论沥青路面的强度和稳定性

论沥青路面的强度和稳定性
论沥青路面的强度和稳定性

论沥青路面的强度和稳定性

道路的面层是道路的一个重要组成部分,它直接影响公路的行车速度、运输成本、行车安全与舒适程度。沥青路面由于使用了粘结力较强的沥青材料,使矿料之间的粘结力大大加强,从而提高了矿料的强度和稳定性,使路面使用质量大为提高,延长了路面使用寿命。如何保证沥青路面具备必要的强度和稳定性一直是道路建设设计与施工中需要不断研讨的重要课题。

一、关于沥青路面的强度

通常运用库仑理论来分析,即强度形成主要看两个基本参数——材料的内摩阻力和粘结力是否满足要求。要提高它的强度,就要设法提高材料的这两个参数,并从这两个方面采取措施。尺寸大、表面粗、多棱角、颗粒均匀的矿料比尺寸小、表面光滑、颗粒不均的矿料有较高的摩阻力。沥青的含量过多,沥青对矿料的涂覆层过厚,摩阻力就会减少。在沥青砼材料中掺加一定数量的矿粉,可以提高其粘结力。当沥青路面材料含有水份时,由于水份的表面活性很高,吸附在矿料表面,使沥青与矿粉分离,会造成粘结力降低。因此,选择合理的骨料尺寸,严格控制油石比,尽量保证粒料干燥是提高强度的有效措施。根据我们的施工经验,沥青面层宜不少于两层铺设,下层采用骨料尺寸相对大一些,石粉少一些,油石比相对偏低的配比;上层则采用骨料尺寸、石粉用量适中,油石比相对偏高的配比。

二、关于沥青路面的稳定性

1、沥青路面的高温稳定性沥青路面的重要特点之一是其强度和抵抗变形的能力随着温度的升高而显著降低,能相差几倍甚至几十倍。在夏季高温时,在阳光下沥青表面的最高温度可达60摄氏度至70摄氏度,这就造成沥青面层材料在高温下的抗压强度和抗弯强度不足。汽车在启动和制动,特别是在紧急制动时,如在停车场、停车站、交叉口和车辆经常换挡和变速的路段上,就会出现堆积和以车辙、拥包为特征的路面剪切变形,此时,泛油现象也经常出现。这种病害产生原因的共同之处就是:沥青稠度偏低,用量过多,油石比过大,矿料用量不足。在气温较高和交通繁重的条件下,凡细粒式沥青砼应选用稠度较高的沥青,不宜选用稠度较低的沥青。

为提高沥青混合料的高温稳定性,主要采取三方面的措施:一是提高材料的摩阻力,具体措施是在混合料中增加粗骨料的含量,保持良好的级配以形成稳定而密实的骨架结构;选用纹理粗糙和棱角多的骨料,也能提高内摩阻力。二是适当提高沥青稠度。三是提高沥青与矿粉的粘结力,如在沥青混合料中加入较高活性的石灰石矿料。另外适当控制沥青用量等也能取得较好的效果。如果已出现泛油、油包时处理方法为:根据泛油严重程度撒铺不同粒径和数量的矿料,贯彻先粗后细、少撒、勤撤、撒匀的原则。对油包则采用加热器烫软或趁气温较高时铲除过高部分,撒少量的石屑或粗砂烫平,如油包过多则应全部铲除重铺面层。

2、沥青路面的低温抗裂稳定性

沥青路面设计计算

沥青混凝土路面计算书 一、交通量的计算 根据任务要求,其中与路面损坏有关的各类车俩交通量如下表 1、 计算累计当量轴次 累计当量轴次表 表2-1 车辆类型 交通量 (辆/d) 后轴 前轴 总换算系数 当量轴次 (次/d) 轴数系数C 1 轮组系数 C 2 后轴重(KN) 后轴换算系数 轴数系数C 1 轮组系数 C 2 前轴重(KN) 前轴换算系数 桑塔纳 3771 五十铃 6493 1 6.4 (18.5) 0.147 ( / ) 0.147 ( / ) 974 解放CA10B 3883 1 1.0 60.85 0.115 (0.019) 1 6.4 (18.5) 19.4 0.005 0.125 (0.019) 406 (64) 黄河JN150 1383 1 1.0 101.6 1.071 (1.135) 1 6.4 (18.5) 49.0 0.287 (0.003) 1.358 (1.138) 1881 (1579) 黄河JN162 290 1 1.0 115.0 1.836 (3.059) 1 6.4 (18.5) 59.5 0.668 (0.29) 2.50 ( 3.350) 728 (972) 交通SH361 28 2.2 1.0 2× 110.0 3.330 (6.431) 1 6.4 (18.5) 60.0 0.694 (0.311) 4.02 (6.74) 134 (186) 合计 4123 (2801) 当以设计弯沉值为指标以及验算沥青层层底拉应力时,凡轴载大于25KN 的各级轴载(包括车辆的前、后轴),均应按下式换算成标准轴载P 的当量作用次数N 。 4.35 121 k i i i P N C C n P =??= ? ??∑ 《规范》3.1.2-1 式中:

