最新3.1.1变化率问题汇总
3.1.1变化率问题课件人教新课标2
r(1)-r(0)≈ 0.62 (dm)
气球的平均膨胀率为:
r 1 r 0 0.62dm / L
1 0
类似地:
当空气容量V从1加2L时,半径增加了
r(2)-r(1) ≈ 0.16(dm) 气球的平均膨胀率为:
r 2 r 1 0.16dm / L
2 1
可以看出: 随着气球体积逐渐变大,它的
平均膨胀率逐渐变小.
问题1:气球膨胀率
很多人都吹过气球,回忆一下吹气球 的过程.
发现:
随着气球内空气容量的增加,气球的 半径增加的越来越慢.
从数学的角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之 间的函数关系是:
V (r) 4 r3 r(V ) 3 3V
3
4
当空气容量V从0增加1L时,半径增加了
平均变化率的几何意义就是两点间的斜率.
x2 x1
习惯上:用 x表示x2 -x1,即:x x2 x1
注意:x是一个整体符号,而不是 与x相乘。
可把x看作是相对于x1的一个增量, 可用x1 x代替x2;
“增量”:x x2 x1
令“增量” x x2 x1
f f x2 f x1
f f x2 f x1 f x1 x f x1
(1)运动员在这段时间里是静止的吗?
(2)你认为用平均速度描述运动员的运动状态 有什么问题吗?
平均速度不能反应他在这段时间里运动状态, 需要用瞬时速度描述运动状态.
探究活动
气球的平均膨胀率是一个特殊的情况, 我们把这一思路延伸到函数上,归纳一下得 出函数的平均变化率
r(V2 ) r(V1) f (x2 ) f (x1)
思 考 ?
当空气容量从V1增加到V2时,气球 的平均膨胀率是多少?
3.1.1变化率问题
极限(数学术语)编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。
数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。
此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。
极限思想编辑简介极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。
用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。
如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计极限思想的思维功能极限思想在现代数学乃至物理学等学科中,有着广泛的应用,这是由它本身固有的思维功能所决定的。
极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。
借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从“直线构成形”认识“曲线构成形”,从量变去认识质变,从近似认识精确。
【精品课件】3.1.1-2变化率问题与导数的概念
1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)
x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
人教版-高中数学选修1-1-第三章 3.1.1 变化率问题
观察: 月 日到 日到4月 日与 日与4月 日到 日到4月 日的温度 观察:3月18日到 月18日与 月18日到 月20日的温度 变化,用曲线图表示为: 变化,用曲线图表示为:
T (℃) ℃ 30 20 10 A (1, 3.5)
2 0
C (34, 33.4) 18日 (注: 3月18日 为第一天) 为第一天) B (32, 18.6)
f (x2 ) f (x1) f (x1 + x) f (x1) = x2 x1 x
思考:
观察函数f(x)的图象
f(x2 ) f ( x1 ) 平均变化率 y x2 x1 f(x )
2
Y=f(x) x2-x1 f(x2)-f(x1)
B
表示什么?
f(x1)
A x x1 x2
直线AB的斜率
2.求函数的平均变化率的步骤 求函数的平均变化率的步骤: 求函数的平均变化率的步骤 (1)求函数的增量f=y=f(x2)-f(x1); 求函数的增量
(2)计算平均变化率 y f (x2 ) f (x1) 计算 = x x2 x1
�
O
练习: 练习
1.甲用 年时间挣到 万元 乙用 个月时间挣到 万 甲用5年时间挣到 万元, 乙用5个月时间挣到 个月时间挣到2万 甲用 年时间挣到10万元 如何比较和评价甲,乙两人的经营成果? 元, 如何比较和评价甲,乙两人的经营成果 2.已知函数 f (x) = 2 x +1, g (x) = – 2 x, 分别计算在 已知函数 的平均变化率. 下列区间上 f (x) 及 g (x) 的平均变化率 (1) [ –3 , –1] ; (2) [ 0 , 5 ] .
h(t) = 4.9t + 6.5t +10
人教A版高中数学选修1-1 第三章3.1.1 变化率问题教学课件 (共21张PPT)
们的意义。
lim f关’(键2)是求出: x0
ff
'
((22);它说xf)明'(6在f)第(22)(h)附近,原
度油下温x降度;大在约第以63(h0C)/附H的近速,
lim f ’(6)
f (6 原油x)温度f 大(6约) 以5 0C/H的
x0
x 速度上升。
课堂小结
1.通过本节课的学习你有哪些收获? 平均变化率、瞬时变化率(即导数) 体会了函数思想、逼近思想方法、概念形成 过程中的抽象概括
t0
t
思考
函数f (x)在x x0处的瞬时变化率怎样表 示?
lim f (x0 x) f (x0般地,函数y f (x)在x x0处的瞬时变化率是
lim y lim f (x0 x) f (x0 )
x x0
x0
x
我们称它为函数 y f (x)在x x0处的导数;
率。
解:y 5(2 x)2 6 (5 22 6) 20x 5x2
则平均变化率为:y 20 5x x
探 究
计算:运动员在 0 t 65
49
这段时间内的平均速度,
h(
65
)
并思考下面的问题:
h(0)
P73
v
49 65 0
0 (1)运动员在这段
时间里是静止的吗?
49
(2)你认为用平均速度描述运动员的运动状态有
t 0时,在2,2+t这段时间内
v
h(2
t)
h(2)
4.9t 2
13.1t
(2 t) 2
t
4.9t 13.1
瞬时速度
我们用 lim h(2 t) h(2) 13.1
21-22版:3.1.1 变化率问题~3.1.2 导数的概念(步步高)
学核心素养.
3 随堂演练
PART THREE
1.f(x)=2x+1在[1,2]内的平均变化率为
A.0
B.1
√C.2
D.3
解析 f(x)=2x+1 在[1,2]上的平均变化率为ΔΔxy=f22--1f1=2.
12345
2.如图,函数y=f(x)在A,B两点间的平均变化率是
√A.-1
B.1
C.2
D.-2
反思 感悟
求平均变化率的主要步骤 (1)先计算函数值的改变量Δy=f(x2)-f(x1). (2)再计算自变量的改变量Δx=x2-x1. (3)得平均变化率ΔΔyx=fxx22--fx1x1.
跟踪训练1 已知函数f(x)=x2+2x-5的图象上的一点A(-1,-6)及邻近一点
B(-1+Δx,-6+Δy),则
2 题型探究
PART TWO
一、函数的平均变化率
命题角度1 求函数的平均变化率 例1 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为 1,哪一点附
3 近的平均变化率最大?
解 在x=1附近的平均变化率为 k1=f1+ΔΔxx-f1=1+ΔΔxx2-1=2+Δx; 在x=2附近的平均变化率为 k2=f2+ΔΔxx-f2=2+ΔΔxx2-22=4+Δx; 在x=3附近的平均变化率为 k3=f3+ΔΔxx-f3=3+ΔΔxx2-32=6+Δx. 若 Δx=13,则 k1=2+31=37,k2=4+13=133,k3=6+13=139, 由于k1<k2<k3,故在x=3附近的平均变化率最大.
lim
Δt→0
ΔΔst=Δlitm→0
(2t0+1+Δt)=2t0+1,
则2t0+1=9,∴t0=4. 则物体在4 s时的瞬时速度为9 m/s.
高中数学第三章导数及其应用3.1.1变化率问题3.1.2导数的概念新人教A版选修
探究2:根据函数的瞬时变化率与在某点处导数的定 义,回答下列问题:
(1)瞬时变化率与平均变化率的关系是什么?它们的 物理意义分别是什么?
