,x2=;(2)方程整理得:x2+2x﹣8=0,即(x﹣2)(x+4)=0,解得:x1=2,x2=﹣4;(3)开方得:2(2x+1)=3(2x﹣1)或2(2x+1)=﹣3(2x﹣1),解得:x1=2.5,x2=0.1.【点评】此题考查了解一元二次方程﹣因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.18.(10分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【专题】压轴题.【分析】设每件童装应降价x元,那么就多卖出2x件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【解答】解:设每件童装应降价x元,由题意得:(40﹣x)(20+2x)=1200,解得:x=10或x=20.因为减少库存,所以应该降价20元.【点评】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.19.(12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.【考点】二次函数的应用.【专题】应用题.【分析】(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式.(2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润.(3)由w=500推出x2﹣180x+7700=0解出x的值即可.【解答】解:(1)根据题意得解得k=﹣1,b=120.所求一次函数的表达式为y=﹣x+120.(2)W=(x﹣60)•(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴当x=87时,W=﹣(87﹣90)2+900=891.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由W≥500,得500≤﹣x2+180x﹣7200,整理得,x2﹣180x+7700≤0,而方程x2﹣180x+7700=0的解为 x1=70,x2=110.即x1=70,x2=110时利润为500元,而函数y=﹣x2+180x﹣7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.利用二次函数解决实际问题.20.(12分)如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A点开始沿AB 边向点B以1厘米/秒的速度移动(到达点B即停止运动),点Q从B点开始沿BC边向点C 以2厘米/秒的速度移动(到达点C即停止运动).(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?(2)如果P、Q两点分别从A、B两点同时出发,而且动点P从A点出发,沿AB移动(到达点B即停止运动),动点Q从B出发,沿BC移动(到达点C即停止运动),几秒钟后,P、Q 相距6厘米?【考点】一元二次方程的应用.【专题】几何动点问题.【分析】(1)设经过x秒钟,△PBQ的面积等于是△ABC的三分之一,分别表示出线段PB 和线段BQ的长,然后根据面积之间的关系列出方程求得时间即可;(2)根据勾股定理列出方程求解即可;【解答】解:(1)设t秒后,△PBQ的面积等于是△ABC的三分之一,根据题意得:×2t(6﹣t)=××6×8,解得:t=2或4.答:2秒或4秒后,△PBQ的面积等于是△ABC的三分之一.(2)设x秒时,P、Q相距6厘米,根据题意得:(6﹣x)2+(2x)2=36,解得:x=0(舍去)或x=.答:秒时,P、Q相距6厘米.【点评】本题考查了一元二次方程的应用,掌握三角形的面积计算方法,勾股定理,能够表示出线段PB和QB的长是解答本题的关键.。
九年级数学课堂周测及答案
周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有( )A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .43-2C .3- 3D .1+ 3 5.一元二次方程x 2-6x -6=0配方后可化为( )A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=( )A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m = . 10.用适当的数填空:x 2-3x + =(x - )2;x 2+27x + =(x + )2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是 .12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值: . 13.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为 . 14.对于两个不相等的实数a ,b ,我们规定max{a ,b}表示a ,b 中较大的数,如max{1,2}=2.那么方程max{2x ,x -2}=x 2-4的解为 . 三、解答题(共44分)15.(8分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.16.(15(1)4x2-3x+1=0; (2)3(x-3)2-25=0; (3)3x2+1=23x.17.(10分)阅读例题:解方程:x2-|x|-2=0.解:当x≥0时,得x2-x-2=0,解得x1=2,x2=-1<0(舍去);当x<0时,得x2+x-2=0,解得x1=1>0(舍去),x2=-2.故原方程的根为x1=2,x2=-2.请参照例题的方法解方程:x2-|x+1|-1=0.18.(11分)已知关于x的一元二次方程x2+(2m+1)x+m2=0.(1)若方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.单元测试(一) 一元二次方程(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B.1x 2+1x =2 C .x 2+2x =y 2-1 D .3(x +1)2=2(x +1)2.方程x 2-3=0的根是( )A. 3 B .- 3 C .± 3 D .3 3.一元二次方程2x 2+x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16 B .(x +5)2=1 C .(x +10)2=91 D .(x +10)2=109 5.若x =-1是关于x 的一元二次方程x 2-2kx +k 2=0的一个根,则k 的值为( )A .-1B .0C .1D .26.在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根为x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( )A .甲错误,乙正确 B .甲正确,乙错误 C .甲、乙都正确 D .甲、乙都错误7.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为( )A .(40-2x)(30-x)=168×6B .30×40-2×30x -40x =168×6C .(30-2x)(40-x)=168D .(40-2x)(30-x)=1688.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是( ) A .3或-1 B .3 C .1 D .-3或1 二、填空题(每小题4分,共24分)9.一元二次方程(x -2)(x +3)=2x +1化为一般形式是 . 10.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m = . 11.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +a b的值为 .12.六一儿童节当天,某班同学每人向本班其他每名同学送一份小礼品,全班共互送306份小礼品,则该班有 名同学.13.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为 .14.阅读材料:如果a ,b 分别是一元二次方程x 2+x -1=0的两个实数根,则有a 2+a -1=0,b 2+b -1=0;创新应用:如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 009= . 三、解答题(共44分)15.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.16.(10分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.17.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为29米的篱笆围成,已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示).设这个苗圃园垂直于墙的一边长为x米,苗圃园的面积为100平方米,求x的值.18.(12分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.周测(22.1.1~22.1.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知函数:①y =2x -1;②y =2x 2-1;③y =2x 2;④y =2x 3+x 2;⑤y =x 2-x -1,其中二次函数的个数为( )A .1B .2C .3D .42.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.对于抛物线y =12x 2,y =x 2和y =-x 2的共同性质有以下说法:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( )A .1B .2C .3D .44.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x -1)2-1D .y =-12(x +1)2-15.已知二次函数y =2(x -3)2-2,下列说法:①其图象开口向上;②顶点坐标为(3,-2);③其图象与y 轴的交点坐标为(0,-2);④当x ≤3时,y 随x 的增大而减小,其中正确的有( )A .1个B .2个C .3个D .4个6.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )7.如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h >0,k >0 二、填空题(每小题5分,共25分)8.函数y =-12(x +3)2中,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.9.将二次函数 y =x 2-1 的图象向上平移 3 个单位长度,得到的图象所对应的函数解析式是 . 10.若二次函数y =a(x -1)2+b 有最大值2,则a b(填“>”“=”或“<”).11.若点A(0,y 1),B(-3,y 2),C(1,y 3)为二次函数y =(x +2)2-9的图象上的三点,则y 1,y 2,y 3的大小关系是12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =13x 2于点B ,C ,则BC 的长为 .三、解答题(共47分)13.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出由此函数图象经过怎样平移可得到函数y =12x 2的图象.14.(10分)函数y =(m -3)xm2-3m -2是关于x 的二次函数.(1)若函数的图象开口向上,求函数的解析式,并说明在函数图象上y 随x 怎样变化?(2)在(1)中的图象上是否存在一点P ,使其到两坐标轴的距离相等?若存在,求出点P 的坐标;若不存在,请说明理由.15.(12分)如图,已知二次函数y =(x -1)2图象的顶点为C ,图象与直线y =x +m 交于A ,B 两点,其中点A 的坐标为(3,4),点B 在y 轴上.(1)求m 的值;(2)P 为线段AB 上的一个动点(点P 与点A ,B 不重合),过点P 作x 轴的垂线与这个二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数解析式,并写出自变量x 的取值范围.16.(15分)如图,抛物线y =-14x 2+x 的顶点为A ,它与x 轴交于点O 和点B.(1)求点A 和点B 的坐标; (2)求△AOB 的面积;(3)若点P(m ,-m)(m ≠0)为抛物线上一点,求与点P 关于抛物线对称轴对称的点Q 的坐标.周测(22.1.4~22.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =-1时,y =4,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-22.如图,抛物线与x 轴的两个交点为A(-3,0),B(1,0),则由图象可知y <0时,x 的取值范围是( )A .-3<x <1B .x >1C .x <-3D .0<x <1 3.对于二次函数y =-14x 2+x -4,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点4.二次函数y =2x 2-4x +3的图象先向左平移4个单位长度,再向下平移2个单位长度后的抛物线解析式为( )A .y =2(x -4)2-4x +1 B .y =2(x +4)2+1 C .y =2x 2+12x +17 D .y =2x 2-10x -175.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-26.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y =-4x +440,要获得最大利润,该商品的售价应定为( )A .60元B .70元C .80元D .90元7.如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线x =1.对于下列说法:①ab<0;②2a +b =0;③3a +c>0;④a +b ≥m(am +b) (m 为实数);⑤当-1<x<3时,y>0.其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题(每小题5分,共25分)8.当x =1时,二次函数y =x 2-2x +6有最小值 .9.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是10.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系.若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线的解析式是 .11.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是12.如图,在等腰Rt △ABC 中,∠C =90°,AB =10,点F 是AB 的中点,点D ,E 分别在AC ,BC 边上运动,且始终保持DF ⊥EF ,则△CDE 面积的最大值为 . 三、解答题(共47分)13.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.14.(12分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.15.(12分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE=x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.16.(15分)已知二次函数y=-x2+bx+c的图象过点A(3,0),C(-1,0).(1)求二次函数的解析式;(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.单元测试(二) 二次函数(A卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,y是x的二次函数的是( )A.xy+x2=1 B.x2-y+2=0 C.y=1x2D.y2-4x=32.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+23.