沥青混合料高温稳定性试验检测方法及其影响因素

沥青混合料高温稳定性试验检测方法及其影响因素[摘要]本文介绍沥青混合料车辙试验方法,分析沥青混合料高温稳定性的影响因素。 【关键词】沥青混合料;高温稳定性;车辙;动稳定度 一、概述 沥青混合料是一种典型的流变性材料,它的强度和变形量随着温度的升高而降低。所以沥青混凝土路面在夏季高温时,在重交通荷载的重复作用下,由于交通的渠化,在轮迹带逐渐形成变形下凹、两侧鼓起的所谓“车辙”,这是高速公路沥青路面最常见的病害。众多研究表明,动稳定度能较好地反映沥青路面在高温季节抵抗形成车辙的能力。 二、沥青混合料高温稳定性的检测方法 检测沥青混合料高温稳定方法有很多,如:最常见马歇尔稳定度试验和三轴压缩试验。由于三轴试验较为复杂,所以马歇尔稳定度被广泛采用,并且已成为国际通用的方法。辽宁高速公路有着的多年经验,我省采用车辙动稳定度试验(以正式列入《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)来评价沥青混合料的抗车辙能力。 1、原理 沥青混合料的车辙试验是试件在规定温度及荷载条件下,测定试验轮往返行走所形成的车辙变形速率,以每产生1mm变行的行走次数即用动稳定度表示。 2、试件成型 车辙试件采用轮碾法制成,尺寸为300mm*300mm*50-100mm。(厚度根据需要确定)。也可以从路面切割得到需要尺寸的试件。碾压轮为与钢筒式压路机相似的圆弧形碾压轮,轮宽300mm,压实线荷载为300N/cm,碾压行程为试件宽度即300mm,经碾压后的试件的密度应为马歇尔试验标准击实密度的100±1%。 3、沥青混合料车辙试验方法 将试件连同试模一起,置于已达到试验温度60℃±1℃的恒温室中,保温不少于5h,也不得超过12h。之后,将试件连同试模移置于车辙试验机的试验台上,试验轮在试件的中央部位,其行走方向必须与试件碾压方向或行车方向一致。启动试验机,使试验轮往返行走,时间1h,记录仪自动记录变形曲线及时间温度。

论沥青路面的强度和稳定性

论沥青路面的强度和稳定性 道路的面层是道路的一个重要组成部分,它直接影响公路的行车速度、运输成本、行车安全与舒适程度。沥青路面由于使用了粘结力较强的沥青材料,使矿料之间的粘结力大大加强,从而提高了矿料的强度和稳定性,使路面使用质量大为提高,延长了路面使用寿命。如何保证沥青路面具备必要的强度和稳定性一直是道路建设设计与施工中需要不断研讨的重要课题。 一、关于沥青路面的强度 通常运用库仑理论来分析,即强度形成主要看两个基本参数——材料的内摩阻力和粘结力是否满足要求。要提高它的强度,就要设法提高材料的这两个参数,并从这两个方面采取措施。尺寸大、表面粗、多棱角、颗粒均匀的矿料比尺寸小、表面光滑、颗粒不均的矿料有较高的摩阻力。沥青的含量过多,沥青对矿料的涂覆层过厚,摩阻力就会减少。在沥青砼材料中掺加一定数量的矿粉,可以提高其粘结力。当沥青路面材料含有水份时,由于水份的表面活性很高,吸附在矿料表面,使沥青与矿粉分离,会造成粘结力降低。因此,选择合理的骨料尺寸,严格控制油石比,尽量保证粒料干燥是提高强度的有效措施。根据我们的施工经验,沥青面层宜不少于两层铺设,下层采用骨料尺寸相对大一些,石粉少一些,油石比相对偏低的配比;上层则采用骨料尺寸、石粉用量适中,油石比相对偏高的配比。 二、关于沥青路面的稳定性 1、沥青路面的高温稳定性沥青路面的重要特点之一是其强度和抵抗变形的能力随着温度的升高而显著降低,能相差几倍甚至几十倍。在夏季高温时,在阳光下沥青表面的最高温度可达60摄氏度至70摄氏度,这就造成沥青面层材料在高温下的抗压强度和抗弯强度不足。汽车在启动和制动,特别是在紧急制动时,如在停车场、停车站、交叉口和车辆经常换挡和变速的路段上,就会出现堆积和以车辙、拥包为特征的路面剪切变形,此时,泛油现象也经常出现。这种病害产生原因的共同之处就是:沥青稠度偏低,用量过多,油石比过大,矿料用量不足。在气温较高和交通繁重的条件下,凡细粒式沥青砼应选用稠度较高的沥青,不宜选用稠度较低的沥青。 为提高沥青混合料的高温稳定性,主要采取三方面的措施:一是提高材料的摩阻力,具体措施是在混合料中增加粗骨料的含量,保持良好的级配以形成稳定而密实的骨架结构;选用纹理粗糙和棱角多的骨料,也能提高内摩阻力。二是适当提高沥青稠度。三是提高沥青与矿粉的粘结力,如在沥青混合料中加入较高活性的石灰石矿料。另外适当控制沥青用量等也能取得较好的效果。如果已出现泛油、油包时处理方法为:根据泛油严重程度撒铺不同粒径和数量的矿料,贯彻先粗后细、少撒、勤撤、撒匀的原则。对油包则采用加热器烫软或趁气温较高时铲除过高部分,撒少量的石屑或粗砂烫平,如油包过多则应全部铲除重铺面层。 2、沥青路面的低温抗裂稳定性

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。 难点:应力的计算,强度与应力的关系,结构设计需要在容许应力围之。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略:

本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)力:外力使构件发生变形的同时,构件的部分子之间随之产生一种抵抗变形的抵抗力,称为力。 (2)应力:作用在单位面积上的力。 【学生活动一】 (3)拓展:探讨强度和应力的关系 示例:粗绳和细绳,两种相比粗绳更结实,牢固,换句话说是抗拉强度更大。绳子所受拉力一定,即构件受到的外力一定,而粗的横截面积大,所以应力小,此时变形小,而抗变形的能力大,即强度大。 结论:应力小,强度大应力大,强度小 【学生活动二】 (4)结合课本分小组探究影响结构强度的因素,同时完成26页问题,答在学案上。 结构的强度,一般取决于它对力和压力两方面的反应能力,具体取决于以下因素: 形状、材料(不同的材料有承受不同应力极限的能力) 材料的连接方式(不同的连接方式,受力传递方式和效果不一样) 师生探讨:如何改进物体结构的强度?