提示 瞬时变化率是平均变化率在Δx 无限趋近于 0 时,ΔΔxy无限趋近的值;瞬时变化率的物理意义是指物体运 动的瞬时速度,平均变化率的物理意义是指物体运动的平 均速度.
(2)瞬时变化率与函数在某点处导数的关系是什么? 提示 函数在某点处的瞬时变化率就是函数在此点 处的导数.
课堂探究案·核心素养提升
题型一 求函数的平均变化率
例1 求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的
平均变化率,并求当x0=2,Δx=0.1时平均变化率的 值.
【自主解答】 函数 y=f(x)=3x2+2 在区间[x0,x0
【答案】
1 (1)2
(2)见自主解答
●规律总结
1.求函数y=f(x)在点x0处的导数的三个步骤
2.瞬时变化率的几种变形形式
f(x0+Δx)-f(x0) Δx
2×12=5.
题型二 求函数在某点处的导数
例2 (1)函数 y= x在 x=1 处的导数为________.
(2)如果一个质点由定点 A 开始运动,在时间 t 的位 移函数为 y=f(t)=t3+3,
①当 t1=4,Δt=0.01 时,求Δy 和比值ΔΔyt; ②求 t1=4 时的导数.
【自主解答】 (1)Δy= 1+Δx-1, ΔΔxy= 1+ΔΔxx-1= 1+Δ1 x+1,
+
Δ
x]
上
的
平
均
变
化
率
为
f(x0+Δx)-f(x0) (x0+Δx)-x0
=
[3(x0+Δx)2+2]-(3x20+2) Δx
高二数学选修1、3-1-1变化率问题与导数的概念
3.1.1变化率问题与导数的概念一、选择题1.在函数变化率的定义中,自变量的增量Δx满足()A.Δx<0B.Δx>0C.Δx=0 D.Δx≠0[答案] D[解析]自变量的增量Δx可正、可负,但不可为0.2.函数在某一点的导数是()A.在该点的函数的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析]由导数定义可知,函数在某一点的导数,就是平均变化率的极限值.3.在x=1附近,取Δx=0.3,在四个函数①y=x②y=x2③y=x3④y=1x中,平均变化率最大的是()A.④B.③C.②D.①[答案] B[解析]①的平均变化率为1,②的平均变化率为2.3,③的平均变化率为3.99,④的平均变化率为-0.77.4.质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为()A.4+4t0B.0C.8t0+4 D.4t0+4t20[答案] C[解析]Δs=s(t0+Δt)-s(t0)=4Δt2+4Δt+8t0Δt,ΔsΔt=4Δt+4+8t0,lim Δt→0ΔsΔt=limΔt→0(4Δt+4+8t0)=4+8t0.5.函数y=x+1x在x=1处的导数是()A.2 B.5 2C.1 D.0[答案] D[解析] Δy =(Δx +1)+1Δx +1-1-1=Δx +-Δx Δx +1, Δy Δx =1-1Δx +1, lim Δx →0 Δy Δx =lim Δx →0 ⎝⎛⎭⎫1-1Δx +1=1-1=0, ∴函数y =x +1x在x =1处的导数为0. 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0) [答案] D[解析] Δy 看作相对于f (x 0)的“增量”,可用f (x 0+Δx )-f (x 0)代替.7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .7 [答案] B[解析] lim Δt →0 3+(2+Δt )2-3-22Δt=lim Δt →0 Δt 2+4Δt Δt=lim Δt →0 (Δt +4)=4. 8.f (x )在x =x 0处可导,则lim Δx →0f (x 0+Δx )-f (x 0)Δx ( ) A .与x 0,Δx 有关B .仅与x 0有关,而与Δx 无关C .仅与Δx 有关,而与x 0无关D .与x 0,Δx 均无关[答案] B[解析] 式子lim Δx →0 f (x 0+Δx )-f (x 0)Δx表示的意义是求f ′(x 0),即求f (x )在x 0处的导数,它仅与x 0有关,与Δx 无关.9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b [答案] C[解析]∵f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx=limΔx→0aΔx+b(Δx)2Δx=limΔx→0(a+bΔx)=a.∴f′(x0)=a.10.f(x)在x=a处可导,则limh→0f(a+3h)-f(a-h)2h等于()A.f′(a) B.12f′(a)C.4f′(a) D.2f′(a) [答案] D[解析]limh→0f(a+3h)-f(a-h)2h=limh→0f(a+3h)-f(a)+f(a)-f(a-h)2h=32limh→0f(a+3h)-f(a)3h+12limh→0f(a)-f(a-h)h=32f′(a)+12f′(a)=2f′(a).二、填空题11.f(x0)=0,f′(x0)=4,则limΔx→0f(x0+2Δx)-f(x0)Δx=________.[答案]8[解析]limΔx→0f(x0+2Δx)-f(x0)Δx=2limΔx→0f(x0+2Δx)-f(x0)2Δx=2f′(x0)=8.12.某物体做匀速运动,其运动方程是s=v t+b,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.[答案]相等[解析]v0=limΔt→0ΔsΔt=limΔt→0s(t0+Δt)-s(t0)Δt=limΔt→0v(t0+Δt)-v t0Δt=limΔt→0v·ΔtΔt=v.13.设x0∈(a,b),y=f(x)在x0处可导是y=f(x)在(a,b)内可导的________条件.[答案]必要不充分[解析]y=f(x)在x0∈(a,b)处可导不一定在(a,b)的所有点处可导,反之,y=f(x)在(a,b)内可导,必然在(a,b)中的x0处可导.14.一球沿斜面自由滚下,其运动方程是S=t2(S的单位:m,t的单位:s),则小球在t =5时的瞬时速度为______.[答案] 10m/s[解析] v =S ′|t =5=lim Δx →0S (5+Δx )-S (5)Δxlim Δx →0 (10+Δx )=10(m/s). 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2. (1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;(2)求t =3秒时的瞬时速度.[解析] (1)取一小段时间[3,3+Δt ],此时物体的位置改变量Δs =12g (3+Δt )2-12g ·32=12g (6+Δt )Δt ,相应的平均速度v =Δs Δt =g 2(6+Δt ) 当Δt =0.1时,即t 从3秒到3.1秒v =3.05g ;当Δt =0.01时,即t 从3秒到3.01秒v =3.005g .Δt 越小,v 就越接近时刻t 的速度.(2)v =lim Δt →0 Δs Δt=lim Δt →0 g 2(6+Δt )=3g =29.4m/s. 16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h . [解析] 原式=lim h →0 f (x +h )-f (x )+f (x )-f (x -2h )h=lim h →0 f (x +h )-f (x )h +lim h →02·f (x -2h )-f (x )-2h=A +2A =3A .17.求函数y =x 在x =1处的导数.[解析] 解法一:(导数定义法)Δy =1+Δx -1,Δy Δx =1+Δx -1Δx =11+Δx +1, 所以lim Δx →0 11+Δx +1=12, 即y ′|x =1=12. 解法二:(导函数的函数值法)Δy =x +Δx -x ,Δy Δx =x +Δx -x Δx =1x +Δx +x. 所以y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx +x =12x, 故y ′|x =1=12. 18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.[解析] (1)如图所示,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m.由于CD ∥BE ,则AB AC =BE CD, 即y y +x =1.68,所以y =14x . (2)∵84m/min =1.4m/s ,而x =1.4t .∴y =14x =14×1.4t =720t , t ∈[0,+∞).Δy =720(10+Δt )-720×10=720Δt , ∴y ′|t =10=lim Δt →0 Δy Δt =720即人离开路灯第10秒时身影的瞬时变化率为720.。
3.1.1变化率问题
1 运动员在这段时间里是静止的吗 ? 2 你认为用平均速 度描述 运动员运 动
状态有什么问题吗 ?
h t2 h t1 h v t t2 t1
探究过程:如图是函数h(t)= -4.9t2+6.5t+10 的图像,结合图形可知, ( 65 ) h(0) , h 49 所以, h
小结:
1.函数的平均变化率
y f ( x2 ) f ( x1 ) x x2 x1
2.求函数的平均变化率的步骤:
(1)求函数的增量:Δy=f(x2)-f(x1);
y f ( x2 ) f ( x1 ) (2)计算平均变化率: x x2 x1
见Word版活页训练
注意:x的值可正可负不可以为0 y的值可正可负也可为0
2、平均变化率的几何意义
割线AB的斜率 课本P74页思考 y
平均变化率 y f ( x2 ) f ( x1 ) f(x2) x x2 x1 表示什么?
