新人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(含答案解析)
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(有答案解析)(1)
一、选择题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D . 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒4.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒5.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°6.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱∠=∠的图形的个数是()7.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.48.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的10.如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,011.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.12.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种二、填空题13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式abc-的值是_________.14.如图,直线AB,CD交于点O,射线OM平分,若,则等于________.15.若∠A=4817︒',则它的余角是__________;它的补角是___________。
人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(包含答案解析)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个 5.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm6.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .167.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 8.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 9.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 10.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.14.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.15.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.16.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.17.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.18.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.22.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)23.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.24.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.25.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.26.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB =90°,∠AOC =30°,∴∠COB =60°,∴OB 的方位角是北偏西60°,故选:B ..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.3.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.6.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口. 7.C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.9.C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.10.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时②当C 在线段AB上时根据线段的和差可得答案【详解】①当C在线段BA的延长线上时∵点D是线段AB的中点点A与点B的距离是8cm∴DA=4c解析:2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时,②当C在线段AB上时,根据线段的和差,可得答案.【详解】①当C在线段BA的延长线上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4+2=6cm;②当C在线段BA上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4-2=2cm;综上所述:AC=6 cm或2cm.【点睛】本题考查了两点间的距离,利用线段的中点是解题关键,要分类讨论,以防遗漏.14.两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故答案为两点确定一条直线【点睛】本题考查了两点确定一条直线的公理难度适中解析:两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.15.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 16.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.17.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.18.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.19.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB 据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB ,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB 转化成∠COD+∠AOB 是解决本题的关键.20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒,又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.22.(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.23.(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.24.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.25.(1),;(2);(3)①t= 或16s;②48. 【解析】【分析】(1)由OA=2OB ,OA+OB=24即可求出OA 、OB .(2)设OC=x ,则AC=16-x ,BC=8+x ,根据AC=CO+CB 列出方程即可解决.(3)①分两种情形①当点P 在点O 左边时,2(16-2t )-(8+t )=8,当点P 在点O 右边时,2(2t-16)-(8+x )=8,解方程即可.②点M 运动的时间就是点P 从点O 开始到追到点Q 的时间,设点M 运动的时间为ts 由题意得:t (2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB ,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为. 由题意,得. 解得. 所以的长为.(3)①当点P 在点O 左边时,2(16−2t)−(8+t)=8,t=, 当点P 在点O 右边时,2(2t−16)−(8+t)=8,t=16,∴t= 或16s 时,2OP−OQ=8.②设点M 运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M 运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.26.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(答案解析)
一、选择题1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑2.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 3.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 5.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 6.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 7.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A.10种B.20种C.21种D.626种8.如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,09.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.10.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线11.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有()A.7个面B.15条棱C.7个顶点D.10个顶点12.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.15.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.16.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.17.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.18.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.22.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.23.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.24.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)25.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”26.如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.2.C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.3.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.4.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.5.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.7.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.8.A解析:A【分析】本题可根据图形的折叠性,对图形进行分析,可知A对应-1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.【详解】解:由图可知A对应-1,B对应2,C对应0.∵-1的相反数为1,2的相反数为-2,0的相反数为0,∴A=1,B=-2,C=0.故选A.【点睛】本题考查的是相反数的概念,两数互为相反数,和为0,本题如果学生想象不出来图形,可用手边的纸剪出上述图形,再根据纸片折出正方体,然后判断A、B、C所对应的数.9.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.10.B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.11.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.12.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.15.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三n .解析:五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.17.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.18.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键.19.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.23.8cm【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【详解】∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.故答案为:8cm.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.25.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.26.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B 作BD ⊥AC ,∵直角边AB 和BC 分别长4厘米和3厘米,∴AC=2234+=5(厘米), 斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:13 2.42 5 =9.6π(立方厘米).。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
第四章 几何图形初步单元检测卷(含解析)
人教版2022年七年级上册第4章《几何图形初步》单元检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法中正确的是()A.两点确定两条直线B.过一点可以作无数条直线C.过一点只能作一条直线D.三点确定一条直线2.如图经过折叠能围成棱柱的是()A.①②④B.②③④C.①②③D.①③④3.成功没有快车道,努力才是通往成功的光明大道.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“功”字所在面相对面上的汉字是()A.成B.绝C.偶D.然4.如图,已知点O是直线AB上一点,∠AOC=58°,∠BOD=74°,则∠COD等于()A.42°B.46°C.48°D.51°5.甲、乙两个城市,乙城市位于甲城市北偏东40°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km6.如果一个角的余角等于这个角的补角的,那么这个角的度数是()A.30°B.45C.60°D.757.若∠α的补角为60°,∠β的余角为60°,则∠α和∠β的大小关系是()A.∠α<∠βB.∠α>∠βC.∠α=∠βD.无法确定8.钟表上,下午3:40时时针和分针之间形成的角(小于平角)的度数为()A.150°B.140°C.130°D.120°9.刘琪同学将一副三角板按如图所示位置摆放,摆放位置中∠α=∠β的图形是()A.B.C.D.10.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BD=7cm,则BC的长为()A.2cm B.3cm C.4cm D.5cm二.填空题(共5小题,满分20分,每小题4分)11.计算90°﹣40°25′=.12.若∠α=53°23′17″,则∠α的补角的度数为.13.如图,经过刨平的木板上的两个点,能弹出一条笔直的直线,并且只有一条,其中蕴含的数学道理是.14.已知线段AB=8cm,在直线AB上有一点C,且BC=3cm,点M为线段AC的中点,则线段AM的长是多少.15.如图所示是一个几何体的表面展开图,则该几何体的体积为.(结果用含π式子表示)三.解答题(共8小题,满分70分)16.(6分)计算:180°﹣(35°54'+21°33').17.(6分)下面是一个正方体的平面展开图,请把10,,﹣,0.1,,﹣7分别填入六个正方形中,使得折成正方体后,相对面上的数互为倒数.18.(6分)一个角的补角加上20°后等于这个角的余角的3倍,求这个角.19.(8分)如图,在平面内有A,B,C三点.(1)画直线AB;画射线AC;画线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至点E,使DE=AD;(3)数一数,此时图中共有多少条线段?多少条射线?20.(10分)(1)如图1,已知∠AOB=∠COD=90°,OE是∠AOC的角平分线,当∠BOD=42°时,求∠AOE 的度数;(2)如图2,已知∠AOB=80°,∠COD=110°,∠AOC=2∠BOD时,求∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α、β、n的式子表示∠BOD的值.21.(10分)如图,点B是线段AC上一点,且AB=28cm,.(1)求线段AC的长;(2)如果点O是线段AC的中点,求线段OB的长.22.(12分)已知∠AOB,过顶点O作射线OP,若∠BOP=∠AOP,则称射线OP为∠AOB的“好线”,因此∠AOB的“好线”有两条,如图1,射线OP1,OP2都是∠AOB的“好线”.(1)已知射线OP是∠AOB的“好线”,且∠BOP=30°,求∠AOB的度数.(2)如图2,O是直线MN上的一点,OB,OA分别是∠MOP和∠PON的平分线,已知∠MOB=30°,请通过计算说明射线OP是∠AOB的一条“好线”.(3)如图3,已知∠MON=120°,∠NOB=40°.射线OP和OA分别从OM和OB同时出发,绕点O按顺时针方向旋转,OP的速度为每秒12°,OA的速度为每秒4°,当射线OP旋转到ON上时,两条射线同时停止.在旋转过程中,射线OP能否成为∠AOB的“好线”.若不能,请说明理由;若能,请求出符合条件的所有的旋转时间.23.(12分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB 的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.人教版2022年七年级上册第4章《几何图形初步》单元检测卷参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、应为两点确定一条直线,故本选项错误;B、过一点可以作无数条直线,故C选项错误,B选项正确;D、三点确定一条直线或三条直线,故D选项错误.故选:B.2.【解答】解:由题意知,①可以围成四棱柱,②可以围成五棱柱,③可以围成三棱柱,故选:C.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“功”字所在面相对面上的汉字是“然”.故选:D.4.【解答】解:根据题意可得,因为∠AOC+∠COD+∠BOD=180°,所以∠COD=180°﹣∠AOC﹣∠BOD=180°﹣58°﹣74°=48°.故选:C.5.【解答】解:如图:∵乙城市位于甲城市北偏东40°方向,距离为80km,∴甲城市位于乙城市南偏西40°方向,距离为80km,故选:D.6.【解答】解:设这个角为x°,则这个角的余角=90°﹣x°,补角=180°﹣x°,由题意得,90°﹣x°=(180°﹣x°),解得x=60.故选:C.7.【解答】解:∵∠α=180°﹣60°=120°,∠β=90°﹣60°=30°.∴∠α>∠β,故选:B.8.【解答】解:30°×(5﹣)=130°.所以3:40时,时针与分针所成的角度130°.故选:C.9.【解答】解:A、根据同角的余角相等可得∠α=∠β,符合题意;B、由三角板的性质可知,∠α>∠β,不符合题意;C、由三角形外角的性质可知,∠α<∠β,不符合题意;D、由平角的定义可知,∠α+∠β=180°,不符合题意.故选:A.10.【解答】解:∵AB=10cm,BD=7cm,∴AD=3cm,∵D是线段AC的中点,∴AC=6cm.∴BC=4cm.故选:C.二.填空题(共5小题,满分20分,每小题4分)11.【解答】解:90°﹣40°25′=89°60′﹣40°25′=49°35′,故答案为:49°35′.12.【解答】解:∵∠α=53°23′17″,∴∠α的补角的度数=180°﹣53°23′17″=126°36′43″,故答案为:126°36′43″.13.【解答】解:经过刨平的木板上的两个点,能弹出一条笔直的直线,并且只有一条,其中蕴含的数学道理是两点确定一条直线.故答案为:两点确定一条直线.14.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=11cm,∵M是线段AC的中点,则AM=AC=5.5(cm);②当点C在线段AB上时,AC=AB﹣BC,=5cm,∵M是线段AC的中点,则AM=AC=2.5(cm).故答案为:5.5cm或2.5cm.15.【解答】解:V=Sh=π()2×6=24π,故答案为:24π.三.解答题(共8小题,满分70分)16.【解答】解:180°﹣(35°54'+21°33')=179°60'﹣57°27′=122°33'.17.【解答】解:如图所示:.18.【解答】解:设这个角为α,则这个角的补角为180°﹣α,余角为90°﹣α,根据题意可得,180°﹣α+20°=3(90°﹣α),解得:α=55°,所以这个角为55°.19.【解答】解:(1)如图,直线AB,线段BC,射线AC即为所求;(2)如图,线段AD和线段DE即为所求;(3)图中共有8条线段,6条射线.20.【解答】解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=42°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣42°=138°,∴∠AOE=∠AOC=×138°=69°答:∠AOE的度数为69°;(2)如图2,∵∠AOB=80°,∠COD=110°,∴∠AOC=∠AOB+∠COD﹣∠BOD=80°+110°﹣∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=80°+110°﹣∠BOD,∴∠BOD==,答:∠BOD的度数为°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD﹣∠BOD=α+β﹣∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β﹣∠BOD,∴∠BOD=,答:∠BOD=.21.【解答】解:(1)∵AB=28cm,BC=AB,∴BC=7cm.∴AC=AB+BC=28+7=35(cm);(2)∵点O是线段AC的中点,∴OC=AC=35=17.5(cm),∵BC=7cm,∴OB=OC﹣BC=17.5﹣7=10.5(cm).22.【解答】解:(1)∵OP是∠AOB的“好线”,且∠BOP=30°,∴∠AOP=2∠BOP=60°,①当OP在∠AOB的外部时,∠AOB=∠AOP﹣∠BOP=30°,②当OP在∠AOB的内部时,∠AOB=∠AOP+∠BOP=90°.(2)∵OB是∠MOP的平分线,且∠MOB=30°,∴∠BOP=∠MOB=30°,∠MOP=2∠MOB=60°,∴∠PON=120°,∵OA是∠PON的平分线,∴∠AOP=∠PON=60°,∴∠BOP=∠AOP,∴OP是∠AOB的一条“好线”;(3)设旋转的时间为t秒,①80﹣12t=4t,∴t=5,②3(12t﹣80)=4t,∴t=,综上所述,所有符合条件的旋转时间为5秒或秒.23.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(含答案解析)(3)