沥青混合料的水稳定性评价

沥青混合料的水稳定性评价 目前,国内外采用多种方法来评价沥青混合料的水稳定性,例如:浸水马歇尔试验、真空饱水后的马歇尔试验、真空饱水冻融后劈裂强调试验和浸水抗压强度试验等,我国目前常采用浸水马歇尔试验来评价。如表5-1所示为用浸水马歇尔试验评价AC-12I型沥青砼的水稳定性结果。表5-2为用冰融劈裂试验方法评价的结果。 浸水马歇尔试验结果表5-1 表中:S 1——60℃水中浸泡30min的稳定度(KN) S 1——60℃水中浸泡48h的稳定度(KN) S r——残留稳定度(%) 表4-6表明,石料性质或不同岩石类型对沥青混合料的水稳定性有较大影响。石灰岩沥青混合料的水稳定性最好,不同沥青混合料的残留稳定度在80%~90%之间。片麻岩沥青混合料的残留稳定度在25%~74%之间。花岗岩沥青混合料的残留稳定度在0~64%之间。此结果与前述沥青和石料的粘附性评价是一致的。此外,不同品种的沥青对沥青混合料的水稳定性也有明显影响。就石灰岩碎石而言,各种沥青的残留稳定度都能满足要求。片麻岩和花岗岩则没有一种沥青制成的沥

青混合料的残留稳定度能满足现行的《沥青路面施工技术规范》的要求。 冻融劈裂试验结果表5-2 马歇尔试验方法总体是一致的,虽略有差异但不影响大局。例如,用浸水马歇尔试验方法评价结果,按水稳性大小来区分沥青为:克—沥青﹥单—沥青﹥兰—沥青﹥辽—沥青﹥欢—沥青﹥胜—沥青﹥茂—沥青﹥,而用冰融劈裂试验方法评价结果,按水稳性大小排列沥青的顺序为:克—沥青﹥兰—沥青﹥单—沥青﹥辽—沥青﹥欢—沥青﹥胜—沥青﹥茂—沥青﹥,从实际出发,显然浸水马歇尔试验方法要简单方便的多

沥青高温稳定性

第八章沥青路面的高温稳定性 § 8.1 概述 沥青路面直接受车辆荷载和大气因素的影响,同时沥青混合料的物理、力学性质受气候因素与时间因素影响较大,因此为了能使路面给车辆提供稳定、耐久的服务,必须要求沥青路面具有一定的稳定性和耐久性。其中稳定性包括高温稳定性、低温抗裂性以及水稳定性。由于沥青路面的强度与刚度(模量)随温度升高而显著下降,为了保证沥青路面在高温季节行车荷载反复作用下,不致产生诸如波浪、推移、车辙、拥包等病害,沥青路面应具有良好的高温稳定性。表8-1和表8-2为强度、刚度与温度间关系两例: 不足的问题,一般出现在高温、低加荷速率以及抗剪切能力不足时,也即沥青路面的劲度较低情况下。其常见的损坏形式主要有: 1)推移、拥包、搓板等类损坏主要是由于沥青路面在水平荷载作用下抗剪强度不足所引起的,它大量发生在表处、贯入、路拌等次高级沥青路面的交叉口和变坡路段。 2)车辙。对于渠化交通的沥青混凝土路面来说,高温稳定性主要表现为车辙。随着交通量不断增长以及车辆行驶的渠化,沥青路面在行车荷载的反复作用下,会由于永久变形的累积而导致路表面出现车辙,车辙致使路表过量的变形,影响了路面的平整度;轮迹处沥青层厚度减薄,削弱了面层及路面结构的整体强度,从而易于诱发其它病害;雨天路表排水不畅,降低了路面的抗滑能力,甚至会由于车辙积水而导致车辆飘滑,影响了高速行车的安全;车辆在超车或更换车道时方向失控,影响了车辆操纵的稳定性。可见由于车辙的产生,严重影响了路面的使用寿命和服务质量。 3)泛油是由于交通荷载作用使混合料集料不断挤紧、空隙率减小,最终将沥青挤压到道路表面的现象。如果沥青含量太高或者空隙率太小这种情况会加剧。沥青移向道路表面令路面光滑,溜光的路面在潮湿气候时抗滑能力很差。沥青路面在高温时最容易发生泛油,因此限制沥青的软化点和它在60℃时的粘度可减少泛油情况的发生。 总之,车辙问题是沥青路面高温稳定性良好与否的集中体现,《公路沥青路面设计规》(JTJ014-97)规定“对于高速公路、一级公路的表面层和中面层的沥青混凝土作配合比设计时,应进行车辙试验,以检验沥青混凝土的高温稳定性。”因此,本章将对沥青路面的车辙作详细地阐述。 § 8.2 沥青路面车辙形成与标准 § 8.2.1 车辙形成机理 车辙是沥青路面在汽车荷载反复作用下产生竖直方向永久变形的累积。这种变形主要发

第4.4节 沥青混合料水稳定性试验检测方法

第四节沥青混合料水稳定性试验检测方法 由水引起的沥青路面损坏通称为水损坏,它是一个普通的问题,已引起世界各国的注意,道路工作者对此进行了广泛的研究,提出了许多理论方法。就评价沥青路面水稳性方面)通常采用的方法分为两大类:第一类是沥青与矿料的粘附性试验;这类试验方法主要是用于判断沥青与粗集料(不包含矿粉)的粘附性,属于这类的试验方法有水煮法和静态浸水法;第二类是沥青混合料的水稳性试验、这类试验方法适用于级配矿料与适量沥青拌和成混合料、制成试样后,测定沥青混合料在水的作用下力学性质发生变化的程度,这类方法与沥青在路面中的使用状态较为接近。测试方法有浸水马歇尔试验、真空饱水马歇尔试验以及冻融劈裂试验(“八五”攻关最新研究成果)。 一、沥青与矿料的粘附性试验方法 1.目的和适用范围 (1)沥青与矿料粘附性试验是根据沥青粘附在粗集料表面的薄膜在一定温度下,受水的作用产生剥离的程度,以判断沥青与集料表面的粘附性能。 (2)本方法适用于测定沥青与矿料的粘附性及评定集料的抗水剥离能力。根据沥青混合料的最大集料粒径,对于大于13.2mm及小于(或等于)13.2mm的集料分别选用水煮法或水浸法进行试验,对同一种料源既有大于又有小于13.2mm不同粒径的集料时,取大于13.2mm水煮法试验为标准,对细粒式沥青混合料以水浸法试验为标准。 2.仪具与材料 本试验需要下列仪具与材料: (1)天平:称量500g感量不大于0.01g。 (2)恒温水槽:能保持温度80℃±1℃。 (3)拌和用小型容器:5mL。 (4)烧杯:100mL。 (5)试验架。 (6)细线:尼龙线或棉线、铜丝线。 (7)铁丝网。 (8)标准筛9.5mm、13.2mm、19mm各1个(也可用圆孔筛:10mm、15mm、25mm 代替)。 (9)烘箱:装有目动温度调节器。 (10)电炉、燃气炉。 (11)玻璃板:200mm x 00mm左右。 (12)搪瓷盘:300mm x 400mm左右。 (13)其他:拌和铲、石棉网、纱布、手套等。 3.适用于大于13.2mm粗集料的试验方法(水煮法) (1)准备工作 ①将集料用13.2mm、19mm(或圆孔筛15mm、25mm)过筛,取粒径13.2-19mm(圆孔筛15-25mm)形状接近立方体的规则集料5个,用洁净水洗净,置温度为(105±5)℃的烘箱中烘干,然后放在干燥器中备用。 ②将大烧杯中盛水,并置加热炉的石棉网上煮沸。 (2)试验步骤 ①将集料逐个用细线在中部系牢,再置于105℃土5℃烘箱内1h。准备沥青试样。 ②逐个取出加热的矿料颗粒用线提起,浸人预先加热的沥青(石油沥青130℃-150℃、煤沥青100℃-110℃)试样中45s后,轻轻拿出,使集料颗粒完全为沥青膜所裹覆。 ③将裹覆沥青的集料颗粒悬挂于试验架上,下面垫一张废纸,使多余的沥青流掉,并在