将抛物线y=2(x-4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为(A)A.y=2x2+1 B.y=2x2-3 C.y=2(x-8)2+1 D.y=2(x-8)2-34.二次函数图象上部分点的坐标对应值列表如下:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=05.若抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2 019的值为( ) A.2 019 B.2 017 C.2 018 D.2 0206.已知抛物线y=a(x-2)2+k(a>0,a,k为常数),A(-3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依次排列为( )A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y17.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )A.a<0,b<0,c>0 B.-b2a=1 C.a+b+c<0 D.关于x的方程ax2+bx+c=-1有两个不相等的实数根8.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△APQ的最大面积是( )A.8 cm2 B.16 cm2 C.24 cm2 D.32 cm2二、填空题(每小题5分,共20分)9.若点A(3,n)在二次函数y=x2+2x-3的图象上,则n的值为.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的函数解析式:.11.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.12.已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为.三、解答题(共48分)13.(12分)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 . 14.(10分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A ,B 两点.(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.15.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?16.(14分)如图,在平面直角坐标系中,二次函数y =x 2-2x -3的部分图象与x 轴交于点A ,B(A 在B 的左边),与y 轴交于点C ,D 为顶点,连接BC.(1)求∠OBC 的度数;(2)在x 轴下方的抛物线上是否存在一点Q ,使△ABQ 的面积等于5?如存在,求Q 点的坐标;若不存在,说明理由;(3)点P 是第四象限的抛物线上的一个动点(不与点D 重合),过点P 作PF ⊥x 轴交BC 于点F ,求线段PF 长度的最大值.时间x(天) 1≤x <50 50≤x ≤90售价(元/件) x +40 90 每天销量(件)200-2x单元测试(二) 二次函数(B卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.抛物线y=-2(x-3)2+1的顶点坐标是( )A.(-3,1) B.(-3,-1) C.(3,1) D.(3,-1)2.下表给出了二次函数y=x2+2x-10中x,y的一些对应值,则可以估计一元二次方程x2+2x-10=0的一个近似解为( )x … 2.1 2.2 2.3 2.4 2.5 …y …-1.39 -0.76 -0.11 0.56 1.25 …A.2.2 B.2.3 C3.已知二次函数y=-x2+2x+1,若y随x的增大而增大,则x的取值范围是( )A.x<1 B.x>1 C.x<-1 D.x>-14.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3 B.x≤-1 C.x≥1 D.x≤-1或x≥35.为搞好环保,某公司准备修建一个长方体污水处理池,池底矩形的周长为100 m,则池底的最大面积是( ) A.600 m2 B.625 m2 C.650 m2 D.675 m26.对于二次函数y=x2-2mx-3,下列结论不一定成立的是( )A.它的图象与x轴有两个交点 B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧 D.当x<m时,y随x的增大而减小7.将二次函数y=x2的图象先向下平移1个单位长度,再向右平移3个单位长度,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是( )A.b>8 B.b>-8 C.b≥8 D.b≥-88.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共20分)9.当a=时,函数y=(a-1)xa2+1+x-3是二次函数.10.如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1 y2.(填“>”“=”或“<”) 11.二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为.12.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度(其他条件均相同)的环境中,经过一天后,测试出这种植物高度的增长情况如下表:温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 2519.75…①该植物在0 ℃时,每天高度增长量最大;②该植物在-6 ℃时,每天高度增长量仍能保持在20 mm以上;③该植物与大多数植物不同,6 ℃以上的环境下高度几乎不增长.其中正确的是.(填序号)三、解答题(共48分)13.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.14.(10分)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?15.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.16.(14分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一个动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.单元测试(三) 旋转(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列运动属于旋转的是( )A .足球在草地上滚动B .一个图形沿某直线对折的过程C .气球升空的运动D .钟表钟摆的摆动2.下面四个手机应用图标中,属于中心对称图形的是( )3.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的度数为( )A .42°B .48°C .52°D .58°4.如图,经过矩形对称中心的任意一条直线把矩形分成面积分别为S 1和S 2的两部分,则S 1与S 2的大小关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1与S 2的关系由直线的位置而定 5.点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .37.如图,在△ABO 中,AB ⊥OB ,OB =3,∠AOB =30°,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )A .(-1,-3)B .(-1,-3)或(-2,0)C .(-3,-1)或(0,-2)D .(-3,-1)8.如图,将△ABC 沿BC 翻折得到△DBC ,再将△DBC 绕点C 逆时针旋转60°得到△FEC ,延长BD 交EF于点H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为( )A.312B.36C.33D.32二、填空题(每小题5分,共20分)9.王明、杨磊两家所在位置关于学校成中心对称.如果王明家距离学校500米,那么他们两家相距米.10.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.11.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为.12.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG.若BE=2,DF=3,则AH的长为.三、解答题(共48分)13.(10分)如图,正方形网格中,△ABC的顶点及点O都在格点上.(1)画出△ABC关于点O中心对称的图形△A′B′C′;(2)画出△ABC绕点O顺时针旋转90°的图形△A″B″C″.14.(12分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(请将两个小题依次作答在图1、图2中,均只需画出符合条件的一种情形)15.(12分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)判断四边形ABED的形状,并说明理由.16.(14分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图1图2期中测试(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,属于中心对称图形的是( )A. B.C.D.2.将一元二次方程x 2-2x -2=0配方后所得的方程是( )A .(x -2)2=2 B .(x -1)2=2 C .(x -1)2=3 D .(x -2)2=33.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数解析式是 ( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-14.在平面直角坐标系中,将点(-2,3)关于原点对称的点向左平移2个单位长度得到的点的坐标是( )A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3) 5.用公式法解方程4y 2=12y +3,解为( )A .y =-3±62B .y =3±62C .y =3±232D .y =-3±2326.已知抛物线y =x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .87.已知关于x 的一元二次方程(k -1)x 2-2x +2=0有两个不相等的实数根,则k 的取值范围值是( )A .k<32B .k ≤32C .k <32且k ≠1D .k ≤32且k ≠18.在同一平面直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )9.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A.7 B .2 2 C .3 D .2 310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的是( ) A.①②③ B.②④ C.②⑤ D.②③⑤二、填空题(每小题3分,共24分)11.方程x2=x的根是.12.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有.①②③④13.已知方程3x2-4x-2=0的两个根是x1,x2,则1x1+1x2=.14.某楼盘2018年房价为每平方米8 100元,经过两年连续降价后,2020年房价为每平方米7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为.15.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.16.如图,若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时抛物线位于x轴下方的图象对应的x的取值范围是.17.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).若线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.18.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s2时落地;④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确的结论是.三、解答题(共66分)19.(8分)解方程:(1)2x2+3=7x; (2)(2x+1)2+4(2x+1)+3=0.20.(8分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-1,3),B(-4,0),C(0,0).(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到的△A2B2O.21.(9分)如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点E在BD上.(1)求证:FD=AB;(2)连接AF,求证:∠DAF=∠EFA.22.(9分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x21+x22=6x1x2时,求m的值.23.(10分)某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场平行于墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.24.(10分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x ≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?25.(12分)如图,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点并经过点B ,已知点A 的坐标是(2,0),点B的坐标是(8,6).(1)求二次函数的解析式;(2)若抛物线的对称轴上是否存在一个动点P ,使点P 到点B ,点D 的距离之和最短,若存在,求出点P 的坐标;若不存在,请说明理由;(3)该二次函数的对称轴交x 轴于点C ,连接BC ,并延长BC 交抛物线于点E ,连接BD ,DE ,求△BDE 的面积.周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有(A)A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为(C)A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为(A)A .-2B .43-2C .3- 3D .1+ 35.一元二次方程x 2-6x -6=0配方后可化为(A)A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是(D)A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=(A)A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为(D)A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2 二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m =2.10.用适当的数填空:x 2-3x +94=(x -32)2;x 2+27x +7=(x 2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是-1.12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:3(答案不唯一,满足b 2>8即可).。
万唯周测小卷九年级上册数学
