SMP04采样保持器
华为光传输设备检修标准化作业指导书

华为光传输设备检修标准化作业指导书目次1 范围22 规范性引用文件23 术语和定义24 检修前准备24.1 准备工作安排24.2 劳动组织及人员要求24.2.1 劳动组织24.2.2 人员要求34.3 备品备件与材料34.4 工器具与仪器仪表94.5 技术资料114.6 安全设施布置图114.7 检修前设备设施状态114.8 风险分析与预防控制措施125 流程图125.1 检修组织流程图125.2 检修作业流程图126 检修程序与作业规范127 报告与记录248 绩效指标24前言本标准化作业指导书是为规范华为光传输设备检修标准化作业而制定的。
制定本标准化作业指导书的目的是指导华为光传输设备检修现场作业的全过程控制,体现对设备及人员行为的全过程管理,保证现场作业过程的安全和质量,优化作业方案,提高效率,降低成本。
华为光传输设备检修标准化作业指导书1 范围本标准化作业指导书规定了华为光传输设备检修标准化作业的检修前准备、检修作业流程图、检修程序与作业规范、风险分析与预防控制措施、报告与记录、绩效指标等内容。
本标准化作业指导书适用于华为光传输设备检修标准化作业。
2 规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本〔包括所有的修改单适用于本文件。
DL/T 547-2012 电力系统光纤通信运行管理规程Q/GDW 721-2012 电力通信现场标准化作业规范3 术语和定义下列术语和定义适用于本标准化作业指导书。
3.1通信检修作业通信检修作业是指对通信线路、通信设备、通信电源、网络管理系统等进行检查、检修及数据配置,需要进行设备硬件操作和数据配置操作,通常会改变设备、网络运行状态。
4 检修前准备4.1 准备工作安排根据工作安排合理开展准备工作,见表1。
表1 准备工作安排4.2 劳动组织及人员要求劳动组织明确了工作所需人员类别、人员职责和作业人员数量,见表2。
2.3采样保持器

•
•
•
•
•
•
•
•
捕捉时间不影响采样精度,但对采样频率的提高有影响。如果采样/
保持器在保持状态时的输出为-FSR,而在保持状态结束时输入已变至
+FSR,则以保持状态转至跟踪状态采样/保持器所需的捕捉时间最长,
产品手册上给出的tAC就是指这种状态的值。
使用采样/保持器后,系统能对频率不高于12.44kHz
正的信号进行采样,使系统可采集的信号频率提高了
许多倍,大大改善了系统的采样速率。
由采样定理可知,一个有限带宽的模拟信
号是可以在某个采样频率下重新恢复而不丧失
任何信息的,该采样频率至少应两倍于最高信
号频率。这意味着带采样/保持器的数据采集
系统必须在速率至少为两倍的信号频率下采样、
知的捕捉时间tAC=6μs,孔径时间tAP=50ns,
ADC0804的转换时间conv=100μs(时钟频率
为640kHz),计算系统可采集的最高输入信
号频率。
• AD582
• 解:tAP与tAC和tCONV相比,可以忽略。
根据式(5—7)可知
fmax=1/2(tAC+tCONV)=1/2*(6*106+100*10-6)=4.72*103(Hz)
• •设保持电容原先的保持电压为+5V,当由保持
状态转为跟踪状态时,采样/保持器输入电压
为-5V。
• 经过一段时间跟踪,电容器电压变为-5V,然
后又转为保持状态。这时,电容器电压会逐渐
向+5V方向变动,使保持电压发生变动,从而
产生误差。
符合高精度要求的电容器
采样保持器各IC型号

