2013高考数学曲线方程汇总

合集下载

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)

高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。

修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。

2.理解数形结合的思想。

3.了解双曲线的实际背景及其简单应用。

一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。

点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。

2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{3}$D。

$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。

点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。

双曲线的通径为 $2a$。

3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。

10.5 曲线与方程-5年3年模拟北京高考

10.5 曲线与方程-5年3年模拟北京高考

10.5 曲线与方程五年高考考点轨迹与轨迹方程 1.(2013福建.18,13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(O ,10).分别将线段OA 和AB 十等分,分点分别记为921,,,A A A 和,,,21 B B ⋅9B 连结,i OB 过i A 作x 轴的垂线与i OB 交于点≤∈1*,(N i P i ).9≤i(1)求证:点)91,(≤≤⋅∈i N i p i 都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 作直线L 与抛物线E 交于不同的两点M ,N ,若AOCM 与△OCN 的面积比为4:1,求直线L 的方程.2.(2013四川.20 ,13分)已知椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为),0,1(),0,1(21F F -且椭圆C 经过点⋅)31,34(P(1)求椭圆C 的离心率;(2)设过点A(O ,2)的直线L 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且,||1||1||2222AN AM AQ +=求点Q 的轨迹方程.3.(2012辽宁.20,12分)如图,椭圆,0(1:220>>=+b a by a x C a ,b 为常数),动圆.,:121221a t b t y x C <<=+点21,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点.(1)求直线1AA 与直线B A 2交点M 的轨迹方程;(2)设动圆22222:t y x C =+与0C 相交于D C B A ,,,四点,其中b ⋅=/<<212,t t a t 若矩形ABCD 与矩形ABCD 的面积相等,证明:222t t l +为定值.智力背景斯太纳——从牧童或长为几何学家 斯太纳是瑞士的大数学家,是世界数学史上具有传奇色彩的一个人物.1796年出生于瑞士北部伯尔尼州的一个小镇上,斯太纳到了14岁还是个一字不识的文盲,但 他不甘于这种状况,经过长期的勤奋研究,出版了《几何图形相互关系的系统发展》和《用直尺和一个固 定圆完成的几何作图》两本书.1834年,他被选为柏林科学院院士;同年又被聘为柏林大学教授,直到他 逝世,后人把他评为“自欧几里得以来最伟大的几何学家”.4.(2011天津,18.13分)在平面直角坐标系xOy 中,点P(a ,b)(a>b>0)为动点,21,F F 分别为椭圆122=+by a x 的左、右焦点,已知21PF F ∆为等腰三角形. (1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于A ,B 两点,M 是直线2PF 上的点,满足,2.-=BM AM 求点M 的轨迹方程.5.(2011安徽.21,13分)设A>0,点A 的坐标为(1,1),点B 在抛物线2x y =上运动,点p 满足,B λ= 经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足,MP λ=QM求点P 的轨迹方程.解读探究知识清单1.“曲线的方程”与“方程的曲线”在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点组成一个点集F 上述定义中C CF F C ⇔⎩⎨⎧⊆⇔⊆⇔)2(,)1(条件条件.F = 2直接法求动点的轨迹方程的步骤 (1)①____——建立适当的坐标系;(2)②____——设轨迹上的任一点P (x ,y ); (3)③____——列出动点P 所满足的关系式;(4)④ ——依条件式的特点,选用距离公式、斜率公式等将其转化为x 、y 的方程式,并化简;(5)⑤ 一-证明所求方程即为符合条件的动点轨迹方程 【知识拓展】1.求轨迹方程时,要注意检验曲线上的点与方程的解是否为一一对应的关系,若不是,则应对方程加上一定的限制条件,检验可以从以下两个方面进行;一是方程的化筒是否为同解变形;二是是否符合题目的实际意义.2.求点的轨迹与求轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.·知识清单答案智力背景姜伯驹 1937年生,浙江苍南A.1957年毕业于北京大学数学力学系,曾任美国普林斯顿高等研究所、巴黎高等科学研究所研究员、联邦德国海德堡大学客座教授,1985年当选第三世界科学院院士.姜氏空间:数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”,另外还有以他命名的“姜氏子群”.突破方法方法1 定义法求轨迹方程运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.例1 (2012山东青岛二模,18,12分)等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C 的轨迹方程,并说明它的轨迹是什么. 解题思路解析 设另一端点C 的坐标为(x ,y).依题意,得|AC |=|AB |,由两点间距离公式,得,)52()34()2()4(2222-+-=-+-y x整理得 .10)2()4(22=-+-y x这是以点A(4,2)为圆心,以10为半径的圆,如图所示,又因为A 、B 、C 为三角形的三个顶点,所以A 、B 、C 三点不共线,即点B 、C 不能重合且B 、C 不能为圆A 的一直径的两个端点.因为点B 、C 不能重合,所以点C 不能为(3,5). 又因为点B 、C 不能为一直径的两个端点, 所以,225,423=/+=/+y x 且即点C 不能为(5,-1). 故端点C 的轨迹方程是10)2()4(22=-+-y x (除去点(3,5)和( 5, -1). 它的轨迹是以点A(4,2)为圆心,10为半径的圆,但除去(3,5)和(5,-1)两点.【方法点拨】 定义法求轨迹方程的步骤:方法2 相关点法例2(2011陕西.17,12分)如图,设P 是圆2522=+y x 上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且=||MD .||.54PD (1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为54的直线被C 所截线段的长度,解题思路解析 (1)设M 的坐标为(x ,y ),P 的坐标为),,(P P y x 由已知得⎪⎩⎪⎨⎧==,45,y y x x P P∵ P 在圆上 ,∴,25)45(22=+y x 即C 的方程为.1162522=+y x (4分) (2)过点(3,0)且斜率为54的直线方程为),3(54-=x y (6分)设直线与C 的交点为),,(),,(2211y x B y x A 将直线方程)3(54-=x y 代入C 的方程,得 ,125)3(2522=-+x x 即.0832=--x x 2413,241321+=-=∴x x (10分) ∴ 线段AB 的长度为221221221))(25161()()(||x x y y x x AB -+=-+-=⋅=⨯=541412541 注:求AB 长度时,利用韦达定理或弦长公式求得正确结果,同样给分.【方法点拨】 相关点法求轨迹芳程的步骤:智力背景从倒数第一到数学大师的转变(一) 季理真,1964年出生在浙江温州一个普通的农村家庭.1980 年,季理真参加了在温州进行的全国统考.除了英语,他的数学是所有科目中考得最差的,化学最好.但在体检中,季理真因辨色能为差而被诊断为色弱,只能学数学和物理他被杭大的数学专业录取,“我不喜欢数学,在年级里成绩也比较差,对我而言,数学之路从来不是平坦的,但绝对是充满乐趣的!”方法3 参数法求轨迹方程例3(2012河南鹤壁二模.20,12分)设椭圆方程为+2x ,142=y 过点M(O ,1)的直线L 交椭圆于点A 、B ,0是坐标原点,L 上的动点P 满足),P (21P O OA O +=点N 的坐标为⋅)21,21(当L 绕点M 旋转时,求:(1)动点P 的轨迹方程;||)2(N 的最小值与最大值.解题思路解析 (1)直线L 过点M(O ,1),当直线L 的斜率存在时,设其斜率为也k 则L 的方程为.1+=kx y设),,(),(2211y x B y x A 、由题设得点A 、B 的坐标分别为,(1x ),).(221⋅y x y 是方程组⎪⎩⎪⎨⎧=++=②①14,122y x kx y 的解. (2分)将①代入②并化简得,,032)4(22=-++kx x k所以⎪⎪⎩⎪⎪⎨⎧+=++-=+,48,42221221k y y k k x x于是⋅++-=++=+=)44,4()2,2()(21222121k k k y y x x设点P 的坐标为(x ,y),则⎪⎪⎩⎪⎪⎨⎧+=+-=,44,422k y kk x消去参数k 得.0422=-+y y x ③(5分)当直线L 的斜率不存在时,A 、B 的中点坐标为原点(0,0),也满足方程③,所以动点P 的轨迹方程为.0422=-+y y x (6分) (2)由点P 的轨迹方程知,1612≤x 即⋅≤≤-4141x (7分) 所以22222441)21()21()21(||x x y x NP -+-=-+-=,127)61(32++-=x (10分)故当41=x 时,||NP 取得最小值,最小值为;41(11分)当61-=x 时,||取得最大值,最大值为⋅621 (12分) 【方法点拨】 参数法求轨迹方程的步骤:三年模拟A 组 2011-2013年模拟探究专项基础测试时间:45钟 分值:50分 一、选择题(每题5分,共10分)1.(2013青海玉树一模,3)方程022=-y x 对应的图象是( )2.(2013河北廊坊二模.6)有一动圆P 恒过定点F(a ,0)(a>0)且与y 轴相交于点A 、B ,若△ABP 为正三角形,则点P 的轨迹为 ( )A .直线B .圆C .椭圆D .双曲线 二、填空题(每题5分,共15分) 3.(2013山东聊城一模,13)在平面直角坐标系中,0为坐标原点,A(l ,0)、B(2,2),若点C 满足),0(OA B t OA OC -+=其中,R t ∈则点C 的轨迹方程是4.(2013广东阳江5月,12)已知点),0,3(),0,2(B A -动点),(y x P 满足,62-=⋅x 则动点P .的轨迹是 5.(2012山东枣庄一模.14)已知△ABC 的顶点B(O ,0,C(5,0),AB 边上的中线长l CDl =3,则顶点A 的轨迹方程为智力背景从倒数第一到数学大师的转变(二) 人到中年的他,说自己做事做人终于开始从容起来,“对于数学终于找到了感觉,就像从大一时数学成绩的倒数第一前进到大四的名列前茅,需要一个过程,数学是 很好玩的,并且是会有收获的,当数学家是一件美事,”2007年12月17日,杭州第四届世界华人数学家 大会晨兴数学奖颁奖仪式上,美国密歇根大学数学系教授、第四届晨兴奖银奖获得者季理真在发表获奖感言时这样表达对数学的热爱.三、解答题(共25分)6.(2013北京大兴一模)已知动点P 到点A (-2,0)与点B(2,0)的斜率之积为,41-点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)若点Q 为曲线C 上的一点,直线AQ 、BQ 与直线x=4分别交于M 、N 两点,直线BM 与椭圆的交点为D .求证,A 、D 、N 三点共线.7.(2013北京东城一模.19)如图所示,直线1l 与2l 相交于点,,21l l M ⊥ 点,1l N ∈以A 、B 为端点的曲线段C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,||AM ,3||,17==AN 且,6||=NB 建立适当的坐标系,求曲线段C 的方程.B 组 2011-2013年模拟探究专项提升测试时间:45分钟 分值:50分 一、选择题(每题5分,共10分)1.(2013陕西延安3月.7)已知函数1)(2+=x x f 的定义域为[a ,b](a<b ),值域为[1,5],则在平面直角坐标系内,点(a ,b)的运动轨迹与两坐标轴围成的图形的面积是 ( )A .8B .6C .4D .2 2.(2013福建厦门二模.8)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( )A .直线B .椭圆C .抛物线D .双曲线 二、填空题(每题5分,共15分)3.(2013云南保山一模.14)动圆与1:221=+⋅y x OC 外切,与0128:222=+-+x y x C 内切,则动圆圆心的轨迹是4.(2013四川成都二模.15)P 是椭圆12222=+by a x 上的任意一点,21F F 、是它的两个焦点,0为坐标原点,有一动点Q 满足,21PF PF O +=则动点Q 的轨迹方程是 5.(2013吉林长春5月.16)设集合y x y x A (+-=2)3(|),{(},54)42=-==-+-=C y x y x B },51)4()3(|),{(622},|41|3|2|),{(λ=-+-y x y x 若,)(;∅=/C B A 则实数λ的取值范围是 . 三、解答题(共25分)6.(2013黑龙江绥化一模,20)已知定点F(O ,1)和直线=y l :1,1-过定点F 与直线1l 相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线2l 交轨迹于两点P 、P ,交直线1l 于点R ,求Q R RP .⋅的最小值. 7.(2013湖北恩施二模.21)在直角坐标平面上,0为原点,M 为动点,.552,5||OM ON OM ==过点y MM M ⊥1作轴于点,1M 过N 作x NN ⊥1轴于点.N 0,111+=M N 记点T 的轨迹为曲线C,点A(5,0)、B(l,O),过点A作直线L交曲线C于两个不同的点P、Q(点Q在A与P之间).(1)求曲线C的方程;(2)是否存在直线L,使得|BP|=|BQ|,并说明理由,智力背景谷超豪的数学人生(一)谷超豪,1926年生,浙江温州人.1948年毕业于浙江大学.1959年获苏联莫斯科大学物理数学科学博士学位,在苏联留学的时候,谷超豪就因为研究K展空间的新方法而受到了学术界的关注,当时他的主攻方向是微分几何,在1956年中国制订科学发展规划时,谷超豪就是规划的参与制订者之一,当时他和数学界的一些学者联合提出数学领域要重点发展微分方程、概率论和计算数学.。