B
y=f(x) f(x2)-f(x1)
f(x1) O
A
x2-x1 x
思考
以上解法没有理解“膨胀率”的概念,从 R=1 到 R =m 时球的体积膨胀率即为 R∈[1,m]时的平均变化率. 4π 3 4π 4π ΔV 3 3 [ 正 解 ] Δ V = 3 m - 3 × 1 = 3 (m - 1) , ∴ = ΔR 4π (m3-1) 3 28 = 3 π .∴m2+m+1=7.∴m=2 或 m=-3(舍). m-1 物理学上的平均速度、 膨胀率等就是函数的平均变化 率.
思考 当空气的容量从 1增加到V2时, 气球的平 V r r V2 r V1 均膨胀率是多少 ? V V2 V1
高二数学 3.1.1变化率问题与导数概念导学案 新人教A版选修1-1
高中数学 3.1.1变化率问题与导数概念导学案知识梳理1.在高台跳水运动中,运动员在t 1≤t ≤t 2这段时间里的位置为s 1≤s ≤s 2,则他的平均速度为 .2.已知函数y =f(x),令Δx = ,Δy = ,则当Δx ≠0时,比值 =ΔfΔx ,称作函数f(x)从x 1到x 2的平均变化率. 3.物体在某一时刻的速度称为 .4.一般地,如果物体的运动规律是s =s (t ),那么物体在时刻t 的瞬时速度v ,就是物体在t 到t +Δt 这段时间内,当Δt →0时平均速度的极限,即v =lim Δt →0 ΔsΔt= 5.一般地,函数y =f (x )在x =x 0处的瞬时变化率是 =lim Δx →0 ΔfΔx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= . 学习过程1.平均变化率[例1] 求函数y =x 3在x 0到x 0+Δx 之间的平均变化率,并计算当x 0=1,Δx =12时平均变化率的值.[分析] 直接利用概念求平均变化率,先求出表达式,再直接代入数据就可以得出相应的平均变化率.应用变式1某质点沿曲线运动的方程为f(x)=-2x2+1(x 表示时间,f(x)表示位移),则该质点从x =1到x =2时的平均速度为 ( )A .-4B .-8C .6D .-6 2.瞬时变化率[例2] 以初速度v 0(v 0>0)垂直上抛的物体,t 秒时的高度为s (t )=v 0t -12gt 2,求物体在时刻t 0处的瞬时速度.应用变式2一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t2,求此物体在t =2时的瞬时速度.3.利用定义求函数某点处的导数[例3] 根据导数定义求函数y =x 2+1x+5在x =2处的导数.应用变式3求y =f(x)=123++x x 在x =1处的导数.[例4] 设f (x )在x 0处可导,求lim Δx →0 f (x 0-Δx )-f (x )Δx的值.课堂巩固训练 一、选择题1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx等于( )A .4B .4xC .4+2ΔxD .4+2(Δx)22.如果质点A 按规律s =2t3运动,则在t =3秒时的瞬时速度为 ( )A .6B .18C .54D .813.当自变0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数 ( ) A .在区间[0x ,1x ]上的平均变化率 B .在0x 处的变化率 C .在1x 处的导数 D .在区间[0x ,1x ]上的导数4.已知f(x)=x x 32-,则f ′(0)= ( )A .Δx -3B .(Δx)2-3ΔxC .-3D .0 二、填空题5.已知函数f(x)=ax +4,若f ′(1)=2,则a 等于______.6.球的半径从1增加到2时,球的体积平均膨胀率为____________. 三、解答题7.枪弹在枪筒中的运动可以看作匀加速直线运动,如果它的加速度是a =5×105m/s2,枪弹从枪口射出所用的时间为1.6×10-3s.求枪弹射出枪口时的瞬时速度.课后强化作业 一、选择题1.在函数变化率的定义中,自变量的增量Δx 满足( )A .Δx <0B .Δx >0C .Δx =0D .Δx ≠0 2.函数在某一点的导数是( )A .在该点的函数的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率3.在x =1附近,取Δx =0.3,在四个函数①y =x ②y =x 2③y =x 3④y =1x中,平均变化率最大的是( )A .④B .③C .②D .①4.质点M 的运动规律为s =4t +4t 2,则质点M 在t =t 0时的速度为( )A .4+4t 0B .0C .8t 0+4D .4t 0+4t 25.函数y =x +1x在x =1处的导数是( )A .2B.52C .1D .0 6.函数y =f (x ),当自变量x 由x 0改变到x 0+Δx 时,Δy =( )A .f (x 0+Δx )B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)7.一个物体的运动方程是s =3+t 2,则物体在t =2时的瞬时速度为( )A .3B .4C .5D .78.f (x )在x =x 0处可导,则lim Δx →0 f (x 0+Δx )-f (x 0)Δx( ) A .与x 0,Δx 有关 B .仅与x 0有关,而与Δx 无关 C .仅与Δx 有关,而与x 0无关 D .与x 0,Δx 均无关9.设函数f (x )在点x 0附近有定义,且有f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A .f ′(x )=aB .f ′(x )=bC .f ′(x 0)=aD .f ′(x 0)=b10.f (x )在x =a 处可导,则lim h →0 f (a +3h )-f (a -h )2h等于( ) A .f ′(a ) B.12f ′(a ) C .4f ′(a ) D .2f ′(a )二、填空题11.f (x 0)=0,f ′(x 0)=4,则lim Δx →0 f (x 0+2Δx )-f (x 0)Δx=________. 12.某物体做匀速运动,其运动方程是s =vt +b ,则该物体在运动过程中其平均速度与任何时刻的瞬时速度关系是________.13.设x 0∈(a ,b ),y =f (x )在x 0处可导是y =f (x )在(a ,b )内可导的________条件.14.一球沿斜面自由滚下,其运动方程是S =t 2(S 的单位:m ,t 的单位:s),则小球在 t =5时的瞬时速度为______. 三、解答题15.一物体作自由落体运动,已知s =s (t )=12gt 2.(1)计算t 从3秒到3.1秒、3.01秒,两段内的平均速度;2)求t =3秒时的瞬时速度.16.若f ′(x )=A ,求lim h →0f (x +h )-f (x -2h )h.17.求函数y =x 在x =1处的导数.18.路灯距地面8m ,一个身高1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影C 沿某直线离开路灯,(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯第10秒时身影的瞬时变化率.3.1.2导数的几何意义 学习目标1.知识与技能:了解导函数的概念,理解导数的几何意义.2.过程与方法:会求导函数,根据导数的几何意义,会求曲线上某点处的切线方程.学习重、难点重点:导数的几何意义.难点:对导数几何意义的理解. 知识梳理1.导数的几何意义 ①割线斜率与切线斜率设函数y =f (x )的图象如图所示,AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是ΔyΔx= 当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的 .于是,当Δx →0时,割线AB 的斜率无限趋近于过点A 的切线AD 的斜率k ,即k = = ②导数的几何意义函数y =f(x)在点x 0处的导数的几何意义是曲线y =f(x)在点P(x 0,f(x 0))处的切线的 .也就是说,曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率是 .相应地,切线方程为 . 2.函数的导数 学习过程1.求割线的斜率[例1] 过曲线y =f(x)=3x 上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx =0.1时割线的斜率.2.用定义求切线方程[例2] 已知曲线C :y =13x 3+43.(1)求曲线C 上的横坐标为2的点处的切线方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点?应用变式1 已知曲线y =23x 上一点A(1,2),则点A 处的切线斜率等于 ( ) A .2 B .4 C .6+6Δx2D .63.求切点坐标[例3] 抛物线y =2x 在点P 处的切线与直线2x -y +4=0平行,求P 点的坐标及切线方程.应用变式2 若抛物线y =2x 与直线2x -y +m =0相切,求m.4.导数几何意义的应用[例4] 若抛物线y =42x 上的点P 到直线y =4x -5的距离最短,求点P 的坐标.应用变式3 求抛物线y =42x 上的点到直线y =4x -5的距离的最小值.