万唯周测小卷九年级上册数学一、选择题(每题3分,共30分)下列计算正确的是()A. a6÷a2=a3B. 3a+2b=5abC. (a+b)2=a2+b2D. a3⋅a4=a12下列函数中,是正比例函数的是()A. y=x1B. y=2xC. y=x2D. y=3x+1下列调查中,适合采用抽样调查的是()A. 对某市中学生每天学习所用时间的调查B. 对某市食品市场上奶制品质量的调查C. 对“神舟”飞船零部件的检查D. 对某校七年级(1)班学生视力情况的调查下列命题中,真命题是()A. 两条直线被第三条直线所截,内错角相等B. 无限小数是无理数C. 平行于同一条直线的两条直线平行D. 相等的角是对顶角下列图形中,既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等腰梯形C. 菱形D. 平行四边形若关于 x 的一元二次方程x2−6x+k=0有两个不相等的实数根,则 k 的取值范围是()A. k<9B. k>9C. k≤9D. k<9 且 k=0二、填空题(每题4分,共20分)若扇形的圆心角为 120∘,半径为3,则此扇形的弧长为_______。
已知反比例函数 y=xk 的图象经过点(2,−1),则 k= _______。
分解因式:x2−4y2= _______。
已知一个三角形的两边长分别为3和8,第三边的长为偶数,则第三边的长为_______。
已知点 A(2,3) 和点 B(5,3),则线段AB的长度为_______。
三、解答题(共50分)(10分)解方程组:{3x−2y=8,x+4y=−3.(10分)先化简,再求值:(x−1)2−x(x+7),其中 x=21。
(10分)已知一次函数 y=kx+b 的图象经过点 (3,5) 和(−1,−3)。
(1)求这个一次函数的解析式;(2)求这条直线与坐标轴围成的三角形的面积。
(10分)某商店将进价为8元的商品按每件10元售出,每天可售出200件。
2014-2015三明四中九年级上数学周测(12.30)
2014-2015三明四中九年级上数学周测(12.30) 姓名 成绩一、选择题:(36分)1.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )2.一元二次方程x 2+x ﹣2=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定 3.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A. 51 B. 52 C. 53 D. 54 4.二次函数3122+--=)(x y 的图象的顶点坐标是( )A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-)5.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m6.当0>x 时,函数xy 5-=的图象在( ) A .第四象限B .第三象限C .第二象限D .第一象限 7.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b8.已知A (1-,1y ),B (2,2y )两点在双曲线x m y 23+=上,且21y y >,则m 的取值范围是( ) A .0>m B .0<m C .23->m D .23-<m 9.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( )A .当x=3时,EC <EMB .当y=9时,EC >EMC .当x 增大时,EC •CF 的值增大D .当y 增大时,BE •DF 的值不变二、填空题:(24分)10.计算:2sin30°=11.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是12.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是13.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.14.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式________15.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=1,则S1+S2=.三、解答题:(46分)16.(6分)现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,求实数x的值。
冀教版九年级数学上册全册测试卷及答案
1冀教版九年级数学上册全册测试卷及答案(满分120分,考试时间90分钟)学校____________ 班级__________ 姓名___________一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题2分,共42分,在每小题给中,只有一项是符合题目要求的).1.已知2x =3y (y ≠0),则下而结论成立的是( ). A.23=y x B.y x 23= C.32=y x D.32y x = 2.用配方法解方程x ²+2x -1=0时,配方结果正确的是( ).A.(x+2)²=2B.(x+1)²=2C.(x+2)²=3D.(x+1)²=33.某校调查了20名男生某一周参加篮球运动的次数,调查结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是( )A.3次B.3.5次C.4次D.4.5次 4.关于一组数据:1,5,6,3,5,下列错误的是( ).A.平均数是4B.众数是5C.中位数是6D.方差是3.2 5.若关于x 的一元二次方程(a -1)x ²+3x -2=0有实数根,则a 的取值范围是( ). A.a>-81 B.a ≥-81 C.a >-81且a ≠1 D .≥-81且a ≠16.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x ,则( ).A.10.8(1+x)²=16.8B.16.8(1-x)²=10.8C.10.8(1+x)²=16.8D.10.8[(1+x)+(1+x)²]=16.8 7.已知关于x 的方程x ²+x -a =0的一个根为2,则另一个根是( ). A.-3 B.-2 C.3 D.6 8.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sinA 的值为( ).2A.135 B.1312 C.125 D.5129.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽SACB ,添加一个条件,不正确的是( ).A. ∠ABP=∠CB.∠APB=∠ABCC.AC AB AB AP =D.CBACBP AB =10.如图,过反比例函数y =xk(x <0)的图像上一点A 作AB ⊥x 轴于点B ,连接AO , 若S AOB ∆=2,则K 的值为( ).A.2B.-2C.4D.-411.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,人径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图3获得,则井深为( ).A.1.25尺B.57.5尺C.6.25尺D.62.5尺12.如图4所示,在平面直角坐标系中,已知点A (-3,6),B (-9,-3),以原点O 为位似中心,相似比为31,把△ABO 缩小,则点A 的对应点A ′的坐标是( ).3A. (-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)13.如图5,在△ABC 中,AC ⊥BC , LABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( ).A.2+3B.3C.3+3D.3314.如图6,AB 是⊙O 的直径,弦CD ⊥AB 于点E .若AB =8,AE =1,则弦CD 的长是( ).A.7 B.27 C.6 D.815.如图7,⊙O 是△ABC 的外接圆,BC =2, BAC =30°,则劣弧BC 的长等于( ).A.π32 B.3πC.332πD.332π 16.如图8,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( ).4A.45°B.50°C.60°D.75°二、填空题(本大题共3个小题,共10分.17-18小题各3分;19小题有2个空,每空2分,把答案写在题中横线上) 17.如果反比例函数y=xk(k 是常数,k ≠0)的图像经过点(2,3),那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而_______.(填“增大”或“减小”)18.如图9,AB 是⊙O 的直径,AB =4,点M 是0A 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA =45°,则弦CD 的长为______.19.如图10,正方形ABCB 中,AB =1,AB 与直线l 的夹角为30°,延长CB 交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3B 4...依此规律,则121AB B A =______ , A n B 1 n =________.二、解答题(本大题共7个小题,共68分,解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)解下列方程:5(1)x ²-6x +6=0; (2)(x +1)(x -3)=-1.21.(本小题满分9分)市射击队为从甲、乙两名运动员中选拔人参加省比赛,对他们进行了六次测试,测试成绩如下表:(1)把表中所空各项数据填写完整; (2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.22.(本小题满分9分)如图11,已知反比例函数y =xk的图像经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求h 和m 的值;(2)若点C (x ,y )也在反比例函数k 的图像上,当-3≤x ≤-1时,求函数值y 的取值范围.623.(本小题满分9分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图12,测得∠DAC =45°,∠DBC =65°.若AB =132米,求观景亭D 到南滨河路AC 的距离约为多少米? (结果精确到1米,参考数据:sin 65°≈0.91,cos 65°≈0.42,tan 65°≈2.14)24.(本小题满分10分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品.25.(本小题满分11分)如图13,正方形ABCD的顶点A在等腰RtΔDEF的斜边EF上,EF与BC相交于点G,连接CF:(1)求证:ΔDAE≌ΔDCF;(2)求证:ΔABC∽ΔCFG.26.(本小题满分12分)如图14,BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.789试题答案一、1.A 2.B 3.C 4.C 5.D6. C7.A8.B9.D 10.D11.B 12.D 13.A 14.B 15.A 16.C 二、17.减小18. 1419.3,2×(3)n三、20.(1)x 1=3+3,x 2=3-3;(2)x 1=1+3 ,x 2=1-3 . 21.(1)数据如下:(2) 甲的方差是3,乙的方差是3. (3)我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适, 22.(1)∵ΔAOB 的面积为2,且反比例函数过第一象限,∴k =4, ∴反比例函数表达式为y =x4. ∵点A (4,m )在该反比例函数上,:m =44=1; (2)∵当x =-3时,y =-34,当x =-1时,y =-4. 又∵反比例函数y =x4,在x <0时,y 随x 的增大而减小∴当_3≤x ≤-1时,y 的取值范围为-4≤y ≤3423.过点D 作DE ⊥AC ,垂足为E ,设BE =x , 在RtΔDEB 中,tan ∠DBE =BEDE∵∠DBC =65°.∴DE =xtan 65°.又∵∠DAC=45°,易得AE=DE.∴132+x=xtan65°,解得x≈115.8,∴DE=AE=BE+AB≈248(米).∴观景亭D到南滨河路AC的距离约为248米.24.(1)(14-10)+2+1=3.故此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意,得[76-4(x-1)][10+2(x-1)]=1080,解得x1=5,x2=11(不合题意,舍去).故该烘焙店生产的是第五档次的产品.25.(1)∵四边形ABCD是正方形,△DEF是等腰直角三角形,∴AD=CD,DE=DF,∠ADC=∠EDF=90°,∴∠ADC-∠ADF=∠EDF-∠ADF,∴∠ADE=∠CDF.在△DAE和△DCF中,∵DE=DF,∠ADE=∠CDF,DA=DC,∴ΔDAE≌△DCF;(2)∵△ADE≌△CDF,∴∠E=∠DFC.∵∠E+∠DFG=90°,∴∠CFG=∠DFC+∠DFG=90°∵∠B=∠CFG=90°.又∵∠AGB=∠CGF,∴△ABG∽△CFG.26.(1)∵BE.平分∠ABC,AD平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠CAD,∵弧BD=弧CD,∴∠DBC=∠CAD,∴∠DBC=∠BAE.∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE∴∠DBE=∠DEB,∴DE=DB;(2)连接CD,由(1),得BD=CD∴CD=BD=4.∵∠BAC=90°∴BC是直径,1011∴∠BDC =90°,∴BC =2422=+CD BD ∴△ABC 外接圆的半径=222421=⨯.。
北师大版九年级上册数学第三章概率的进一步认识测试题
二、填空题(共20分)
9.某校有一支由12人组成的篮球队,年龄结构如下表.
年龄(岁)
14
15
16
17
人数(人)
2
6
3
1
从中抽取1人,年龄不小于15岁的概率是.
10.如图表示某班21位同学衣服上口袋的数目.若任选一位同学,则其衣服上口袋数为5的概率是.
11.一个科室有3名男士、2名女士,从中任选2人做一项接待工作,则选到的人都女士的概率为.
(1)判断线段MN与线段BM的位置关系与数量关系,说明理由;
(2)如果CD=5,求NF的长.
23.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量y与销售单价x之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?
(1)如果花2元摸1个球,那么摸不到奖的概率是多少?
(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?
20.一个口袋里有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.
A. B. C. D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
九年级数学人教版(上册)周测(22.1.1~22.1.3)
A.有最大值 4
B.有最小值 4
C.有最大值 6
D.有最小值 6
3.对于二次函数 y=-(x-1)2+4 的图象,下列说法正确的是( D ) A.开口向上 B.顶点坐标是(-1,4) C.图象与 y 轴交点的坐标是(0,4) D.图象在 x 轴上截得的线段长度是 4
4.抛物线 y=-3(x+1)2+1 是由抛物线 y=-3x2-1 怎样平移 得到的(B )
第二十二章 二次函数
周测(22.1.1~22.1.3)
一、选择题(每小题 5 分,共 25 分)
1.下列函数:①y=2x-1;②y=2x2-1;③y=2x2;④y=2x3
+x2;⑤y=x2-x-1,其中二次函数有(C )
A.1 个
B.2 个
C.3 个
D.4 个
2.关于二次函数 y=2(x-4)2+6 的最值,下列说法正确的是( D )
12.若二次函数 y=(x-m)2+n 的图象如图所示,则一次函数 y =mx+n 的图象不经过第二象限.
13.如图,在平面直角坐标系中,点 A 的坐标为(0,2),点 B
的坐标为(4,2).若抛物线 y=-32(x-h)2+k(h,k 为常数)与线段 AB
交于
C,D
两点,且
CD=12AB,则
k
16.(14 分)如图,抛物线 y=-x2+4 交 x 轴于 A,B 两点,顶 点是 C.
(1)求△ABC 的面积. 解:∵A(-2,0),B(2,0),C(0,4), ∴S△ABC=12×4×4=8.
(2)若点 P 在抛物线上,且 S△PAB=4,求点 P 的坐标. 解:设点 P 的纵坐标为 t,则 S△PAB=12×4×|t|=4, ∴t=±2. 当 t=2 时,由 2=-x2+4,得 x=± 2; 当 t=-2 时,由-2=-x2+4,得 x=± 6. ∴点 P 的坐标为( 2,2)或(- 2,2)或( 6,-2)或(- 6,-2).