新课标高考数学题型全归纳全册 部分

新课标高考数学题型全归纳全册 部分

第十章 圆锥曲线方程㊀㊀㊀㊃161㊀㊃心得体会证:设A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由题意知P A ңA Q ң=P B ңQ Bң,设A 在P ,Q 之间,P A ң=λA Q ң(λ>0),又Q 在P ,B 之间,故P B ң=-λB Q ң,因为P B ң>B Q ң,所以0<λ<1,由P A ң=λA Q ң知(x 1-x 0,y 1-y 0)=λ(x -x 1,y -y1),解得x 1=x 0+λx 1+λy 1=y 0+λy1+λìîí,故点A 坐标为x 0+λx 1+λ,y 0+λy 1+λæèöø.同理,由P B ң=-λB Q ң知(x 2-x 0,y 2-y 0)=-λ(x -x 2,y -y 2),解得x 2=x 0-λx 1-λy 2=y 0-λy1-λìîí,故点B 坐标为x 0-λx 1-λ,y 0-λy 1-λæèöø.因为点A 在抛物线上,所以y 0+λy 1+λæèöø2=2p x 0+λx 1+λæèöø,(y 0+λy )2=2p (1+λ)(x 0+λx )①,同理(y 0-λy )2=2p (1-λ)(x 0-λx )②,由①-②得2y 0ˑ(2λy )=4p λ(x +x 0),则y 0y =p (x +x 0).所以点Q 在直线y 0y =p (x +x 0)上.三大圆锥曲线(椭圆㊁双曲线㊁抛物线)中,当定点P (x 0,y0)在曲线上时,相应的定直线x 0x a 2+y 0y b 2=1,x 0x a 2-y 0y b2=1,y y 0=p (x 0+x )均为在定点P (x 0,y 0)处的切线.ʌ例10.54ɔ㊀(2008·安徽理,22)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1),且左焦点为F 1(-2,0).(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段A B 上取点Q ,满足|A P ң||Q B ң|=|A Q ң||P B ң|.证明:点Q 总在某定直线上.ʌ分析ɔ㊀用待定系数法求解椭圆的方程,巧妙地利用定比分点解答点Q 的轨迹问题.ʌ解析ɔ㊀(1)由题意知c 2=22a 2+1b 2=1c 2=a 2-b2ìîí,解得a 2=4,b 2=2,所求椭圆方程为x 24+y 22=1.图㊀10-30(2)如图10-30所示,设A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由题意知P A ңA Q ң=P B ңQ B ң,不妨设A 在P ,Q 之间,P Aң=λA Q ң(λ>0),又Q 在P ,B 之间,故P B ң=-λB Q ң,因为P B ң>B Q ң,所以0<λ<1,由P A ң=λA Q ң得(x 1-4,y 1-1)=λ(x -x 1,y -y1),㊀㊀㊀㊀新课标高考数学题型全归纳㊃162㊀㊃心得体会解得x 1=4+λx 1+λy 1=1+λy 1+λìîí;同理,由P B ң=-λB Q ң,得(x 2-4,y 2-1)=-λ(x -x 2,y -y 2),解得x 2=4-λx 1-λy 2=1-λy1-λìîí.因为点A 在椭圆上,所以4+λx 1+λæèöø24+1+λy 1+λæèöø22=1,即4+λx ()24+1+λy ()22=1+λ()2①.同理,由点B 在椭圆上,得4-λx ()24+1-λy ()22=1-λ()2②.由①-②得8ˑ2λx 4+2ˑ2λy 2=4λ,因为λʂ0,所以x +y 2=1.所以点Q 在定直线2x +y -2=0上.ʌ评注ɔ㊀由模型的结论不难知动点Q (x ,y )总在定直线x 0x a 2+y 0y b 2=1上,a 2=4,b 2=2,x 0=4,y 0=1,得4x 4+y 2=1,即2x +y -2=0.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型153㊀定值问题思路提示:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理,计算,并在计算推理的过程中消去变量,从而得到定值.图㊀10-31㊀㊀㊀证:设椭圆x 2a 2+y 2b2=1a >b >0(),如图10-31所示,作辅助线,设A x 1,y 1(),B x 2,y2(),易知R t әF M R ʐR t әA H B ,所以F R A B =F MAH =A F -B F2x 1-x 2=A F -B F2x 1-x 2(∗)由定义知A F +A F ᶄ=2a ①,从而A F -A F ᶄ=A F 2-A F ᶄ22a =(x 1+c )2+y 21-(x 1-c )2+y 21[]2a=2e x 1②.①+②2得A F =a +e x 1③,同理B F =a +e x 2④.③-④得A F -B F =e x 1-x 2(),代入式(∗)得F R A B =e x 1-x 2()2x 1-x 2=e 2.类比椭圆,在双曲线中有F R A B =e 2.第十章 圆锥曲线方程㊀㊀㊀㊃163㊀㊃心得体会图㊀10-32在抛物线中,设抛物线方程为y 2=2px p >0(),如图10-32所示,作辅助线方法同椭圆中,得F R A B =A F -B F 2A H=A F -B F2A S -B T=A F -B F2A F -B F=12.即F R A B =12=e 2(抛物线离心率为1).ʌ例10.55ɔ㊀(2010㊃全国Ⅱ理,12)已知椭圆C :x 2a 2+y 2b2=1a >b >0()的离心率为32,过右焦点F 且斜率为k k >0()的直线与C 相交于A ,B 两点,若A F ң=3F B ң,则k =(㊀㊀).A .1B .2C .3D .2图㊀10-33ʌ解析ɔ㊀如图10-33所示,不妨设A F ң=3,则F B ң=1,M F ң=1,R F ң=e 2A B =2e =3,在R t әF M R 中,k =t a n øR F M=R M F M =3-11=2.故选B .ʌ评注ɔ㊀若l A B 的倾斜角为θ,且A F ң=λF B ңλ>0(),则c o s θ=λ-1eλ+1().ʌ变式1ɔ㊀(2009㊃全国Ⅱ理,11)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0()的右焦点为F ,过F 且斜率为3的直线交C 于A ,B 两点,若A F ң=4F B ң,则C 的离心率为(㊀㊀).A .65B .75C .85D .95图㊀10-34ʌ变式2ɔ㊀(2010㊃全国Ⅰ理,16)已知F 是椭圆C 的一个焦点,B是短轴的一个端点,线段B F 的延长线交C 于点D ,且B F ң=2F D ң,则C 的离心率为㊀㊀㊀㊀.ʌ变式3ɔ㊀(2007㊃重庆文,21)如图10-34所示,倾斜角为α的直线经过抛物线y 2=8x 的焦点F ,且与抛物线交于A ,B 两点.(1)求抛物线的焦点F 的坐标及准线l 的方程;(2)若α为锐角,作线段A B 的垂直平分线m 交x 轴于点P :F P -F P c o s 2α为定值,并求此定值.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈㊀㊀㊀证:设椭圆x 2a 2+y 2b2=1a >b >0(),如图10-35所示,过点F 作l ʅx 轴于点F ,过点A ,B 分别作AH 1,B H 2垂直于l 于点H 1,H 2,设A x 1,y 1(),B x 2,y2(),l A B 的倾斜角为α,不妨设x 2<-c <x 1,则AH 1=A F c o s α=x 1+c ,㊀㊀㊀㊀新课标高考数学题型全归纳㊃164㊀㊃心得体会图㊀10-35又由模型一中A F =a +e x 1,所以e AH 1=e A F c o s α=e x 1+e c =A F -a +e c ,即A F 1-e c o s α()=a -e c ,得A F =a -e c 1-e c o s α.1A F =1-e c o s αa -e c =1-e c o s αb2a.同理,在R t әB H 2F 中,1B F =1+e c o s αb2a,所以1A F +1B F =1-e c o s αb 2a +1+e c o s αb 2a =2b 2a=2a b2,为定值.类比椭圆,在双曲线(同支)中,仍有1A F +1B F =2a b2为定值.对于抛物线y 2=2p x p >0(),如图10-36所示,过点A ,B 分别作垂线A S ,B T 垂直于准线l 于点S ,T ,过F 作垂直于x 轴的直线交A S 与B T 的延长线(或反向延长线)于点H 1,H 2,在R t әAH 1F 中,AH 1=A F c o s α①,图㊀10-36又AH 1=A S -S H 1=A F -p ②,将式②代入式①得A F -p =A F c o s α,得A F =p 1-c o s α,所以1A F =1-c o s αp③.同理,在R t әB H 2F 中,可得1B F =1+c o s αp④.由③+④得,1A F +1B F =2p,为定值.ʌ评注ɔ㊀本结论对于A B 为通径也成立,且上述结论可统一为1|A F |+1|B F |=4L(L 为通径长).ʌ例10.56ɔ㊀(1)(2010㊃重庆文,13)已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,A F =2,B F =㊀㊀㊀㊀.(2)(2010㊃重庆理,14)已知以F 为焦点的抛物线y 2=4x 上的两点A ,B 满足A F ң=3F B ң,则弦A B 的中点到准线的距离为㊀㊀㊀㊀.ʌ解析ɔ㊀(1)由1A F +1B F =2p=1,得12+1B F =1,故B F =2.(2)如图10-37所示,因为A F ң=3F B ң,所以设F B ң=r ,则A F ң=3r ,由1A F +1B F =2p ,知13r +1r =22,即r =43.因为点M 为线段A B 的中点,所以MN =12A S +B T ()=12A F +B F ()=12r +3r ()=2r =2ˑ43=83.ʌ变式1ɔ㊀(2010㊃北京宣武二模理,8)如图10-38所示,抛物线C 1:y 2=2px 和圆C 2:第十章 圆锥曲线方程㊀㊀㊀㊃165㊀㊃心得体会x -p 2æèöø2+y 2=p 24,其中p >0,直线l 经过C 1的焦点,依次交C 1,C 2于A ,B ,C ,D 四点,则A B ң㊃C D ң的值为(㊀㊀).A .p24B .p 23C .p 22D .p2图图㊀㊀证:①对于椭圆x 2a 2+y 2b2=1a >b >0(),由题意可设θ1=øx +F P 1=α,则θi =øx +F P i =α+2i -1()πn i =1,2, ,n (),且由模型一知1F P i=1-e c o s θib 2ai =1,2, ,n (),所以ðni =11F P i=ðni =11-e c o s θib 2a=n a b 2-c b 2ðn i =1c o s θi (∗).因为θi =α+2i -1()πn ,所以单位向量F P iңF P i ң的终点均匀分布在以F 为圆心的单位圆上,所以ðni =1F P iңF P iң=0(∗∗).(证明:可把F P iңF P iң逆时针旋转2πn ,则式(∗∗)左边不变,其右边只能为0).所以ðn i =1c o s θi ,s i n θi ()=0,即有ðni =1c o s θi =0,代入式(∗)得ðni =11F P i=n a b 2-c b 2ˑ0=n ab 2为定值.②类比椭圆,在双曲线(同支)中,仍有ðni =11F P i=n ab 2.③对于抛物线y 2=2px p >0(),设θ1=øx +F P 1=α,则θi =øx +F P i =α+2i -1()πni =1,2, ,n (),㊀㊀㊀㊀新课标高考数学题型全归纳㊃166㊀㊃心得体会由模型一中知1F P i =1-c o s θip,所以ðni =11F P i =ðn i =11-c o s θip =n p -1p ðn i =1c o s θi ,由①中证明知ðn i =1c o s θi =0,代入上式得ðni =11F P i =np为定值.ʌ评注ɔ㊀上述结论可统一为ðni =11|F P i|=2n L (L 为通径长).ʌ例10.57ɔ㊀(2007·重庆理,22)在椭圆x 236+y 227=1上任取三个不同的点P 1,P 2,P 3,使øP 1F P 2=øP 2F P 3=øP 3F P 1,其中F 为右焦点,求证:1F P 1+1F P 2+1F P 3为定值,并求此定值.ʌ解析ɔ㊀解法一:设椭圆的右顶点为A ,以F 为极点,A F 的延长线为极轴,建立极坐标系,并设øA F P i =θi i =1,2,3(),0ɤθi <2π3且θ2=θ1+2π3,θ3=θ1+4π3,又设点P i 在其右准线l :x =12上的射影为Q i ,因椭圆的离心率e =c a =12,从而有F P i =P i Q i ㊃e =a 2c -c -F P i c o s θi æèöø㊃e =129-F P i c o s θi ()i =1,2,3().解得1F P i=291+12c o s θi æèöøi =1,2,3().因此1F P 1+1F P 2+1F P 3=293+12c o s θ1+c o s 2π3+θ1æèöø+c o s 4π3+θ1æèöø[]{}.又c o s θ1+c o s 2π3+θ1æèöø+c o s 4π3+θ1æèöø=c o s θ1-12c o s θ1-32s i n θ1-12c o s θ1+32s i n θ1=0.故1F P 1+1F P 2+1F P 3=23为定值.解法二:如解法一建立极坐标系.由ρ=e p 1+e c o s θ,e =12,p =a 2c -c =9,则ρ=921+12c o s θ,故F 1P =921+12c o s θ1,F 2P =921+12c o s θ1+2π3æèöø,F 3P =921+12c o s θ1+4π3æèöø,因此第十章 圆锥曲线方程㊀㊀㊀㊃167㊀㊃心得体会1F P 1+1F P 2+1F P 3=291+12c o s θ1+1+12c o s θ1+2π3æèöø+[1+12c o s θ1+4π3æèöø]=23为定值.ʌ评注ɔ㊀对于与定点(焦点)距离有关的问题,利用极坐标可使问题得到简化.同时本题得到的结论1F P 1+1F P 2+1F P 3=23满足ðn i =11F P i=n ab 2.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈模型三:三大圆锥曲线(椭圆㊁双曲线㊁抛物线)中,曲线上的一定点P 与曲线上的两动点A ,B 满足直线P A 与直线P B 的斜率互为相反数,则直线A B 的斜率为定值.㊀㊀㊀证明:①对于椭圆x 2a 2+y 2b2=1a >b >0().设P x 0,y 0(),A x 1,y 1(),B x 2,y 2().令x 0=a c o s θ,y 0=b s i n θ,A a c o s α,b s i n α(),B a c o s β,b s i n β().则k A B =b s i n α-b s i n βa c o s α-a c o s β=b a ㊃2c o s α+β2s i n α-β2-2s i n α+β2s i nα-β2=-b a c o t α+β2(∗).同理,k P A =-b a c o t α+θ2,k P B =-b a c o t θ+β2.而k P A +k P B =0,得-b a c o t α+θ2-b a c o t θ+β2=0,所以c o t α+θ2+c o t θ+β2=0,得1t a n α+θ2+1t a n θ+β2=0⇒t a n α+θ2+t a n θ+β2=0,即t a n α+β2+θæèöø=0⇒t a n α+β2+t a n θ=0⇒c o t α+β2+c o t θ=0,所以c o t α+β2=-c o t θ,代入式(∗)得k A B =-b a -c o t θ()=b a c o t θ=b 2x 0a 2y 0,为定值.由于x 0y0ʂ0,所以上述所有三角运算均有意义.②对于双曲线x 2a 2-y 2b2=1a ,b >0(),设P (x 0,y 0)为P a s e c θ,b t a n θ(),A a s e c α,b t a n α(),B a s e c β,b t a n β(),则k A B =b t a n α-b t a n βa s e c α-a s e c β=b a ㊃s i n αc o s β-s i n βc o s αc o s β-c o s α=b a ㊃s i n α-β()-2s i n α+β2s i n β-α2=b a ㊃c o s α-β2s i nα+β2(∗).