[例5] 曲线y =3x 在x 0=0处的切线是否存在,若存在,求出切线的斜率和切线方程;若不存在,请说明理由.应用变式4已知曲线y =4x在点(1,4)处的切线与直线l 平行且距离等于17,则直线l 的方程为( )A .4x -y +9=0或4x -y +25=0B .4x -y +1=0C .4x +y +9=0或4x +y -25=0D .以上都不对 [例6] 试求过点M(1,1)且与曲线y =3x +1相切的直线方程.课堂巩固训练 一、选择题1.曲线y =-22x +1在点(0,1)处的切线的斜率是( )A .-4B .0C .4D .不存在2.曲线y =12x 2-2在点(1,-32)处切线的倾斜角为( )A .1 B.π4 C.5π4 D .-π43.若曲线y =h(x)在点P(a ,h(a))处的切线方程为2x +y +1=0,那么 ( ) A .h ′(a)=0 B .h ′(a)<0 C .h ′(a)>0 D .h ′(a)不确定 4.曲线y =3x 在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8)D .(-12,-18)二、填空题5.已知曲线y =1x -1上两点A (2,-12),B (2+Δx ,-12+Δy ),当Δx =1时,割线AB 的斜率为________.6.P 是抛物线y =x 2上一点,若过点P 的切线与直线y =-12x +1垂直,则过点P 的切线方程为________.三、解答题7.求曲线y =1x -x 上一点P (4,-74)处的切线方程.课后强化训练 一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-12.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°3.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-27.在曲线y =x 2上的点________处的倾斜角为π4( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1)10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.14.曲线y =x 3+x +1在点(1,3)处的切线是________. 三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.17.求过点(2,0)且与曲线y =1x相切的直线方程.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.3.2导数的计算3.2.1几个常用函数的导数及基本初等函数的导数公式 学习目标1.知识与技能:了解常数函数和幂函数的求导方法和规律,会求任意y =x α(α∈Q)的导数.2.过程与方法:掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 学习重、难点重点:常数函数、幂函数的导数难点:由常见幂函数的求导公式发现规律,得到幂函数的求导公式. 知识梳理1.若f(x)=c ,则f ′(x)= .若f(x)=nx (n ∈N*),则f ′(x)= .2.若f(x)=sinx ,则f ′(x)= .若f(x)=cosx ,则f ′(x)= . 3.若f(x)=xa ,则f ′(x)=.若f(x)=xe ,则f ′(x)= .4. 若f (x )=log a x ,则f ′(x )= .若f (x )=ln x ,则f ′(x )= . 学习过程1.导数公式的直接应用[例1] 求下列函数的导数.(1)y =2a (a 为常数). (2)y =12x . (3)y =cosx.应用变式1求下列函数的导数(1)y =1x2 (2)y =3x (3)y =2x(4)y =log 2x2.求某一点处的导数 [例2] 求函数f (x )=1x在x =1处的导数.应用变式2 已知f (x )=n x1,且f ′(1)=-13,求n .3.利用导数求切线的斜率及方程 [例3] 求过曲线y =cos x 上点P ⎥⎦⎤⎢⎣⎡21,3π且与在这点的切线垂直的直线方程.应用变式3 求曲线y =32x 的斜率等于12的切线方程.课堂巩固训练 一、选择题1.函数f(x )=0的导数是 ( )A .0B .1C .不存在D .不确定2.抛物线y =14x 2在点(2,1)处的切线方程是( )A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=03.已知函数f (x )=1x,则f ′(-2)=( )A .4B.14 C .-4 D .-144.下列结论中不正确的是 ( )A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =-x ,则y ′=-12xD .若y =3x ,则y ′|x =1=3二、填空题5.曲线y =xn 在x =2处的导数为12,则n 等于________. 6.若函数y =sint ,则y ′|t =6π=________. 三、解答题7.求抛物线y =2x 上的点到直线x -y -2=0的最短距离.课后强化训练 一、选择题1.lim Δx →0 (1+Δx )2-1Δx表示( ) A .曲线y =x 2的斜率 B .曲线y =x 2在点(1,1)处的斜率C .曲线y =-x 2的斜率D .曲线y =-x 2在(1,-1)处的斜率2.若y =cos 2π3,则y ′=( )A .-32B .-12C .0D.123.下列命题中正确的是( )①若f ′(x )=cos x ,则f (x )=sin x ②若f ′(x )=0,则f (x )=1 ③若f (x )=sin x ,则f ′(x )=cos xA .①B .②C .③D .①②③ 4.若y =ln x ,则其图象在x =2处的切线斜率是( )A .1B .0C .2D.125.已知直线y =kx 是y =ln x 的切线,则k 的值为( )6.已知函数f (x )=21x ,则'⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f =( )7.y =1x在点A (1,1)处的切线方程是( )A .x +y -2=0B .x -y +2=0C .x +y +2=0D .x -y -2=08.下列结论中正确的个数为( )①y =ln2,则y ′=12 ②y =1x 2,则y ′|x =3=-227③y =2x ,则y ′=2xln2 ④y =log 2x ,则y ′=1x ln2A .0B .1C .2D .3 9.下列结论中不正确的是( )A .若y =0,则y ′=0B .若y =33x ,则y ′=-1x 3xC .若y =-x ,则y ′=-12xD .若y =3x 3,则y ′=3x 210.若y =sin x ,则y ′|x =π3=( )A.12 B .-12 C.32D .-32二、填空题11.曲线y =ln x 与x 轴交点处的切线方程是 .12.质点沿直线运动的路程与时间的关系是s =5t ,则质点在t =32时的速度等于 .13.在曲线y =4x2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为 .14.y =10x在(1,10)处切线的斜率为 . 三、解答题 15.已知曲线C :y =x 3(1)求曲线C 上点(1,1)处的切线方程(2)在(1)中的切线与曲线C 是否还有其它公共点?16.求下列函数的导数(1)y =ln x (2)y =1x4 (3)y =55x17.已知点P (-1,1),点Q (2,4)是曲线y =x 2上两点,求与直线PQ 平行的曲线y =x 2的切线方程.18.求过曲线y =sin x 上的点P ⎥⎦⎤⎢⎣⎡22,4π且与在这点处的切线垂直的直线方程.3.2.2 导数的运算法则 学习目标能利用给出的基本初等函数的导数公式表和导数的四则运算法则求简单函数的导数 学习重、难点重点:导数的四则运算及其运用. 难点:导数的四则运算法则的推导. 知识梳理1.设函数f(x)、g(x)是可导函数,(f(x)±g(x))′= ;(f(x)·g(x))′= . 2.设函数f (x )、g (x )是可导函数,且g (x )≠0,()()'⎥⎦⎤⎢⎣⎡x g x f = 学习过程1.导数公式法则的直接应用 [例1] 求下列函数的导数:(1)y =()()112-+x x ;(2)y =x x sin 2;(3)y =1x +2x 2+3x 3;(4)y =x tan x -2cos x .应用变式1求下列函数的导数:(1)y =2x -2+3x -3 (2)y =(2x 2+3)(3x -2) (3)y =x -sin x 2·cos x 22.求导法则的灵活运用[例2] 求函数y =sin 4x4+cos 4x4的导数.应用变式2求函数y =-sin x2(1-2sin 2x4)的导数.3.利用导数求有关参数[例3] 偶函数f(x)=e dx cx bx ax ++++234的图象过点P(0,1),且在x =1处的切线方程为y =x -2,求y =f(x)的解析式.应用变式3已知抛物线y =72-+bx ax 通过点(1,1),过点(1,1)的切线方程为4x -y -3=0,求a 、b 的值.