2020-2021学年湖南省长沙市天心区长郡集团九年级(上)第三次限时训练数学试卷(解析版)
2020-2021学年湖南省长沙市天心区长郡集团九年级第一学期第三次限时训练数学试卷一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×1083.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.45.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.4210.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.19.解不等式组:并把解集在数轴上表示出来.20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有人,a=,b=.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D 的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.参考答案一、选择题(共12小题,满分36分,每小题3分)1.在实数﹣,﹣3.14,0,π,中,无理数有()A.1个B.2个C.3个D.4个【分析】分别根据无理数、有理数的定义即可判定选择项.解:﹣3.14是有限小数,属于有理数;0是整数,属于有理数;,是整数,属于有理数;无理数有,π共2个.故选:B.2.8月上映的战争题材影片《八佰》取材自“八百壮士”奉命坚守上海四行仓库的真实历史,呈现出平凡的中国军民共同奋勇抗战的热血情怀.截止10月17日,累计票房达到了30.81亿,登顶2020年度票房全球冠军.其中,30.81亿用科学记数法表示为()A.30.81×108B.30.81×109C.3.081×109D.3.081×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30.81亿=3081000000=3.081×109.故选:C.3.点M(3,﹣2)与Q(a,b)关于y轴对称,则a+b的值为()A.5B.﹣5C.1D.﹣1【分析】利用关于y轴对称的点的坐标特点可得a、b的值,进而可得答案.解:∵点M(3,﹣2)与Q(a,b)关于y轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5,故选:B.4.下列说法:①若一个数的倒数等于它本身,则这个数是1或﹣1;②若2a2与3a x+1的和是单项式,则x=1;③若|x|=|﹣7|,则x=﹣7;④若a、b互为相反数,则a、b的商为﹣1.其中正确的个数为()A.1B.2C.3D.4【分析】分别根据倒数的定义,单项式的定义,绝对值的定义以及相反数的定义逐一判断即可.解:①若一个数的倒数等于它本身,则这个数是1或﹣1,说法正确;②若2a2与3a x+1的和是单项式,则x=1,说法正确;③若|x|=|﹣7|,则x=±7,故原说法错误;④若a、b互为相反数,则a、b的商为﹣1,说法错误,0的相反数是0.所以其中正确有①②共2个.故选:B.5.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,本题得以解决.解:由题意可得,,故选:A.6.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)【分析】根据二次函数的性质对各小题分析判断即可得解.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.7.如图,转盘中四个扇形的面积都相等,小明随意转动转盘1次,指针指向的数字为偶数的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解:∵共4个数,数字为偶数的有2个,∴指针指向的数字为偶数的概率为=.故选:D.8.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.【分析】根据抛物线y=x2+2x﹣k﹣2与x轴没有交点,得方程x2+2x﹣k﹣2=0没有实数根,可以得到Δ<0,从而可以得到k的取值范围,然后即可得到函数y=的图象在哪个象限.解:∵抛物线y=x2+2x﹣k﹣2与x轴没有交点,∴方程x2+2x﹣k﹣2=0没有实数根,∴△=22﹣4×1×(﹣k﹣2)=4k+12<0,解得k<﹣3,∴函数y=的图象在二、四象限,故选:B.9.如图,点E是▱ABCD的边AD上的一点,且,连接BE并延长交CD的延长线于点F,若DE=3,DF=4,则▱ABCD的周长为()A.21B.28C.34D.42【分析】根据平行四边形的性质得AB∥CD,再由平行线得相似三角形,根据相似三角形求得AB,AE,进而根据平行四边形的周长公式求得结果.解:∵四边形ABCD是平行四边形,∴AB∥CF,AB=CD,∴△ABE∽△DFE,∴,∵DE=3,DF=4,∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴平行四边形ABCD的周长为:(8+9)×2=34.故选:C.10.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(2,4).点A在y轴的正半轴上,点C在x轴的正半轴上,点P是BC的中点.以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,记点P的对应点为P1,则P1的坐标为()A.(3,3)B.(3,2)或(﹣3,﹣2)C.(3,3)或(﹣3,﹣3)D.(2,3)或(﹣2,﹣3)【分析】根据矩形的性质求出点P的坐标为(2,2),根据位似变换的性质计算,得到答案.解:∵矩形OABC的顶点B的坐标为(2,4),点P是BC的中点,∴点P的坐标为(2,2),以坐标原点O为位似中心,将矩形OABC放大为原图形的1.5倍,则P1的坐标为(2×1.5,2×1.5)或(﹣2×1.5,﹣2×1.5),即(3,3)或(﹣3,﹣3),故选:C.11.如图,在地面上的点A处测得树顶B的仰角为α,AC=2,则树高BC为()(用含α的代数式表示)A.2sinαB.2tanαC.2cosαD.【分析】根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用锐角三角函数的定义即可求出BC的高度.解:∵BC⊥AC,AC=2,∠BAC=α,∴tanα=,∴BC=AC•tanα=2tanα,故选:B.12.如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,则四边形PEDF面积的最小值为()A.B.C.2D.【分析】连接DP,根据直线y=x+1与x轴、y轴分别相交于A、B两点,求得AB的长,即可得出⊙P的半径,证△PED≌△PFD,可得四边形PEDF面积=2S△PED=2×PE ×DE,当DP⊥AP时,四边形PEDF面积的最小,利用锐角三角函数求出DP的长,即可得出四边形PEDF面积的最小值.解:如图,连接DP,∵直线y=x+1与x轴、y轴分别相交于A、B两点,当x=0时,y=1,当y=0时,x=﹣2,∴A(﹣2,0),B(0,1),∴AB=,∵过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,∴DE=DF,PE⊥DE,∵PE=PF,PD=PD,∴△PED≌△PFD(SSS),∵⊙P的半径为,∴DE=,当DP⊥AP时,DP最小,此时DP=AD•sin∠BAO=5×,∵四边形PEDF面积=2S△PED=2×PE×DE=DE,∴四边形PEDF面积的最小值为.故选:A.二、填空题(共4小题,满分12分,每小题3分)13.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=60.【分析】根据方差的计算公式得出这组数据的平均数,再由平均数的定义求解可得答案.解:由s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]知这10个数据的平均数为6,所以x1+x2+x3+…+x10=6×10=60,故答案为:60.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=8cm.【分析】先根据垂径定理可得出CE的长度,再在Rt△OCE中,利用勾股定理可得出OE 的长度,然后利用AE=AO+OE即可得出AE的长度.解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4(cm)在Rt△OCE中,OC=5cm,CE=4cm,∴OE===3(cm),∴AE=AO+OE=5+3=8(cm).故答案为:8cm.15.如图,第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,,BC、AD垂直于x轴于C、D,则k的值为﹣.【分析】利用反比例函数系数的几何意义得到S△AOD=2,接着证明Rt△AOD∽Rt△OBC,利用相似三角形的性质得S△OBC=S△AOD=,所以•|k|=,然后根据反比例函数的性质确定k的值.解:如图,∵第一象限内的点A在反比例函数y=上,BC、AD垂直于x轴于C、D,∴S△AOD=×4=2,∵OA⊥OB,∴∠AOD+∠BOC=90°,∴∠AOD+∠OAD=90°,∴∠BOC=∠OAD,∵∠BCO=∠ODA=90°,∴Rt△AOD∽Rt△OBC,∵,∴=()2=,∴S△OBC=S△AOD=×2=,∴•|k|=,而k<0,∴k=﹣.故答案为﹣.16.如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=3.【分析】过F作FG⊥CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG =EC,GE=2=CD;设EC=x,则DG=x,FG=x,再根据勾股定理,即可得到CE2=9,最后依据勾股定理进行计算,即可得出BE的长.解:如图所示,过F作FG⊥CD,交CD的延长线于G,则∠G=90°,∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,又∵∠BEF=90°,∴∠FEG+∠BEC=90°=∠EBC+∠BEC,∴∠FEG=∠EBC,又∵∠C=∠G=90°,∴△BCE∽△EGF,∴==,即==,∴FG=EC,GE=2=CD,∴DG=EC,设EC=x,则DG=x,FG=x,∵Rt△FDG中,FG2+DG2=DF2,∴(x)2+x2=()2,解得x2=9,即CE2=9,即此时顶点E在边CD延长线上时,∴Rt△BCE中,BE===3,故答案为:3.三、解答题(共9小题,满分72分)17.计算:+()﹣1﹣|﹣5|+sin45°.【分析】直接利用特殊角的三角函数值以及负整数指数幂的性质和立方根的性质、绝对值的性质分别化简得出答案.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.18.先化简,再求值:,其中x满足方程x2﹣x﹣6=0.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据方程x2﹣x﹣6=0,可以得到x的值,然后将使得原分式有意义的x的值代入化简后的式子即可解答本题.解:=()==x+3,由方程x2﹣x﹣6=0,可得x1=3,x2=﹣2,当x=3时,原分式无意义,∴x=﹣2,当x=﹣2时,原式=﹣2+3=1.19.解不等式组:并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:20.某校组织八年级部分学生开展庆“五•四”演讲比赛,赛后对全体参赛学生成绩按A、B、C、D四个等级进行整理,得到下列不完整的统计图表.等级频数频率A40.08B20aC b0.3D110.22请根据所给信息,解答下列问题:(1)参加此次演讲比赛的学生共有50人,a=0.4,b=15.(2)请计算扇形统计图中B等级对应的扇形的圆心角的度数;(3)已知A等级四名同学中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加县级比赛,请用列表法或树状图,求甲、乙两名同学都被选中的概率.【分析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)列树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;解:(1)参加演讲比赛的学生人数为4÷0.08=50人,a=20÷50=0.4,b=50×0.3=15,故答案为:50、0.4、15;(2)扇形统计图中B等级对应的扇形的圆心角的度数为360°×0.4=144°;(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,列树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.21.为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B 地比原来少走多少路程.解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40(千米),答:开通隧道前,汽车从A地到B地要走80+40千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:(AC+BC)﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.22.如图,在平面直角坐标系xOy中,直线y=mx+1与双曲线y=(k>0)相交于点A,B,已知点B(a,﹣2),点C在x轴正半轴上,点D(2,﹣3),连接OA,OD,DC,AC,四边形AODC为菱形.(1)求k和m的值;(2)请直接写出:当x取何值时,反比例函数值大于一次函数值?(3)设P是y轴上一动点,且△OAP的面积等于菱形OACD的面积,求点P的坐标.【分析】(1)连接AD,与x轴交于点E,由四边形AODC为菱形,得到AE=DE,OE =CE,根据D坐标确定出DE的长,确定出AE与OE的长,进而求出A的坐标,将A 坐标代入直线解析式求出m的值,代入反比例解析式求出k的值.(2)联立两函数解析式求出B坐标,根据A与B横坐标,利用图象求出反比例函数值大于一次函数值时x的范围即可.(3)根据OC与AD的长,求出菱形ABCD的面积,设P(0,p),由OP为底,A横坐标为高表示出△OAP面积,根据△OAP的面积等于菱形OACD的面积,列出关于p的方程,求出方程的解即可得到p的值.解:(1)连接AD,与x轴交于点E,∵D(2,﹣3),∴OE=2,ED=3,∵菱形AODC,∴AE=DE=3,EC=OE=2,∴A(2,3),将A坐标代入直线y=mx+1得:2m+1=3,即m=1,将A坐标代入反比例y=得:k=6.(2)联立直线与反比例解析式得:,消去y得:x+1=,解得:x=2或x=﹣3,将x=﹣3代入y=x+1得:y=﹣3+1=﹣2,即B(﹣3,﹣2),则当x<﹣3或0<x<2时,反比例函数值大于一次函数值;(3)∵OC=2OE=4,AD=2DE=6,∴S菱形AODC=OC•AD=12,∵S△OAP=S菱形OACD,即OP•OE=12,∴设P(0,p),则×|p|×2=12,即|p|=12,解得:p=12或p=﹣12,则P的坐标为(0,12)或(0,﹣12).23.