同理,k P A =b a ㊃c o s θ-α2s i n θ+α2,k P B =b a ㊃c o s θ-β2s i n θ+β2,㊀㊀㊀㊀新课标高考数学题型全归纳㊃168㊀㊃心得体会而k P A +k P B =0,即b a c o s θ-α2s i n θ+α2+c o s θ-β2s i n θ+β2æèöø=0,所以c o s θ-α2s i n θ+α2+c o s θ-β2s i n θ+β2=0,s i n θ+β2c o s θ-α2+s i n θ+α2c o s θ-β2=0.即12s i n θ+β+θ-α2æèöø+s i n θ+β-(θ-α)2æèöø[]+12s i n θ+α+θ-β2æèöø+s i n θ+α-θ-β()2æèöø[]=0⇒s i n θ+β-α2æèöø+s i n α+β2+s i n θ+α-β2æèöø+s i n α+β2=0⇒s i n θ-α-β2æèöø+s i n θ+α-β2æèöø+2s i n α+β2=0⇒2s i n θ-α-β2+θ+α-β22c o s θ-α-β2-θ+α-β2æèöø2+2s i n α+β2=0⇒s i n θc o s α-β2+s i n α+β2=0⇒c o s α-β2s i n α+β2=-1s i n θ,代入式(∗)得k A B =b a ㊃-1s i n θæèöø=-b a ㊃1s i n θ=-b 2x 0a 2y 0,为定值.由于y 0ʂ0,所以上述所以三角函数运算均成立.③对于抛物线y 2=2p x p >0(),设P x 0,y 0(),A y 212p ,y 1æèöø,B y 222p ,y2æèöø(y 0,y 1,y 2两两均不相等),则k A B =y 1-y 2y 212p -y222p=2p y 1+y 2(∗).同理,k P A =2p y 0+y 1,k P B =2p y 0+y2,又k P A +k P B =0,得2p y 0+y 1+2p y 0+y 2=0,即1y 0+y 1+1y 0+y2=0,故y 0+y 1+y 0+y 2=0,得y 1+y 2=-2y0,代入式(∗)得k A B =2p -2y 0=-py 0.ʌ例10.58ɔ㊀(2009·辽宁理,20)已知椭圆C :x 24+y 23=1,A 为椭圆C 上的点,其坐标为1,32æèöø,E ,F 是椭圆C 上的两动点,如果直线A E 的斜率与A F 的斜率互为相反数,证明:直线E F 的斜率为定值,并求出该定值.ʌ分析ɔ㊀要求直线E F 的斜率,必须知道E ,F 的坐标.ʌ解析ɔ㊀设直线A E 的方程为y =k x -1()+32,x 24+y23=1y =k x -1()+32ìîí,第十章 圆锥曲线方程㊀㊀㊀㊃169㊀㊃心得体会消y 得4k 2+3()x 2+12k -8k 2()x +432-k æèöø2-12=0,则x E =432-k æèöø2-124k 2+3()x A =3-2k ()2-124k 2+3①,又直线A F 的斜率与A F 的斜率互为相反数,故以上k 用-k 代替得x F =3+2k ()2-124k 2+3②,所以k E F =y F -yE xF -x E=-k x F -1()+32-k x E -1()+32[]x F -x E =-k x F +x E ()+2k x F -x E,把①,②两式代入上式,得k E F =12.ʌ变式1ɔ㊀已知A ,B ,C 是长轴为4,焦点在x 轴上的椭圆上的三点,点A 是长轴的一个顶点,B C 过椭圆的中心O ,且A C ң㊃B C ң=0,B C ң=2A C ң.(1)求椭圆的方程;(2)如果椭圆上的两点P ,Q ,使得øP C Q 的平分线垂直于O A ,问是否总存在实数λ,使得P Q ң=λA B ң?说明理由.ʌ变式2ɔ㊀已知椭圆x 26+y 22=1的内接әP A B 中,点P 坐标为3,1(),P A 与P B 的倾斜角互补,求证:直线A B 的斜率为定值,并求之.图㊀10-39ʌ变式3ɔ㊀已知双曲线x 2-y 23=1上点P 2,3(),过P 作两条直线P A ,P B ,满足直线P A 与P B 倾斜角互补,求直线A B 的斜率.ʌ变式4ɔ㊀(2004㊃北京理,17)如图10-39所示,过抛物线y 2=2px p >0()上一定点P x 0,y 0()y0ʂ0(),作两条直线分别交抛物线于A x 1,y 1(),B x 2,y2().(1)求该抛物线上纵坐标为p 2的点到焦点F 的距离;(2)当P A 与P B 的斜率存在且倾斜角互补时,求y 1+y 2y0的值,并证明直线A B 的斜率是非零常数.ʌ例10.59ɔ㊀如图10-40所示,已知圆O 的半径是a a >0(),圆中有两条互相垂直的直径A B 和C D ,P 是圆周上任意一点(不在A B ,C D 上),直线A P ,B P 分别交直线C D 于M ,N ,证明O M ңO N ң=a 2.ʌ解析ɔ㊀证:因为B P ңʅA P ң,所以B N ңʅA M ң,从而B N ң㊃A M ң=B O ң+O N ң()㊃A O ң+O M ң()=0,㊀㊀㊀㊀新课标高考数学题型全归纳㊃170㊀㊃心得体会图㊀10-40即B O ң㊃A O ң+B O ң㊃O M ң+O N ң㊃A O ң+O M ң㊃O N ң=0,即-a 2+O M ң㊃O N ң=0.所以O M ң㊃O N ң=O M ңO N ңc o s 0=O M ңO N ң=a2,得证.ʌ例10.60ɔ㊀如图10-41所示,已知椭圆x 2a 2+y 2b2=1a >b >0()的上㊁下顶点分别为A ,B ,点P 是椭圆上异于顶点的任意一点,直线A P ,B P 分别交x 轴于M ,N ,证明:图㊀10-41O M ңO N ң=a 2.ʌ解析ɔ㊀证:设P x 0,y 0(),则x 0y0ʂ0,M m ,0(),N n ,0(),则A P ңʊAM ң,即x 0,y0-b ()ʊm ,-b ().所以m y 0-b ()=-b x 0,得m =-b x 0y0-b .同理由B P ңʊB N ң,得n =b x 0y 0+b .所以O MңO N ң=m n =-b 2x 20y 20-b 2=x 201-y20b 2=x 20x 20a2=a 2.图㊀10-42ʌ变式1ɔ㊀如图10-42所示,已知椭圆x 2a 2+y 2b2=1a >b >0()上㊁下顶点分别为A ,B ,点P 是椭圆上异于顶点的任意一点,直线A P ,B P 分别交x 轴于M ,N .证明:AM ң㊃B N ң为定值,并求之.ʌ例10.61ɔ㊀如图10-43所示,已知双曲线x 2a 2-y 2b 2=1a ,b >0()左㊁图㊀10-43右顶点分别为A ,B ,点P 是双曲线异于顶点的任意一点,直线A P ,B P 分别交y 轴于M ,N ,证明:O M ңO N ң=b 2.证:设P x 0,y 0(),y0ʂ0,M 0,m (),N 0,n (),A -a ,0(),B a ,0(),则A P ңʊAM ң,即x 0+a ,y0()ʊa ,m (),所以m x 0+a ()=a y0,即m =a y 0x 0+a .同理,由B P ңʊB N ң,得n =-a y 0x 0-a .所以,O MңO N ң=m n =a y 0x 0+a ㊃-a y 0x 0-a =a 2y 20x 20-a 2=y 20x 20a 2-1=y 20y20b2=b 2.ʌ变式1ɔ㊀(2009·江西理,21)已知双曲线x 22b 2-y 225b2=1b >0()的左㊁右顶点为B ,D ,在双曲线上任取一点Q x 0,y 0()y0ʂ0(),直线Q B ,Q D 分别交y 轴于M ,N 两点,求证:以MN 为直径的圆过两定点.第十章 圆锥曲线方程㊀㊀㊀㊃171㊀㊃心得体会图㊀10-44ʌ例10.62ɔ㊀如图10-44所示,已知抛物线y 2=2px p >0(),动直线l 过定点Q q ,0(),且l 与抛物线交于A ,B 两点,AM 垂直于x 轴于M ,B N 垂直于x 轴于N ,AM ᶄ垂直于y 轴于M ᶄ,B N ᶄ垂直于y 轴于N ᶄ,证明:O M ңO N ң=q 2,O M ᶄңO N ᶄң=2p |q|.ʌ解析ɔ㊀证:由题意知直线l 的斜率非零,故可设直线l :x =t y +qt ɪR (),A x 1,y 1(),B x 2,y 2().由y 2=2px x =t y +q{,得y 2-2p t y -2p q =0.所以O M ᶄңO N ᶄң=y 1y 2=2p |q|,O M ᶄңO N ᶄң=x 1x 2=y 212p ㊃y 222p =y 1y 2()24p 2=4p 2q 24p2=q 2.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型154㊀最值问题思路提示:有两种求解方法:一是几何方法,即利用几何性质结合图形直观求解;二是建立目标函数,通过求函数的最值求解.ʌ例10.63ɔ㊀设椭圆x 225+y 216=1的左㊁右焦点分别为F 1,F 2,点M 是椭圆上任意一点,点A 的坐标为2,1(),求M F 1+MA 的最大值和最小值.ʌ分析ɔ㊀本题若设M x ,y (),建立目标函数MA +M F 1=f x ,y (),则会作茧自缚.但是注意到F 1为椭圆左焦点,联想到椭圆定义及三角形中边的关系不等式时,问题就容易获解.图㊀10-45ʌ解析ɔ㊀如图10-45所示,因为M 在椭圆上,所以有M F 1+M F 2=2a =10.令Z =M F 1+MA ,得Z =10+MA -M F 2.当M ,A ,F 2三点不共线时,有-A F 2<MA -M F 2<A F 2,当M 落在F 2A 的延长线时,MA -M F 2=-F 2A ,当M 落在A F 2的延长线时,MA -M F 2=F 2A .所以Z m a x =10+F 2A =10+2-3()2+1-0()2=10+2,Z m i n =10-F 2A =10-2.ʌ评注ɔ㊀这里利用椭圆定义㊁三角形两边之差小于或等于(注意等号成立的条件)第三边,使与曲线有关的最值转化为直线段间的最值.应明确这里不能用F 1M +AM ȡF 1A =26,求得F 1M +AM ȡF 1A 的最小值26,原因是取不到等号,如果要取到等号,那么M 必须在线段F 1A 上,但这是不可能的.ʌ变式1ɔ㊀如图10-46所示,已知点P 是抛物线y 2=4x 上的点,设点P 到此抛物线的准线的距离为d 1,到直线l :x +2y -12=0的距离为d 2,求d 1+d 2的最小值.ʌ变式2ɔ㊀(2009·辽宁理,16)如图10-47所示,已知点F 是双曲线x 24-y 212=1的左焦点,点A 坐标为1,4(),P 是双曲线右支上的动点,则P F +P A 的最小值㊀㊀㊀㊀新课标高考数学题型全归纳㊃172㊀㊃心得体会为㊀㊀㊀㊀.图㊀10-46图㊀10-47ʌ变式3ɔ㊀(2011㊃广东理,19(2))已知点P 为双曲线L :x 24-y 2=1上的动点,M 355,455æèöø,F 5,0().求MP -F P 的最大值及此时点P 的坐标.ʌ变式4ɔ㊀(2011㊃广东文,21(2))在平面直角坐标系x O y 中,已知E 的方程是y 2=4x +4或x <-1y=0{.已知T 1,-1(),设H 是E 上动点,求H O +HT 的最小值,并给出此时点H 的坐标.ʌ例10.64ɔ㊀(2009㊃重庆理,20)已知椭圆x 2+y 24=1,点M 是椭圆上的动点,若C ,D 的坐标分别是0,-3(),0,3(),求M C MD 的最大值.ʌ分析ɔ㊀求积的最大值,由 和为定值积有最大值 知,必须找出和为定值.ʌ解析ɔ㊀由题设知C ,D 是椭圆的上㊁下焦点,故由椭圆的定义知M C +MD =24=4.所以M CMD ɤM C +MD 2æèöø2=42æèöø2=4.当且仅当M C =MD 时取等号,即M 为左㊁右顶点时取等号.所以,当M 为左㊁右顶点时,M C ㊃MD 的最大值为4.ʌ评注ɔ㊀本题运用均值不等式求最值,但要注意使用均值不等式的条件:一正,二定,三相等,四同时.积为定值时,和最小a +b ȡ2a b a ,b >0();和为定值时,积最大a b ɤa +b 2æèöø2a ,b >0(),取等号的条件均为a =b .ʌ变式1ɔ㊀(2006㊃全国Ⅰ,理20)已知椭圆x 2+y 24=1在第一象限部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x ,y 轴的交点分别为A ,B ,且向量O M ң=O A ң+O B ң,求O M ң的最小值.ʌ变式2ɔ㊀(2010㊃广东文,21)已知曲线C :y =n x 2,点P n x n ,y n ()x n >0,yn >0()是曲线C n 上的点n =1,2, ().(1)试写出曲线C n 在点P n 处的切线l n 的方程,并求出l n 与y 轴的交点Q n 的坐标;(2)若原点O 0,0()到l n 的距离与线段P n Q n 的长度之比取到最大值,试求点P n 的坐标x n ,yn ();(3)设m 与k 为两个给定的不同的正整数,x n 与y n 是满足(2)中条件的点P n第十章 圆锥曲线方程㊀㊀㊀㊃173㊀㊃心得体会的坐标.证明:ðs n =1m +1()x n2-k +1()y n <m s -k s s =1,2, ().ʌ变式3ɔ㊀(2011㊃山东理,22)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y2)两个不同点,且әO P Q 的面积S әO P Q =62,其中O 为坐标原点.(1)证明:x 21+x 22和y 21+y 22均为定值;(2)设线段P Q 的中点为M ,求O M P Q 的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S әO D E =S әO D G =S әO E G=62?若存在,判断әD E G 的形状;若不存在,请说明理由.图㊀10-48ʌ例10.65ɔ㊀(2009㊃陕西理,21)已知双曲线y 24-x 2=1,如图10-48所示,P 是双曲线上一点,A ,B 两点在双曲线的两条渐近线上,且分别位于第一㊁二象限,若A P ң=λP B ң,λɪ13,2[],求әA O B 的面积的取值范围.ʌ分析ɔ㊀由图10-48可知,S әA O B =12O AO B s i n øA O B ,从而只要知道A ,B 两点的坐标即可.ʌ解析ɔ㊀设A m ,2m (),B -n ,2n ()m ,n >0(),P x ,y (),由A P ң=λP B ң知点P 坐标为m -λn 1+λ,2m +2λn 1+λæèöø,又P 在双曲线上,所以2m +2λn 1+λæèöø24-m -λn 1+λæèöø21=1⇒m n =1+λ()24λ=λ+1λ+24.设øA O B =2θ,因为t a n π2-θæèöø=2,所以t a n θ=12,s i n 2θ=2t a n θ1+t a n 2θ=11+14=45,所以S әA O B =12ˑ5m ˑ5n ˑ45=2m n =12λ+1λæèöø+1,又λɪ13,2[],当λ=1时,S әA O B 取最小值为2;当λ=13时,S әA O B 取最大值为83.所以S әA O B ɪ2,83[].ʌ评注ɔ㊀本题建立目标函数,即әA O B 的面积与λ的函数关系S λ()=12λ+1λæèöø+1,利㊀㊀㊀㊀新课标高考数学题型全归纳㊃174㊀㊃心得体会用函数的单调性来求解.ʌ变式1ɔ㊀已知抛物线x 2=4y 的焦点为F ,A ,B 是抛物线上的两动点,且A F ң=λF B ңλ>0(),过A ,B 两点分别作抛物线的切线,设其交点为M .(1)证明:F M ң㊃A B ң为定值;(2)求әA B M 的面积的最小值.ʌ例10.66ɔ㊀(2008㊃全国Ⅱ理,21)设椭圆中心在坐标原点,A 2,0(),B 0,1()是它的两个顶点,直线y =k x k >0()与椭圆交于E ,F 两点,求四边形A E B F 面积的最大值.ʌ分析ɔ㊀将四边形A E B F 分割为两个三角形来求面积.ʌ解析ɔ㊀设E x 0,y 0(),F -x 0,-y 0(),x 0,y 0>0,由题意知椭圆方程为x 24+y 2=1,如图10-49所示,S 四边形A E B F =S әA E F +S әB E F =12O A y 0--y 0()+图㊀10-4912O B x 0--x 0()=2y0+x 0,又x 204+y 20=1即x 20+4y 20=4,4=x 20+4y 20ȡ4x 0y0(当x 0=2y0时等号成立).所以S 2四边形A E B F =x 0+2y 0()2=x 20+4x 0y 0+4y20ɤ4+x 20+2y0()2=8,即S 四边形A E B F ɤ22,当且仅当x 0=2y 0时取等号.另解:设x 0=2c o s θ,y0=s i n θ,θɪ0,π2æèöø,则S 四边形A E B F =2c o s θ+s i n θ=22s i n θ+π4æèöøɤ22.故四边形A E B F 的面积的最大值为22.ʌ例10.67ɔ㊀(2009㊃全国Ⅰ理,21)如图10-50所示,已知抛物线E :y 2=x 与圆M :x -4()2+y2=r 2r >0()相交于A ,B ,C ,D 四点.图㊀10-50(1)求r 的取值范围;(2)当四边形A B C D 的面积最大时,求对角线A C ,B D的交点P 的坐标.ʌ解析ɔ㊀(1)将y 2=x 代入x -4()2+y 2=r 2并化简得x 2-7x +16-r 2=0①.