[例4] 给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3,其中正确的个数是 ( )A .1B .2C .3D .4 课堂巩固训练 一、选择题1.函数y =2sinxcosx 的导数为 ( )A .y ′=cosxB .y ′=2cos2xC .y ′=2(sin2x -cos2x)D .y ′=-sin2x2.函数f (x )=1x 3+2x +1的导数是( )A.1(x 3+2x +1)2B.3x 2+2(x 3+2x +1)2C.-3x 2-2(x 3+2x +1)2D.-3x2(x 3+2x +1)2 3.函数y =(x -a)(x -b)在x =a 处的导数为 ( )A .abB .-a(a -b)C .0D .a -b 4.函数y =x ·lnx 的导数是 ( )A .x B.1xC .ln x +1D .ln x +x二、填空题5.函数y =143223-+-x x x 的导数为 6.函数y =xsinx -cosx 的导数为__________________. 三、解答题7.函数f(x)=123+--x x x 的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a ,使得函数f(x)的图象在x =a 处的切线平行于直线AB.课后强化作业 一、选择题1.函数y =cos xx的导数是( )A .-sin x x 2B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 22.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.1033.曲线运动方程为s =1-t t2+2t 2,则t =2时的速度为( )A .4B .8C .10D .124.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x 5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos x B .y =x sin x C .y =1x +2x D .y =1cos x6.函数y =sin ⎪⎭⎫⎝⎛-x 4π的导数为( ) A .-cos ⎪⎭⎫ ⎝⎛+x 4π B .cos ⎪⎭⎫ ⎝⎛-x 4π C .-sin ⎪⎭⎫ ⎝⎛-x 4π D .-sin ⎪⎭⎫⎝⎛+x 4π7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x=x 0处( )A .可导B .不可导C .不一定可导D .不能确定 8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6 D .-5x 49.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6 10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1 二、填空题11.若函数f (x )=1-sin xx,则f ′(π)= .12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是 .13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )= .14.设f (x )=ln a 2x(a >0且a ≠1),则f ′(1)= . 三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5);(2)1+x 1-x +1-x 1+x;(3)f (x )=ln x +2xx 2.16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).17.设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.18.已知函数f (x )=2x 3+ax 与g (x )=bx 2+c 的图象都过点 P (2,0),且在点P 处有公共切线,求f (x )、g (x )的表达式.3.3导数在研究函数中的应用 3.3.1函数的单调性与导数知识梳理1.设函数y =f(x)在区间(a ,b)内可导,(1)如果在区间(a ,b)内,f ′(x)≥0,则f(x)在此区间是 的;(2)如果在区间(a ,b)内,f ′(x)≤0,则f(x)在此区间内是 的.2.如果函数y =f(x)在x 的某个开区间内,总有f ′(x)>0,则f(x)在这个区间上严格增加,这时该函数在这个区间为 ;如果函数当自变量x 在某区间上,总有f ′(x)<0,则f(x)在这个区间为 . 学习过程1.用导数求函数的单调区间 [例1] 求下列函数的单调区间(1)f(x)=133+-x x (2)f (x )=x +b x(b >0)应用变式1求下列函数的单调区间:(1)f(x)=x x x 9323-+ (2)f(x)=sinx -x ,x ∈(0,π)2.利用导数证明不等式[例2] 已知x >1,求证x >lnx.应用变式2已知:x >0,求证:x >sinx.3.已知函数的单调性,确定参数的取值范围[例3] 若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内单调递减,在(6,+∞)上单调递增,试求a 的范围. 应用变式3已知f (x )=13x 3+12ax 2+ax -2(a ∈R ).若函数f (x )在(-∞,+∞)上为单调递增函数,求a 的取值范围.[例4] 已知函数f(x)=32x a x-,x ∈(0,1],a>0,若f(x)在(0,1]上单调递增,求a 的取值范围.课堂巩固训练 一、选择题1.函数f(x)=2x -sinx 在(-∞,+∞)上 ( ) A .是增函数 B .是减函数C .在(0,+∞)上增,在(-∞,0)上增D .在(0,+∞)上减,在(-∞,0)上增 2.函数y =xlnx 在区间(0,1)上是 ( )A .单调增函数B .单调减函数C .在(0,1e )上是减函数,在(1e,1)上是增函数D .在(0,1e )上是增函数,在(1e,1)上是减函数3.若在区间(a ,b)内有f ′(x)>0,且f(a) ≥0,则在(a ,b)内有 ( )A .f(x)>0B .f(x)<0C .f(x)=0D .不能确定 4.在下列函数中,在(0,+∞)内为增函数的是( ) A .sin2xB .x xeC .3x x -3D .-x +ln(1+x)二、填空题5.函数f(x)=x x -3的增区间是 和 ,减区间是 . 6.已知函数y =322++x ax 在(-1,+∞)上是减函数,则a 的取值范围是 . 三、解答题7.已知函数f(x)=83++ax x 的单调递减区间为(-5,5),求函数f(x)的递增区间.课后强化作业 一、选择题1.设f (x )=ax 3+bx 2+cx +d (a >0),则f (x )为增函数的一个充分条件是( )A .b 2-4ac >0B .b >0,c >0内部C .b =0,c >0D .b 2-3ac >02.函数f (x )=2x 2-ln x 的单调递增区间是( )A .(0,12)B .(0,24)C .(12,+∞)D .(-12,0)及(0,12)3.(2009·广东文,8)函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 4.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛2,0π B.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛2,0πC.⎪⎭⎫⎝⎛--2,ππ和⎪⎭⎫ ⎝⎛ππ,2 D.⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛ππ,2 5.函数f (x )=ax 3-x 在R 上为减函数,则( )A .a ≤0B .a <1C .a <2D .a ≤136.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( )A .1B .2C .3D .4 7.设f (x )在(a ,b )内可导,则f ′(x )<0是f (x )在(a ,b )上单调递减的( )A .充分不必要条件你B .必要不充分条件C .充要条件D .既不充分也不必要条件8.若函数y =x 2-2bx +6在(2,8)内是增函数,则( )A .b ≤2B .b <2C .b ≥2D .b >2 9.(2009·湖南文,7)若函数y =f (x )的导函数...在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )10.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能为( )二、填空题11.函数y =x 3-x 2-x 的单调递增区间为 .12.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是 .13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是 .14.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围 .三、解答题 15.讨论函数f (x )=bxx 2-1(-1<x <1,b ≠0)的单调性.16.