一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个 2.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( ) A .140°B .130°C .50°D .40° 3.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒- 4.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 6.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个7.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒8.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-19.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 10.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.14.若A,B,C三点在同一直线上,线段AB=21cm,BC=10cm,则A,C两点之间的距离是________.15.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.16.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若CP=,则线段PN的长为________.3AC=,117.25°20′24″=______°.18.已知点B在直线AC上,AB=6cm,AC=10cm,P、Q分别是AB、AC的中点,则PQ=_____19.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.20.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.三、解答题21.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.22.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度.(2)若6AB =,求MN 的长度.24.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm).25.如图,已知40AOB ∠=︒,3BOC AOB ∠=∠,OD 平分AOC ∠,求BOD ∠的度数.26.如图,把下列物体和与其相似的图形连接起来.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.3.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键. 4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键. 5.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.6.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD ,故甲正确;乙∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD ,故乙正确;丙∠AOB=∠COD ,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B .【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.7.D解析:D【分析】根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.8.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.9.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.10.C解析:C【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.【详解】(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.14.11cm或31cm【分析】分类讨论:当点C在线段AB上则有AC=AB﹣BC;当点C在线段AB的延长线上则AC=AB+BC然后把AB=21cmBC=10cm分别代入计算即可【详解】当点C在线段AB上则解析:11cm或31cm【分析】分类讨论:当点C在线段AB上,则有AC=AB﹣BC;当点C在线段AB的延长线上,则AC=AB+BC,然后把AB=21cm,BC=10cm分别代入计算即可.【详解】当点C在线段AB上,则AC=AB﹣BC=21cm﹣10cm=11cm;当点C在线段AB的延长线上,则AC=AB+BC=21cm+10cm=31cm;综上所述:A.C两点之间的距离为11cm或31cm.故答案为11cm或31cm.【点睛】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.15.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三n .解析:五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.16.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.17.34°【分析】此类题是进行度分秒的转化运算相对比较简单注意以60为进制【详解】25°20′24″=2534°故答案为2534【点睛】进行度分秒的转化运算注意以60为进制解析:34°【分析】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.【详解】25°20′24″=25.34°,故答案为25.34.【点睛】进行度、分、秒的转化运算,注意以60为进制.18.2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A 的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm,∴AQ=12AC=5cm,PQ=AQ-AP=5-3=2cm.故答案为8cm或2cm.【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.19.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.20.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.三、解答题21.∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.(1)射线OC 的方向是北偏东70°;(2)∠COE =70°;(3)∠AOD =90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC 的度数,即可确定OC 的方向;(2)根据∠AOC=55°,∠AOC=∠AOB ,得出∠BOC=110°,进而求出∠COE 的度数; (3)根据射线OD 平分∠COE ,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°即∠NOA =15°,∠NOB =40°,∴∠AOB =∠NOA +∠NOB =55°,又∵∠AOB =∠AOC ,∴∠AOC =55°,∴∠NOC =∠NOA +∠AOC =15°+ 55°70=°,∴射线OC 的方向是北偏东70°.(2)∵∠AOB =55°,∠AOB =∠AOC ,∴∠BOC =∠AOB +∠AOC =55°+55°=110°,又∵射线OD 是OB 的反向延长线,∴∠BOE =180°,∴∠COE =180°-110°=70°,(3)∵∠COE =70°,OD 平分∠COE ,∴∠COD =35°,∴∠AOD =∠AOC +∠COD =55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.23.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.25.40°【分析】根据3BOC AOB ∠=∠,40AOB ∠=︒求出120BOC ∠=︒,得到∠AOC 的度数,利用OD 平分AOC ∠,求出∠AOD 的度数,即可求出BOD ∠的度数. 【详解】解:∵3BOC AOB ∠=∠,40AOB ∠=︒,∴120BOC ∠=︒.∵AOC AOB BOC ∠=∠+∠,40120=︒+︒,160=︒,又∵OD 平分AOC ∠, ∴1802AOD AOC ∠=∠=︒, ∴BOD AOD AOB ∠=∠-∠,8040=︒-︒, 40=︒.【点睛】此题考查角度的和差计算,会看图明确各角之间的大小关系,注意角平分线的运用. 26.见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.。
(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)
一、选择题1.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 2.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上 B .点C 在线段AB 的延长线上C .点C 在直线AB 外D .不能确定 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 5.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 6.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .410.体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.15.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.16.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.17.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若CP=,则线段PN的长为________.3AC=,118.将下列几何体分类,柱体有:______(填序号).19.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.20.已知∠A=67°,则∠A的余角等于______度.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.23.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留 )24.作图:如图,平面内有 A,B,C,D 四点按下列语句画图:(1)画射线 AB,直线 BC,线段 AC(2)连接 AD 与 BC 相交于点 E.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.2.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 6.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.C解析:C【分析】根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l旋转一周,∴柱体的底面圆环面积为:π(2r)2-πr2=3πr2,∴形成的几何体的体积等于:3πr2h.故选:C.【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.9.C解析:C确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.10.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.11.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.12.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C 在线段AB 上时,AC=AB-BC=8-2=6cm ,当点C 在线段AB 的延长线上时,AC=AB+BC=8+2=10cm ,∴AC 的长度是6cm 或10cm.故选D.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的 解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.15.BC 【分析】把展开图折叠成一个长方体找到与AB 重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB重合的线段即可.【详解】解:根据题意得:折叠后与棱AB重合的棱是BC.故答案为BC.【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.16.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.17.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.19.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.20.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.23.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.24.答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.(1),;(2);(3)①t=或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为.由题意,得.解得.所以的长为.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.。
七年级数学上册第四单元《几何图形初步》检测题(包含答案解析)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .5 2.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6 3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定 4.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm5.已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( )A .12α∠B .12β∠C .()12αβ∠-∠D .()1+2αβ∠∠ 6.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处7.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .168.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 9.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD的长为____cmA.2 B.3 C.5 D.610.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,111.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种12.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.二、填空题13.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.14.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.15.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.16.36.275︒=_____度______分______秒.17.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.18.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.19.如图,上午6:30时,时针和分针所夹锐角的度数是_____.20.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题21.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.22.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm ).从A ,B 两题中任选一题作答.A .该长方体礼品盒的容积为______3cm .B .如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm .23.如图,已知点O 为直线AB 上一点,将一个直角三角板COD 的直角顶点放在点O 处,并使OC 边始终在直线AB 的上方,OE 平分BOC ∠.(1)若70DOE ∠=︒,则AOC ∠=________;(2)若DOE α∠=,求AOC ∠的度数.(用含α的式子表示)24.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.25.百羊问题甲赶群羊逐草茂,乙牵肥羊一只随其后,戏问甲及一百否?甲云所说无差谬.若得原有一群凑,再添一半小一半,得你一只来方凑,玄机奥妙谁猜透?请列出方程.(说明:“小一半”是指一半的一半,即四分之一)26.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB+=,所以点C在线段AB上.故选A.【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.5.C解析:C【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可.【详解】∵∠α与∠β互补,∴∠α+∠β=180°,∵∠α>∠β,∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β),故选C .