沥青路面设计计算书

沥青路面结构设计与计算书 1 工程简介 本路段车站北路城市道路,采用二级标准.K0+000~K2+014.971,全线设计时速为40km/h。路基宽度为21.5m,机动车道宽度为2×7.5m,人行道宽度为2×2.5m,盲道宽度为2×0.75m。路面设计为沥青混凝土路面,设计年限为15年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:机动车道路面的面层采用4cm厚细粒式沥青混凝土AC-13和6cm厚中粒式沥青混凝土AC-20,基层采用20cm厚水稳砂砾(5:95),底基层采用20cm天然砂砾。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅵ区,当地土质为砂质土,由《公路沥青路面设计规(JTG D50-2006》表F.0.3查得,土基回弹模量在干燥状态取59Mpa. 3 设计资料 (1)交通量年增长率:6% 设计年限:15年 (2)初始年交通量如下表:

4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示。标准轴载计算参数如表10-1所示。 5.1.1 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 5.1.1.1 轴载换算

轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。 轴载换算结果表(弯沉) 注:轴载小于25KN 的轴载作用不计

《结构的强度和稳定性》教学设计电子教案

《结构的强度和稳定性》教学设计

《技术与设计2》第一章第三节《结构的强度和稳定性》教学设计 《结构的强度和稳定性》教学设计 一、教材分析: 本节是“地质出版社”出版的教材《技术与设计2》中第一章第三节《结构的强度和稳定性》。共需2课时完成。本课为第1课时的学习。该章的总体设计思路是:认识结构——探析结构——设计结构——欣赏结构。“结构”与“设计”是该章的两个核心概念,结构的强度和稳定性则是结构设计中需要考虑的重要因素之一,是对结构及受力认识的基础上作进一步深入的学习。 二、教学目标: 知识与技能: 1、理解内力、强度、应力的概念,能进行简单的应力计算,掌握应力和强度的关系。 2、通过实验,明确强度与材料、强度与物体的形状及连接方式的关系。培养学生合作交流能力,对身边事物的观察能力。 3、理解稳定性的概念,及影响稳定性的因素。 过程与方法:通过观察生活和技术实验等方法使学生懂得应用相关的理论知识。 情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。 三、教学重点与难点: 重点:影响结构强度和稳定性的主要因素。

难点:应力的计算,强度与应力的关系,结构设计需要在容许应力范围之内。 四、学情分析: 总体来说学生对通用技术这门课程比较感兴趣。他们的思维、生活经验已有一定基础,并在前面章节的学习中已经初步掌握了结构的一些相关知识,在此基础上帮助学生从其生活世界中选择通俗感兴趣的主题和内容,对结构问题进行进一步探讨,上升到理论的高度。 五、教学策略: 本课采用在教学中充分利用实验、讨论、小组合作的教学方法。多举生活中的案例,进行师生互动探讨,帮助学生加深对知识的理解。 六、教学安排 1课时 七、教学过程: (一)复习回顾,导入新课 教师引导学生回顾结构的概念,指出事物的性质:强度和稳定性 (二)知识构建 1、强度 对于结构变形,只给以“结实”“不结实”来评说是不够准确的,而对于结构的受力与变形应该有更科学的描述。通常,物体结构抵抗变形的能力,都以强度来表示,我们用应力来衡量强度。 (1)内力:外力使构件发生变形的同时,构件的内部分子之间随之产生一种抵抗变形的抵抗力,称为内力。

水泥基材料在高温下稳定性分析

水泥基材料在高温下稳定性分析 1前言 硅酸盐水泥、高铝水泥和硫铝酸盐水泥是工程应用中的三大系列水泥。硅酸盐水泥因原材料分布广,生产及实用技术最为成熟,而被世界范围广泛应用。高铝水泥以耐高温的特点多被应用于工业窑炉等高温环境下,但因其强度在长期使用过程中会出现衰减等现象,一般不被用于建筑结构工程中。硫铝酸盐水泥是我国拥有自主知识产权的第3系列水泥品种,主要以早强、低碱度等特点而应用于抢修工程和GRC制品中。3种水泥因矿物组成差异较大,导致由此制作的水泥基材料在宏观性能方面表现出不同的特点,已成为水泥工作者的一个重要研究课题。长期来,对水泥基材料常温下的性能和高温下强度方面的研究较多,对其在高温下受热膨胀方面的研究甚少,本文旨在研究用这3种水泥配制的水泥基材料热膨胀性能随温度变化的规律,分析其各自温度变化的敏感性,及其水化产物随温度的变化规律,为3种水泥在各种高温(或局部高温)工程中的应用提供理论依据。 滚焊机https://www.360docs.net/doc/111313548.html, 2实验 21原材料 普通硅酸盐水泥(P.O425R)(OrdinaryPortlandCement):河北省冀东水泥集团有限责任公司生产。熔融高铝水泥(CalciumAluminateCement):河南郑州登峰熔料有限责任公司生产。硫铝酸盐水泥(SulphoaluminateCement):河北唐山六九水泥有限公司生产。 3种水泥的矿物组成分别是:普通硅酸盐水泥以C3S,C2S,C3A和C4AF 为主;高铝水泥以CA,CA2和C2AS为主;硫铝酸盐水泥以C4A3S,C2S和C6AF2为主。 22实验方法、测试仪器 本实验选用的普通硅酸盐水泥、硫铝酸盐水泥和高铝水泥,3种水泥与水按质量比=028的相同水灰比拌合,并用专用成型模具(专利号ZL2006200002934)振动成型为7mm47mm尺寸试件,48h后脱模,标准养护至28d,真空(01MPa)干燥至恒重,测其热膨胀性能。试件热膨胀率测定是采用德国耐驰公司NETZSCHD/L402EP型示差热膨胀系数测定仪,分辨率为10nm、005,测试准确