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.【分析】(1)要证EF是⊙O的切线,只要连接OE,再证∠FEO=90°即可;(2)先证明△FEA∽△FBE,根据相似三角形对应边成比例求出AF=5,BF=20,BE =2AE.再根据圆周角定理得出∠AEB=90°,利用勾股定理列方程,即可求出AE的长.【解答】(1)证明:连接OE,∵∠B的平分线BE交AC于D,∴∠CBE=∠ABE.∵EF∥AC,∴∠CAE=∠FEA.∵∠OBE=∠OEB,∠CBE=∠CAE,∴∠FEA=∠OEB.∵∠AEB=90°,∴∠FEO=90°.∴EF是⊙O切线.(2)解:在△FEA与△FBE中,∵∠F=∠F,∠FEA=∠FBE,∴△FEA∽△FBE,∴==,∴AF•BF=EF•EF,∴AF×(AF+15)=10×10,解得AF=5.∴BF=20.∴=,∴BE=2AE,∵AB为⊙O的直径,∴∠AEB=90°,∴AE2+BE2=152,∴AE2+(2AE)2=225,∴AE=3.24.定义:若一次函数y=ax+b与反比例函数y=同时经过点P(x,y)则称二次函数y =ax2+bx﹣k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=,都经过(2,4),则y=x2+2x﹣8就是两个函数的“关联函数”.(1)判断y=2x﹣1与y=是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,求a的值.(3)若一次函数y=x+m和反比例函数y=在自变量x的值满足的m≤x≤m+6的情况下,其“关联函数”的最小值为6,求其“关联函数”的解析式.【分析】(1)由题意联立y=2x﹣1与y=,解方程组即可得出“关联点”和“关联函数”;(2)由题意根据一次函数y=(1+b)x+2a+2与反比例函数y=,得到它们的关联函数,利用已知得出a,b,c的关系式,再利用整数a,b,c满足条件c<b<8a,列出不等式,即可得出结论;(2)先写出它们的关联函数,求得它的对称轴为直线x=﹣m,然后根据已知的自变量x的取值范围分三种情况讨论,即可求得.解:(1)存在“关联点”和“关联函数”,理由如下:由题意得:,解得:,.∴“关联点”为(﹣1,﹣3)或(,2),它们的“关联函数”为:y=2x2﹣x﹣3.(2)由“关联函数”的定义可知:一次函数y=(1+b)x+2a+2与反比例函数y=的“关联函数”为:y=(1+b)x2+(2a+2)x﹣2021,∵一次函数y=(1+b)x+2a+2与反比例函数y=存在“关联函数”y=(a+c)x2+(10a﹣c)x﹣2021,∴,∴.∵整数a,b,c满足条件c<b<8a,∴8a﹣2<9a﹣3<8a,∴1<a<3.∵a为整数,∴a=2.(3)由题意得:一次函数y=x+m和反比例函数y=的“关联函数”为:y=x2+mx ﹣m2﹣13.∴该函数的对称轴为直线x=﹣m.①当m+6<m,即m<﹣4时,当x=m+6时,函数取得最小值为6,即(m+6)2+m(m+6)﹣m2﹣13=6.解得:m=﹣17或m=﹣1(舍去).∴m=﹣17.∴其“关联函数”的解析式为:y=x2﹣17x﹣302.②当m<﹣m<m+6,即﹣4<m<0时,当函数在x=﹣m处取得最小值6,∴﹣13=6.此方程无解.③当m≥﹣m,即m≥0时,当x=m处函数取得最小值为6,∴m2+m•m﹣m2﹣13=6,解得:m=±(﹣舍去).∴m=.∴其“关联函数”的解析式为:y=x2+x﹣32.综上,其“关联函数”的解析式y=x2﹣17x﹣302或y=x2+x﹣32.25.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A、B,与y轴相于点C,连接BC,已知点A(﹣2,0),BO=4AO,tan∠OCB=2.(1)求抛物线的解析式;(2)设点P是抛物线上在第一象限内的动点(不与C、B重合),过点P做PD⊥BC,垂足为点D.①点P在运动过程中,线段PD的长度是否存在最大值?若存在,求出此时点P和点D的坐标;若不存在,请说明理由;②当以P、D、C为顶点的三角形与△COA相似时,求点P的坐标.【分析】(1)根据题意先求出点B、C的坐标,利用待定系数法即可求得答案;(2)①如图1,过点P作PK∥y轴交直线BC于点K,运用待定系数法求得直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),可得PK=t2+2t,由△PKD∽△BCO,可求得PD=﹣(t﹣4)2+,利用二次函数的性质可得最值及此时t的值,即可求出答案;②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),利用△KBH∽△CBO,求得CD=t2+t,再分两种情况:当△CPD∽△ACO时,当△CPD∽△ACO时,分别运用相似三角形性质即可求得答案.解:(1)∵点A(﹣2,0),∴AO=2,∵BO=4AO,∴OB=8,B(8,0),∵=tan∠OCB=2,∴OC=4,∴C(0,4),设抛物线解析式为y=a(x+2)(x﹣8),将C(0,4)代入,得:﹣16a=4,解得:a=﹣,∴y=﹣(x+2)(x﹣8)=x2+x+4,故该抛物线解析式为y=x2+x+4;(2)①存在.如图1,过点P作PK∥y轴交直线BC于点K,在Rt△BCO中,BC===4,设直线BC解析式为y=kx+d,∵B(8,0),C(0,4),∴,解得:,∴直线BC解析式为y=﹣x+4,设P(t,t2+t+4),则K(t,﹣t+4),∴PK=t2+t+4﹣(﹣t+4)=t2+2t,∵PK∥y轴,∴∠PKD=∠BCO,∵∠PDK=∠BOC=90°,∴△PKD∽△BCO,∴=,即=,∴PD=﹣t2+t=﹣(t﹣4)2+,∴当t=4时,PD取得最大值,∴P(4,6),∴PD=,设D(x,﹣x+4),∴(x﹣4)2+(﹣x+4﹣6)2=()2,解得:x1=x2=,∴D(,);②如图2,过点P作PK∥y轴交直线BC于点K,交x轴于点H,设P(t,t2+t+4),则H(t,0),K(t,﹣t+4),∴BH=8﹣t,KH=﹣t+4,∵∠BHK=∠BOC=90°,∠KBH=∠CBO,∴△KBH∽△CBO,∴=,即=,∴BK=(8﹣t),由①知,PK=t2+2t,PD=﹣t2+t,∵△PKD∽△BCO,∴==,∴DK=﹣t2+t,∴CD=BC﹣BK﹣DK=4﹣(8﹣t)﹣(﹣t2+t)=t2+t,当△CPD∽△ACO时,∴=,∴OC•CD=OA•PD,即4(t2+t)=2(﹣t2+t),解得:t=0(舍去)或t=3,∴P(3,);当△CPD∽△CAO时,∴=,∴OA•CD=OC•PD,即2(t2+t)=4(﹣t2+t),解得:t=0(舍去)或t=6,∴P(6,4);综上所述,点P的坐标为(3,)或(6,4).。
九年级上册数学名校课堂德州专版周周测电子版
九年级上册数学名校课堂德州专版周周测电子版一、填空。
(25分)(第1、2、10小题各1分,其余各小题2分。
)1、吨=()千克,48分=()时。
2、把×2=改写成两道除法算式是()和()。
3、48的512 是(),()的35 是27。
4、比80米多12 是()米;300吨比()吨少16 。
5、()和()互为倒数,()的倒数是它本身。
6、()∶()= 37 =9÷()=()357、18∶36化成最简单的整数比是(),18∶36的比值是()。
8、“黄花的朵数是红花朵数的23 ”是把()的朵数看作单位“1”,关系式是()。
9、甲和乙的比是4∶5,则甲是乙的()(),乙是甲乙两数和的()()。
10、在○里填上><或=56 ÷13 ○56 ×13 49 ○49 ÷2711、把元平均分成4份,每份是元的(),每份是()元。
12、用48厘米的铁丝围成一个三角形(接口处不计),这个三角形三条边的长度比是3∶4∶5,最长的边是()厘米。
13、在同一个圆中,半径的长度是直径的(),直径的长度是半径的()。
14、一根12米长的铁丝,用去,还剩()米,再用去米,还剩()米。
二、火眼金睛辨对错。
(5分)1、4米长的钢管,剪下14 米后,还剩下3米。
()2、20千克减少110 后再增加110 ,结果还是10千克。
()3、松树的棵数比柏树多15 ,柏树的棵数就比松树少15 。
()4、两个真分数的积一定小于1。
()5、一桶油用去它的15 后,剩下的比用去的多。
()三、选择正确的答案的序号填在()里。
(5分)1、一个比的比值是78 ,如果把它的前项和后项同时扩大3倍,这时的比值是()。
A、78B、724C、2182、李冬坐在教室的第二列第四行,用数对(2,4)来表示,王华坐在第六列第一行,可以用()来表示。
A、(1,6 )B、(6,1)C、(0,6)3、下面各组数中互为倒数的是()。
九上《一元二次方程解法》周测题含答案
九年级数学上册一元二次方程解法周测题9.15一、选择题:1.若关于x的一元二次方程x2+mx+m2-3m+3=0的两根互为倒数,则m的值等于()A.1B.2C.1或2D.02.已知a,b是方程x2+2013x+1=0的两个根,则(1+2015a+a2)(1+2015b+b2)的值为()A.1B.2C.3D.43.若关于x的一元二次x2+2x+k=0无实数根,则k值可以是( )A.3B.1C.0D.-54.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为( )A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=25.如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是()A.m>2B.m<2C.m>2且m≠1D.m<2且m≠16.下列方程中两实数根互为倒数有()①x2﹣2x﹣1=0;②2x2﹣7x+2=0;③x2﹣x+1=0.A.0个B.1个C.2个D.3个7.一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是()A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=28.满足下列条件的一元二次方程ax2+bx+c=0(a≠0)一定有整数解的是()A.2a+2b+c=0B.4a+2b+c=0C.a=cD.b2﹣4ac=09.下列方程有两个相等的实数根的是()A.x2+x+1=0B.4x2+2x+1=0C.x2+12x+36=0D.x2+x﹣2=010.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005 B.2003 C.﹣2005 D.401011.关于x的方程ax2﹣(3a+1)x+2(a+1)=0有两个不相等实根x1、x2,且有x1﹣x1x2+x2=1﹣a,则a 值是()A.1 B.﹣1 C.1或﹣1 D.212.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.18二、填空题:13.方程x2﹣3x+1=0的一次项系数是.14.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n= .15.将方程x2-4x-1=0化为(x-m)2=n的形式,其中m,n是常数,则m+n= .16.一元二次方程(x﹣1)(x﹣2)=x﹣1的解是.17.若关于x的方程3x2﹣kx+k=0有两个相等的实数根,则常数k的值为.18.已知方程x2+kx﹣2=0的一个根是1,则另一个根是,k的值是.19.已知x1、x2是方程x2﹣4x﹣12=0的解,则x1+x2= .20.若方程x2-2x-1=0的两个根为x1,x2,则x1+x2-x1x2的值为________.三、计算题:21.解方程:(x+1)(x-1)=2x;22.解方程:x2﹣2=﹣2x23.解方程:3(x﹣1)2=x(x﹣1) 24.解方程:3x2-6x-2=0.25.解方程:x2 -4x+1=0 26.解方程:4(x+3)2﹣(x﹣2)2=027.已知关于x的方程x2-(m+2)x+(2m-1)=0。
2020-2021学年新人教版九年级数学上册周末练习及答案
2020-2021学年度第一学期九年级数学周测练习题12.09姓名:_______________班级:_______________得分:_______________一选择题:1.下列各组数中,成比例的是( )A.﹣7,﹣5,14,5B.﹣6,﹣8,3,4C.3,5,9,12D.2,3,6,122.如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是偶数的概率等于( )(A); (B); (C);(D).3.已知2x=3y=4z,则x:y:z是 ( )A.2:3:4B.4:3:2C.7:6:5D.6:4:34.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为( )A. B. C. D.5.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.2020D.28°6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为( )A.7.8米B.3.2米C.2.3米D.1.5米7.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )A. B. C. D.8.如图,正方形ABCD的两边BC、AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( ). B. C. D.9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE 与S△CDE的比是( )A.1:3B.1:4C.1:5D.1:2510.如图,在△ABC 中,∠C=90°,BC=3,D,E 分别在 AB、AC上,将△ADE沿DE翻折后,点A正好落在点A′处,若A′为CE的中点,则折痕DE的长为( )A. B.3 C.2 D.111.如图是一次函数y1=kx-b和反比例函数y2=的图象,观察图象写出y1>y2时,x的取值范围是( )A.x>3B.x>-2或x>3C.x<-2或0<x<3D.-2<x<0或x>312.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是 ( )A.r≥1D.1≤r≤4B.1≤r≤C.1≤r≤二填空题:13.若双曲线的图象经过第二、四象限,则k的取值范围是.14.如图,点P是□ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有________对.15.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,AD:DB=1:2,S△ADE=1,则S四边形BCED的值为_______.16.现有两个不透明盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同概率是________.17.菱形OABC的顶点O是原点,顶点B在轴上,菱形的两条对角线的长分别是8和6(),反比例函数的图像经过,则的值为.18.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心、r为半径所作的圆与斜边AB只有一个公共点,则r的范围是.19.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c图象上,则y1,y2,y3大小关系是.2020图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三作图题:21.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).22.如图,已知△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求D C的长.23.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?24.如图,已知⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE于点F.(1)求证:CD为⊙O的切线;(2)若BC=10,AB=16,求OF的长.25.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE︰EA=1︰2,PA=6,求⊙O的半径;26.如图,在矩形ABCD中,AB=12cm,BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。