因为E 与M 有四个交点的充要条件是方程①有两个不等的正根x 1,x 2,由此得Δ=-7()2-416-r 2()>0x 1+x 2=7>0x 1x 2=16-r 2>0ìîí,解得154<r 2<16.又r >0,所以r 的取值范围是152,4æèöø.(2)不妨设E 与M 的四个交点坐标分别为A x 1,x 1(),B x 1,-x 1(),第十章 圆锥曲线方程㊀㊀㊀㊃175㊀㊃心得体会C x 2,-x 2(),D x 2,x 2(),则直线A C ,B D 的方程分别为y -x1=-x 2-x 1x 2-x 1㊃x -x 1(),y +x1=x 2+x 1x 2-x 1㊃x -x 1().解得点P 的坐标为x 1x 2,0().设t =x 1x 2,由t =16-r 2及(1)知0<t <72.由于四边形A B C D 为等腰梯形,因而其面积S =122x 1+2x 2()㊃x 2-x 1.即S 2=x 1+x 2+2x 1x 2()㊃x 1+x 2()2-4x 1x 2[].将x 1+x 2=7,x 1x 2=t 代入上式,并令f (t )=S 2,得f (t )=7+2t ()2㊃7-2t ()0<t <72æèöø.求导数得f ᶄ(t )=-22t +7()6t -7().令f ᶄ(t )=0,解得t =76,t =-72(舍去).显然当0<t <76时,fᶄ(t )>0,当76<t <72时,f ᶄ(t )<0.故当且仅当t =76时,f (t )有最大值,即四边形A B C D 的面积最大.故所求的点P 的坐标为76,0æèöø.ʌ评注ɔ㊀本题主要有两个考查点:一个是考查将曲线与曲线的交点问题转化为二次方程的根的个数问题,是较基本的问题;另一个是考查四边形A B C D 的面积最大值问题,是本题的核心点.要注意本题中表面上求点的坐标,实质上是求四边形A B C D 面积的最大值,而且在求目标函数最值的过程中,利用导数判断函数单调性的方法,从而使本题的综合性大大提高.ʌ变式1ɔ㊀(2011·湖南文,21)已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求A D ң㊃E B ң的最小值.第十一章㊀算法初步考纲解读┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1.了解算法的含义和思想.2.理解程序框图的3种基本逻辑结构:顺序㊁条件分支㊁循环.3.理解几种基本算法语句输入㊁输出㊁赋值㊁条件和循环语句的含义.命题趋势探究┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈㊀㊀预测在2012年高考中,本章知识仍为考查的热点,内容以程序框图为主.从形式上看,以选择题和填空题为主,以实际问题为背景,侧重知识应用能力的考查,要求考生具备一定的逻辑推理能力.本专题主要考查算法的逻辑结构,要求能够写出程序的运行结果㊁指明算法的功能㊁补充程序框图㊁求输入参量,并常将算法与其他版块知识(尤其是与数列)进行综合考查.一般来说,有关算法的试题属容易题目,分值稳定在5分.知识点精讲一㊁算法与程序框图1.算法算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是确定的和能执行的,而且能够在有限步之内完成.2.程序框图(1)定义:程序框图又称流程图,是一种用程序框㊁流程线及文字说明来表示算法的图形.(2)说明:在程序框图中一个或几个程序框的组合表示算法中的一个步骤;带有方向的流程线将程序框连接起来,表示算法步骤的执行顺序.3.3种基本逻辑结构程序框图有3种基本的逻辑结构,如表11-1所示.第十一章 算法初步㊀㊀㊀㊃177㊀㊃心得体会表㊀11-1㊀㊀名称内容㊀㊀顺序结构条件结构循环结构定义顺序结构由若干个依次执行的步骤组成,是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤,反复执行的步骤称为循环体程序框图二㊁基本算法语句1.3种语句的一般格式和功能3种基本算法语句的一般格式和功能如表11-2所示.表㊀11-2语句一般格式功能输入语句I N P U T提示内容 ;变量输入信息输出语句P R I N T提示内容 ;表达式输出结果赋值语句变量=表达式将表达式的值赋给变量2.条件语句(1)算法中的条件结构由条件语句来表达.(2)条件语句的格式及框图如图11-1和图11-2所示.①I F T H E N 格式图㊀11-1②I F T H E N E L S E 格式图㊀11-2㊀㊀㊀㊀新课标高考数学题型全归纳㊃178㊀㊃心得体会3.循环语句(1)算法中的循环结构由循环语句来实现.(2)循环语句的形式及框图如图11-3和图11-4所示.①U N T I L语句图㊀11-3②WH I L E语句图㊀11-4(3)WH I L E 语句与U N T I L 语句之间的区别与联系如表11-3所示.表㊀11-3WH I L E 语句U N T I L 语句区别执行循环体前测试条件,当条件为真时执行循环体,当条件为假时终止循环,可能不执行循环体执行循环体后测试语句条件,当条件为假时执行循环体,当条件为真时终止循环,最少执行一次循环体联系可以相互转换,L O O PU N T I L (条件)相当于WH I L E (反条件)三㊁算法案例1.辗转相除法辗转相除法又叫欧几里得算法,是一种求最大公约数的古老而有效的算法,其步骤如下:(1)用两数中较大的数除以较小的数,求商和余数;(2)以除数和余数中较大的数除以较小的数;(3)重复上述两步,直到余数为0;(4)则较小的数是两数的最大公约数.2.更相减损术更相减损术是我国古代数学专著‘九章算术“中介绍的一种求两数最大公约数的算法,其基本过程为:对于任意给定的两个正整数,以大数减小数,接着把所得的差与较小的数比较,并以大数减小数,继续该操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.第十一章 算法初步㊀㊀㊀㊃179㊀㊃心得体会3.秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作‘数书九章“中提出的一种用于计算一元n 次多项式的值的方法.4.进位制进位制是人们为了计数和运算方便而约定的记数系统, 满k 进1 就是k 进制,k 进制的基数是k.题型归纳及思路提示┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型155㊀已知流程框图,求输出结果思路提示:分析条件结构,确定最后一步运算.ʌ例11.1ɔ㊀(2010㊃全国新课标理,7(文,8))如果执行如图11-5所示的框图,输入N =5,则输出的数等于(㊀㊀).图㊀11-5A .54㊀㊀㊀㊀B .45㊀㊀㊀㊀C .65㊀㊀㊀㊀D .56ʌ分析ɔ㊀解决这类算法问题时,一般有两种思路:一是把人看作计算机,程序执行哪一步,我们就计算哪一步,一直到程序终止,这类方法往往适用于步骤比较简单㊁循环次数不十分多的程序;另一种思路是分析程序的原理,了解程序实质要完成的目标,将其还原为数学模型,从而对数学模型进行求解.ʌ解析ɔ㊀解法一:S =0,k =1,S =0+11ˑ2=12,1<5,是ңk =2,S=12+12ˑ3=23,2<5,是ңk =3,S =23+13ˑ4=34,3<5,是ңk =4,S =34+14ˑ5=45,4<5,是ңk =5,S =45+15ˑ6=56,5<5,否,程序结束.解法二:本题实质上是求解ð5k =11k k +1(),故S =0+11ˑ2+12ˑ3+ +15ˑ6=1-12+12-13+ +15-16=56.故选D .ʌ变式1ɔ㊀(2010㊃沈阳监测理,2)执行如图11-6所示的程序框图,则输出的结果S 是㊀㊀㊀㊀.ʌ变式2ɔ㊀(2010㊃天津河西区调查)如图11-7所示,该程序框图的输出结果是㊀㊀㊀㊀.ʌ变式3ɔ㊀(2007㊃山东理,10)阅读如图11-8所示的流程框图,若输入的n 是100,则输出的变量S 和T 的值分别是(㊀㊀).A .2500,2500B .2550,2550C .2500,2550D .2550,2500ʌ变式4ɔ㊀(2011㊃课标全国理,3)执行如图11-9所示的程序框图,如果输入的N 是6,㊀㊀㊀㊀新课标高考数学题型全归纳㊃180㊀㊃心得体会则输出的p 是(㊀㊀).A.120B .720C .1440D .5040ʌ变式5ɔ㊀(2011㊃浙江理,12)若某程序框图如图11-10所示,则该程序运行后输出的k 的值是㊀㊀㊀㊀.㊀㊀㊀图㊀11-6㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-7㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-8图㊀11-9图㊀11-10图㊀11-11ʌ例11.2ɔ㊀(2010㊃辽宁文,5)如果执行如图11-11所示的流程框图,输入n =6,m =4,那么输出的P 等于(㊀㊀)A .720B .360C .240D .120ʌ解析ɔ㊀k =1,P =1ˑ6-4+1()=3,1<4ңk =2,P =3ˑ6-4+2()=12,2<4ңk =3,P =12ˑ6-4+3()=60,3<4ңk =4,P =60ˑ6-4+4()=360,4=4程序结束ң输出P =360.故选B .ʌ变式1ɔ㊀(2010㊃辽宁理,4)如果执行如图11-11所示的程序框图,输入正整数n ,m ,㊃181㊀㊃心得体会满足n ȡm ,那么输出的P 等于(㊀㊀).A .C m -1nB .A m -1nC .C m nD .A mnʌ变式2ɔ㊀(2010㊃天津文,3)阅读图11-12所示的流程框图,则输出S 的值为(㊀㊀).A .-1B .0C .1D .3ʌ变式3ɔ㊀(2010㊃安徽文,13(理,14))如图11-13所示,流程框图(算法流程图)的输出值x =㊀㊀㊀㊀.图㊀11-12㊀㊀㊀㊀㊀㊀㊀㊀图11-13ʌ变式4ɔ㊀(2011㊃辽宁理,6)执行如图11-14所示的程序框图,如果输入的n 是4,则输出的p 是(㊀㊀).A .8B .5C .3D .2ʌ变式5ɔ㊀(2011㊃安徽理,11)如图11-15所示,程序框图(算法流程图)的输出结果是㊀㊀㊀㊀.图㊀11-14图㊀11-15图㊀11-16㊃182㊀㊃心得体会ʌ变式6ɔ㊀(2011㊃湖南理,13)若执行如图11-16所示的框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于㊀㊀㊀㊀.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型156㊀根据条件,填充不完整的流程图思路提示:程序框图缺失的不同,会导致不同的解决方法,如果缺少循环条件,那么程序主体是可以被理解的,因此转化为数学模型,然后根据初始值和输出值来计算循环了多少次从而得到循环条件;如果缺少循环主体中的一环,那么就要理解程序的目的是什么,然后补充起来.图㊀11-17ʌ例11.3ɔ㊀(2010㊃北京文,9)已知函数y =l o g 2x (x ȡ2)2-x (x <2){,如图11-17所示,表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写㊀㊀㊀㊀;②处应填写㊀㊀㊀㊀.ʌ解析ɔ㊀依题意,①处应填写x <2?;②处应填写y =l o g 2x .ʌ变式1ɔ㊀(2010㊃陕西文,5)如图11-18所示是求x 1,x 2, ,x 10的乘积S 的程序框图,图中空白框中应填入的内容为(㊀㊀).A .S =S ∗n +1()B .S =S ∗x n +1C .S =S ∗nD .S =S ∗x n㊀㊀㊀图㊀11-18㊀㊀㊀㊀㊀图㊀11-19ʌ变式2ɔ㊀(2010㊃陕西理,6)如图11-19所示是求样本x 1,x 2, ,x 10平均数ʏx 的程序框图,图中空白框中应填入的内容为(㊀㊀).A .S =S +x nB .S =S +x nn C .S =S +n D .S =S +1nʌ例11.4ɔ㊀(2010㊃山东青岛质检,8)如图11-20所示的程序框图,输出的S 是126,则①应为㊀㊀㊀㊀.A .n ɤ5B .n ɤ6?C .n ɤ7?D .n ɤ8?㊃183㊀㊃心得体会图㊀11-20ʌ解析ɔ㊀S =0+21+22+ +2n=126⇒21-2n()1-2=126⇒n =6,所以根据流程图模拟分析,填入选择框的条件为n ɤ6.故选B .ʌ变式1ɔ㊀(2010㊃浙江嘉兴测试,2)一个算法的程序框图如图11-21所示,若该程序的输出结果为56,则判断框中应填入的条件是(㊀㊀).A .i <5B .i <6?C .i ȡ5D .i ȡ6?ʌ变式2ɔ㊀(2010㊃广州测试一,4)阅读如图11-22所示的程序框图,若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是(㊀㊀).A .i >5B .i >6?C .i >7?D .i >8?ʌ变式3ɔ㊀阅读如图11-22所示的程序框图,若在程序框图中的判断框内填写的条件是i >m ,试问正整数m 的最小值为何值时,输出的S 的值超过1000?㊀㊀㊀图㊀11-21㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-22图㊀11-23ʌ例11.5ɔ㊀(2010㊃浙江理,2(文,4))某程序框图如图11-23所示,若输出S =57,则判断框内为(㊀㊀).A .k >4㊀㊀B .k >5?㊀㊀C .k >6?㊀㊀D .k >7?ʌ解析ɔ㊀如表11-4所示,根据模拟分析,判断框内的条件为k >4?.故选A .表㊀11-4k k =1()S S =1()条件第1次22ˑ1+2=4否第2次32ˑ4+3=11否第3次42ˑ11+4=26否第4次52ˑ26+5=57是㊃184㊀㊃心得体会ʌ变式1ɔ㊀某程序框图如图11-23所示,若判断框内填入k >m ?,试问正整数m 最小为何值时,程序输出的S 值超过1000ʌ变式2ɔ㊀(2010㊃天津理,4)阅读如图11-24所示的程序框图,若输出S 的值为-7,则判断框内应填写(㊀㊀).A .i <3B .i <4?C .i <5?D .i <6?ʌ变式3ɔ㊀阅读如图11-24所示的程序框图,若判断框内的条件为i <m ?,当正整数m 的最小值为何值时,输出S 的值小于-1000ʌ变式4ɔ㊀设:1+12+13+14+15+16+17=m n ,如图11-25所示是计算分数m n中分子m 和分母n 的程序流程,试填入流程框图中所缺部分.①㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀;②㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀.㊀图㊀11-24㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-25┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型157㊀求输入参量ʌ例11.6ɔ㊀(1)执行如图11-26所示的程序框图,若输出的n 为4,则输入P 的取值范围为(㊀㊀).图㊀11-26A .0.75,0.875()B .0.75,0.875(]C .0.75,0.875[)D .0.75,0.875[](2)执行如图11-26所示的程序框图,若输出的n 为4,则输入P 可能为(㊀㊀).A .0.7㊀㊀B .0.75㊀㊀C .0.8㊀㊀D .0.9(3)(2008㊃山东理,13(文,14))执行如图11-26所示的程序框图,若P =0.8,则输出n =㊀㊀㊀㊀.ʌ解析ɔ㊀(1)产生 n =2 的条件为 P >0 ;产生 n =3的条件为 P >12 ;产生 n =4 的条件为 P >34;产生 n =5的条㊃185㊀㊃心得体会件为 P >78 .输出 n =4 的条件为产生 n =4 的条件,而不产生 n =5 ,即P >34且P ɤ78.故输入P 的取值范围为0.75,0.875(].故选B .(2)由(1)得,若输出n =4,则P ɪ0.75,0.875(],故选C .(3)依题意P =0.8,如表11-5所示,则输出n =4.表㊀11-5PS <P S S =0()n n =1()第1次0.8是122第2次0.8是12+122=343第3次0.8是34+123=784第4次0.8否ʌ变式1ɔ㊀(2010㊃丰台一模理,13)在如图11-27所示的程序框图中,若输出i 的值是4,则输入x 的取值范围是㊀㊀㊀㊀图㊀11-27图㊀11-28ʌ变式2ɔ㊀(2011㊃陕西理,8)如图11-28所示,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于(㊀㊀).A .11B .10C .8D .7┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型158㊀算法综合思路提示:本题型是程序框图与其他知识的综合,它不仅要求学生能正确掌握程序框图,还要求学生对综合知识有较深的理解,是算法的难点.与程序框图进行综合的主要有函数㊁数列㊁三角㊁概率㊁统计㊁实际问题等,是高考命题的亮点.ʌ例11.7ɔ㊀(2009㊃广东)随机抽取某产品n 件,测得其长度分别为a 1,a 2, ,a n ,则如。