【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义. 6.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .7.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.8.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.9.A解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.10.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A点为端点的射线有2条,以B为端点的射线有3条,以C为端点的射线有2条,以D为端点射线有1条,合计射线8条.线段:AB,BC,AC,BD ,合计4条.直线:AC,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.11.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.12.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.二、填空题13.圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断依据圆锥的概念可以对(4)进行判断【详解】(1)该立体图形的上下两解析:圆柱三棱柱三棱锥圆锥【分析】依据圆柱的概念可以对(1)进行判断,依据棱柱的概念可以对(2)进行判断;依据棱锥的概念可以对(3)进行判断,依据圆锥的概念可以对(4)进行判断.【详解】(1)该立体图形的上下两个底面是大小相同且平行的两个圆,所以是圆柱;(2)该立体图形的上下两个底面是相同且平行的两个三角形,三个侧面都是长方形,所以是三棱柱;(3)该立体图形的共有四个面,每个面都是三角形,所以是三棱锥;(4)该几何体只有一个底面,是圆,并且有一个顶点,所以是圆锥.答案:(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.【点睛】此题考查柱体与锥体的认识,掌握立体图的概念是解题的关键.14.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.16.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.17.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.18.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB ﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB 和∠ABC 的度数是解题关键.19.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 20.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=,∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题21.(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.22.A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意 高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.23.(1)140︒;(2)2α【分析】(1)由70DOE ︒∠=,90COD ︒∠=,可以推出COE ∠的度数,又因为OE 平分BOC ∠,所以可知BOC ∠的度数,180BOC ︒-∠的度数即可解决;(2)由DOE α∠=,90COD ︒∠=,可以推出COE ∠=90α︒-,又因为OE 平分BOC ∠,以可知BOC ∠=2COE ∠=1802α︒-,180BOC ︒-∠即可解决.【详解】解:(1)∵70DOE ︒∠=,90COD ︒∠=,∴907020COE ︒︒︒∠=-=.∵OE 平分BOC ∠,∴20COE BOE ︒∠=∠=,∴1801802140AOC BOC COE ︒︒︒∠=-∠=-∠=.故答案为140︒.(2)∵DOE α∠=,90COD ︒∠=,∴90COE α︒∠=-.∵OE 平分BOC ∠,∴21802BOC COE α︒∠=∠=-,∴()180********AOC BOC αα︒︒︒∠=-∠=--=.【点睛】本题主要考查了角平分线的定义,平角和直角,熟练各概念是解决本题的关键. 24.(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.25.x +x +12x +14x +1=100. 【分析】根据“再有这么一群,再加半群,又加四分之一群,再把你的一只凑进来,才满100只”这一等量关系列出方程即可.【详解】设羊群原有羊x 只,根据题意可列出方程:x +x +12x +14x +1=100. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.26.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长即可.【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C是线段AB的中点,∴BC=12AB=2.5(厘米)∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。
人教版初中数学七年级数学上册第四单元《几何图形初步》测试(含答案解析)
一、选择题1.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm2.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5B .9C .10D .163.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°4.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°5.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 6.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30° B .60° C .120° D .150° 7.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A .互余B .互补C .相等D .无法确定8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是()A.①②B.③④C.①②④D.①②③④9.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.610.如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,111.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确12.用一个平面去截一个几何体,能截出如图所示的四种平面图形,则这个几何体可能是()A.圆柱B.圆锥C.长方体D.球二、填空题13.若∠A=4817︒',则它的余角是__________;它的补角是___________。
人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(含答案解析)
一、选择题1.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40° 2.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45° 4.计算:135333030306︒︒''''⨯-÷的值为( ) A .335355︒''' B .363355︒''' C .63533︒''' D .53533︒''' 5.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°6.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转7.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 8.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .49.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 10.22°20′×8等于( ). A .178°20′ B .178°40′ C .176°16′ D .178°30′ 11.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种 12.下列图形中,是圆锥的表面展开图的是( )A .B .C .D .二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.已知一个角的补角是它余角的3倍,则这个角的度数为_____.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.16.已知,如图,点M ,N 分别是线段AB ,BC 的中点,且9MN =,线段1143BD AB CD ==,则线段BD 的长为________.17.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.18.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:________________________________________________________________________________.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?19.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.20.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.22.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)23.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.24.已知:如图,18cmAB=,点M是线段AB的中点,点C把线段MB分成:2:1MC CB=的两部分,求线段AC的长.请补充下列解答过程:AB=,解:因为M是线段AB的中点,且18cm==________AB=________cm.所以AM MBMC CB=,因为:2:1所以MC=________MB=________cm.=+________=________+________=________(cm).所以AC AM25.如图,A、B、C三点在一条直线上,根据图形填空:(1)AC=++;(2)AB=AC﹣;(3)DB+BC=﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.26.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成MC CB=,求线段AC的长度.:1:2【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.2.C解析:C【分析】先利用角的和差关系求出∠AOB 的度数,根据角平分线的定义求出∠BOD 的度数,再利用角的和差关系求出∠COD 的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD 平分∠AOB ,∴∠BOD=12(90°+α)=45°+12α, ∴∠COD=∠BOD-∠COB=45°-12α, 故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键.3.A解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.B解析:B【分析】先进行度、分、秒的乘法除法计算,再算减法.【详解】135333030306︒︒''''⨯-÷4139555︒︒''''=-386415055︒︒''''-''='''363355︒=. 故选:B .【点睛】本题考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.5.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.【详解】∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD 是∠BAC 的角平分线,∴∠BAD=12∠BAC=30°, ∴∠ADE=∠B+∠BAD=70°,又∵OE ⊥BC ,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A .【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.6.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.7.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.8.C解析:C【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C .【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.9.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】 设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用. 10.B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 11.C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A 到B 有5条,B 到C 有4条,所以A 到B 到C 有5×4=20条,A 到C 一条.所以从A 地到C 地可供选择的方案共21条.故选C .【点睛】解决本题的关键是能够有顺序地数出所有情况.12.A解析:A【分析】结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.【详解】解:圆锥的展开图是由一个扇形和一个圆形组成的图形.故选A .【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 15.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB ,(3)AD=AC+CD,故答案为:CD ;BC ;BD ;AD ;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.3【分析】根据等式的性质可得AB 与BD 的关系CD 与BD 的关系根据线段中点的性质可得AM 与BM 的关系DN 与NC 的关系根据线段的和差可得BD 的长根据线段的和差可得答案【详解】∵∴AB=4BDCD=3BD解析:3【分析】根据等式的性质,可得AB 与BD 的关系,CD 与BD 的关系,根据线段中点的性质,可得AM 与BM 的关系,DN 与NC 的关系,根据线段的和差,可得BD 的长,根据线段的和差,可得答案.【详解】 ∵1143BD AB CD ==,∴AB =4BD ,CD =3BD . 点M 、N 分别是线段AB 、BC 的中点,AM =BM =2BD ,DB =BN =NC .由线段的和差,得MN =MB +BN =3BD =9.所以BD =3.故答案为3.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.17.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON 与∠AOB 的关系即可求出∠MON 的度数【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC ∠NOC=∠BOC ∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON 与∠AOB 的关系,即可求出∠MON 的度数.【详解】解:∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC ,∠NOC=12∠BOC , ∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.18.情景一:两点之间线段最短;情景二:两点确定一条直线;赞同第二种应用科学知识为人类服务时应注意保护周边的环境等(合理即可)【解析】【分析】学校和图书馆两根立桩之间的路线可看做是一条线段接下来根据根据线解析:情景一:两点之间,线段最短;情景二:两点确定一条直线;赞同第二种,应用科学知识为人类服务时,应注意保护周边的环境等.(合理即可)【解析】【分析】学校和图书馆、两根立桩之间的路线可看做是一条线段,接下来,根据根据线段的性质来分析得出即可.【详解】第一个情景是根据两点之间线段最短的原理来做的,第二个是两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境.故答案为:两点之间线段最短;两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境.【点睛】此题考查两点之间线段最短的应用,两点确定一条直线,掌握线段的性质是解题的关键. 19.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°,∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON .20.【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比由于方木底面正方形与圆木底面圆面积相等故两比值之比即为结果【详解】正方形内作最大的圆:设圆的半径为r 圆的面积与 解析:28π【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比,由于方木底面正方形与圆木底面圆面积相等,故两比值之比即为结果. 【详解】正方形内作最大的圆:设圆的半径为r ,圆的面积与正方形的面积比是:2224r r r ππ=⨯圆内作最大的正方形:设圆的半径为R ,正方形的面积与圆的面积比是:222R R R ππ⨯=, 因为,方木与圆木的体积和高度都相等,说明底面积也相等,即图(1)的大正方形面积等于图(2)的大圆的面积,所以,现在的圆柱体积和长方体的体积的比值是:22:48πππ=; 答:圆柱体积和长方体的体积的比值为28π.故答案为:28π.【点睛】本题以方木圆木的体积为背景,考查了正方形的内切圆,圆的内接正方形的面积问题,熟练的掌握以上关系是解题的关键.三、解答题21.AB=12cm ,CD=16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.22.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.23.CE =10.4cm .【分析】根据中点的定义,可得AC 、BC 的长,然后根据题已知求解CD 、DE 的长,再代入CE=DE-CD 即可.【详解】∵AC=BC=12AB=12cm ,CD=13AC=4cm ,DE=35AB=14.4cm , ∴CE=DE ﹣CD=10.4cm. 24.12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =, ∴19cm 2AM MB AB ===. ∵:2:1MC CB =, ∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.25.(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD 和CD 的长度相等并且都等于AC 的一半,DB 的长度为CD 长度的一半即为AC 长度的四分之一.AB 的长度等于AD 加上DB ,从而可求出AB 的长度.【详解】(1)AC =AD+DB+BC故答案为:AD ,DB ,BC ;(2)AB =AC ﹣BC ;故答案为:BC ;(3)DB+BC =DC=AC ﹣AD故答案为:AC ;(4)∵D 是AC 的中点,AC =8时,AD =DC =4B 是DC 的中点,∴DB =2∴AB =AD+DB=4+2,=6(cm ).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.26.8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.。
最新人教版初中数学七年级数学上册第四单元《几何图形初步》测试卷(包含答案解析)
【解析】
【分析】
车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.
【详解】
车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.
故答案为线动成面,面动成体.
【点睛】
22.如图,直线AB与CD相交于点O,∠AOE=90°.
(1)如图1,若OC平分∠AOE,求∠AOD的度数;
(2)如图2,若∠BOC=4∠FOB,且OE平分∠FOC,求∠EOF的度数.
23.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.
(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?