北师大版九年级数学上册第三章概率的进一步认识测试卷
第三章概率的进一步认识周周测1 1.(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.2.(2017•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.3.(2017•黔东南州模拟)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.4.(2017•黔东南州二模)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A.B.C.D.5.(2017•微山县模拟)从长度分别为2、3、4、5的4条线段中任取3条,能构成钝角三角形的概率为()A.B.C.D.6.(2017•衡阳一模)把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1 B.C.D.7.(2017•和平区模拟)布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A.B.C.D.8.(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.9.(2017•黄石)甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为.10.(2017•宁德模拟)甲、乙两位同学参加物理实验考试,若每人只能从A、B、C、D四个实验中随机抽取一个,则甲、乙两位同学抽到同一实验的概率为.11.(2017•杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.12.(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.13.(2017•德州)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.14.(2017•白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.15.(2017•衡阳)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.16.(2017•徐州)一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片除数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.17.(2017•常州)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4.(1)搅匀后从中任意摸出1个球,求摸出的乒乓球球面上数字为1的概率;(2)搅匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,求2次摸出的乒乓球球面上数字之和为偶数的概率.18.(2017•随州)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有40名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.19.(2017•乌鲁木齐)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<40008a4000≤x<8000150.38000≤x<1200012b12000≤x<16000c0.216000≤x<2000030.0620000≤x<24000d0.04请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.用树状图或表格求概率答案1.C.2.C.3.A.4.B.5.B.6.B.7.C.8.9..10.11..12..13..14.【解答】解:(1)根据题意列表如下:甲乙678939101112410111213511121314可见,两数和共有12种等可能结果;(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种,∴李燕获胜的概率为=;刘凯获胜的概率为=.【解答】解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.16.【解答】解:画树状图为:共有12种等可能的结果数,其中两人抽到的数字符号相同的结果数为4,所以两人抽到的数字符号相同的概率==.17.【解答】解:(1)∵共有4个大小、质地都相同的乒乓球,球面上分别标有数字1、2、3、4,∴摸出的乒乓球球面上数字为1的概率是;(2)根据题意画树状图如下:共有12种等可能的结果,两次摸出的乒乓球球面上的数字的和为偶数的有4种情况,则两次摸出的乒乓球球面上的数字的和为偶数的概率为=.18.【解答】解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数分布直方图补充如下:故答案为40;(2)C组对应的圆心角度数是:360°×=108°,E组人数占参赛选手的百分比是:×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为=.19.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x <20000的3名教师分别为A 、B 、C , 20000≤x <24000的2名教师分别为X 、Y , 画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.14乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..2. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是A.23 B.12C.13D.498.如图,在菱形ABCD中,AB=13,对角线AC=10,若过点A作AE ⊥BC垂足为E,则AE的长为A.8B.6013 C.12013D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个 二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到0.1) 15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12 18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转 (1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜 若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..胜.问他们两人谁获胜的概率大?请分析说明 19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元? (2)商场平均每天可能盈利1700元吗?请说明理由. 20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)当四边形BEDF 是菱形时,求EF 的长. 21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗? 22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律. (1)求每月销售量y 与销售单价x 之间的函数关系式; (2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..试求该月茶叶的销售单价x. 23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长. 乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
九年级上学期数学周考测试题(含答案)
清潭中学九年级上学期数学周考测试题(20181021)一、选择题(每小题3分,共30分)1.下列图形既是轴对称图形又是中心对称图形的是()2.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(-3,1) B.(3,-1) C.(-1,3) D.(1,-3)3.已知点A(a, 1)与B(−2, b)关于坐标原点对称,那么点P(a, b)绕原点顺时针旋转90∘后的对应点P′的坐标是()A.(-1, 2)B.(1, -2) C.(-1, -2) D.(1, 2)4.如图,将△ABC绕点A按逆时针方向旋转100∘,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为()A.70∘B.80∘C.84∘D.86∘5.如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为()A.4√3B.2√3C.3 D.26.如图,直角三角板ABC的斜边AB=12 cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6 cm B.4 cm C.(6-2√3)cm D.(4√3-6)cm7.如图,△ABC与△A′B′C′成中心对称,下列说法不正确的是( )A.S△ABC=S△A′B′C′B.AB=A′B′,AC=A′C′,BC=B′C′C.AB∥A′B′,AC∥A′C′,BC∥B′C′D.S△ACO=S△A′B′O8.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E 点的坐标是()A.(3,﹣1)B.(0,0)C.(2,﹣1)D.(﹣1,3)9.如图,△ABC中,∠ACB=72°,将△ABC绕点B按逆时针方向旋转得到△BDE(点D 与点A是对应点,点E与点C是对应点),且边DE恰好经过点C,则∠ABD的度数为()A.36°B.40°C.45°D.50°10.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°二、填空题(每小题3分,共24分)11.平面直角坐标系中,点P(3 , 1−a)与点Q(b+2 , 3)关于原点对称,则a+b=_____.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是_____.13.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为_________.2 / 214.如图,将△ABC 绕点A 按逆时针方向旋转至△AB′C′(B 与B′,C 与C′分别是对应顶点),使AB′⊥BC ,B′C′分别交AC ,BC 于点D ,E ,已知AB=AC=5,BC=6,则DE 的长为_____.15.如图,Rt △ABC 中, 90C ∠=︒, 30ABC ∠=︒, 2AC =, △ABC 绕点C 顺时针旋转得∆A 1B 1C 1,当1A 落在AB 边上时,连接1B B ,取1BB 的中点D ,连接1A D ,则1A D 的长度是__________.16.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____. 17.如图,在等边△ABC 中,D 是边AC 上一个动点,连接BD .将线段BD 绕点B 逆时针旋转60°得到BE ,连接ED .若BC=2,则△AED 的周长最小值是 .18.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(-8,0),直线BC 经过点B (-8,6),C (0,6),将四边形OABC 绕点O 按顺时针方向旋转α度(0<α ≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC 相交于P 、Q .在四边形OABC 旋转过程中,若BP =12BQ ,则点P 的坐标为__________. 三、解答题(共66分)18.(8分)如图,在△ABC 中,∠ACB =90∘,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90∘得到线段CE ,连结DE 交BC 于点F ,连接BE . (1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF 的度数.19.(8分)如图1,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .(1)试猜想线段BG 和AE 的数量关系是________(直接写出你的结论,不必证明); (2)将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤90°),判断(1)中的结论是否仍然成立?请利用图2证明你的结论。
浙江省衢州2022-2023学年九年级数学上册第三次月考测试题(附答案)