2013年高考真题理科数学解析分类汇编10 圆锥曲线

2013年高考真题理科数学解析分类汇编10  圆锥曲线

2013年高考真题理科数学解析分类汇编10 圆锥曲线一选择题1.陕西11. 双曲线22116x y m-=的离心率为54, 则m 等于 9 .【答案】9 【解析】9161694522=⇒==⇒=m m a b ac2.安徽理(13)已知直线y a =交抛物线2y x =于,A B 两点。

若该抛物线上存在点C ,使得ABC ∠为直角,则a 的取值范围为___ ),1[+∞_____。

【答案】 ),1[+∞【解析】 BC AC x x C m m B m m A ⊥-则根据题意不妨),,(),,(),,(222)()12(0)(),(),(42224222222222=+++-⇒=-+-=-+⋅--x x m x m m x m x m x m x m x m x ),1[10)1(-222222+∞∈+=⇒=--x m x m x m )(.所以),1[+∞∈a3.新课标I ,4、已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x =±【解析】由题知,52c a=,即54=22c a =222a b a +,∴22b a =14,∴b a=12±,∴C 的渐近线方程为12y x =±,故选C .4.新课标I 10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

若AB 的中点坐标为(1,-1),则E 的方程为 ( ) A 、x 245+y 236=1 B 、x 236+y 227=1错误!未找到引用源。

C 、x 227+y 218=1 D 、x 218+y 29=1 【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ①2222221x y a b += ②① ②得1212121222()()()()x x x x y y y y a b+-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a=12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D.5.新课标II 11、设抛物线)0(22≥=p px y 的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )(A )x y 42= 或x y 82= (B )x y 22= 或x y 82= (C )x y 42= 或x y 162= (D )x y 22= 或x y 162= 【答案】C6.四川6、抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )(A )12(B )32(C )1 (D )3 答案B解析; 、抛物线24y x =的焦点坐标为错误!未找到引用源。

2013年理科全国各省市高考真题——圆锥曲线(带答案)

2013年理科全国各省市高考真题——圆锥曲线(带答案)

2013年全国各省市理科数学—圆锥曲线1、2013山东理T9.过点(3,1)作圆(x-1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 (A )2x+y-3=0 (B )2x-y-3=0 (C )4x-y-3=0 (D )4x+y-3=0 2、2013重庆理T7.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A 、4 B1 C 、6-3、2013全国理T8.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是(A )1324⎡⎤⎢⎥⎣⎦, (B )3384⎡⎤⎢⎥⎣⎦, (C )112⎡⎤⎢⎥⎣⎦, (D )314⎡⎤⎢⎥⎣⎦,4、2013新课标I 理10.已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