已知曲线y =x 3+3x 2+6x -10,点P (x ,y )在该曲线上移动,在P 点处的切线设为l . (1)求证:此函数在R 上单调递增;(2)求l 的斜率的范围.17.已知向量a =(x 2,x +1),b =(1-x ,t ),若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.18.设函数f (x )=(ax 2-bx )e x(e 为自然对数的底数)的图象与直线ex +y =0相切于点A ,且点A 的横坐标为1.(1)求a ,b 的值;(2)求函数f (x )的单调区间,并指出在每个区间上的增减性.3.3.2函数的极值与导数,函数的最大(小)值与导数知识梳理1.已知函数y =f(x)及其定义域内一点x.对于包含x0在内的开区间内的所有点x ,如果都有,则称函数f(x)在点0x 处取得,并把0x 称为函数f(x)的一个;如果都有,则称函数f(x)在点0x 处取得 ,并把0x 称为函数f(x)的一个 .极大值与极小值统称为 ,极大值点与极小值点统称为 .2.假设函数y =f(x)在闭区间[a ,b]上的图象是一条 ,该函数在[a ,b]上一定能够取得 与 ,该函数在(a ,b)内是 ,该函数的最值必在 取得. 3.当函数f(x)在点0x 处连续时,判断f(0x )是否存在极大(小)值的方法是: (1)如果在0x 附近的左侧,右侧,那么f(0x )是极值;(2)如果在0x 附近的左侧 ,右侧 ,那么f(0x )是极 值; (3)如果f ′(x)在点0x 的左右两侧符号不变,则f(0x ) 函数f(x)的极值. 学习过程1.利用导数求函数的极值[例1] 求函数y =133+-x x 的极值.应用变式1函数y =x x x 9323--(-2<x <2)有( )A .极大值为5,极小值为-27B .极大值为5,极小值为-11C .极大值为5,无极小值D .极大值为-27,无极小值 2.利用导数求函数的最大值与最小值[例2] 求函数f(x)=1223+-x x 在区间[-1,2]上的最大值与最小值.应用变式2求函数f(x)=2824+-x x 在[-1,3]上的最大值与最小值.3.求函数极值的逆向问题[例3] 已知f(x)=cx bx ax ++23(a ≠0)在x =±1时取得极值,且f(1)=-1, (1)试求常数a 、b 、c 的值;(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.应用变式3设a >0,(1)证明f (x )=ax +b1+x2取得极大值和极小值的点各有1个;(2)当极大值为1,极小值为-1时,求a 和b 的值.[例4] 已知函数f(x)=c bx x ax -+44ln (x>0)在x =1处取得极值-3-c ,其中a 、b 、c 为常数.(1)试确定a ,b 的值;(2)若对任意x>0,不等式f(x)≥22c -恒成立,求c 的取值范围.[例5] 已知f(x)=2233a bx ax x +++在x =-1时有极值0,求常数a 、b 的值.课堂巩固训练 一、选择题1.若函数y =f(x)是定义在R 上的可导函数,则f ′(x)=0是x0为函数y =f(x)的极值点( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.函数f (x )=x 2-x +1在区间[-3,0]上的最值为 ( )A .最大值为13,最小值为34B .最大值为1,最小值为-17C .最大值为3,最小值为-17D .最大值为9,最小值为-19 3.函数y =3x +1 的极大值是( )A .1B .0C .2D .不存在4.y =f(x)=a x x +-2332的极大值是6,那么a 等于 ( ) A .6 B .0 C .5D .1二、填空题5.(2009·辽宁文,15)若函数f (x )=x 2+ax +1在x =1处取极值,则a = .6.函数y =x ·ex 的最小值为________. 三、解答题7.设y =f (x )为三次函数,且图象关于原点对称,当x =12时,f (x )的极小值为-1,求出函数f (x )的解析式.课后强化作业 一、选择题1.设x 0为f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=0B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为0 2.对于可导函数,有一点两侧的导数值异号是这一点为极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.函数y =2-x 2-x 3的极值情况是( )A .有极大值,没有极小值B .有极小值,没有极大值C .既无极大值也无极小值D .既有极大值也有极小值4.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个5.下列命题:①一个函数的极大值总比极小值大;②可导函数导数为0的点不一定是极值点;③一个函数的极大值可以比最大值大;④一个函数的极值点可在其不可导点处达到,其中正确命题的序号是( )A .①④B .②④C .①②D .③④ 6.函数y =|x -1|,下列结论中正确的是( )A .y 有极小值0,且0也是最小值B .y 有最小值0,但0不是极小值C .y 有极小值0,但不是最小值D .因为y 在x =1处不可导,所以0既非最小值也非极值7.函数f (x )=x (1-x 2)在[0,1]上的最大值为( )A.239B.229C.329D.388.已知函数f (x )=x 3-px 2-qx 的图像与x 轴切于(1,0)点,则函数f (x )的极值是( )A .极大值为427,极小值为0B .极大值为0,极小值为427C .极大值为0,极小值为-427D .极大值为-427,极小值为09.已知函数y =|x 2-3x +2|,则( )A .y 有极小值,但无极大值B .y 有极小值0,但无极大值C .y 有极小值0,极大值14D .y 有极大值14,但无极大值10.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c ) 二、填空题11.函数y =2xx 2+1的极大值为____________,极小值为____________.12.函数y =x 3-6x +a 的极大值为____________,极小值为____________.13.函数y =x -x 3(x ∈[0,2])的最小值是________.14.已知函数f (x )=x (x -c )2在x =2处取极大值,则常数c 的值为________. 三、解答题15.已知函数f (x )=x 3-3x 2-9x +11.(1)写出函数的递减区间;(2)讨论函数的极大值或极小值,如有试写出极值.16.求下列函数的最值(1)f (x )=3x -x 3(-3≤x ≤3); (2)f (x )=sin2x -x ⎪⎭⎫ ⎝⎛≤≤-22ππx .17.已知a ∈R ,讨论函数f (x )=e x (x 2+ax +a +1)的极值点的个数.18.(2010·江西理,19)设函数f (x )=ln x +ln(2-x )-ax (a >0).(提示:[ln(2-x )]′=-12-x)(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.3.4生活中的优化问题举例学习过程1.面积、容积最大问题[例1] 在边长为60cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?应用变式1已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的长和宽.2.利用导数解决几何中的问题[例2]将一段长为100cm的铁丝截成两段,一段弯成正方形,一段弯成圆,问如何截法使正方形与圆面积之和最小?应用变式2已知圆柱的表面积为定值S,求当圆柱的容积V最大时圆柱的高h的值.3.获利最大[例3]某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆,本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.应用变式3某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p=3x4x+32(x∈N+).[例4] 甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?课堂巩固训练一、选择题1.三次函数当x =1时,有极大值4;当x =3时,有极小值0,且函数过原点,则此函数是( )A .y =x x x 9623++B .y =x x x 9623+-C .y =x x x 9623--D .y =x x x 9623-+2.函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( )A .0<b <1B .b <1C .b >0D .b <123.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80000 (x >400),则总利润最大时,每年生产的产品是 ( ) A .100 B .150 C .200 D .300 4.