2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.下列成语所描述的事件为必然事件的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长2.若,则等于()A.B.C.D.3.如图,在矩形ABCD中,AB=6,AD=8,若以点D为圆心,8为半径作⊙D,则下列各点在⊙D外的是()A.点A B.点B C.点C D.点D4.两个相似三角形的面积之比为1:4,较小的三角形的周长为4,则另一个三角形的周长为()A.16B.8C.2D.15.如图,在小正方形组成的网格中,△ABC的顶点都是格点(网格线的交点),则tan∠ABC 等于()A.B.C.D.6.如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD的度数为()A.25°B.50°C.65°D.75°7.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是()A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒9.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径10.如图,在直角梯形ABCD中,∠ABC=90°,AB=8,AD=3,BC=4,点P为边AB 上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1B.2C.3D.4二、填空题(共24分)11.计算:sin45°=.12.已知P是线段AB的黄金分割点,P A>PB,AB=2cm,则P A=.13.已知扇形的圆心角为120°,面积为12π,则扇形的半径是.14.如图,点A(2,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.15.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则此Rt△ABC的重心P与外心Q之间的距离为.16.如图,AC平分∠BAD,∠BAD=∠BCD.(1)∠DBC=.(2)若AD=6,AB=8,那么AC的长是.三、解答题(共66分)17.计算:sin30°•tan45°+sin260°﹣2cos60°.18.(1)解一元一次不等式组;(2)解方程:.19.如图,已知D,E分别是△ABC的边AC,AB上的点,∠AED=∠C,AE=5,AC=9,DE=6.(1)求证:△ABC∽△ADE.(2)求BC的长.20.面对新冠疫情,衢州教育人同心战“疫”因有不少师生居家健康监测,无法到校工作、学习,各校师生通过“云端”相连,停课不停教,停课不停学.某校在疫情期间的教学方式主要包括直播授课、录播投课、自主学习、在线答疑四种形式.为了了解学生的需求,该校随机对部分学生进行了“你对哪种教学方式最感兴趣”的调查(每人只选其中的一种),并根据调查结果绘制成如图所示的统计图.(1)本次调查的人数是人;(2)请补全条形统计图;(3)明明和强强参加了此次调查,均选择了其中一种教学方式,求明明和强强选择同一种教学方式的概率.21.一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=2m.已知木箱高度BE =1m,斜面坡角∠BAC为30°,求木箱端点E距地面AC的高度.22.利用网格图,仅用无刻度的直尺来完成几何作图.(注:以下点A、B、M、N均在格点上.)(1)如图1、2是由边长为1的小正方形构成的网格图.①在图1中,AM∥BN,连结MN交AB于点P,此时BP=2AP,请说明理由.②在图2中的线段AB上,求作一点P,使得BP=2AP.(不写作法,保留作图痕迹)(2)如图3、4是由边长为1的小正六边形构成的网格图.请在线段AB上求作点P.①在图3中,过格点M作线段MN与AB交于点P,使得AP=BP.(作出图形)②在图4中,求作点P,使得AP=BP(要求:方法与①有别,不写作法,但保留作图痕迹)23.根据以下素材,探索完成任务.如何确定隧道的限高?素材1从小清家到附近山区的一条双行线公路上有一个隧道,在隧道口有一个限高标志(如图1),表示禁止装载高度(车顶最高处到地面)超过3.5m的车辆通行.那么这个限高3.5m是如何确定的呢?素材2小清通过实地调查和查阅相关资料,获得以下信息:①隧道的横截面成轴对称,由一个矩形和一个弓形构成.②隧道内的总宽度为8m,双行车道宽度为6m,隧道圆拱内壁最高处距路面5m,矩形的高为2m,车道两侧的人行道宽1m.③为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.问题解决任务1计算半径求图1中弓形所在圆的半径.任务2确定限高如图2,在安全的条件下,3.5m的限高是如何确定的?请通过计算说明理由.(参考数据:≈17.35,结果保留一位小数)任务3尝试设计如果要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,且不改变隧道内的总宽度(8m)和矩形的高(2m),如何设计隧道的弓形部分(求弓形所在圆的半径至少为多少米?)(参考数据:≈9.44,结果保留一位小数)24.如图1,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AC=,AB=,AE=,AD=1,将△DAE绕点A在平面内顺时针旋转α(0°≤α≤360°),连接CE,BD.(1)求证:△ADB∽△AEC;(2)请判断线段CE和BD的位置关系,并说明理由;(3)当点B、D、E在同一条直线上时,求线段CE的长;(4)如图2,在Rt△ABC中,∠ACB=90°,AB=6,过A点作AP∥BC,在射线AP 上取一点D,连接CD,使得tan∠ACD=,请直接写出线段BD的最值.参考答案一、选择题(共30分)1.解:A、水中捞月是不可能事件,故本选项错误;B、翁中捉鳖是必然事件,故本选项正确;C、守株待兔是随机事件,故本选项错误;D、拔苗助长是不可能事件,故本选项错误.故选:B.2.解:∵,∴=,故选:D.3.解:连接BD,在矩形ABCD中,AB=6,AD=8,∴CD=AB=6,∠A=90°,∴BD==10,∵CD=6<8,BD=10>8,AD=8,∴点A在⊙D上,点B在⊙D外,点C在⊙D内.故选:B.4.解:设另一个三角形的周长为x,则4:x=,解得:x=8.故另一个三角形的周长为8,故选:B.5.解:如图:在Rt△ABD中,AD=2,BD=4,∴tan∠ABC===,故选:D.6.解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.7.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.8.解:由题意可知:h(2)=h(6),即4a+2b=36a+6b,解得b=﹣8a,函数h=at2+bt的对称轴t=﹣=4,故在t=4s时,小球的高度最高,题中给的四个数据只有C第4.2秒最接近4秒,故在第4.2秒时小球最高故选:C.9.解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.10.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.二、填空题(共24分)11.解:根据特殊角的三角函数值得:sin45°=.12.解:∵P是线段AB的黄金分割点,P A>PB,∴P A=AB=×2=(﹣1)cm,故答案为:(﹣1)cm.13.解:根据扇形的面积公式,得R===6,故答案为6.14.解:过点A作AB⊥x轴于B,∵点A(2,t)在第一象限,∴AB=t,OB=2,又∵tanα===,∴t=3.故答案为:3.15.解:根据题意可知,C、P、Q三点共线.在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵Rt△ABC的外心为Q,∴Q为斜边AB的中点,∴CQ=AB=,∵Rt△ABC的重心为P,∴PQ=CQ=.故答案为:.16.解:(1)∵∠BAD=∠BCD,∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴∠DBC=∠BAC=45°,故答案为:45°;(2)在Rt△ABD中,BD===10,∵∠BCD=90°,∠DBC=45°,∴△BCD为等腰直角三角形,∴CD=BD=×10=5,过D点作DH⊥AC于H点,如图,∵∠DAH=45°,∴△ADH为等腰直角三角形,∴AH=DH=AD=3,在Rt△CDH中,CH===4,∴AC=AH+CH=3+4=7.故答案为:7.三、解答题(共66分)17.解:原式=×1+()2﹣2×=+﹣1=.18.解:(1),解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为:x<1;(2),x﹣3=2x﹣1,解得:x=﹣2,检验:当x=﹣2时,2x﹣1≠0,∴x=﹣2是原方程的根.19.(1)证明:∵∠AED=∠C,∠A=∠A,∴△ABC∽△ADE;(2)解:由(1)得:△ABC∽△ADE,∴=,∵AE=5,AC=9,DE=6,∴=,∴BC=.20.解:(1)本次调查的人数有20÷25%=80(人),故答案为:80;(2)自主学习的人数有:80﹣35﹣20﹣15=10(人),补全条形统计图如下:(3)把直播授课、录播授课、自主学习、在线答疑四种形式分别记为A、B、C、D,画树状图如下:共有16种等可能情况,其中明明和强强选择同一种教学方式的结果有4种,∴明明和强强选择同一种教学方式的概率为=.21.解:如图,过点E作ED⊥AC于点D,交AB于点F,根据题意可知:EB⊥AB,∴∠EBF=90°,∴∠ADF=∠EBF=90°,∵∠AFD=∠EFB,∴∠F AD=∠BEF=30°,在Rt△EFB中,BF=BE•tan30°=1×tan30°=,EF=,在Rt△ADF中,AF=AB﹣BF=2﹣,∴DF=AF•sin30°=1﹣,∴ED=EF+FD=+1﹣=(+1)(m).答:木箱端点E距地面AC的高度约为()m.22.解:(1)①∵AM∥BN,∴△AMP∽△BNP,∴==,∴BP=2AP;②如图:点P即为所求;(2)①如图:点P即为所求;②如图:点P即为所求.23.解:(1)如图所示:点O为弓形所在圆的圆心,OA、OC为半径,BC是弓形高,且BC=5﹣2=3(m)∴OC⊥AB,∴OA2=AB2+OB2,即OA2=42+(OA﹣3)2,解得OA=(m)(2)根据车行道的宽度和弓形半径规定的,理由如下,如图所示:半径OE、OB为m(由①知),EF=3mEF⊥OB,BF=OB﹣OF,∴OF2=OE2﹣EF2=﹣32=,∴OF=≈2.89(m),BF=﹣2.89≈1.3(m),AF=5﹣1.3=3.7m,为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.故限高为:3.5m.(3)如图所示:为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,故CD=3.5m,设弓形的半径为R,OB=x,CE=2.5m,AB=4m,BE=3.5﹣2=1.5(m),OE=x+1.5,∵OE2+CE2=OC2,OB2+AB2=OA2,OA=OC,∴(x+1.5)2+(2.5)2=x2+42,x=2.5(m),∴OA2=(2.5)2+42=,OA=4.7m24.(1)证明:设直线AB交CE于点M,直线CE交BD于点N,∵,=,∴,∵∠CAB=∠EAD=90°,∴∠CAE=∠DAB,∴△ADB∽△AEC;(2)解:CE⊥BD,理由:∵△ADB∽△AEC,∴∠ECA=∠ABD,∵∠BME=∠CMA,∴∠BNM=∠BAC=90°,∴CE⊥BD;(3)解:在Rt△ADE中,AD=1,AE=,则DE=2,∠EDA=60°,由(1)知,△ADB∽△AEC,∴=,则CE=BD;①当B、E、D三点共线时,如图1,过点A作AH⊥BD于点H,在Rt△ADH中,AD=1,∠D=60°,则DH=,AH=,在Rt△AHB中,HB===,则BD=BH+DH==3,则EC=,BD=3;②当B、D、E共线时,如图2,过点A作AH⊥BD交于点H,在Rt△AHE中,AE=,∠E=30°,则AH=AE=,EH=,在Rt△ADE中,AD=1,∠E=30°,则ED=2,在Rt△ABH中,BH===,则BE=BH+EH==4,则BD=BE﹣DE=4﹣2=2,∵CE=BD,即CE=2;综上,CE=3或2;(4)解:过点A作AE⊥AB,使AE=AB=6,取AB的中点R,连接CR、CE、BE、ER,则CR=AR=AB=3,∵∠DAC=∠BAE=90°,∴∠CAE=∠DAB,∵tan∠ACD====,∴△ADB∽△ACE,∴,∴BD=CE,∴RE﹣CR≤CE≤RE+CR,在Rt△AER中,ER===9,则6≤CE≤12,∴3≤BD≤6,即BD的最小值和最大值分别为:3和6.。
(常考题)北师大版初中数学九年级数学上册第一单元《特殊平行四边形》检测卷(包含答案解析)(3)
一、选择题1.如图,矩形ABCD 被两条对角线分成4个小三角形OAB ∆、OAD ∆、OBC ∆和OCD ∆,若这4个小三角形的周长之和为68,对角线10AC =,则矩形ABCD 的周长是( )A .14B .18C .21D .28 2.菱形的一条对角线与它的边相等,则它的锐角等于( )A .30°B .45°C .60°D .75° 3.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件4.如图,四边形ABCD 是正方形,点E 、F 分别在线段BC 、DC 上,∠BAE =25°,若线段AE 绕点A 逆时针旋转后与线段AF 重合,则旋转的角度是( )A .25°B .40°C .90°D .50°5.如图,已知菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,若菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,菱形的对角线交点D 的坐标为( )A .(3,3-B .(1,3--C .()2,3D .33,2⎛⎫-- ⎪ ⎪⎝⎭6.如图,在矩形ABCD 中,23,4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .7.如图,已知正方形ABCD 与正方形AEFG 的边长分别为4和1,若将正方形AEFG 绕点A 旋转,则在旋转过程中,点,C E 之间的最小距离为 ( )A .3B .421C .321D .428.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .1039.如图,在长方形ABCD 中,动点P 从A 出发,以相同的速度,沿A B C D A ----方向运动到点A 处停止.设点P 运动的路程为,x PCD ∆的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .12B .24C .20D .4810.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②AD=2AE ;③ACD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG :⑥若1OGF S ∆=,则正方形ABCD 的面积是642+,其中正确的结论个数为( )A .2个B .3个C .4个D .5个11.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1D .14n 12.如图,菱形ABCD 的边长是5,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为( )A .221B .421C .12D .24二、填空题13.