若AB 的中点坐标为)11(-,,则E 的方程为A1364522=+y x B 1273622=+y x C 1182722=+y x D 191822=+y x 5、2013浙江理T9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

若四边形21BF AF 为矩形,则2C 的离心率是A. 2B. 3C.23 D.266、2013辽宁理T15.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,4,.10,6,cos ABF ,5AF BF AB AF C e ==∠=连接若则的离心率= .7、2013上海理T9.设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =Γ的两个焦点之间的距离为________8、2013福建理14. 椭圆()01:2222>>=+Γb a by a x 的左右焦点分别为21,F F ,焦距为c 2,若直线()c x y +=3与椭圆的一个交点满足12212F MF F MF ∠=∠,则该椭圆的离心率等于_____9、2013江苏T12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .10、2013新课标I 理T4.已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率为25,则C的渐近线方程为(A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=11、2013北京理T6.若双曲线22221x y a b-=A. y =±2xB. y =C.12y x =±D.y x = 12、2013福建理T3.双曲线1422=-y x 的顶点到渐进线的距离等于( )A. 52B.54C. 552D.55413、2013广东理T7.已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是 ( )A . 2214x = B .22145x y -= C .22125x y -= D .2212x =14、2013天津理T5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB 则p =(A) 1(B)32(C) 2 (D) 315、2013湖北理T5.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( )A.实轴长相等B.虚轴长相等C.焦距相等D. 离心率相等16、2013江苏T3.双曲线191622=-y x 的两条渐近线的方程为 . 17、2013陕西理T11. 双曲线22116x y m-=的离心率为54, 则m 等于 .18、2013湖南理T14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C上一点,若216,PF PF a +=且12PF F ∆的最小内角为30 ,则C 的离心率为___。

数学高考知识点曲线方程

数学高考知识点曲线方程

数学高考知识点曲线方程曲线方程是数学高考的重要知识点之一,其在数学科目中起着重要的作用。

曲线方程是描述平面上曲线图形特征的数学函数关系,它可以帮助我们深入理解和分析曲线的性质和行为。

本文将通过介绍曲线方程的基本概念、常见类型和应用,展示曲线方程在高考数学中的重要性和实用价值。

1. 基本概念曲线方程是用数学语言描述曲线图形的函数关系,常用的表示方法有显式方程、参数方程和极坐标方程等。

显式方程通过将自变量和因变量之间的关系式整理成一个等式,直接表示曲线的轨迹;参数方程则用一个或多个参数来表示曲线上每个点的坐标;极坐标方程则通过极径和极角来表示每个点的位置。

这些不同的表示方法可以根据实际问题的需要进行选择和转换,以方便得到所需的信息。

2. 常见类型曲线方程的类型多种多样,其中包括直线、圆、椭圆、双曲线、抛物线等等。

直线是最基本的曲线类型,其方程为y = kx + b,其中k代表斜率,b代表截距。

圆的方程为(x - a)² + (y - b)² = r²,其中(a, b)代表圆心坐标,r代表半径长度。

椭圆、双曲线和抛物线的方程比较复杂,它们分别具有不同的特点和性质,需要通过进一步的研究和分析来理解和应用。

3. 应用曲线方程在数学高考中具有广泛的应用价值。

首先,通过曲线方程可以计算和预测曲线上每个点的坐标和性质,以便用于建模和问题求解。

例如,我们可以通过椭圆的方程来计算其焦点和顶点的位置,进而分析椭圆的形状和变化规律。

其次,曲线方程可以用于解决几何问题,如求两个曲线的交点、判断点是否在曲线上等等。

最后,曲线方程还可以与其他数学知识进行结合,如微积分、极限等,用于深入研究和探索曲线的性质和变化规律。

总结起来,曲线方程是数学高考的重要知识点之一,其理解和掌握对于提高数学成绩和解决实际问题具有重要作用。

通过学习曲线方程,我们可以更好地理解和分析曲线的特征和行为,为数学高考提供有效的解题工具和方法。

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解 专题17 狭义曲线系与广义曲线系方程知识点一圆锥曲线与两相交直线构成的圆系方程(四点共圆问题)圆锥曲线上的四点共圆问题:圆锥曲线221(,)0f x y Ax By Dx Ey F =++++=上存在四点P 、Q 、M 、N,且PQ 与MN 相交于点T ,若满足TQ TP TN TM ⋅=⋅,则P 、Q 、M 、N 四点共圆(如图).根据初中的相交弦定理(左图)或切割线定理(右图)即可证明,当然也有同学觉得需要更严谨的证明,不妨利用相似来证明.下面我们来理解四点共圆的曲线系方程形式,由于是221(,)0f x y Ax By Dx Ey F =++++=上四点形成的圆,不妨设0:11=+-m y x k l MN ,0:22=+-m y x k l PQ ,而⋅+-=)(),(112m y x k y x f0)(22=+-m y x k 表示满足直线MN 和直线PQ 上的任意点方程,0),(),(21=+y x f y x f λ表示过圆锥曲线和两直线构成的弱化二次曲线交点的一系列曲线方程,而这一系列曲线中,有一个满足圆的方程),(111223=++++=F y E x D y x y x f ,即()()2211220Ax By Dx Ey F k x y m k x y m l +++++-+-+=,或者221122()()Ax By Dx Ey F k x y m k x y m l +++++-+-+22111()x y D x E y F m =++++.由于没有xy 的项,必有120k k --=.即PQ 与MN 斜率互为相反数.定理:圆锥曲线的内接四边形PQMN 出现四点共圆时,一定有任何一组对边对应所在的直线倾斜角互补.其方程可以写成22(Ax By Dx Ey F kx l +++++12)()0y m kx y m -+--+=,此时2A k B l l -=+,方程表示一个圆.推论:若圆锥曲线221()f x y Ax By Dx Ey ,=+++0F +=上存在四点P 、Q 、M 、N ,斜率互为相反数,且PQ 是MN 中垂线,则1MN k =±; 证明四点共圆的步骤:1.设出曲线系方程,解出l ;2.根据222440R D E F =+->证明四点一定共圆.【例1】(2021•新课标1卷)在平面直角坐标系xOy 中,已知点1(0)F ,20)F ,点M 满足12||||2MF MF -=.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【例2】(2005•湖北)设A 、B 是椭圆223x y λ+=上的两点,点(13)N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (1)确定λ的取值范围,并求直线AB 的方程;(2)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.【例3】(2011•全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A ,B 两点,点P 满足0OA OB OP =++. (1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.知识点二狭义曲线系之以坐标定曲线模型构造:123()()()f x y f x y f x y λμ+=,,,如图,A 、B 分别为椭圆22221(0)x y a b a b+=>>的左右顶点,M 、N 为椭圆上任意两点,MN 与x 轴交于点Q ,AM 与BN 交于点P ,我们可以理解为A ,M ,B ,N 四点确定椭圆(双曲线和抛物线也一致),那么四点之间连线有6条,我们选取两条交点在椭圆内的直线乘积式构造弱化二次曲线1()0f x y =,,再选取两条交点在椭圆外的直线乘积式构造另一条弱化的二次曲线2()0f x y =,,可以理解为两条弱化的二次曲线形成了这个椭圆22322()10x y f x y a b=+-=,,即123()()()f x y f x y f x y λμ+=,,,注意:这里最终结果会指向一个极点极线性质2P Q x x a =,故在设计:0AB l y =,:0MN l x ky m --=,1()()0f x y y x ky m =⋅--=,,1:0AM l x k y a -+=,2:0BN l x k y a --= 212()()()0f x y x k y a x k y a =-+⋅--=,,从而得出:221222()()()(1)x y y x ky m x k y a x k y a a bλμ⋅--+-+⋅--=+-;记住:曲线系只需要对比系数,确定参数,无需展开求出λ和μ,k ,1k ,2k 均是斜率倒数,不是斜率.【例4】(2020•新课标Ⅰ卷)已知A ,B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB =.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【例5】(2023•江苏月考)在平面直角坐标系xOy 中,椭圆2222:1(0)bC x y a b a +=>>的离心率是12,焦点到 相应准线的距离是3. (1)求a ,b 的值;(2)已知A 、B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,(10)F ,,连接AF 、BF 并分别延长交椭圆C 于D 、E 两点,证明:直线DE 过定点.【例6】(2011•四川)如图,椭圆有两顶点)01(,-A 、)01(,B ,过其焦点)10(,F 的直线l 与椭圆交于D C ,两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q .当点P 异于B A ,两点时,求证:OQ OP ⋅为定值.【例7】(2022全国甲卷)已知抛物线2:2(0)C y px p =>焦点为F ,点(,0)D p 过焦点F 做直线l 交抛物线于,M N 两点,当MD x ⊥轴时,||3MF =. (1)求抛物线方程(2)若直线,MD ND 与抛物线的另一个交点分别为,A B .若直线,MN AB 的倾斜角为,αβ,当αβ-最大时,求AB 的方程【例8】已知椭圆)0(12222>>=+b a by a x 过点)22(,,离心率为22.(1)求椭圆的方程;(2)过点)10(,P 做椭圆的两条弦AB ,CD (A ,C 分别位于第一、二象限),若BC ,AD 与直线1=y 分别交于M ,N ,求证:PN PM =.【例9】已知椭圆2222:1(0)x y C a b a b +=>>的离心率为23,半焦距为(0)c c >,且1a c -=,经过椭圆的左焦点1F 斜率为11(0)k k ≠的直线与椭圆交于A 、B 两点,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设(10)R ,,延长AR ,BR 分别与椭圆交于C 、D 两点,直线CD 的斜率为2k ,求12k k 的值及直线CD 所经过的定点坐标.知识点三广义曲线系之以斜率定曲线回到那个话题,就是曲线系是不需要解方程的,只需要对比方程的系数,为什么呢?只要满足同解同根,满足方程同构,这样构造的方程就是以这些根为基准的一系列曲线方程,通过系数锁定,找出他们共同的关系,体现了方程中的动中求静,从而实现定点定值的锁定。

2013年高考数学预测新课标数学考点预测(13):圆锥曲线与方程

2013年高考数学预测新课标数学考点预测(13):圆锥曲线与方程

x2 y 2 + 2 = 1(a > b > 0) 2 b 椭 圆 C: a 的 两 个 焦 点 为 F1,F2, 点 P 在 椭 圆 C 上 , 且
PF1 ⊥ F1 F2 ,| PF1 |=
4 14 ,| PF2 |= . 3 3
(Ⅰ)求椭圆 C 的方程; (Ⅱ)若直线 l 过圆 x2+y2+4x-2y=0 的圆心 M,交椭圆 C 于 A, B 两点,且 A、B 关于点 M 对称,求直线 l 的方程. 〖解析〗 (Ⅰ)由椭圆的定义及勾股定理求出 a,b,c 的值即可, (Ⅱ)可以设出 A、B 点的坐 标及直线方程, 联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方 程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程. 〖答案〗解法一: (Ⅰ)因为点 P 在椭圆 C 上,所以 在 Rt△PF1F2 中, 从而 b2=a2-c2=4,
B2
.
y 2 x2 + 2 =1 2 c (2)设 P 是“果圆”的半椭圆 b
( x ≤ 0 ) 上任意一点.求证:当 PM 取得最小值时,
F.2 A1
O. M
.
F0
A2
x
F1 B1
P 在点 B1,B2 或 A1 处;
(3)若 P 是“果圆”上任意一点,求
PM
取得最小值时点 P 的横坐标.
〖解析〗 (1)求出两个半椭圆的方程即可得到“果圆”的方程, (2)由两点间的距离公式表 示出 PM 的长,根据二次函数的性质即可求出最小值, (3)思路同(2) ,只需分两种情况讨 论即可. 〖答案〗 (1)∵
∆ = 0、 ∆ < 0 .
⑵直线与圆锥曲线相交所得的弦长 直线具有斜率 k , 直线与圆锥曲线的两个交点坐标分别为

(江苏专用)2013高考数学总复习 第三篇 导数及其应用《第13讲 导数的概念与运算》课件 理 苏教版

(江苏专用)2013高考数学总复习 第三篇 导数及其应用《第13讲 导数的概念与运算》课件 理 苏教版

f(x)=sin x
f′(x)= cos x
f(x)=cos x f′(x)=-sin x
f(x)=ax(a>0,a≠1) f′(x)= axln_a
f(x)=ex
f′(x)= ex
f(x)=logax(a>0,a≠1)
f′(x)=
1 xln
a
f(x)=ln x
f′(x)=1 x源自.导数的运算法则∴y′=f′(u)·u′(x)=(u5)′(2x-3)′=5u4·2
=10u4=10(2x-3)4.
(2)设u=3-x,则y= 3-x.
由y=u12与u=3-x复合而成.
y′=f′(u)·u′(x)=(u12)′(3-x)′=12u-12(-1)
=-12u-12=-2
31-x=
3-x 2x-6 .
(3)设y=u2,u=sin v,v=2x+3π, 则yx′=yu′·uv′·vx′=2u·cos v·2 =4sin2x+3π·cos2x+π3=2sin4x+23π. (4)设y=ln u,u=2x+5,则yx′=yu′·ux′ y′=2x+1 5·(2x+5)′=2x+2 5.
(4)∵y=-sin2x-cos2x=12sin x,
∴y′=12sin x′=12(sin x)′=12cos x.
(5)y=1-1
x+1+1
x=11+-
x+1- x1+
xx=1-2 x,
∴y′=1-2 x′=-211--xx2′=1-2 x2.
2.(2011·南通调研)已知函数f(x)=
1 3
x3+x2+(2a-1)x+a2-a+
1,若f′(x)=0在(1,3]上有解,则实数a的取值范围为
________.