沥青路面设计计算案例及沥青路面课程设计

a沥青路面设计计算案例 一、新建路面结构设计流程 (1)根据设计要求,按弯沉或弯拉指标分别计算设计年限内一个车道的累计标准当量轴次,确定设计交通量与交通等级,拟定面层、基层类型,并计算设计弯沉值或容许拉应力。 (2)按路基土类与干湿类型及路基横断面形式,将路基划分为若干路段,确定各个路段土基回弹模量设计值。 (3)参考本地区的经验和规范拟定几种可行的路面结构组合与厚度方案,根据工程选用的材料进行配合比试验,测定各结构层材料的抗压回弹模量、劈裂强度等,确定各结构层的设计参数。 (4)根据设计指标采用多层弹性体系理论设计程序计算或验算路面厚度。如不满足要求,应调整路面结构层厚度,或变更路面结构组合,或调整材料配合比,提高材料极限抗拉强度,再重新计算。 (5)对于季节性冰冻地区应验算防冻厚度是否符合要求。 (6)进行技术经济比较,确定路面结构方案。 需要注意的是,完成结构组合设计后进行厚度计算,厚度计算应采用专业设计程序。有关公路新建及改建路面设计方法、程序及相关要求详见《沥青路面设计规范》。 二、计算示例 (一)基本资料 1.自然地理条件 新建双向四车道高速公路地处Ⅱ2区,拟采用沥青路面结构进行施工图设计,填方路基高1.8m,路基土为中液限黏性土,地下水位距路床表面2.4m,一般路基处于中湿状态。 2.土基回弹模量的确定 该设计路段路基处于中湿状态,路基土为中液限黏性土,根据室内试验法确定土基回弹模量设计值为40MPa。 3.预测交通量 预测竣工年初交通组成与交通量,见表9-11.预测交通量的年平均增长率为5.0%.

(二)根据交通量计算累计标准轴次Ne ,根据公路等级、面层、基层类型及Ne 计算设计弯沉值。 解:1.计算累计标准当量轴次 标准轴载及轴载换算。 路面设计采用双轮组单轴载100KN 为标准轴载,以BZZ-100表示,根据《沥青路面设计规范》规定,新建公路根据交通调查资料,主要以中客车、大客车、轻型货车、中型货车、大型货车、铰链挂车等的数量与轴重进行预测设计交通量,即除桑塔纳2000外均应进行换算。计算公司为: 35.4121)(∑==n i i i P P n C C N 对于北京BJ130型轻型货车 前轴:C1=1,C2=6.4,Pi=13.4KN ,ni=260 N=C1×C2×ni ×(Pi/P )4.35=1×6.4×260×(13.4/100)4.35=0.3(次/d) 后轴:C1=1,C2=1,Pi=27.4KN ,P=100KN,ni=260 N=C1×C2×ni ×(Pi/P )4.35=1×1×260×(27.4/100)4.35 =0.9(次/d) 对于东风EQ140型中型货车 前轴:N=7.9(次/d) 后轴:N=133.9(次/d) 对于东风SP9250型铰接挂车 前轴:N=110(次/d) 后轴:N=1704.3(次/d) 对于黄海DD680型大客车 前轴:N=129.3(次/d) 后轴:N=305.8(次/d) 对于黄河JN163型重型货车 前轴:543.3(次/d) 后轴:N=1534.8(次/d) 对于江淮AL6600型中客车 前轴:N=0.6(次/d) 后轴:N=0.7(次/d) 合计:N=4471.8(次/d) 累计标准当量轴次Ne 。 沥青路面高速公路设计使用年限以15年计,车道系数η=0.45,则累计当量轴次为:

沥青路面高温稳定性影响因素分析

沥青路面高温稳定性影响因素分析 关键词高温稳定性高温车辙破坏沥青组分沥青混凝土组成设计 摘要本文从材料、结构等方面简要地介绍了沥青路面高温稳定性的影响因素,仅供大家参考。 沥青路面至问世以来以其优越的路面使用功能一直受到人们的青睐。但由于沥青路面材料与结构比较复杂,特别是沥青由于其成分为多种物质的混合物我们一直以来主要用它的物理性质来表征它,因此时至今日如何铺筑更好的沥青路面还是我们道路工作者研究的方向。 沥青路面破坏形式主要有高温车辙破坏、水损害(包括坑槽、松散等)、低温裂缝破坏、疲劳破坏等。但水损害和低温裂缝破坏主要是局部破坏,而疲劳破坏又取决于基层是否具有足够强度或沥青路面使用后期才产生疲劳破坏,只有沥青路面的高温稳定性造成的破坏是大面积的。沥青路面一旦出现高温稳定性破坏,在渠化交通的作用下将会出现较长段落乃至全线路的车辙和推移拥包以及路面构造深度消失抗滑性能迅速下降等破坏,严重影响交通安全和行驶的舒适性。因此,高温稳定性一直是沥青路面设计的重要指标,也是设计中的难点。 现在我们就沥青路面的高温稳定性影响因素做以简要的分析仅供各位同行参考。 一、材料因素 1、沥青 作为沥青路面的粘结剂,沥青品质的好坏是至关重要的。我国由