5.A
解析:A
【分析】
根据C点为线段AB的中点,D点为BC的中点,可知AC=CB= AB,CD= CB,AD=AC+CD,又AB=4cm,继而即可求出答案.
【详解】
∵点C是线段AB的中点,AB=20cm,
∴BC= AB= ×20cm=10cm,
∵点D是线段BC的中点,
∴BD= BC= ×10cm=5cm,
∴AD=AB-BD=20cm-5cm=15cm.
故选A.
【点睛】
本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.
6.D
解析:D
【分析】
根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.
【详解】
∴图中互补的角有6对,故④正确,
正确的有4个,
故选:D.
人教版初中七年级数学上册第四单元《几何图形初步》经典练习卷(含答案解析)
一、选择题1.将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 2.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较 3.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠COD D .∠DOE 的度数不能确定4.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 5.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒6.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 7.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 PD .两点确定一条直线 8.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠CB .∠B >∠A >∠C C .∠A >∠C >∠BD .∠C >∠A >∠B 9.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 10.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm 11.22°20′×8等于( ). A .178°20′ B .178°40′ C .176°16′ D .178°30′ 12.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的 13.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 14.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .15.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 17.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____.19.如图所示,∠BOD =45°,那么不大于90°的角有___个,它们的度数之和是____.20.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.21.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;22.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .23.36.275︒=_____度______分______秒.24.已知点B 在直线AC 上,AB=6cm ,AC=10cm ,P 、Q 分别是AB 、AC 的中点,则PQ=_____25.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.26.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题27.已知线段AB =10cm ,直线AB 上有一点C ,BC =6cm ,M 为线段AB 的中点,N 为线段BC 的中点,求线段MN 的长.28.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.29.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)30.说出下列图形的名称.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试题(包含答案解析)
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( )A .点B 在线段CD 上(C 、D 之间)B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上 3.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .14.已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( )A .12α∠B .12β∠C .()12αβ∠-∠D .()1+2αβ∠∠ 5.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个6.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒7.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .168.从不同方向看一只茶壶,你认为是俯视效果图的是( )A .B .C .D . 9.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 10.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 11.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 12.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个二、填空题13.如图,记以点A 为端点的射线条数为x ,以点D 为其中一个端点的线段的条数为y ,则x y -的值为________.14.如图,点D 在AOB ∠的内部,点E 在AOB ∠的外部,点F 在射线OA 上.试比较下列角的大小:______AOB BOD ∠∠;______AOE AOB ∠∠;______BOD FOB ∠∠;______AOB FOB ∠∠;______DOE BOD ∠∠.15.如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________;(3)AOB COD AOD ∠+∠-∠=_________.16.已知线段AB 的长度为16厘米,C 是线段AB 上任意一点,E ,F 分别是AC ,CB 的中点,则E ,F 两点间的距离为_______.17.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .18.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)19.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.20.若∠B 的余角为57.12°,则∠B=_____°_____’_____”三、解答题21.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?22.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ;(2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.23.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .24.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.25.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.26.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段,,,使它们分别与线段a 相等; (2)在射线OD 上作线段,使与线段b 相等;(3)连接,,,.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.A解析:A【分析】根据题意画出符合已知条件的图形,根据图形即可得到点B的位置.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选:A.【点睛】本题考查了比较两线段的大小的应用,主要考查学生的观察图形的能力和理解能力.3.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=12AC=7cm;∵M是AB的中点,∴AM=12AB=5cm,∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.4.C解析:C【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可.【详解】∵∠α与∠β互补,∴∠α+∠β=180°,∵∠α>∠β,∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β),故选C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.5.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.6.A解析:A【分析】根据题意,先求得∠COB的值;OM平分∠BOC,ON平分∠AOC,则可求得∠AOM、∠AON的值;∠MON=∠AOM+∠AON,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM平分∠BOC,∠BOC=65°,∴∠BOM=12∴∠AOM=∠AOB-∠BOM=25°,∵ON平分∠AOC,∠AOC=20°,∴∠AON=12∴∠MON=∠AOM+∠AON=45°.∴∠MON的度数是45°.故选:A.【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.7.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口. 8.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.9.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.10.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用. 11.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A .可以作为一个正方体的展开图,B .可以作为一个正方体的展开图,C .不可以作为一个正方体的展开图,D .可以作为一个正方体的展开图,故选:C .【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.12.B解析:B【解析】【分析】利用公式:()21n n - 来计算即可. 【详解】根据公式:()21n n - 来计算,其中,n 指从点O 发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.二、填空题13.【分析】先根据射线和线段的定义求出xy 的值再代入求解即可【详解】以点为端点的射线有射线AC 和射线AB 共两条故点为其中一个端点的线段有线段ADODBDCD 共四条故将代入中原式故答案为:【点睛】本题考查解析:2-【分析】先根据射线和线段的定义求出x ,y 的值,再代入求解即可.【详解】以点A 为端点的射线有射线AC 和射线AB ,共两条,故2x =点D 为其中一个端点的线段有线段AD 、OD 、BD 、CD ,共四条,故4y =将2x =,4y =代入x y -中原式242=-=-故答案为:2-.【点睛】本题考查了代数式的运算,掌握射线和线段的定义是解题的关键.14.>><=>【分析】根据图形即可比较角的大小【详解】解:如图(1)∠AOB>∠BOD ;(2)∠AOE>∠A0B ;(3)∠BOD<∠FOB ;(4)∠A0B=∠FOB ;(5)∠DOE>∠BOD 故答案为(1解析:>,>,<,= ,>【分析】根据图形,即可比较角的大小.【详解】解:如图(1)∠AOB>∠BOD ;(2)∠AOE>∠A0B ;(3)∠BOD<∠FOB ;(4)∠A0B=∠FOB ;(5)∠DOE>∠BOD.故答案为(1)>;(2)>;(3)<;(4)=;(5)>.【点睛】本题考查了角的大小比较,解决本题的关键是结合图形进行解答.15.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.16.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C 是线段AB 的中点∴AC=CB=AB=8∵EF 分别是ACCB 的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C 是线段AB 的中点,∴AC=CB =12AB =8, ∵E 、F 分别是AC 、CB 的中点,∴CE =12AC =4,CF =12CB =4, ∴EF =8(cm ),故答案为:8cm .【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.17.【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用 解析:32【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=,P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=,N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论. 19.65°【解析】∵把一张长方形纸片沿AB 折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)÷2=65°.20.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n++.【分析】1、在锐角∠AOB的内部以O为顶点作3条射线,由此你能得到以O为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB的内部从O点引3条射线共有1452⨯⨯个角;4、结合作3条射线得到的角的个数,可以推出以O为顶点共有n条射线时,得到的角的个数为(1)(2)2n n++,继而将n=5、6、7代入即可.【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.22.(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC .∵∠AOD=4(90°﹣∠BOC ),∴180°﹣∠BOC=4(90°﹣∠BOC ),∴∠BOC=60°.考点:余角和补角;角平分线的定义.23.(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.24.(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】 (1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.25.5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点, 所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.26.详见解析【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.。
人教版数学七年级上册《几何图形初步》单元检测卷附答案
故选D.
【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
4.与红砖、足球类似的图形是( )
A.长方形、圆B.长方体、圆
C.长方体、球D.长方形、球
16.天上一颗颗闪烁的星星给我们以“_____”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“_____”的形象;宾馆里旋转的大门给我们以“_____”的形象.
17.定义:两个直角三角形,若一个三角形的两条直角边分别与另一个三角形的两条直角边相等,我们就说这两个直角三角形是“同胞直角三角形”.如图,在边长为10的正方形中有两个直角三角形,当直角三角形①和直角三角形②是同胞直角三角形时,a的值是_____.
9.A,B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是( )
A.1cmB.9cmC.1cm或9cmD. 以上答案都不对
二、填空题
10.如图,有一个长方形纸片,减去相邻的两个角,使∠ABC=90°,如果∠1=152°,那么∠2=_____________°.
11.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于6,则a+b+c=_____.
(1)数一下每一个多面体具有的顶点数 、棱数 和面数 .并且把结果记入表中.
多面体
顶点数
面数
棱数
正四面体
4
4
6
正方体
正八面体
正十二面体
正ห้องสมุดไป่ตู้十面体
12
20
30
(2)观察表中数据,猜想多面体的顶点数 、棱数 和面数 之间的关系.