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,AC =6,BD =8,则线段OH 的长为_____.14.如图,在平面直角坐标系中,正方形ABOC 的顶点A 在第二象限,顶点B 在x 轴上,顶点C 在y 轴上,若正方形ABOC 的面积等于7,则点A 的坐标是______.15.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.16.如图,四边形ABCD 是一张长方形纸片,将该纸片对折,使顶点B 与顶点D 重合,EF 为折痕,若6AB =、8BC =,则图中阴影部分的面积为______.17.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB =∠________︒时,四边形ADCF 是长方形.18.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,点E 在DA 的延长线上,BE BF ⊥交CD 于点F ,连接EF .DEF ∠的角平分线与BD 交于点H ,连接FH .过点D 分别作DQ EH ⊥于点Q 、DP FH ⊥于点P ,连接PQ PQ .若1PQ CF ==,则DF =______.19.如图,在平面直角坐标系中,长方形OABC 的边OA 在x 轴上,OC 在y 轴上,OA=1,OC=2,对角线 AC 的垂直平分线交AB 于点E ,交AC 于点D .若y 轴上有一点P (不与点C 重合),能使△AEP 是以为 AE 为腰的等腰三角形,则点 P 的坐标为____.20.如图,在矩形ABCD 纸片中,点E 是BC 边的中点,沿直线AE 折叠,点B 落在矩形内部的点B '处,连接AB '并延长交CD 于点F .已知4CF =,5DF =,则AD 的长为__________.三、解答题21.△ABC 是等腰三角形,其中AB =BC ,将△ABC 绕顶点B 逆时针旋转50°到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别相交于点E ,F .(1)求证:△BCF ≌△BA 1D ;(2)当∠C =50°时,判断四边形A 1BCE 的形状并说明理由.22.如图,在四边形ABCD 中,E 、F 分别是AD ,BC 的中点,G ,H 分别是BD 、AC 的中点,依次连接E ,G ,F ,H .(1)求证:四边形EGFH 是平行四边形;(2)当AB=CD 时,EF 与GH 有怎样的位置关系?请说明理由;(3)若AB=CD ,∠ABD=20°,∠BDC=70°,则∠GEF= °. 23.如图,点E 是正方形ABCD 的边DC 上一点,把ADE 顺时针旋转ABF 的位置.(1)旋转中心是点 ,旋转角度是 度:(2)若连结EF ,则AEF 是 三角形,并证明你的结论.24.如图,已知四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 是AC 中点,点F 是BD 中点.(1)求证:EF BD ⊥;(2)过点D 作DH AC ⊥于H 点,如果BD 平分HDE ∠,求证:BA BC =. 25.如图,点O 是线段AB 上的一点,OA =OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点F .求证:四边形CDOF 是矩形.26.如图,在菱形ABCD 中,2AB =,60DAB ∠=︒,F 为AC 上一动点,E 为AB 中点.(1)求菱形ABCD的面积;的最小值.(2)求EF BF【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】四个小三角形的周长是两条对角线长的2倍与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD,四个小三角形的周长=2AC+2BD+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为28.故选:D.【点睛】本题考查了矩形的性质和矩形的周长,抓住矩形的对角线相等和四个小三角形的周长=4倍的对角线长+矩形的周长是解决本题的关键.2.C解析:C【分析】由菱形的性质可得这条对角线与菱形的两边组成等边三角形,从而求得锐角的度数等于60°.【详解】解:由菱形的性质得,菱形相邻的两边相等,则与这条对角线组成等边三角形,则它的锐角等于60°,故选C.【点睛】此题主要考查菱形的性质:四边相等.3.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.4.B解析:B【分析】证明Rt △ABE ≌Rt △ADF (HL ),可得∠BAE =∠DAF =25°,求出∠EAF 即可解决问题.【详解】解:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =∠B =∠D =90°由旋转不变性可知:AE =AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴∠BAE =∠DAF =25°,∴∠EAF =90°﹣25°﹣25°=40°,∴旋转角为40°,故选:B .【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt △ABE 和Rt △ADF 全等是解题的关键,也是本题的难点.5.D解析:D【分析】过A 作AE ⊥OC 于E ,由菱形OABC 的顶点()0,0O ,()2,0C 且60AOC ∠=︒,求出A(1D 为AC 中点,可求D (12458=360︒⨯︒,转8次回到原位置,菱形绕点O 逆时针旋转,每秒旋转45︒,则第2020秒时,2020445=45252+88⎛⎫︒⨯︒ ⎪⎝⎭,相当于旋转454=180︒⨯︒,菱形旋转180°。
九年级数学上册周测试题
周测本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
一选择题:1.以下长度〔单位:cm〕的三根小木棒,把它们首尾顺次相接能摆成一个三角形的是〔〕,2,,6,,8,18 ,3,62.(-x 4)3等于〔〕A.x7 12 7 123.用直尺和圆规作一个角的平分线的示意图如下图,那么能说明∠AOC=∠BOC的根据是〔〕A.SSSB.ASAC.AASD.角平分线上的点到角两边间隔相等第3 题图第4 题图第5 题图4.如图, AB=AD,那么添加以下一个条件后,仍无法断定△ABC≌△ADC 的是〔〕A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90° 5.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,那么AC=( )A.3B.4C.76.如图,△ABC 为直角三角形,∠C=90°,假设沿图中虚线剪去∠C,那么∠1+∠2 等于〔〕°°°°7.计算(-a-b)2等于〔 〕 A. a 2+b2 2﹣b22+2ab+b2 2﹣2ab+b 28.边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的局部拼成一个长方形(如图乙), 根据两个图形中阴影局部的面积相等,可以验证( )A.(a +b)2=a 2+2ab +b 2B.(a-b)2=a 2-2ab +b 22-b 2=(a +b)(a-b)D.(a +2b)(a-b)=a 2+ab-2b 2 9.(2x)n -81 分解因式后得(4x 2+9)(2x +3)(2x -3),那么 n 等于( )A.2B.4C.6 10.多项式(x+2)(2x-1)-2(A.2 B.﹣2C.411.803-80 能被〔 〕整除. A.76 B.78C.912.如图,C 为线段 AE 上一动点(不与点 A ,E 重合),在 AE 同侧分别作正△ABC 和正△CDE,AD 与 BE 交于点 O,AD 与 BC 交于点 P,BE 与 CD 交于点 Q,连接 PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP;⑤∠AOB=60°. 其中正确的结论的个数是( ) 个 个 个个二 填空题:13.如图,直线 AB 、CD 被 BC 所截,假设 AB ∥CD ,∠1=45°,∠2=35°,那么∠3=.第13 题图第14 题图第15 题图14.如图,直线a 经过正方形ABCD 的顶点A,分别过正方形的顶点B,D 作BF⊥a 于点F,DE⊥a 于点E,假设DE=8,BF=5,那么EF 的长为15.计算(0.125)2021 82021 = .16.将等边三角形、正方形、正五边形按如下图位置摆放,∠1=41°,∠2=51°,那么∠3 等于 .17. s+t=4,那么 s 2-t 2+8t=.18.如图,△ABC 的三个内角的平分线交于点 O,点 D 在 CA 的延长线上,且 DC=BC ,假设∠BAC=80°,那么∠BOD 的度 数为第 18 题图第 19 题图第 20 题图19.如图,△ABC 的角平分线交于点 P , AB ,BC ,CA 的长分别为 5,7,6,那么 S △ABP ∶S △BPC ∶S △APC =.20.如图,相交直线 AB 和 CD 及另一直线 MN ,假如要在 MN 上找出与 AB ,CD 间隔 相等的点,那么这样的点至少 有个,最多有 个.21.比拟 3108 与2144 的大小关系:.22.如图,∠A=ɑ,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线相交于点 A 1,得∠A 1;假设∠A 1BC 的 平分线与∠A 1CD 的平分线相交于点 A 2,得∠A 2……∠A 2021BC 的平分线与∠A 2021CD 的平分线相交于点 A 2021,得∠A 2021, 那么∠A 2021= .(用含ɑ的式子表示)三 计算题: 23.化简以下多项式:(1) (a -2b )2(2ab )(b -2a )4a (ab )(2)(a 2b3)(a2b3)(3) (3m 5n )(5n3m )本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曹县博宇博雅中学初三数学第五次周测试题
时间120分钟满分120分出题人:初三数学组审核:孙明坤班级:姓名:
一、选择题(每题3分,共24分)
1.如图,电灯P在横杆AB的正上方,AB在灯光下的影长为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()
A. m B. m C. m D. m
(第1题图)(第3题图)(第5题图)
2.已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是()
A. 0.6
B. 0.75
C. 0.8
D. 4 3
3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=,则下列结论正确的个数有()
①DE=3cm;②BE=1cm;③菱形的面积为15cm2;④BD=2cm.
A.1个
B.2个
C.3个
D.4个
4. 已知二次函数,当取任意实数时,都有,则的取值
范围是()
A. B. C. D.
5.如图,CD是⊙O的弦,直径AB过CD的中点M,若∠BOC=40°,则∠ABD= A. 40° B. 60° C. 70° D. 80°
6. 如图,直线x=2与反比例函数y=2
x
、y=
1
x
的图象分别交于A、B两点,若点
P是y轴上任意一点,则△PAB的面积是()
A. 12
B. 1
C. 32
D. 2
7. 已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )
A. k<4
B. k ≤4
C. k<4且k ≠3
D. k ≤4且k ≠3
8. 如图所示,抛物线y=ax 2+bx+c 的顶点为B (﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,以下结论:①b 2﹣4ac=0,②2a ﹣b=0,③a+b+c <0;④c ﹣a=3,其中正确的有( )个.
A. 1
B. 2
C. 3
D. 4 二,填空题(每题3分,共24分)
9. 如图,已知⊙O 内切于△ABC ,切点分别D 、E 、F ,若∠A=50°,则∠EDF=______.
(第9题图) (第12题图) (第14题图)
10.抛物线y =(x −1)2−1的顶点在直线y =kx −3上,则k =______.
11. 一抛物线和抛物线y=﹣2x 2的形状、开口方向完全相同,顶点坐标是(﹣1,
3),则该抛物线的解析式为_______.
12. 如图,Rt △ABC 两个锐角顶点A ,B 在函数y=k x
(x >0)的图象上,AC ∥x 轴,AC=2,若点A 的坐标为(2,2),则点B 的坐标为_______.
13. 已知二次函数,当取(≠)时,函数值相等,则当取
时,函数值y=______.
14. 如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式mx +n <ax 2+bx +c 的解集是____.
三、解答题(共78分)
15、计算(8分)
(1)2sin30°+4cos30°•tan60°﹣cos 245°
(2)2cos30°-|1-tan60°|+tan45°sin45°
16. 解方程(8分)
(1)x 2+4x +5=0
(2)(x ﹣2)2=3x ﹣6
17. (10分)如图,已知矩形ABCD 的两条对角线相交于点O ,过点A 作AG ⊥BD 分别交BD 、BC 于点G 、E .
(1)求证:BE 2=EG •EA ;
(2)连接CG ,若BE=CE ,求证:∠ECG=∠EAC .
18.(10分)如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C .
(1)求证:直线PB 与⊙O 相切;
(2)PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.
21.(8分)如图,我国某海域有A ,B 两个港口,相距80海里,港口B 在港口A
的东北方向,点C 处有一艘货船,该货船在港口A 的北偏西30°方向,在港口B 的北偏西75°方向,求货船与港口A 之间的距离.(结果保留根号)
20.(10分)如图,一次函数y = kx + b 的图象与反比例函数x
m y 的图象交
于A,B两点. (1)利用图中的条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
21.(12分)如图,抛物线y=﹣1
2
x2+bx+c与直线y=kx+
1
2
交于A、C两点,
与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),且tan∠BAC= 1
2
.
(1)求抛物线的解析式;
(2)若抛物线顶点为P,求四边形APCB的面积.
22.(12分)某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.
(1)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.
(2)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?。