于石油工业发展较晚,最早铺筑的沥青路面是使用木焦油沥青,因此现在我们对沥青路面的俗称柏油马路还是木字旁。由于木焦油沥青含有较多的芳香烃高温稳定性极差,也就造成了早期的沥青路面人踩上去会留下鞋跟印。 (1)沥青组分影响 沥青是多种碳水化合物的混合物,是无定形物质,所以它没有明确的融点,随着测试温度的升高,沥青逐渐软化。我们只能人为规定在一特定实验条件下沥青达到规定的软硬程度时的条件温度为沥青的软化点,软化点是评价沥青高温性能的一个重要指标。沥青的主要成分为沥青质、树脂、芳香烃、饱和烃四大类,我们分别用x、y、z、w表示。研究表明,沥青的软化点是由沥青的组分决定,软化点可用下式表示,其误差的标准差为3℃。 T R&B=1.19x-6.71×10-1y-6.82×10-1z-8.38×10-2w+83.6 由此可见,沥青质含量对软化点的高低影响最大,随着低分子向高分子的转变,软化点也随之提高。沥青是粘弹性体,我们通常希望它在夏天硬一点软化点高一点,冬天软一点脆点低一点,但事实是软化点高的沥青,脆点也很高。因此,结合沥青的抗冻性指标我们在选择沥青时要兼顾其高低温性能。 (2)蜡的影响 从上个世纪60年代大庆油田开发以来,许多石蜡基原油生产的渣油、沥青的含蜡量高达10%以上,有的甚至达20%。尽管我们采取了很多措施如石蜡基原油炼制的渣油采取丙烷脱蜡工艺等,含蜡量

现行公路沥青路面设计实例计算书汇总

现行公路沥青路面设计实例计算书汇总 内容提要配合《公路沥青路面设计规范》(JTG D50-2017)和已发行的《公路水泥混凝土路面设计规范》(JTG D40-2011)的有关内容,东南大学编制了《公路路面设计程序系统》(HPDS2017),本文仅对其中公路沥青混凝土路面设计的实例计算进行详细汇总,供设计人员参考。 关键词公路沥青混凝土路面设计实例计算汇总 0 前言 《公路沥青路面设计规范》(JTG D50-2017)的设计方法与前规范有很大不同,为使设计人员较快掌握与之配套的《公路路面设计程序系统》(HPDS2017),特编本实例计算详细汇总。 表1 现行公路沥青路面设计实例计算书汇总表 1 新建二级公路计算书 (1)新建二级公路计算书: 一、交通量计算 公路等级二级公路 目标可靠指标 初始年大型客车和货车双向年平均日交通量(辆/日) 900 路面设计使用年限(年) 12 通车至首次针对车辙维修的期限(年) 12 交通量年平均增长率%

方向系数 .55 车道系数 1 整体式货车比例 45 % 半挂式货车比例 25 % 车辆类型 2类 3类 4类 5类 6类 7类 8类 9类 10类 11类 满载车比例 .1 .41 .12 0 .38 .59 .32 .47 .41 .42 初始年设计车道大型客车和货车年平均日交通量(辆/日) 495 设计使用年限内设计车道累计大型客车和货车交通量(辆) 2960466 路面设计交通荷载等级为轻交通荷载等级 当验算沥青混合料层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算无机结合料稳定层疲劳开裂时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +08 当验算沥青混合料层永久变形量时: 通车至首次针对车辙维修的期限内设计车道上的当量设计轴载累计作用次数为 7500888 当验算路基顶面竖向压应变时: 设计使用年限内设计车道上的当量设计轴载累计作用次数为 +07 二、路面结构设计与验算 路面结构的层数 : 5 设计轴载 : 100 kN 路面设计层层位 : 4 设计层起始厚度 : 200 (mm) 层位结构层材料名称厚度模量泊松比无机结合料稳定类材沥青混合料车辙试验 (mm) (MPa) 料弯拉强度( MPa) 永久变形量( mm )

地质版通用技术技术与设计结构的强度与稳定性说课稿

《结构的强度与稳定性》第二课时《结构与稳定》 说课稿(地质版) 主讲教师:五指山市五指山中学周世武 一、教学内容分析: 结构稳定性既是“第一章结构与设计”的重难点也是《技术与设计2》的一个重要的技术原理。本单元总的设计思路是:初识结构——分析结构——结构设计——欣赏结构,“结构”和“设计”共同构成“结构与设计”两个核心概念,而结构的稳定性是结构的重要性质之一,结构体现了空间的概念,因此,本节内容在《结构与设计》中起到举足轻重的作用,本节主要包括稳定性的概念、影响结构稳定性的因素两个部分。教材通过技术实验、阅读资料、问题思考、技术实习、试一试、调查研究及讨论交流等手段引导学生理解结构的稳定性技术原理,并探究影响结构稳定性的主要因素,这样不仅可以使学生对结构的这个技术原理有更深的认识,而且也给结构的设计等奠定了良好基础。 二、教学目标 (一)知识与技能 1、理解稳定与结构稳定的概念 2、掌握影响结构稳定性的因素 3、能运用影响结构稳定性的因素来判断结构的稳定性,并如何增加结构稳定性提出自己的看法。 4、在教学过程中培养同学们合作交流能力,要鼓励学生表达自己的认识和判断形成实事求是的科学态度。 (二)、过程与方法:通过观察生活和技术实验等方法使学生懂得应用结构的相关的理论知识。 (三)、情感态度价值观:让学生亲身体验注重交流,通过分析讨论得到结论,培养学生的观察分析能力,合作交流能力。增强主动参与意识,并渗透安全教育、德育教育。 三、学生分析: 在学习本节课之前,学生对于什么是结构的稳定状态,已经有了一定的感性认识。例如,物体的倒与不倒。但这样的认识是比较片面的,结构的稳定性问题不仅仅是解决结构的倒与不倒的问题。所谓结构的稳定性是指“结构在负载的作用下维持其原有平衡状态的能力,即受外力后恢复原有平衡状态的能力”。所以,在提出结构稳定概念时要着重解决学生在认识上的误区。