人教版初中七年级数学上册第四单元《几何图形初步》经典测试卷(含答案解析)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南 3.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm 4.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .166.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 7.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 8.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-19.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个 D .1个10.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱 11.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm 13.已知线段AB=5,C 是直线AB 上一点,BC=2,则线段AC 长为( ) A .7 B .3 C .3或7 D .以上都不对 14.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的15.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题16.线段AB=12cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为_______cm.17.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.18.如图,共有_________条直线,_________条射线,_________条线段.19.把棱长为1cm的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm.20.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.21.如图所示,直线AB,CD交于点O,∠1=30°,则∠AOD=________°,∠2=________°.22.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.(π取3.14) 23.若∠B的余角为57.12°,则∠B=_____°_____’_____”24.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC =______.25.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.26.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.三、解答题27.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.28.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.29.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.30.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)若点N 是线段CD 的三等分点,求BD 的长.。
最新人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(有答案解析)
一、选择题1.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2α B .45α︒- C .452α︒-D .90α︒-2.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm3.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个4.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .6 5.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( )A .30°B .60°C .30°或60°D .30°或150°6.平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( ) A .16B .22C .20D .187.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )A .∠A >∠B >∠CB .∠B >∠A >∠CC .∠A >∠C >∠BD .∠C >∠A >∠B8.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + 9.已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( ) A .60° B .20° C .40° D .20°或60° 10.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′11.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种12.下图是一个三面带有标记的正方体,它的表面展开图是( )A .B .C .D .二、填空题13.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.14.已知点、、A B C 都在直线l 上,13BC AB =,D E 、分别为AC BC 、中点,直线l 上所有线段的长度之和为19,则AC =__________.15.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.16.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.17.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克. 18.将下列几何体分类,柱体有:______(填序号).19.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是__和___.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.22.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.23.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.24.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.25.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE绕点O转动,如果OD始终在BOC∠的内部,试猜想BOD∠与COE∠有怎样的数量关系?并说明理由.26.如图,点B、C在线段AD上,且::2:3:4AB BC CD=,点M是线段AC的中点,点N是线段CD上的一点,且9MN=.(1)若点N是线段CD的中点,求BD的长;(2)若点N是线段CD的三等分点,求BD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键. 2.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.4.A解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长. 【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =. 因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=. 故选A . 【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.5.D解析:D 【分析】根据两角的比和两角的和即可求得两个角的度数. 【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得 当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°. 故选:D . 【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.6.B解析:B 【分析】由题意可得7条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m ,n 的值,进而可得答案. 【详解】解:根据题意可得:7条直线相交于一点时交点最少,此时交点为1个,即n =1; 任意两直线相交都产生一个交点时,交点最多,此时交点为:7×(7﹣1)÷2=21,即m =21;则m +n =21+1=22. 故选:B . 【点睛】本题考查了直线的交点问题,注意掌握直线相交于一点时交点最少,任意n 条直线两两相交时交点最多为12n(n﹣1)个.7.C解析:C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.8.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.9.D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°, 故答案为20°或60°, 故选D . 【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算.10.B解析:B 【分析】根据角的换算关系即可求解. 【详解】22°×8=176°,20′×8=160′=2°40′, 故22°20′×8=176°+2°40′=178°40′ 故选B. 【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键.11.C解析:C 【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可. 【详解】观察图形,得:A 到B 有5条,B 到C 有4条,所以A 到B 到C 有5×4=20条,A 到C 一条.所以从A 地到C 地可供选择的方案共21条. 故选C . 【点睛】解决本题的关键是能够有顺序地数出所有情况.12.D解析:D 【解析】 【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可. 【详解】A 三角形和正方形是对面,不符合题意;B 不符合题意;C. 三角形和正方形是对面,不符合题意; D 符合题意; 故选D 【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.二、填空题13.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4 【分析】根据线段的和差关系即可求解. 【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =, 则AC =AB+BC=4cm , 故填:4. 【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.14.或4【分析】根据点C 与点B 的位置关系分类讨论分别画出对应的图形推出各线段与AC 的关系根据直线上所有线段的长度之和为19列出关于AC 的方程即可求出AC 【详解】解:若点C 在点B 左侧时如下图所示:∵∴∴B解析:3815或4 【分析】根据点C 与点B 的位置关系分类讨论,分别画出对应的图形,推出各线段与AC 的关系,根据直线l 上所有线段的长度之和为19,列出关于AC 的方程即可求出AC . 【详解】解:若点C 在点B 左侧时,如下图所示:∵13BC AB =∴()13BC AC BC =+∴BC=12AC ,AB=32AC∵点D E 、分别为AC BC 、中点∴AD=DC=12AC ,CE=BE=4211BC AC = ∴AE=AC +CE=54AC ,DE=DC +CE=34AC ,DB=DC +CB=AC ∵直线l 上所有线段的长度之和为19 ∴AD +AC +AE +AB +DC +DE +DB +CE +CB +EB=19 即12AC +AC +54AC +32AC +12AC +34AC +AC +14AC +12AC +14AC =19 解得:AC=3815; 若点C 在点B 右侧时,如下图所示: ∵13BC AB =∴()13BC AC BC =- ∴BC=14AC ,AB=34AC ∵点D E 、分别为AC BC 、中点∴AD=DC=12AC ,CE=BE=8211BC AC = ∴AE=AC -CE=78AC ,DE=DC -CE=38AC ,DB=DC -CB=14AC ∵直线l 上所有线段的长度之和为19 ∴AD +AC +AE +AB +DC +DE +DB +CE +CB +EB=19 即12AC +AC +78AC +34AC +12AC +38AC +14AC +18AC +14AC +18AC =19 解得:AC=4 综上所述:AC=3815或4. 故答案为:3815或4. 【点睛】此题考查的是线段的和与差,掌握线段之间的关系和分类讨论的数学思想是解决此题的关键. 15.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°,∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON.17.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5【分析】(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010=18°,0.5×18°=9°,0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.18.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.19.4【分析】从图形进行分析结合正方体的基本性质得到底面的数字即可求得结果【详解】第一个正方体已知235第二个正方体已知245第三个正方体已知124且不同的面上写的数字各不相同可求得第一个正方体底面的数解析:4【分析】从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【详解】第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故答案为3,4.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.22.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 23.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.24.(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时:11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=;②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.25.(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.【分析】(1)根据COE DOE BOC =-∠∠∠,即可求出COE ∠的度数;(2)根据角平分线的性质即可求出COD ∠的度数;(3)根据余角的性质即可求出∠COE -∠BOD =10°.【详解】(1)∵90DOE ∠=︒,80BOC ∠=︒∴908010COE DOE BOC =-=︒-︒=︒∠∠∠∴∠COE =10°(2)∵OC 恰好平分∠BOE ∴12COE COB BOE ==∠∠∠ ∴∠COD =∠DOE -∠COE =∠DOE -∠BOC =10°(3)猜想:∠COE -∠BOD =10°理由:∵∠COE =∠DOE -∠COD =90°-∠COD∠COD =∠BOC -∠BOD =80°-∠B OD∴∠COE =90°-(80°-∠B OD )=10°+∠B OD即∠COE -∠BOD =10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键.26.(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①.【详解】设AB=2x ,则BC=3x ,CD=4x .∴AC=AB+BC=5x ,∵点M 是线段AC 的中点,∴MC=2.5x ,∵点N 是线段CD 的中点,∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x , ∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x ,∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】 本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.。