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为 ( ) A.3V B.32V C.34VD .23V二、填空题5.面积为S 的一切矩形中,其周长最小的是________.6.函数f(x)=)2(2x x -的单调递减区间是________.三、解答题7.用边长为120cm 的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱.问:水箱底边的长取多少时,水箱容积最大?最大容积是多少?课后强化作业一、选择题1.将8分解为两个非负数之和,使其立方之和为最小,则分法为( )A .2和6B .4和4C .3和5D .以上都不对2.某箱子的容积与底面边长的关系为V (x )=x 2⎝ ⎛⎭⎪⎫60-x 2(0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .以上都不正确3.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) A .6 B .8 C .10 D .124.内接于半径为R 的球且体积最大的圆锥的高为( )A .RB .2R C.43R D.34R 5.要做一个圆锥形的漏斗,其母线长为20cm ,要使其体积为最大,则高为( )A.33cmB.1033cmC.1633cmD.2033cm 6.圆柱形金属饮料罐的容积一定时,为了使所用材料最省,它的高与底半径应为( )A .h =2RB .h =RC .h =2RD .h =2R7.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .508.设圆柱的体积为V ,那么其表面积最小时,底面半径为( )A.3V B.3V π C.34V D .23V 2π9.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么,原油温度的瞬时变化率的最小值是( )A .8 B.203C .-1D .-8 10.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大为( )A .2πr 2B .πr 2C .4πr 2 D.12πr 2 二、填空题11.把长为60cm 的铁丝围成矩形,长为________,宽为________时,矩形的面积最大.12.将长为l 的铁丝剪成2段,各围成长与宽之比为21及32的矩形,则面积之和的最小值为________.13.做一个容积为256的方底无盖水箱,它的高为________时最省料.14.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最小,则圆柱的底面半径为___.三、解答题15.某公司规定:对于小于或等于150件的订购合同,每件售价为200元,对于多于150件的订购合同,每超过一件,则每件的售价比原来减少1元,试问订购多少件的合同将会使公司的收益最大?16.如图,水渠横断面为等腰梯形,水的横断面面积为S ,水面的高为h ,问侧面与地面成多大角度时,才能使横断面被水浸湿的长度最小?17.某厂生产某种产品的固定成本(固定投入)为2500元,已知每生产x件这样的产品需要再增加可变成本C(x)=200x+136x3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?18.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为21,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?。
人教版高中数学必修1-1《3.1.1变化率问题》
示, 我 们 把 这 个 式 子 称 为 函数 f x从 x1到 x2的 average rate of change .习 惯 上
用x表 示 x2 x1 ,即x x2 x1 ,
y
fx2 fx1
y fx
B
A
x2 x1
fx2 fx1
2.质点运动规律s=t2 +3,则在时间(3,3+t)中 相应的平均速度为(A ) A. 6+t B. 6+t+ 9 C.3+t D.9+t
t
3.求y=x2在x=x0附近的平均变化率.
1.函数的平均变化率
2.求函数的平均变化率的步骤:
小结:
(1)求函数的增量:Δy=f(x2)-f(x1); (2)计算平均变化率:
v 49
0(s / m)
65 0
49
O t 65 65
t
虽然运动员在
0 t 65 49
98 49
这段时间里的平均
速度为 0(s / m) ,但实际情况是运动员仍然
运动,并非静止,可以说明用平均速度不 能精确描述运动员的运动状态.
如 果 上 述 两 个 问 题 中 的函 数 关 系 用f x表 示, 那 么 问 题 中 变 化 率 可 用式 子 f x2 f x1 表
(2)解: △y=f (x+△x)- f (x)
=2△x ·x+(△x )2
y 2x x (x)2
x
x
2x x
课堂练习
1.已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,2+Δy),则Δy/Δx=( )
3.1.1变化率问题
3.1.1变化率问题习题【知识点总结】1、我们把式子2121()()f x f x x x --称为函数()y f x =从1x 到2x 的平均变化率。
习惯上令21x x x ∆=-,类似有21()()y f x f x ∆=-,于是平均变化率可以表示为y x ∆∆. 2、平均变化率2121()()f x f x y x x x -∆=∆-表示连接两点的线段所在直线的斜率。
3、我们把函数值的增量与自变量的增量的比值叫做函数在这一区间上的平均变化率。
4、求平均变化率的步骤:(1)求函数值的增量21()()y f x f x ∆=-;(2)求自变量的增量21x x x ∆=-;(3)计算2121()()f x f x y x x x -∆=∆-的值. 5、求平均变化率的另一种步骤:(1) 求函数值的增量00()()y f x x f x ∆=+∆-;(2) 计算00()()f x x f x y x x+∆-∆=∆∆的值. 注意:知识点5计算平均变化率的方法,为后一节定义导数做铺垫,要好好理解。
【基本题型练习】1、求函数2y x =在区间[]1,3上的平均变化率。
解:22(3)(1)318y f f ∆=-=-=312x ∆=-=∴ (3)(1)84312y f f x ∆-===∆- 变式一:求函数2y x x =+在区间[]1,3上的平均变化率。
2、求函数2y x x =+在区间[]3,3x +∆上的平均变化率。
解:(3)(3)y f x f ∆=+∆-2222(3)396()96()x x x x x =+∆-=+∆+∆-=∆+∆∴ 26()6y x x x x x∆∆+∆==+∆∆∆ 变式二:求函数23y x =在区间[]3,3x +∆上的平均变化率。
【变式练习参考答案】变式一:求函数2y x x =+在区间[]1,3上的平均变化率。
解:22(3)(1)(3+1(11)8y f f ∆=-=-+=)312x ∆=-=∴ (3)(1)84312y f f x ∆-===∆- 变式二:求函数23y x =在区间[]3,3x +∆上的平均变化率。
高中数学_3.1.1 函数的平均变化率教学设计学情分析教材分析课后反思
函数的平均变化率本节课是普通高中课程标准实验教科书人教B版选修(文)1-1第三章导数及其应用中的内容,(理)2-2第一章中的内容,《平均变化率》。
为更好地把握这一课时内容,便于学生学习和理解,对本课时教学设计给予如下说明:一、教学内容分析:平均变化率主要通过大量的生活实例借助直观图形逐步引入“平均变化率”的概念,并在此基础上给出了它的两种应用——在生活中的应用以及在数学内部的应用。
本节课应着力渗透“局部以直代曲”思想、“数形结合”思想以及“极限(逼近)”思想,以便更好地为研究、学习后续的“瞬时变化率”乃至“导数的概念”奠定基础。
这节课是在学生在学习了函数、指、对数函数、幂函数、三角函数等知识后安排的一节内容,学生已经具备了一定的函数知识的素养。
本节课目的是在为导数的引出作必要的铺垫,在导数教学中起着承上启下的作用。
学好这一节,学生将会为以后理解导数的概念等知识打下一个良好的基础,同时学生对函数也有了更为完整的知识结构。
二、学生情况分析:同学们在物理中已经充分理解平均速度的概念,为函数的平均变化率打下了良好的基础。
且在之前的学习中,具备一定的用数形结合思想解决问题的能力,这为从数与形两方面考察函数的平均变化率提供了知识准备。
而平均变化率来自生活,是由生活中抽象而来的,只要我们选材得当,能够激发学生的学习兴趣,达到渗透数学思想关注数学文化的目的,学生也能够很容易理解这种方法.但学生仅是比较熟悉平均速度,对于变量变化的快慢的认识以及表示比较模糊,还有,由实际问题抽象成函数表示,这些都给学生学习本节内容造成一定困难。
三、教学目标:知识与技能:(1)了解平均变化变化率的概念;(2)会求函数在指定区间上的平均变化率;(3)能利用平均变化率解决或说明生活中的实际问题。
情感、态度与价值观:(1)以实际生活为背景,引出平均变化率的相关内容,让学生感受到事物相联系的观点;(2)通过数形结合的手段解决问题,让学生体会到“无形不直观,无数不入微”的辩证思想;(3)通过本节的学习,体会数学模型在实际生活中的应用,提高数学的应用意识。
3[1].1.1变化率问题
思考:一次函数y=kx+b在区间[m,n]上的平 均变化率有什么特点?