沥青路面设计指标计算

新建路面结构设计指标与要求 一、沥青路面结构设计指标 沥青路面结构设计应满足结构整体刚度、沥青层或半刚性基层抗疲劳开裂和沥青层抗变形的要求。应根据道路等级选择路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力和沥青层剪应力作为沥青路面结构设计指标,并应符合下列规定: 1 快速路、主干路和次干路采用路表弯沉值、沥青层层底拉应变、半刚性材料基层层底拉应力、沥青层剪应力为设计指标。 2 支路可仅采用路表弯沉值为设计指标。 3 可靠度系数可根据当地相关研究成果选择; 当无资料时可按下表取用 可靠度系数 二、沥青路面结构设计的各项设计指标应符合下列规定: 1 轮隙中心处路表计算的弯沉值应小于或等于道路表面的设计弯沉值,应满足下式要求: γa l s≤l d 式中:γa——沥青路面可靠度系数; l s ——轮隙中心处路表计算的弯沉值(0.01mm); l d——路表的设计弯沉值(0.01mm); 2 柔性基层沥青层层底计算的最大拉应变应小于或等于材料的容许拉应变,

应满 足下式要求: γaεt≤[εR ] 式中:εt——沥青层层底计算的最大拉应变; [εR ] ——沥青层材料的容许拉应变。 3 半刚性材料基层层底计算的最大拉应力应小于或等于材料的容许抗拉强度,应满足下式要求: γaσm≤[σR] 式中:σm——半刚性材料基层层底计算的最大拉应力(MPa); [σR]——路面结构层半刚性材料的容许抗拉强度(MPa)。 4 沥青面层计算的最大剪应力应小于或等于材料的容许抗剪强度,应满足下式要求: γaτm≤[τR] 式中:τm——沥青面层计算的最大剪应力(MPa); [τR]——沥青面层的容许抗剪强度(MPa)。 三、沥青路面表面设计弯沉值应根据道路等级、设计基准期内累计当量轴次、面层和基层类型按下式计算确定: l d=600 N e-0.2A c A s A b 式中:A c ——道路等级系数,快速路、主干路为1.0,次干路为1.1,支路为 1.2; A s ——面层类型系数,沥青混合料为1.0,热拌和温拌或冷拌沥青碎石、 沥青表面处治为1.1;

沥青路面设计计算书

沥青路面设计计算书

沥青混凝土路面的结构设计 一、标准轴载换算 标准轴载计算参数(BZZ-100) ()KN P 标准轴载() MPa P 轮胎接地压强100 7 .0() cm d 单轮压面当量直径() cm 两轮中心距30 .21d 5.1 根据公式(12-30) ∑== k i i i p p n c c 1 35 .421)( N i n ——各级轴载作用次数; p ——标准轴载; i p ——被换算车型的各级轴载; 1c ——轴数系数,)(1m 2.111-+=c m 为轴数;2c ——轮组系数,双轮组取为1; 将各种不同重量的汽车荷载换算成标准轴载。 车型 轴重(KN ) 次数/日 1 c 2 c 标准轴次/日 江淮AL6600 50 300 1 1 14.71095184 黄海DD680 60 200 1 1 21.67643885 北京BJ130 70 300 1 1 63.57666297 东风EQ140 80 400 1 1 151.530981 黄海JN163 90 499 1 1 315.540756 东风SP925 100 200 1 1 200 总计 865.4275468 根据公式(12-31)()111365 N t e N γηγ ??+-???=(η——车道系数,取值0.45) 推算设计年限期末一个车道上的累计当量轴次 N e ,。

得:N e= ()15 10.041365 865.430.45 0.04 ?? +-? ????=2846290=285(万次) 二、路面结构方案 方案一: cm 细粒式沥青混凝土4 cm 中粒式沥青混凝土6 cm 粗粒式沥青混凝土8 25cm 水泥稳定碎石 水泥石灰沙砾土层? 土基 方案二: cm 细粒式沥青混凝土4 cm 中粒式沥青混凝土8 cm 粗粒式沥青混凝土15 cm 密集配碎石? 水泥稳定沙砾18cm 土基 路面材料设计参数如下: 材料名称 抗压回弹模 量 劈裂强度 (MPa) 15℃ 高温时参数 20 ℃ 15 ℃ Ev(MP a) C (MPa) ? 细粒式沥青混凝土 12 00 18 00 1.2 750 0.3 34 中粒式沥青混凝土 10 00 16 00 0.9 600 粗粒式沥青混凝土80 12 00 0.6 500

沥青混合料高温稳定性能论文

沥青混合料高温稳定性能研究 摘要:高温稳定性一直以来都是沥青路面研究的重点,车辙问题在各等级公路中也是层出不穷。本文从沥青路面车辙的形成入手,就材料、路面结构和外部因素三方面分析了车辙的影响因素,最后提出了一些解决沥青路面高温稳定性问题的方法。 关键词:沥青路面形成车辙高温稳定性 abstract: the high temperature stability has been the focus of research of asphalt pavement, the rut in the level of highway problem is endless. this article from the formation of the asphalt pavement of rut, materials, pavement structure and external factors in the analysis of three rut influence factor, finally puts forward some solving the asphalt pavement of high temperature stability method. keywords: asphalt road surface wheel rut form high temperature stability 中图分类号:u416.217 文献标识码:a文章编号: 1. 引言 随着高速公路在我国的大规模修建,沥青路面的使用性能越来越受到重视。在我国高等级公路的路面结构中,绝大多数的路面都是沥青路面,许多路面在通车后不久就出现了泛油、坑槽、车辙、开裂等病害现象,其中最为严重的就是车辙病害。