最新人教版初中数学七年级数学上册第四单元《几何图形初步》测试(有答案解析)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .3.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 4.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南5.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定 6.如图,长度为12cm 的线段AB 的中点为M ,C 为线段MB 上一点,且MC :CB=1:2,则线段AC 的长度为( )A .8cmB .6cmC .4cmD .2cm7.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 8.下列说法正确的是( )A .射线PA 和射线AP 是同一条射线B .射线OA 的长度是3cmC .直线,AB CD 相交于点 PD .两点确定一条直线 9.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150° 10.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种11.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的 12.如下图,直线的表示方法正确的是( ) ①② ③ ④ A .都正确 B .只有②正确 C .只有③正确 D .都不正确二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.15.(1)375324'''°=________°;(2)1.45︒=________′.16.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.17.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.18.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.19.如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.20.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题21.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)22.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.23.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.24.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.25.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.26.如图,已知点C是线段AB的中点,点D在线段CB上,且,.求CD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB=90°,∠AOC=30°,∴∠COB=60°,∴OB的方位角是北偏西60°,故选:B..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.2.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A 、C 、D 均是正方体表面展开图;B 、是凹字格,故不是正方体表面展开图.故选:B .【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.4.D解析:D【分析】如图,根据正方体展开图的11种特征,属于正方体展开图的“1-4-1”型,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.【详解】如图,根据正方体展开图的特征,折成正方体后,“建”与“南”相对,“设”与“丽”相对,“美”与“云”相对.故选D.5.A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=12∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述错误;故选A.【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.6.A解析:A【分析】先根据点M是AB中点求出AM=BM=6cm,再根据MC:CB=1:2求出MC即可得到答案.【详解】∵点M是AB中点,∴AM=BM=6cm,∵MC:CB=1:2,∴MC=2cm,∴AC=AM+MC=6cm+2cm=8cm,故选:A.【点睛】此题考查线段的中点性质,线段的和差计算,正确理解图形中线段之间的数量关系是解题的关键.7.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.9.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C.【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.10.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.11.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.12.C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB,直线a.故选C.【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC平分∠BOD∴∠解析:40°【解析】【分析】由题意可知∠1+∠2=100°,从而得到∠BOD =80°,由角平分线的定义可得到结论.【详解】∵∠1=28°,∠2=72°,∴∠1+∠2=100°,∴∠BOD =80°.∵OC 平分∠BOD ,∴∠COD =∠BOC 12BOD ∠==40°. 故答案为40°.【点睛】本题考查了角平分线的定义,掌握图形间角的和差关系是解题的关键. 15.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.16.两点确定一条直线【解析】【分析】依据两点确定一条直线来解答即可【详解】解:在木板上画出两个点然后过这两点弹出一条墨线此操作的依据是两点确定一条直线故答案为两点确定一条直线【点睛】本题考查的是直线的性 解析:两点确定一条直线.【解析】【分析】依据两点确定一条直线来解答即可.【详解】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的是直线的性质,掌握直线的性质是解题关键.17.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 18.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°,∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON.19.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.20.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题21.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.22.答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.23.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==,所以81513(cm)DE AE AD =+=+=.②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm . 【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 24.(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x 度,∠EOC=2x 度,把角用未知数表示出来,建立x 的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD 是∠AOB 的平分线,OE 是∠BOC 的平分线, 所以∠BOD=12∠AOB ,∠BOE=12∠BOC , 所以∠DOE=12(∠AOB+∠BOC )=12∠AOC=90°;(2)设∠EOB=x ,则∠EOC=2x ,则∠BOD=12(180°–3x ), 则∠BOE+∠BOD=∠DOE , 即x+12(180°–3x )=72°, 解得x=36°,故∠EOC=2x=72°.【点睛】 本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.25.见解析.【分析】(1)连接AB、CD并向两方无限延长即可得到直线AB、CD;交点处标点E;(2)连接AC、BD可得线段AC、BD,交点处标点F;(3)连接AD并从D向A方向延长即可;(4)连接BC,并且以B为端点向BC方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.26.1【解析】【分析】根据线段的和差,可得AB的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【详解】由线段的和差,得AB=AD+BD=5+3=8.由线段中点的性质,得AC=CB=AB=4.由线段的和差,得CD=AD−AC=5−4=1.【点睛】此题考查两点间的距离,解题关键在于掌握各性质定义.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》测试(答案解析)
一、选择题1.点 A、B、C 在同一条数轴上,其中点 A、B 表示的数分别为﹣3、1,若 BC=2,则 AC 等于()A.3 B.2 C.3 或 5 D.2 或 62.如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有().A.4个B.3个C.2个D.1个3.“枪挑一条线,棍扫一大片”,从数学的角度解释为().A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线4.从不同方向看一只茶壶,你认为是俯视效果图的是()A.B.C.D.5.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-16.一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是( )A.字母A B.字母F C.字母E D.字母B7.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A .60°B .20°C .40°D .20°或60° 8.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .209.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种10.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 11.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm 12.两个锐角的和是( ) A .锐角 B .直角 C .钝角D .锐角或直角或钝角 二、填空题 13.如图,直线AB ,CD 交于点O ,射线OM 平分,若,则等于________.14.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.15.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.16.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A 对应___,B 对应___,C 对应___,D 对应__,E 对应__.17.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.18.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.19.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.已知:如图,在∠AOB 的内部从O 点引3条射线OC ,OD ,OE ,图中共有多少个角?若在∠AOB 的内部,从O 点引出4条,5条,6条,…,n 条不同的射线,可以分别得到多少个不同的角?22.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.23.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.24.已知长方形纸片ABCD ,点E 在边AB 上,点F ,G 在边CD 上,连接EF ,EG .将BEG ∠对折,点B 落在直线BG 上的点B '处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点A '处,得折痕EN .(1)如图(1),若点F 与点G 重合,求MEN ∠的度数;(2)如图(2),若点G 在点F 的右侧,且30FEG ︒∠=,求MEN ∠的度数; (3)若MEN α∠=,请直接用含α的式子表示FEG ∠的大小.25.如图,平面上有四个点A ,B ,C ,D .(1)根据下列语句画图:①射线BA ;②直线AD ,BC 相交于点E ;③延长DC 至F (虚线),使CF=BC ,连接EF (虚线).(2)图中以E 为顶点的角中,小于平角的角共有__________个.26.如图,A 、B 、C 三点在一条直线上,根据图形填空:(1)AC = + + ;(2)AB =AC ﹣ ;(3)DB+BC = ﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D.2.B解析:B【分析】根据余角的性质,补角的性质,可得答案.【详解】解:甲∠AOB+∠BOC=∠BOC+∠COD=90°,∠AOB=∠COD,故甲正确;乙∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD,故乙正确;丙∠AOB=∠COD,故丙错误;丁:∠BOC+∠AOD=∠BOC+∠AOB+∠BOD=∠AOC+∠BOD=180°,故丁正确;故选:B.【点睛】本题考查了余角、补角的定义和角的有关推理的应用,能正确进行推理是解此题的关键,难度适中.3.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.4.A解析:A【解析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.5.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.7.D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 8.A解析:A【分析】根据图形写出各角即可求解.【详解】图中的角有∠AOB、∠AOD、∠AOC、∠AOE、∠EOB、∠EOD、∠EOC、∠COB、∠COD、∠DOB,共10个.故选A.【点睛】此题主要考查角的个数,解题的关键是依次写出各角.9.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.11.C解析:C【分析】根据题意分两种情况,①C为线段AB延长线上的点,②C为线段AB上的点,利用中点的性质分别进行求解.【详解】如图1, ①C为线段AB延长线上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB+BC)=6cm,CN=12BC=1cm,∴MN=CM-CN=5cm;如图2,②C为线段AB上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB-BC)=4cm,CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.12.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.二、填空题13.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.15.n(n+1)【分析】通过观察可以发现每一个图形中正方形的个数等于图形序号乘以比序号大一的数根据此规律解答即可【详解】第(1)个图有2个相同的小正方形2=1×2第(2)个图有6个相同的小正方形6=2×解析:n(n+1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n个图应有n(n+1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.16.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.17.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB和∠ABC的度数是解题关键.18.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.19.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二 解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力. 20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.角的个数分别为10,15,21,28,…,(2)(1)2n n ++. 【分析】1、在锐角∠AOB 的内部以O 为顶点作3条射线,由此你能得到以O 为顶点的射线共有多少条吗?2、根据以一条射线为边,以其余n+1条射线为另一边可作n+1个角,相信你能求得5条射线共多少个锐角;3、由于任意两射线所得的角都多计一次,所以当在∠AOB的内部从O点引3条射线共有1452⨯⨯个角;4、结合作3条射线得到的角的个数,可以推出以O为顶点共有n条射线时,得到的角的个数为(1)(2)2n n++,继而将n=5、6、7代入即可.【详解】解:顺时针数,与射线OA构成的角有4个,与射线OC构成的角有3个,与射线OD构成的角有2个,与射线OE构成的角有1个,故共有角4+3+2+1=10(个). 类似地,引4条射线有角5+4+3+2+1=15(个),引5条射线有角6+5+4+3+2+1=21(个),引6条射线有角7+6+5+4+3+2+1=28(个),…,以此类推,引n条射线有角(n+1)+n+(n-1)+…+2+1=(1)(2)2n n++(个) .【点睛】本题中,根据以点O为顶点的射线有n+2条,再求这n+2条射线可形成的角的个数.要求同学们能够准确利用题目中的已知信息,灵活运用所学知识进行解答.本题还可以采用顺序枚举法进行解答,按一定顺序,把所有元素一一列举出来,要做到不重不漏,适合元素(射线)个数较少情况,如果图中有n条射线这时无法逐一列举,可用规律归纳法.22.(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.23.120°【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【详解】解:设∠AOC =x ,则∠BOC =2x .∴∠AOB =3x .又OD 平分∠AOB ,∴∠AOD =1.5x .∴∠COD =∠AOD ﹣∠AOC =1.5x ﹣x =20°.∴x =40°∴∠AOB =120°.【点睛】此题考查角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解题的关键.24.(1)90︒;(2)105︒;(3)若点G 在点F 的右侧,2180FEG α︒∠=-;若点G 在点F 的左侧,1802FEG α︒∠=-【分析】(1)由题意根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)由题意根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题. (3)根据题意分点G 在点F 的右侧以及点G 在点F 的左侧两种情形分别求解即可.【详解】解:(1)因为EN 平分AEF ∠,EM 平分BEF ∠, 所以12NEF AEF ∠=∠,12MEF BEF ∠=∠, 所以1111()2222MEN NEF MEF AEF BEF AEF BEF AEB ∠=∠+∠=∠+∠=∠+∠=∠. 因为180AEB ︒∠=, 所以1180902MEN ︒︒∠=⨯=. (2)因为EN 平分AEF ∠,EM 平分BEG ∠, 所以12NEF AEF ∠=∠,12MEG BEG ∠=∠, 所以1111()()2222NEF MEG AEF BEG AEF BEG AEB FEG ∠+∠=∠+∠=∠+∠=∠-∠. 因为180AEB ︒∠=,30FEG ︒∠=, 所以()118030752NEF MEG ︒︒︒∠+∠=-=, 所以7530105MEN NEF FEG MEG ︒︒︒∠=∠+∠+∠=+=.(3)因为EN 平分AEF ∠,EM 平分BEG ∠,所以12NEF AEF AEN ∠=∠=∠,12MEG BEG BEM ∠=∠=∠, 若点G 在点F 的右侧,MEN NEF FEG MEG α∠=∠+∠+∠=, ()()(180)2180FEG NEF MEG AEN BEM ααααα︒︒∠=-∠+∠=-∠+∠=-=--;若点G 在点F 的左侧,MEN NEF MEG FEG α∠=∠+∠-∠=1801802FEG NEF MEG AEN BEM ααααα︒︒∠=∠+∠-=∠+∠-=--=-.【点睛】本题考查角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.25.(1)见解析;(2)8【分析】(1) 根据直线、射线、线段的特点画出图形即可;(2)有公共端点的两条射线组成的图形叫做角,根据角的概念数出角的个数即可.【详解】解:(1)画图如下:(2)(前面数过的不再重数)以EF 为始边的角有4个,以EC 为始边的角有1个,以EA 为始边的角有1个,以EC 的反向延长线为始边的有1个,以EA 的反向延长线为始边的有1个,所以以E 为顶点的角中,小于平角的角共有8个.【点睛】此题主要考查了角、直线、射线、线段,关键是掌握角的概念及直线、射线、线段的特点.26.(1)AD ,DB ,BC ;(2)BC ;(3)AC ;(4)6cm .【分析】(1)根据图形直观的得到线段之间的关系;(2)根据图形直观的得到线段之间的关系;(3)根据图形直观的得到各线段之间的关系;(4)AD 和CD 的长度相等并且都等于AC 的一半,DB 的长度为CD 长度的一半即为AC 长度的四分之一.AB 的长度等于AD 加上DB ,从而可求出AB 的长度.【详解】(1)AC =AD+DB+BC故答案为:AD,DB,BC;(2)AB=AC﹣BC;故答案为:BC;(3)DB+BC=DC=AC﹣AD故答案为:AC;(4)∵D是AC的中点,AC=8时,AD=DC=4B是DC的中点,∴DB=2∴AB=AD+DB=4+2,=6(cm).【点睛】本题重点是根据题干中的图形得出各线段之间的关系,在第四问中考查了线段中点的性质.线段的中点将线段分成两个长度相等的线段.。