2013年高考真题理科数学分类汇编:考点44 曲线与方程、圆锥曲线的综合应用含解析

2013年高考真题理科数学分类汇编:考点44 曲线与方程、圆锥曲线的综合应用含解析

考点44 曲线与方程、圆锥曲线的综合应用一、选择题1.(2013·四川高考理科·T6)抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是( )(A)12(B (C )1 (D )【解题指南】本题考查的是抛物线与双曲线的基本几何性质,在求解时首先求得抛物线的焦点坐标,然后求得双曲线的渐近线方程,利用点到直线的距离公式进行求解即可。

【解析】选B ,由抛物线24y x =的焦点(1,0),双曲线2213yx -=的一条渐近线方程为0y -=,根据点到直线的距离公式可得d =,故选B.2。

(2013·山东高考文科·T11)与(2013·山东高考理科·T11)相同 抛物线C 1:y=12px 2(p >0)的焦点与双曲线C 2:2213x y -=的右焦点的连线交C 1于第一象限的点M 。

若C 1在点M 处的切线平行于C 2的一条渐近线,则p=( )A。

16B 。

8C 。

3D。

3【解题指南】 本题考查了圆锥曲线的位置关系,可先将抛物线化成标准方程,然后再利用过交点的切线平行于C 2的一条渐近线,求得切线斜率,进而求得p 的值。

【解析】选D 。

经过第一象限的双曲线的渐近线为y x =。

抛物线的焦点为(0,)2p F ,双曲线的右焦点为2(2,0)F 。

1'y x p =,所以在200(,)2x M x p处的切线斜率为,即01x p =,所以0x p =,即三点(0,)2p F ,2(2,0)F,,)6pM p共线,所以0202p p p--=-,即p =二、填空题3。

(2013·江西高考理科·T14)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线22x y 133-=相交于A,B 两点,若△ABF 为等边三角形,则p=___________.【解题指南】A 、B 、F 三点坐标都能与p 建立起联系,分析可知△ABF 的高为P ,可构造p 的方程解决.【解析】由题意知△ABF 的高为P ,将p y 2=-代入双曲线方程得A ,B 两点的横坐标为x =,因为△ABF 为等边三角形,所以0tan 60=,从而解得2p 36=,即p 6=。

高考数学一轮复习考点知识与题型讲解44 双曲线(含解析)

高考数学一轮复习考点知识与题型讲解44 双曲线(含解析)

高考数学一轮复习考点知识与题型讲解考点44 双曲线一.双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数2a(2a<|F1F2|)的点P的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.二.双曲线的标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).“焦点位置看正负,焦点随着正的跑”.三.双曲线的几何性质x≤-a或x≥a,y∈R x∈R,y≤-a或y≥a实虚轴线段A 1A 2叫做双曲线的实轴,它的长A 1A 2=2a ;线段B 1B 2叫做双曲线的虚轴,它的长B 1B 2=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2(c >a >0,c >b >0)四.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.考点题型分析考点题型一 双曲线的定义【例1-1】(2022·浙江省德清县第三中学)已知双曲线22:14x G y -=的左、右焦点分别为1F 、2F ,若点P 在G 的右支上,且21PF =,则1PF =( ) A .3B .5C .251D .251+【答案】B【解析】由题可知:双曲线方程为2214x y -=,所以2a =又212PF PF a -=,所以1245PF PF =+=故选:B【例1-2】.(2022·河北张家口市)已知12(6,0),(6,0)F F -,动点P 满足21|PF PF a -=∣,当a 分别为4和12时,点P 的轨迹分别为( ) A .双曲线和一条直线 B .双曲线和一条射线 C .双曲线的一支和一条射线 D .双曲线的一支和一条直线【答案】C【解析】由题意,得1212F F =当4a =时,21124PF PF a F F -==<,可知点P 的轨迹为双曲线左支; 当12a =时,211212PF PF a FF -===,可知点P 的轨迹为以1F 为端点的一条射线.故选:C【例1-3】.(2022·全国课时练习)已知F 1,F 2分别为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于________. 【答案】4【解析】由双曲线方程知:12||2F F c == 在△PF 1F 2中,由余弦定理知:2222121212121212||||||2||||cos (||||)||||F F PF PF PF PF F PF PF PF PF PF =+-⋅∠=-+⋅,∴21212||||8(||||)PF PF PF PF ⋅=--,而12||||||2PF PF -=, ∴12||||4PF PF ⋅=. 故答案为:4.【举一反三】1.(2022·上海普陀区)设P 是双曲线221169x y -=上的点,若1F ,2F 是双曲线的两个焦点,则12PF PF -=( )A .4B .5C .8D .10【答案】C【解析】由双曲线221169x y -=可得4a = 根据双曲线的定义可得:2128PF F a P -== 故选:C2.(2022·上海市)已知两点()3,0M -和()3,0N ,动点P 满足6PM PN -=,则动点P 的轨迹是( ) A .椭圆 B .双曲线C .一条射线D .双曲线的右支【答案】C【解析】由两点()3,0M -和()3,0N ,动点P 满足6PM PN MN -==, 所以动点P 的轨迹是一条射线.故选:C3.(2022·浙江省宁海中学高三月考)在平面直角坐标系中,()12,0F -,()22,0F ,12PF PF a -=(a ∈R ),若点P 的轨迹为双曲线,则a 的取值范围是( ) A .()0,4 B .(]0,4 C .()4,+∞ D .()()0,44,+∞【答案】A【解析】12PF PF a -=,由点P 的轨迹为双曲线,根据双曲线的定义.则12124PF PF F F <=-,所以04a <<故选: A4.(2022·全国高三专题练习)已知1F 、2F 为双曲线22:13x C y -=的左、右焦点,点P 在C 上,1260F PF ︒∠=,则12PF F △的面积为____________【解析】双曲线22:13x C y -=,则223,1a b ==,所以2224c a b =+=,利用双曲线定义知,122PF PF a -==两边平方得221212||||122||||PF PF PF PF +=+⋅,且12||24F F c ==,1260F PF ∠=由余弦定理22212212121212||||||122||||161cos 2||||2||||2PF PF FF PF PF F PF PF PF PF PF +-+⋅-∠===⋅⋅, 解得:12||||4PF PF ⋅=,则121211||||sin 604222PF F S PF PF =⋅⋅∠=⨯⨯=考点题型二 双曲线的标准方程【例2-1】(2022·福建龙岩市)“11m -<<”是“方程22112x y m m +=+-表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】若方程22112x y m m +=+-表示双曲线,则(1)(2)0m m +-<,得12m -<<,则11m -<<能推出12m -<<,12m -<<不能推出11m -<<,“11m -<<”是“方程22112x y m m +=+-表示双曲线”的充分不必要条件,故选:A .【例2-2】.(2022·全国课时练习)过点(1,1),且ba=( ) A .22112x y -=B .22112y x -=C .22112y x -= D .22112x y -=或22112y x -=【答案】D【解析】由ba=222b a =. 当焦点在x 轴上时,设双曲线方程为222212x y a a -=,将点(1,1)代入可得212a =,则双曲线方程为22112x y -=.同理,焦点在y 轴上时,双曲线方程为22112y x -=.故选:D【举一反三】1.(2022·海原县第一中学)根据下列条件,求双曲线的标准方程. (1)焦点在x 轴上,2a =离心率52e =,求双曲线的标准方程; (2)11a c +=,3c a -=,焦点在y 轴上,求双曲线的标准方程.【答案】(1)224121x y -=;(2)2211633y x -=.【解析】(1)由题意可得252a c e a =⎧⎪⎨==⎪⎩,5c ∴=,b =因为双曲线的焦点在x 轴上,因此,双曲线的标准方程为224121x y -=; (2)由已知条件可得113a c c a +=⎧⎨-=⎩,解得74c a =⎧⎨=⎩,b ∴==因为双曲线的焦点在y 轴上,因此,双曲线的标准方程为2211633y x -= 2.(2022·浙江)已知曲线22:1()12x y E m m m -=∈--R ,( )A .若E 表示双曲线,则2m >B .若12m <<,则E 表示双曲线C .若E 表示椭圆,则2m >D .若12m <<且32m ≠,则E 表示椭圆 【答案】D【解析】因为曲线22:1()12x y E m m m -=∈--R ,当()()120m m -->解得2m >或1m <时曲线表示双曲线;当102012m m m m->⎧⎪->⎨⎪-≠-⎩即12m <<且32m ≠时曲线表示椭圆;故选:D3.(2022·江苏南通市)命题:p “34m <<”是命题:q “曲线22135x y m m-=--表示双曲线”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C【解析】命题:q “曲线22135x y m m-=--表示双曲线”,则()()350m m -->,即()()350m m --<, 解得35m <<由于命题p 能推出命题q ,命题q 不能推出命题p 则命题p 是命题q 的充分不必要条件 故选:C考点题型三 直线与曲线的位置关系【例3】(2022·全国课时练习)若直线y =kx 与双曲线4x 2-y 2=16相交,求实数k 的取值范围. 【答案】22k -<<【解析】4x 2-y 2=16渐近线方程为2y x =±,因为直线y =kx 与双曲线4x 2-y 2=16相交,所以k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由0∆>可得()241640k ⨯->,解得22k -<<.【举一反三】1.(2022·徐汇区·上海中学)已知直线()1y kx k =+∈R 与双曲线2231x y -=,则k 为何值时,直线与双曲线有一个公共点?【答案】k =k =【解析】由22311x y y kx ⎧-=⎨=+⎩得()223220k x kx ---=,因为直线与双曲线有一个公共点,所以230k -=或()()()2223024320k k k ⎧-≠⎪⎨∆=----=⎪⎩,解得k =k =2.(2022·江苏南通市)直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个 A .1 B .2C .3D .4【答案】D【解析】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390kx k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=,对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=.综上所述,k 的取值有4个.故选:D.3.(2022·陕西宝鸡市)如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条 B .2条C .3条D .4条【答案】D【解析】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±,1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,2k =±,此时方程组也只有一解. 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条. 故选:D .考点题型四 弦长【例4】(2022·全国高三专题练习)直线x +y =1与双曲线4x 2-y 2=1相交所得弦长为( )A.3B.3CD【答案】B【解析】将直线1x y +=代入2241x y -=得23220x x +-=. 设两交点()()1122,,,A x y B x y ,则12122233x x x x +-=-=,,123AB x ∴=-==.故选:B . 【举一反三】1.(2022·辽宁朝阳市·高三月考)直线0x y -=与双曲线2222x y -=有两个交点为A ,B ,则AB =( ) A .2 B .C .4D .【答案】C【解析】由22220x y x y ⎧-=⎨-=⎩,得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=⎪⎨=⎪⎩4AB ==.故选:C .2.(2022·全国高三专题练习)过点P (4,2)作一直线AB 与双曲线C :22x -y 2=1相交于A ,B 两点,若P 为线段AB 的中点,则|AB |=( ) A .B .C .D .【答案】D【解析】解法一:由题意可知,直线AB 的斜率存在.设直线AB 的斜率为k ,则直线AB 的方程为y=k (x -4)+2.由22(4)2,12y k x x y =-+⎧⎪⎨-=⎪⎩消去y 并整理,得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0.设A (x 1,y 1),B (x 2,y 2).因为P (4,2)为线段AB 的中点,所以x 1+x 2=-28(21)12k k k--=8,解得k =1. 所以x 1x 2=2232321012k k k -+--=10. 所以|AB |.故选:D.解法二:设A (x 1,y 1),B (x 2,y 2),则221112x y -=, ① 222212x y -=. ② ①-②得12(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为P (4,2)为线段AB 的中点,所以x 1+x 2=8,y 1+y 2=4.所以4(x 1-x 2)-4(y 1-y 2)=0,即x 1-x 2=y 1-y 2,所以直线AB 的斜率k =1212y y x x --=1.则直线AB 的方程为y =x -2. 由222,12y x x y =-⎧⎪⎨-=⎪⎩消去y 并整理,得x 2-8x +10=0, 所以x 1+x 2=8,x 1x 2=10.所以|AB |=.故选:D考点题型五 离心率与渐近线【例3】(2022·浙江湖州市)双曲线2214y x -=的离心率是_______,渐近线方程是_______.(两条都写出)2y x=±【解析】由题可知1a=,2b=,故c=e==渐近线方程为:by xa=±即2y x=±.2y x=±【举一反三】1.(2022·浙江杭州市·学军中学)双曲线22143x y-=的渐近线方程是___________;离心率为___________.【答案】2y x=±2【解析】由双曲线方程得:2,a b==,则c=因此渐近线方程是2y x=±;离心率为2ca=故答案为:2y x=±;22.(2022·湖北高三一模)已知12,F F分别是双曲线C的左、右焦点,若双曲线C上存在一点M满足1212::12:13:5MF MF F F=,则该双曲线的离心率为___________.【答案】5【解析】设121212,13,5MF k MF k F F k===双曲线的离心率122125521312F Fc kea MF MF k k====--.故答案为:53.(2022·河北张家口市)已知椭圆221259x y+=和双曲线22221(0,0)x ya ba b-=>>有共同焦点12,,F F P是它们的一个交点,且123F PFπ∠=,则双曲线的离心率为_____________.【答案】13【解析】椭圆的长半轴长为5,双曲线的半实轴长为a , 根据椭圆及双曲线的定义:121210,2PF PF PF PF a +=-=, 所以125,5PF a PF a =+=-,12128,3F F F PF π=∠=, 由余弦定理可得,2264(5)(5)2(5)(5)cos 3a a a a π=++--+-,整理得213a =,13c e a ===..。