沥青混凝土的高温稳定性分析_郭慧萍

沥青混凝土的高温稳定性分析 郭慧萍 摘 要:分析了由沥青混凝土的高温稳定性不良引起的病害,介绍了车辙的概念、成因及特征,并对如何提高沥青混凝土的高温稳定性,预防车辙现象发生,提出了合理化建议,以延长沥青混凝土道路的使用寿命。 关键词:粘度,稳定性,剩余空隙率 中图分类号:T U535文献标识码:A 沥青混凝土是一种典型的流变性材料,它的强度随着温度的升高而降低。沥青路面的稳定性要求可以概括为:高温稳定性(或称热稳定性)、低温稳定性、抗疲劳稳定性以及水稳定性。 1 沥青混凝土的高温稳定性不良引起的病害 沥青混凝土路面在夏季高温时,在重交通的重复作用下,由于交通的渠化,在轮迹带逐渐形成变形下凹,两侧鼓起所谓的 车辙 ,这是现代高等级沥青路面最常见的病害。车辙的出现,是行车荷载多次重复作用下路面塑性变形(包括压密和剪切变形)逐步积累的结果,即便路面具有足够的刚度,每一次行车荷载作用下产生的塑性变形量极小,但多次重复作用后累计而达到的量是相当可观的,特别在高温和轮压大时,沥青层蠕变而积累的塑性变形量是比较大的。虽然路面并未出现很大的凹陷和隆起变形,但轮迹处(特别在渠化交通的情况下)出现相对其两侧来说较大的变形(10mm~20mm以内),从而在纵向形成车辙。所以,沥青混凝土面层在行车荷载作用下产生的蠕变是车辙的主要原因。 1.1 病害破坏分析 沥青路面的重要特点之一是其力学强度和变形性能受应力状况和温度变化的影响很大。具体的讲,是其强度和抵抗变形的能力都随温度的升高而显著降低,其抗压强度和抗弯刚度都可因温度变化而相差几倍到几十倍,故当沥青面层在高温下的抗压强度和刚度不足时,就会在停车场、交叉口和车辆经常换挡变速的路段上出现推移、车辙和壅包等病害。从我国沥青路面的破坏现象分析,车辙问题尤为突出。在一般情况下,我国沥青路面的车辙有三种类型:流动性车辙、结构性车辙以及由于施工不良造成的非正常车辙。在我国,由于基层基本上是半刚性基层,车辙基本上都属于第一种类型即流动性车辙。 1.2 病害成因分析 沥青混凝土的侧向流动变形,也称失稳性车辙。在高温条件下,车轮碾压反复作用,荷载应力超过沥青混合料的稳定度极限,使流动变形不断累积形成车辙。一方面是车轮作用部位下凹,另一方面由于车轮作用甚少的车道两侧反而向上隆起,在弯道处还明显向外推挤,车道线及停车线因此可能成为变形的曲线。无疑说明,发生这部分车辙的原因主要取决于沥青混合料的流动特征。这种车辙一般都有两侧隆起现象,对主要行驶双轮车的路段,车辙断面呈W形,对主要行驶宽幅单轮车的路段,车辙呈非对称形状。它尤其容易发生在上坡路段、交叉口附近,即车速慢、轮胎接地产生横向应力大的地方。 1.3 病害特征分析 1)车辙的严重程度与沥青面层的结构组成和配合比有极大关系;2)车辙形成的部分原因是由于雨水渗透浸蚀了基层表面的粉料,使其软化进而形成车辙;3)沥青面层在行车荷载作用下产生的蠕变是车辙的主要原因,半刚性基层的变形很小或基本没有压缩变形,从我国现有高等级公路的情况来看,车辆大部分行驶行车道上,交通渠化明显,车辙主要出现在行车道上,超车道还没有明显车辙。 2 如何提高沥青混合料高温稳定性 提高沥青混合料的高温稳定性是防治车辙最有效的途径。沥青混合料是一种粘弹塑性材料,对密级配沥青混凝土来说,尤其是较高路面温度条件下,可将它看成是一种单纯的热流变形材料,完全适用于沥青的流变学原理。此时弹性因素相对较弱,粘性因素起主导作用。矿料级配和沥青粘度及粉胶比是影响沥青混合料抗车辙能力的因素。 2.1 采用新型多碎石沥青混凝土SAC 尽管车辙容易发生,但是合理设计路面结构层次及矿料配合比,采取正确的施工方法,合理进行养护,都是预防车辙产生的有效手段。如:在半刚性基层上的沥青路面,既有抗裂问题,又有抗车辙问题,因此进行沥青混合料配合比设计时,应兼顾这两者的矛盾,综合考虑。集料级配细对抗裂有利,但不利于抗车辙;集料级配偏粗,对抗裂不利,但对抗车辙有利。因此,建议面层采用连续级配的中粒式或粗粒式沥青混凝土以承担疲劳、耐久、防渗任务,采用折断型级配沥青混凝土作为防滑耐磨层,这样就可满足抗车辙、抗裂、防水、抗滑、耐磨等要求。过去 型沥青混凝土的优点是透水性小和耐久性好,细颗粒含量多,具有较小的空隙率。缺点是表面构造深度达不到要求。 型沥青混凝土的优点是具有较好的表面构造深度,能达到规定的要求,而且抗变形能力较强。缺点是空隙率较大,透水性和耐水性差。多碎石沥青混凝土结合了 型和 型的优点,同时避免了两者的缺点。这种结构自1988年铺筑试验段以来,已得到成功应用,尤其在河北省境内高速公路应用较为广泛,在设计上,用SA C取代AC值得借鉴。 2.2 提高沥青高温粘度 对密级配沥青混凝土来说,提高沥青高温粘度是防治车辙最有效的措施。提高沥青高温粘度有两条途径:1)选用高粘度的沥青,如日本的重交通道路沥青AC-100、英国的重交通道路沥青HD-40;2)在沥青中掺加各种类型的改性剂。我国几种用稠油炼制的交通道路沥青均有较高的高温粘度,克拉玛依稠油沥青、欢喜岭稠油沥青的60 粘度均比国外进口的一些同标号沥青粘度大,故而有较好的高温稳定性。选择质量好的原油,采用合理的工艺则对抗车辙能力和抗裂性能都将产生很好的效果。如丙烷脱沥青降低含蜡量,半氧化沥青提高温度稳定性等。因此,选择原油资源,合理利用稠油资源,做到分采、分输、分炼的工艺,生产

相关文档
最新文档