最新人教版初中数学七年级数学上册第四单元《几何图形初步》检测卷(有答案解析)
一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑 3.点 A 、B 、C 在同一条数轴上,其中点 A 、B 表示的数分别为﹣3、1,若 BC =2,则 AC 等于( )A .3B .2C .3 或 5D .2 或 6 4.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定6.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处7.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线8.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A.50︒B.65︒C.60︒D.70︒9.已知线段AB,在AB的延长线上取一点C,使25BC AC=,在AB的反向延长线上取一点D,使34DA AB=,则线段AD是线段CB的____倍A.98B.89C.32D.2310.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种11.如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有三条水路、两条陆路,从B地到C地有4条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有( )A.10种B.20种C.21种D.626种12.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.二、填空题13.已知一个角的补角是它余角的3倍,则这个角的度数为_____.14.如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD15.如图所示,观察下列图形,在横线上写出几何体的名称及截面形状.(1)①的名称是________,截面形状________;(2)②的名称是________,截面形状是________;(3)③的名称是________,截面形状是________;(4)④的名称是________,截面形状是________;16.已知线段AB的长度为16厘米,C是线段AB上任意一点,E,F分别是AC,CB的中点,则E,F两点间的距离为_______.17.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:_______________________________________________________________________________ _.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?18.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B 为顶点的角共有______个,分别表示为_______________________.19.魏老师去农贸市场买菜时发现,若把10千克的菜放在秤上,则指针盘上的指针转了180︒,第二天魏老师请同学们回答以下两个问题:(1)若把0.5千克的菜放在秤上,则指针转过________度;(2)若指针转了243︒,则这些菜共有________千克.20.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上.若32AD AC =,则BD =________,点D 表示的数为________.三、解答题21.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.22.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 23.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm ).从A ,B 两题中任选一题作A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.24.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?25.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.26.如图,平面上有四个点A、B、C、D,根据下列语句画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD﹣AM,于是得到结论.【详解】解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,∴AD=1AC=7cm;2∵M是AB的中点,∴AM=1AB=5cm,2∴DM=AD﹣AM=2cm.故选:C.【点睛】此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.2.C解析:C【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.3.D解析:D【解析】试题此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.∵点A、B表示的数分别为﹣3、1,∴AB=4.第一种情况:在AB外,如答图1,AC=4+2=6;第二种情况:在AB内,如答图2,AC=4﹣2=2.故选D .4.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.5.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.6.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .7.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 8.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°, ∴∠2=65°.故选:B .【点睛】 此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.9.A解析:A【分析】 根据25BC AC =,AC=AB+BC 可得出BC 与AB 的倍数关系,根据34DA AB =,利用等量代换即可得答案.【详解】 ∵25BC AC =,AC=AB+BC , ∴BC=25(AB+BC ), ∴AB=32BC ,∵34DA AB , ∴AD=34×32BC=98BC , ∴线段AD 是线段CB 的98倍, 故选A.【点睛】本题考查了比较线段的长短,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.10.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD 被B 、C 两点分成AB 、AC 、AD 、BC 、BD 、CD 六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B .【点睛】本题考查的实质是找出已知图形上线段的条数.11.C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A 到B 有5条,B 到C 有4条,所以A 到B 到C 有5×4=20条,A 到C 一条.所以从A 地到C 地可供选择的方案共21条.故选C .【点睛】解决本题的关键是能够有顺序地数出所有情况.12.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A 折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B 、图C 和图D 中对面图案不相同;故选A .【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.45°【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-α=3(解析:45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键. 14.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.15.(1)①正方体长方形;(2)②圆锥等腰三角形;(3)③圆柱圆;(4)④正方体长方形【解析】【分析】首先观察图形先判断出各个几何体的名称然后根据平面截几何体的方向和角度判断出截面的形状【详解】(1)图解析:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【解析】【分析】首先观察图形,先判断出各个几何体的名称,然后根据平面截几何体的方向和角度,判断出截面的形状.【详解】(1)图中几何体是正方体,截面垂直正方体底面,故截面是长方形;(2)图中几何体是圆锥,截面垂直圆锥底面,故截面是等腰三角形;(3)图中几何体是圆柱,截面平行圆柱底面,故截面是圆;(4)图中几何体是正方体,截面垂直正方体底面,故截面是长方形.故答案为:(1)①正方体,长方形;(2)②圆锥,等腰三角形;(3)③圆柱,圆;(4)④正方体,长方形.【点睛】此题考查判断几何体的名称以及截面形状,需要利用常见几何体的特征和截面的知识进行解答.16.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB 的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C是线段AB的中点,∴AC=CB=12AB=8,∵E、F分别是AC、CB的中点,∴CE=12AC=4,CF=12CB=4,∴EF=8(cm),故答案为:8cm.【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.17.情景一:两点之间线段最短;情景二:两点确定一条直线;赞同第二种应用科学知识为人类服务时应注意保护周边的环境等(合理即可)【解析】【分析】学校和图书馆两根立桩之间的路线可看做是一条线段接下来根据根据线解析:情景一:两点之间,线段最短;情景二:两点确定一条直线;赞同第二种,应用科学知识为人类服务时,应注意保护周边的环境等.(合理即可)【解析】【分析】学校和图书馆、两根立桩之间的路线可看做是一条线段,接下来,根据根据线段的性质来分析得出即可.【详解】第一个情景是根据两点之间线段最短的原理来做的,第二个是两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境. 故答案为:两点之间线段最短;两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境.【点睛】此题考查两点之间线段最短的应用,两点确定一条直线,掌握线段的性质是解题的关键. 18.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个 解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示,∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.19.135【分析】(1)算出秤上放1千克菜转过的角度为多少乘以05即可;(2)让243°除以1千克菜转过的角度即可【详解】解:(1)=18°05×18°=9°05千克的菜放在秤上指针转过9°;(2)24解析:13.5(1)算出秤上放1千克菜转过的角度为多少,乘以0.5即可;(2)让243°除以1千克菜转过的角度即可.【详解】解:(1)18010︒=18°,0.5×18°=9°,0.5千克的菜放在秤上,指针转过9°;(2)243°÷18°=13.5(千克),答:共有菜13.5千克.故答案为9,13.5【点睛】本题考查了角度计算的应用,解决本题的关键是得到秤上放1千克菜转过的角度为多少.20.4【分析】根据点AB表示的数求出AB的长再根据中点的定义求出AC=BC 再求出AD的长然后求出OD的长再求出BD即可得解【详解】如图:∵AB两点表示的数分别为-2和6∴AB=6-(-2)=8∵AC=B解析:4【分析】根据点A、B表示的数求出AB的长,再根据中点的定义求出AC=BC,再求出AD的长,然后求出OD的长,再求出BD,即可得解.【详解】如图:∵A,B两点表示的数分别为-2和6,∴AB=6-(-2)=8,∵AC=BC=12AB=12×8=4,∵AD=32AC=32×4=6,∴OD=AD-AO=6-2=4,∴BD=6-4=2,点D表示的数是4.故答案为2;4.【点睛】本题考查了两点间的距离,数轴,主要利用了线段中点的定义,数轴上两点间距离的求法.三、解答题21.(1)80°;(2)50°;(3)50︒或150︒,图见解析(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线, 11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP ∠=∠-∠=︒-︒=︒;②当射线OP 在BOC ∠外部时(如图3-2),10050150COP BOC BOP ∠=∠+∠=︒+︒=︒.综上所述,COP ∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.22.(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.∠的度数为45︒或30︒.(2)AOP∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.23.A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.24.见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.25.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.26.见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ;(2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.。
新人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(含答案解析)(3)
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( ) A .①②B .②③C .②④D .③④2.如图.∠AOB =∠COD ,则( )A .∠1>∠2B .∠1=∠2C .∠1<∠2D .∠1与∠2的大小无法比较3.观察下列图形,其中不是正方体的表面展开图的是( )A .B .C .D .4.已知点P 是CD 的中点,则下列等式中正确的个数是( ) ①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个5.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个6.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个 7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( )A .30°B .60°C .120°D .150°8.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +9.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种10.两个锐角的和是( )A .锐角B .直角C .钝角D .锐角或直角或钝角 11.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( ) A .7个面B .15条棱C .7个顶点D .10个顶点12.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个二、填空题13.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________. 14.看图填空.(1)AC =AD -_______=AB +_______, (2)BC +CD =_______=_______-AB , (3)AD =AC+___.15.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.16.如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.17.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点.3AC cm =,1CP cm =,线段PN =__cm .18.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .19.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.20.有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.三、解答题21.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.22.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.23.如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若1AM =,4BC =,求MN 的长度. (2)若6AB =,求MN 的长度. 24.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数; (2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.25.如图,已知线段a 和b ,直线AB 和CD 相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA ,OB ,OC 上作线段,,,使它们分别与线段a 相等;(2)在射线OD 上作线段,使与线段b 相等;(3)连接,,,.26.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q 后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.B解析:B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.3.B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.4.C解析:C 【分析】根据线段中点的性质、结合图形解答即可. 【详解】 如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个; 故选:C . 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.D解析:D 【分析】根据题意首先计算出∠AOD 的度数,再计算出∠AOE 、∠EOC 、∠BOE 、∠BOD 的度数,然后再分析即可. 【详解】解:由题意设∠BOE=x ,∠EOC=3x , ∵∠DOE =60°,OD 平分∠AOB , ∴∠AOD =∠BOD =60°-x ,根据题意得:2(60°-x )+4x=180°,解得x=30°, ∴∠EOC=∠AOE =90°,∠BOE =30°, ∴∠BOD=∠AOD =30°,故①正确; ∵∠BOD =∠AOD =30°,∴射线OE 平分∠AOC ,故②正确; ∵∠BOE =30°,∠AOB =60°,∠DOE =60°, ∴∠AOB+∠BOE =90°,∠BOE+∠DOE =90°, ∴图中与∠BOE 互余的角有2个,故③正确; ∵∠AOE =∠EOC =90°, ∴∠AOE+∠EOC =180°,∵∠EOC =90°,∠DOB =30°,∠BOE =30°,∠AOD =30°,∴∠COD+∠AOD =180°,∠COD+∠BOD =180°,∠COD+∠BOE =180°,∠COB+∠AOB =180°,∠COB+∠DOE =180°, ∴图中互补的角有6对,故④正确, 正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.6.