数学应用
例2、已知函数 f(x)=x2,分别计算f(x)在下列 y 区间上的平均变化率: (1)[1,3]; 4 (2)[1,2]; 3 (3)[1,1.1]; 2.1 (4)[1,1.001]. 2.001
(5)[0.9,1]; 1.9 变题: (6)[0.99,1];1.99 (7)[0.999,1]. 1.999
ht 4.9t 6.5t 10
2
如果用运动员在某段时间内的平均速度 v 描述其运 动状态, 那么: h(0.5) h(0) 在0 ≤ t ≤0.5这段时间里, v 4.05(m/s ); 0.5 0 在1≤ t ≤2这段时间里,
探 65 究: 计算运动员在 0 t 这段时间里的平均速度,
B 、 f x 0 x D 、 f x 0 x f x 0
并思考下面的问题:
49
(1) 运动员在这段时间里是静止的吗? (2) 你认为用平均速度描述运动员的运动状态有什么问题吗?
h(2) h(1) v 8.2(m/s ); 2 1
如果我们把研究问题中的函数关系用 y f x 表 示,那么定义:
f ( x2 ) f ( x1 ) 平均变化率: 式子 称为函数 f (x)从x1到 x2 x2 x1 的平均变化率.
p
1 3
课后思考:为什么趋近于2呢?2的几何意义是 什么?
x
小结: 1.函数的平均变化率 y x
y x
f(x2 ) f ( x1 ) x2 x1
2.求函数的平均变化率的步骤: (1)求函数的增量Δy=f(x2)-f(x1);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1变化率问题
3.1.1变化率问题
一.设计思想:(1)用已知探究未知的思考方法(2)用逼近的思想考虑问题的
思考方法.
二.教学目标
1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
4. 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现
实世界的过程,体会数学的博大精深以及学习数学的意义。
三.教学重点
1.通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变
化率的实际意义和数学意义;
2.掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方
法;
四.教学难点:平均变化率的概念.
五.教学准备
1.认真阅读教材、教参,寻找有关资料;
2.向有经验的同事请教;
3.从成绩好的学生那里了解他们预习的情况和困惑的地方.
六.教学过程
一.创设情景
(1)让学生阅读章引言,并思考章引言写了几层意思?
(2)学生先阅读,思考,老师再提示;①以简洁的话语指明函数和微积分的关系,微积分的研究对象就是函数,正是对函数的深入研究导致了微积分的产生;②从数学史的角度,概括地介绍与微积分创立密切相关的四类问题以及做出巨大贡献的科学家;③概述本章的主要内容,以及导数工具的作用和价值.让学生对这章书先有一个大概认识,从而使学生学习有了方向,能更好地进行以下学习.
二.新课讲授
(一)问题提出
问题1气球膨胀率问题:
老师准备了两个气球,请两位同学出来吹,请观看同学谈谈看见的情景;再请吹气球同学谈谈吹气球过程的感受,开始与结束感受是否有区别?
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是«Skip Record If...»
如果将半径r表示为体积V的函数,那么«Skip Record If...»
分析: «Skip Record If...»,
⑴当V从0增加到1时,气球半径增加了«Skip Record If...»
气球的平均膨胀率为«Skip Record If...»
⑵当V从1增加到2时,气球半径增加了«Skip Record If...»
气球的平均膨胀率为«Skip Record If...»
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少? «Skip
Record If...»
问题2 高台跳水问题:
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t (单位:s)存在怎样的函数关系?
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.
)如何计算运动员的平均速度?并分别计算0≤t≤0.5,1≤t≤2,1.8≤t≤2,2≤t≤2.2,时间段里的平均速度.
思考计算:«Skip Record If...»和«Skip Record If...»的平均速度«Skip Record If...»
在«Skip Record If...»这段时间里,«Skip Record If...»;
在«Skip Record If...»这段时间里,«Skip Record If...»
探究:计算运动员在«Skip Record If...»这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,«Skip Record If...»,
所以«Skip Record If...»,
虽然运动员在«Skip Record If...»这段时间里的平均速度为«Skip Record If...»,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(1)让学生亲自计算和思考,展开讨论;
(2)老师慢慢引导学生说出自己的发现,并初步修正到最终的结论上.
(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;
(二)平均变化率概念:
引出函数平均变化率的概念.找出求函数平均变化率的步骤.
1.上述问题中的变化率可用式子«Skip Record If...»表示, 称为函数f(x)从x1到x2的平均变化率
2.若设«Skip Record If...», «Skip Record If...» (这里«Skip Record If...»看作是对于x1的一个“增量”可用x1+«Skip Record If...»代替x2,同样«Skip Record If...»)
3.则平均变化率为«Skip Record If...»«Skip Record If...»
思考:观察函数f(x)的图象Array平均变化率«Skip Record If...»«Skip Record
If...»表示什么?
(1)师生一起讨论、分析,得出结果;
(2)计算平均变化率的步骤:①求自变量的增量Δx=x2-x1;②求函数的增量Δf=f(x2)-f(x1);③求平均变化率«Skip Record If...».
注意:①Δx是一个整体符号,而不是Δ与x相乘;②x2= x1+Δx;③Δf=Δy=y2-y1;
三.典例分析
例1.已知函数f(x)=«Skip Record If...»的图象上的一点«Skip Record If...»及临近一点«Skip Record If...»,则«Skip Record
If...».
解:«Skip Record If...»,
∴«Skip Record If...»
例2.求«Skip Record If...»在«Skip Record If...»附近的平均变化率。
解:«Skip Record If...»,所以«Skip Record If...»
«Skip Record If...»
所以«Skip Record If...»在«Skip Record If...»附近的平均变化率为
«Skip Record If...»
四.课堂练习
1.质点运动规律为«Skip Record If...»,则在时间«Skip Record If...»中相应的平均速度为.
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
五.回顾总结
让学生进行课堂小结.
(1)随着气球内空气容量的增加,气球的半径增加得越来越慢,即随着气球体积的增大,比值气球膨胀率越来越小;
(2)平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态;
(3)函数的平均变化率的概念;
(4)求函数的平均变化率的步骤;
(5)课后思考问题:需要寻找一个量,能更精细地刻画运动员的运动状态,那么该量应如何定义?
(6)思考问题方法:从实际生活到数学语言,数学概念.
六.补充实例
例1在经营某商品中,甲挣到10万元,乙挣到2万元,如何比较和评价甲,乙两人的经营成果?
变式:在经营某商品中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,如何比较和评价甲,乙两人的经营成果?
例2情境:现有南京市某年3月和4月某天日最高气温记载.
观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:
七.布置作业
①看书,复习今天内容;②思考问题:如何能更精细地刻画运动员的运动状态?需要增加什么量?③做书A1;④预习下节内容. 八.教学反思
用1节课完成变化率的讲授。
导数确实是个很重要的工具,所以与导数概念教学有关的平均变化率问题讲授显得很重要.
温度T (时间t。