北京邮电大学附中2013届高考数学第一轮复习单元训练 圆锥曲线与方程 含答案

北京邮电大学附中2013届高考数学第一轮复习单元训练 圆锥曲线与方程 含答案

北京邮电大学附中2013届高三数学一轮复习单元训练:圆锥曲线与方程本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线192522=-y x 的渐近线方程为( )A .3x ±4y =0B . 4x ±3y =0C . 3x ±5y =0D .5x ±3y =0【答案】C2.在同一坐标系中,方程22221ax b y +=与20ax by +=(>b>0)的曲线大致是( )【答案】D3.知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O 为原点),则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A4.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若∠F 1PF 2=30°,则△F 1PF 2的面积等于( ) A .3316 B .)32(4- C .)32(16+ D . 16【答案】B5.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A .22145x y -=B .22154x y -=C .22136x y -=D .22163x y -=【答案】B6.已知F 是椭圆12222=+by a x (a >b>0)的左焦点, P 是椭圆上的一点, PF ⊥x 轴, OP ∥AB(O 为原点), 则该椭圆的离心率是( )A .22 B .42 C .21 D .23 【答案】A7.经过原点且与抛物线23(1)4y x =+-只有一个公共点的直线有多少条?( ) A . 0 B . 1C . 2D . 3【答案】D8.若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的一点,并且P 点与右焦点'F 的连线垂直轴,则线段OP 的长为( )A .313B .339C .37D .321【答案】A9.若双曲线22221(0)x y a b a b-=>>的左右焦点分别为1F 、2F ,线段1F 2F 被抛物线22y bx=的焦点分成7:5的两段,则此双曲线的离心率为( )A .98B C .4D 【答案】C10.已知双曲线22122x y -=的准线过椭圆22214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是( ) A . 11,22K ⎡⎤∈-⎢⎥⎣⎦B . 11,,22K ⎛⎤⎡⎫∈-∞-+∞⎪⎥⎢⎝⎦⎣⎭C . K ⎡∈⎢⎣⎦D . ,K ⎛⎫∈-∞+∞ ⎪ ⎪⎝⎦⎣⎭【答案】A11.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( )A . 2<k<5B . k>5C . k<2或k>5D . 以上答案均不对【答案】C12.若抛物线px y 22=的焦点与双曲线1322=-y x 的右焦点重合,则p 的值为( ) A . -4 B . 4 C . -2 D . 2【答案】A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知P 为椭圆221259x y += 上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=900,则△F 1PF 2的面积为___________; 【答案】914.已知P 是双曲线)0(1y 4x 222>=-b b 上一点,F 1、F 2是左右焦点,⊿P F 1F 2的三边长成等差数列,且∠F 1 P F 2=120°,则双曲线的离心率等于 【答案】27 15.抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

(新课标)2013高考数学 三轮必考热点集中营 热点23参数方程和极坐标方程(教师版)

(新课标)2013高考数学 三轮必考热点集中营 热点23参数方程和极坐标方程(教师版)

(新课标)2013高考数学 三轮必考热点集中营 热点23参数方程和极坐标方程(教师版)【三年真题重温】1.【2011⋅新课标全国理,23】选修4—4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C .(Ⅰ)当求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .2.【2010⋅新课标全国理,23】选修4-4:坐标系与参数方程 已知直线C 1x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),C 2x cos sin y θθ=⎧⎨=⎩(θ为参数),(Ⅰ)当α=3π时,求C 1与C 2的交点坐标; (Ⅱ)过坐标原点O 做C 1的垂线,垂足为,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线。

【2012⋅新课标全国理,23】坐标系与参数方程 已知曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上, 且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值X 围。

【命题意图猜想】 2011年高考考查了参数方程和极坐标的题目,可化为普通方程求解,涉及到直线和圆的参数方程;2010年高考主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.2012年高考主要考查直角坐标系与极坐标系之间的互化,以椭圆的参数方程为背景,意在考查考生利用坐标之间的转化求解。

【高考数学】直线系和圆系方程

【高考数学】直线系和圆系方程

几种常见的直线系方程:(1)过已知点P (x 0,y 0)的直线系方程y -y 0=k (x -x 0)(k 为参数)(2)斜率为k 的直线系方程y =kx +b (b 是参数)(3)与已知直线Ax +By +C =0平行的直线系方程Ax +By +λ=0(λ为参数)(4)与已知直线Ax +By +C =0垂直的直线系方程Bx -Ay +λ=0(λ为参数)(5)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ为参数)例1:已知直线l 1:x +y +2=0与l 2:2x -3y -3=0,求经过的交点且与已知直线3x +y -1=0平行的直线分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得,∴直线过定点P (9,-4)例3:求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程.概念:具有某种共同属性的圆的集合,称为圆系。

几种常见的圆系方程:(1)同心圆系:(x -x 0)2+(y -y 0)2=r 2,x 0、y 0为常数,r 为参数。

(2)过两已知圆C 1:f 1(x ,y )=x 2+y 2+D 1x +E 1y +F 1=0。

和C 2:f 2(x ,y )=x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1)若λ=-1时,变为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0,则表示过两圆的交点的直线。

高考数学圆锥曲线专题:韦达定理

高考数学圆锥曲线专题:韦达定理

高考数学圆锥曲线专题:韦达定理第一部分:直线的斜截式方程使用条件一:已知斜率第一类直线的方程:直线的斜截式方程直线的斜截式方程:b kx y +=,其中k 为斜率,b 为与y 轴的截距。

第一种使用条件:已知直线的斜率。

【例题一】:已知:斜率为1的直线与椭圆C :1222=+y x 相交于A ,B 两点。

【本题解析】:第一部分:韦达定理的计算部分。

韦达定理的使用条件:直线与曲线相交于两点。

第一步:假设两个交点的坐标。

假设:点A 的坐标为),(11y x ,点B 的坐标为),(22y x 。

第二步:假设直线的方程。

本题已知直线l 的斜率为1,需要假设直线l 与y 轴的截距得到直线l 的方程。

假设:直线l 的方程为:m x y +=。

第三步:联立直线l 的方程和椭圆C 的方程。

mx +022********=-+⇒=+⇒=+y x y x y 把m x y +=代入02222=-+y x 得到:02)2(202)(222222=-+++⇒=-++m mx x x m x x 0)22(430224222222=-++⇒=-+++⇒m mx x m mx x x 。

第四步:韦达定理计算两个交点的横坐标之和21x x +,横坐标之积21x x 。

原理:一元二次方程02=++c bx ax 的两个根1x ,2x :a b x x -=+21,ac x x =21。

340)22(432122mx x m mx x -=+⇒=-++,322221-=m x x 。

第五步:根据直线的方程的纵坐标之和21y y +,纵坐标之积21y y 。

),(11y x A ,),(22y x B 为直线m x y l +=:上两点m x y +=⇒11,m x y +=22;3236342342212121mm m m m m x x m x m x y y =+-=+-=++=+++=+;2222121221212121)34(322)()()(m mm m m x x m x x m mx mx x x m x m x y y +-⋅+-=+++=+++=+⋅+=⋅323342233343222222222-=+--=+--=m m m m m m m 。

2013高考数学曲线方程汇总

2013高考数学曲线方程汇总

30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥,求直线l 的方程.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线221:12x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为“C 1—C 2型点”.(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;(3)求证:圆2212x y +=内的点都不是“C 1—C 2型点”.34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)iP i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.35.(2013年高考湖南卷(理))过抛物线2:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD 为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .(I)若120,0k k >>,证明;22FM FN P < ;(II)若点M 到直线l 的距离的最小值为5,求抛物线E 的方程. 36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,, 过点F 且与x 轴垂直的直线被椭圆(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点.若(第21题图)··8AC DB AD CB += , 求k 的值.48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C . (I)求,;a b ;(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证明:22AF AB BF 、、成等比数列.49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =:的焦点为F . (1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.。

高考数学双曲线方程知识点总结

高考数学双曲线方程知识点总结

高考数学双曲线方程知识点总结
⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.
例如:若双曲线一条渐近线为且过,求双曲线的方程?
解:令双曲线的方程为:,代入得.
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条; 区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积
同号.
⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.
简证: =.
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.
双曲线方程知识点在高考中属于比较重要的考察点,希望考生认真复习,深入掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小
题满分9分.
已知椭圆C 的两个焦点分别为1(1
0)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、 (1)若112F B B ∆为等边三角形,求椭圆C 的方程;
(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P F Q ⊥
,
求直线l 的方程.
31.(2013年高考四川卷(理))已知椭圆C :22
221,(0)x y a b a b +=>>的两个焦点分别为
12(1,0),(1,0)F F -,且椭圆C 经过点41
(,)33
P .
(Ⅰ)求椭圆C 的离心率;
(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且
222
211
||||||AQ AM AN =+
,求点Q 的轨迹方程.
32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆
2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,
,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;
(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM 交C 的长轴于点(,0)M m ,求m 的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明12
11kk kk +为定值,并求出这个定值.
33.(2013年高考上海卷(理))(3分+5分+8分)如图,已知曲线2
21:12
x C y -=,曲线2:||||1C y x =+,P 是平面上一点,若存在过点P 的直线与12,C C 都有公共点,则称P 为
“C 1—C 2型点”.
(1)在正确证明1C 的左焦点是“C 1—C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“C 1—C 2型点”;
(3)求证:圆221
2
x y +=
内的点都不是“C 1—C 2型点”.
34.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图,在正方形
OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA
和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线
与i OB 交于点*
(,19)i P i N i ∈≤≤.
(1)求证:点*(,19)i
P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为
4:1,求直线的方程.
35.(2013年高考湖南卷(理))过抛物线2
:2(0)E x py p =>的焦点F 作斜率分别为12,k k 的
两条不同的直线12,l l ,且122k k +=,1l E 与相交于点A,B,2l E 与相交于点C,D.以AB,CD 为直径的圆M,圆N(M,N 为圆心)的公共弦所在的直线记为l .
(I)若120,0k k >>,证明;22FM FN P < ;
(II)若点M 到直线l 的距离的最小值为
5
,求抛物线E 的方程. 36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)
1,0(-P 是椭圆)0(1:22221>>=+b a b
y a x C 的一个顶点,1C 的长轴是圆4:2
22=+y x C 的直
径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点
D
(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.
37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中
心为原点O ,长轴在x 轴上,
离心率e =,过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.
(1)求该椭圆的标准方程;
(2)取垂直于x 轴的直线与椭圆相交于不同的两点,P P ',过,P P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.
38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆
22
22
:11x y E a a +=-的焦点在x 轴上
(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程;
(Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11
F P FQ ⊥,证明:当a 变化时,点p 在某定直线上. 39.(2013年高考新课标1(理))已知圆M :2
2(1)
1x y ++=,圆N :22(1)9x y -+=,动圆P
与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C. (Ⅰ)求C 的方程;
(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|. 40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆
2222
1(0)
x y a b a b +=>>的左焦点为F ,
, 过点F 且与x 轴垂直的直线被椭圆
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点.

(第21题图)
··8AC DB AD CB += , 求k 的值.
48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双
曲线()22
22:10,0x y C a b a b
-=>>的左、右焦点分别为12F F ,,离心率为3,直线2
y =
与C . (I)求,;a b ;
(II)设过2F 的直线l 与C 的左、右两支分别相交于,A B 两点,且11AF BF =,证
明:22AF AB BF 、
、成等比数列.
49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小
题满分6分.
已知抛物线2
4C y x =:
的焦点为F . (1)点 A P 、满足2AP FA =-
.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;
(2)在x 轴上是否存在点Q ,使得点Q 关于直线2y x =的对称点在抛物线C 上?如果存在,求所有满足条件的点Q 的坐标;如果不存在,请说明理由.。

相关文档
最新文档