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.7.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C.【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.8.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.9.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.10.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.11.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.12.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.二、填空题13.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4 【分析】根据线段的和差关系即可求解. 【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =, 则AC =AB+BC=4cm , 故填:4. 【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.14.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD 【分析】根据线段之间的和差关系进行解答即可得答案. 【详解】(1)AC=AD-CD=AB+BC , (2)BC+CD=BD=AD-AB , (3)AD=AC+CD,故答案为:CD ;BC ;BD ;AD ;CD 【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.15.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三解析:五, 六, 七, 2n +. 【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n 棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形. 【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.16.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.17.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用解析:3 2【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=, P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=, N 为CB 的中点, 1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.14【分析】线段AB 被点CD 分成2:4:7三部分于是设AC=2xCD=4xBD=7x 由于MN 分别是ACDB 的中点于是得到CM=AC=xDN=BD=x 根据MN=17cm 列方程即可得到结论【详解】解:线解析:14 【分析】线段AB 被点C ,D 分成2:4:7三部分,于是设AC=2x ,CD=4x ,BD=7x ,由于M ,N 分别是AC ,DB 的中点,于是得到CM=12AC=x ,DN=12BD=72x ,根据MN=17cm 列方程,即可得到结论.【详解】解:线段AB 被点C ,D 分成2:4:7三部分, ∴设2AC x =,4CD x =,7BD x =,M ,N 分别是AC ,DB 的中点,12CM AC x ∴==,1722DN BD x ==, 17MN cm =,74172x x x ∴++=, 2x ∴=,14BD ∴=.故答案为:14.【点睛】本题考查了两点间的距离,利用了线段的和差,利用中点性质转化线段之间的倍分关系是解题的关键.19.65°【解析】∵把一张长方形纸片沿AB 折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)÷2=65°.20.【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比由于方木底面正方形与圆木底面圆面积相等故两比值之比即为结果【详解】正方形内作最大的圆:设圆的半径为r 圆的面积与 解析:28π【分析】先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比,由于方木底面正方形与圆木底面圆面积相等,故两比值之比即为结果.【详解】正方形内作最大的圆:设圆的半径为r ,圆的面积与正方形的面积比是:2224r r r ππ=⨯圆内作最大的正方形:设圆的半径为R ,正方形的面积与圆的面积比是:222R R R ππ⨯=, 因为,方木与圆木的体积和高度都相等,说明底面积也相等,即图(1)的大正方形面积等于图(2)的大圆的面积,所以,现在的圆柱体积和长方体的体积的比值是:22:48πππ=; 答:圆柱体积和长方体的体积的比值为28π. 故答案为:28π.【点睛】 本题以方木圆木的体积为背景,考查了正方形的内切圆,圆的内接正方形的面积问题,熟练的掌握以上关系是解题的关键.三、解答题21.∠BOC =76°,∠EOC =19°.【分析】由∠BOC =2∠AOC ,则∠AOB=∠BOC+∠AOC=3∠AOC ,即∠BOC=23∠AOB ,然后求解即可;再根据OE 是∠AOB 的平分线求得∠BOE ,最后根据角的和差即可求得∠EOC .【详解】解:∵∠BOC =2∠AOC ,∠AOB =114°, ∴∠BOC =23∠AOB =23×114°=76°, ∵OE 是∠AOB 的平分线,∠AOB =114°, ∴∠BOE =12∠AOB =12×114°=57°. ∴∠EOC =∠BOC -∠BOE =19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.23.(1)3;(2)3.【分析】(1)由中点可得CN 和MC 的长,再由 MN=MC+CN 可求得MN 的长;(2)由已知可得AB 的长是NM 的2倍,已知AB 的长,可求得MN 的长度.【详解】解:(1)∵N 是BC 的中点,M 是AC 的中点,1AM =,4BC =,∴2CN =,1AM CM ==,∴3MN MC CN =+=.(2)∵M 是AC 的中点,N 是BC 的中点,6AB =, ∴132NM MC CN AB =+==. 【点睛】本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.24.(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.25.详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.26.(1),;(2);(3)①t=或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为.由题意,得.解得.所以的长为.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形3.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个4.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定5.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =; (3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个6.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒7.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A .圆锥,正方体,三棱锥,圆柱B .圆锥,正方体,四棱锥,圆柱C .圆锥,正方体,四棱柱,圆柱D .圆锥,正方体,三棱柱,圆柱 8.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°9.如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 10.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 11.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( )A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的 12.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( )A .7个面B .15条棱C .7个顶点D .10个顶点 二、填空题13.如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm14.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.15.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.16.已知线段AB 的长度为16厘米,C 是线段AB 上任意一点,E ,F 分别是AC ,CB 的中点,则E ,F 两点间的距离为_______.17.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A 对应___,B 对应___,C 对应___,D 对应__,E 对应__.18.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.19.在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______. 20.若∠B 的余角为57.12°,则∠B=_____°_____’_____”三、解答题21.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 22.关于度、分、秒的换算.(1)5618'︒用度表示; (2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.23.如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE 是∠BOC 的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC ,∠DOE=72°,求∠EOC 的度数. 24.如图所示,A ,B 两条海上巡逻船同时在海面发现一不明物体,A 船发现该不明物体在他的东北方向(从靠近A 点的船头观测),B 船发现该不明物体在它的南偏东60︒的方向上(从靠近B 点的船头观测),请你试着在图中确定这个不明物体的位置.25.如图,把下列物体和与其相似的图形连接起来.26.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A 处发现一只虫子在D 处,立刻赶去捕捉,你知道它怎样去的吗?请在图中画出它的爬行路线,如果虫子正沿着DI 方向爬行,蚂蚁预想在点I 处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.3.D解析:D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【详解】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点睛】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.4.A解析:A【分析】本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.【详解】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=12∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=12(∠BOC+∠AOC)=12∠AOB=60°.故本选项叙述错误;故选A.【点睛】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.5.A解析:A【分析】根据两点之间距离的定义可以判断A、C,根据射线的定义可以判断B,据题意画图可以判断D.【详解】∵线段AB的长度是A、 B两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.6.A解析:A【分析】根据题意,先求得∠COB的值;OM平分∠BOC,ON平分∠AOC,则可求得∠AOM、∠AON的值;∠MON=∠AOM+∠AON,计算得出结果.【详解】∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM平分∠BOC,∴∠BOM=1∠BOC=65°,2∴∠AOM=∠AOB-∠BOM=25°,∵ON平分∠AOC,∴∠AON=1∠AOC=20°,2∴∠MON=∠AOM+∠AON=45°.∴∠MON的度数是45°.故选:A.【点睛】本题考查了余角的计算,角的计算,角平分线的定义.首先确立各角之间的关系,根据角平分线定义得出所求角与已知角的关系转化是解题的关键.7.D解析:D【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱;故选:D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.C解析:C【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.9.C解析:C可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用. 10.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB ,M 不在线段AB 上时,则M 不是AB 的中点,故①错误,若AM=MB=12AB ,则M 是AB 的中点,故②正确; 若AM=12AB ,M 不在线段AB 上时,则M 不是AB 的中点,故③错误; 若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点. 11.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B .本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键. 12.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体 ,解题关键在于掌握立体图形.二、填空题13.【分析】根据AC=ADCD=4cm 求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm ∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC =13AD ,CD=4cm ,求出AD ,再根据D 是线段AB 的中点,即可求得答案. 【详解】 ∵AC =13AD ,CD=4cm , ∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.14.两点确定一条直线【解析】【分析】依据两点确定一条直线来解答即可【详解】解:在木板上画出两个点然后过这两点弹出一条墨线此操作的依据是两点确定一条直线故答案为两点确定一条直线【点睛】本题考查的是直线的性解析:两点确定一条直线.【解析】【分析】依据两点确定一条直线来解答即可.【详解】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的是直线的性质,掌握直线的性质是解题关键.15.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.16.8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答【详解】解:∵C是线段AB的中点∴AC=CB=AB=8∵EF分别是ACCB的中点∴CE=AC=4CF=CB=4∴EF=8(cm解析:8厘米【解析】【分析】根据线段的中点即把线段分成相等的两部分的点进行解答.【详解】解:∵C是线段AB的中点,∴AC=CB=12AB=8,∵E、F分别是AC、CB的中点,∴CE=12AC=4,CF=12CB=4,∴EF=8(cm),故答案为:8cm.【点睛】本题主要考查了线段的中点的概念和性质,解决本题的关键是要能够根据中点准确运用式子表示并进行计算.17.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.18.65°【解析】∵把一张长方形纸片沿AB折叠∴∠2=∠3∵∠1+∠2+∠3=180°∠1=50°∴∠2=(180°-∠1)2=65°解析:65°【解析】∵把一张长方形纸片沿AB折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1) 2=65°.19.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB、OC在射线OA同侧和异侧的情况,问题可解【详解】解:如图(1)当OB、OC在射线OA同侧时,BOC AOB AOC∠=∠-∠=︒-︒=︒701560如图(2)当OB、OC在射线OA异侧时,∠=∠+∠=︒+︒=︒BOC AOB AOC701590故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 20.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.三、解答题21.7或3【分析】求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =, 12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.22.(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案.【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.23.(1)见解析;(2)72°【解析】【分析】(1)根据角平分线的定义可以求得∠DOE=12∠AOC=90°;(2)设∠EOB=x 度,∠EOC=2x 度,把角用未知数表示出来,建立x 的方程,用代数方法解几何问题是一种常用的方法.【详解】(1)如图,因为OD 是∠AOB 的平分线,OE 是∠BOC 的平分线, 所以∠BOD=12∠AOB ,∠BOE=12∠BOC , 所以∠DOE=12(∠AOB+∠BOC )=12∠AOC=90°;(2)设∠EOB=x ,则∠EOC=2x ,则∠BOD=12(180°–3x),则∠BOE+∠BOD=∠DOE,即x+12(180°–3x)=72°,解得x=36°,故∠EOC=2x=72°.【点睛】本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.24.见解析【分析】根据题意这个不明物体应该在这两个方向的交叉点上,根据图示方向在A点向东北方向作一条线,在B点向南偏东60°方向作一条线,交点即是.【详解】根据题意,分别以A和B所在位置作出不明物体所在它们的方向上的射线,两线的交点D即为不明物体所处的位置.如图所示,点D即为所求:.【点睛】本题考查了方位角在生活中的应用,灵活运用所学知识解决问题是解题的关键.25.见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.26.第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.。