采样保持器各IC型号序号IC型号描述1ad1154Low Cost, 16-Bit Accurate Sample-and-Hold Amplifier 2ad1154ad$StartFalse3ad1154aw Sample/Track-and-Hold Amplifier4ad1154bd$StartFalse5ad1154bw Sample/Track-and-Hold Amplifier6ad386bd$StartFalse7ad386td Sample/Track-and-Hold Amplifier8ad386td/883b$StartFalse9ad582kd Sample/Track-and-Hold Amplifier10ad582kh$StartFalse11ad582sd Sample/Track-and-Hold Amplifier12ad582sd/883b$StartFalse13ad582sh Sample/Track-and-Hold Amplifier14ad582sh/883b$StartFalse15ad583kd Sample/Track-and-Hold Amplifier16ad585achips$StartFalse17ad585aq/+Sample/Track-and-Hold Amplifier18ad585schips$StartFalse19ad585se/883b Sample/Track-and-Hold Amplifier20ad585sq/883b$StartFalse21ad681aq Sample/Track-and-Hold Amplifier22ad681sq$StartFalse23ad682an Sample/Track-and-Hold Amplifier24ad682jn$StartFalse25ad682sq Sample/Track-and-Hold Amplifier26ad683aq$StartFalse27ad683sq Sample/Track-and-Hold Amplifier28ad684sq/883b$StartFalse29ad783an Sample/Track-and-Hold Amplifier30ad783jn$StartFalse31ad783sq Sample/Track-and-Hold Amplifier32ad783sq/883b$StartFalse33ad9100Ultrahigh Speed Monolithic Track-and-Hold 34ad9100*$StartFalse35ad9100ad Ultrahigh Speed Monolithic Track-and-Hold 36ad9100jd$StartFalse37ad9100sd Ultrahigh Speed Monolithic Track-and-Hold 38ad9100se/883b$StartFalse39ad9101125 MSPS Monolithic Sampling Amplifier40ad9101ae$StartFalse41ad9101ar125 MSPS Monolithic Sampling Amplifier 42ad9101se$StartFalse43adh-050Sample/Track-and-Hold Amplifier44adh-050-883b$StartFalse45adh-051Sample/Track-and-Hold Amplifier46adh-051-883b$StartFalse47ah20016Sample/Track-and-Hold Amplifier48ah201-1$StartFalse49ah201-2Sample/Track-and-Hold Amplifier50al1210ar$StartFalse51al1210-die Sample/Track-and-Hold Amplifier52al1210es$StartFalse53al1210jr Sample/Track-and-Hold Amplifier54al1210se$StartFalse55al1210sj Sample/Track-and-Hold Amplifier56cds-1401mc$StartFalse57cds-1401mm Sample/Track-and-Hold Amplifier59cs3101-kd Sample/Track-and-Hold Amplifier60cs3101-td$StartFalse61cs3112-bd1Sample/Track-and-Hold Amplifier62cs3112-kd1$StartFalse63cs3112-kd2Sample/Track-and-Hold Amplifier64cs3112-td1$StartFalse65cs31412-bc1Sample/Track-and-Hold Amplifier66cs31412-bd$StartFalse67cs31412-kc1Sample/Track-and-Hold Amplifier68cs31412-kc2$StartFalse69cs31412-kd Sample/Track-and-Hold Amplifier70cs31412-tc1$StartFalse71cs31412-td Sample/Track-and-Hold Amplifier72dgl-13-1$StartFalse73dgl-13-1-883b Sample/Track-and-Hold Amplifier74dgl-13-3$StartFalse75dgl-13-3-883b Sample/Track-and-Hold Amplifier76ha1-2420-2$StartFalse77ha1-2425-5 3.2レs Sample and Hold Amplifiers78ha1-5320-2$StartFalse79ha1-5320-5 1 Microsecond Precision Sample and Hold Amplifier 80ha1-5330-2$StartFalse81ha1-5330-5650ns Precision Sample and Hold Amplifier82ha-2420$StartFalse83ha-2425 3.2レs Sample and Hold Amplifiers84ha3-2425-5$StartFalse85ha3-5320-5 1 Microsecond Precision Sample and Hold Amplifier 86ha3-5330-5$StartFalse87ha4p2425-5 3.2レs Sample and Hold Amplifiers89ha-5330650ns Precision Sample and Hold Amplifier90ha9p2425-5$StartFalse91ha9p5320-5 1 Microsecond Precision Sample and Hold Amplifier 92ha9p5320-9$StartFalse93hs346b Sample/Track-and-Hold Amplifier94hs346c$StartFalse95hs9704b Sample/Track-and-Hold Amplifier96hs9704c$StartFalse97hs9705b Sample/Track-and-Hold Amplifier98hs9705c$StartFalse99hs9714k Sample/Track-and-Hold Amplifier100hs9714tb$StartFalse101hs9716k Sample/Track-and-Hold Amplifier102hs9716tb$StartFalse103hs9720k Sample/Track-and-Hold Amplifier104hs9720tb$StartFalse105htc-0300a Ultrahigh-Speed Hybrid Track-and-Hold Amplifiers106htc-0300am$StartFalse107htc-0300am/883b Ultrahigh-Speed Hybrid Track-and-Hold Amplifiers108htc-0300atd/883b$StartFalse109htc-0500am Sample/Track-and-Hold Amplifier110htc-0500sm$StartFalse111hts-0010Ultra High Speed Hybird Track-and Hold Amplifiers112hts-0010kd$StartFalse113hts-0010sd Ultra High Speed Hybird Track-and Hold Amplifiers115hts-0025m Ultra High Speed Hybird Track-and Hold Amplifiers116hv257$StartFalse117hv257fg32 CHANNEL HIGH VOLTAGE SAMPLE AND HOLD AMPLIFIER ARRAY 118hv257x$StartFalse119lf198MONOLITHIC SAMPLE AND HOLD CIRCUITS120lf198/bgc$StartFalse121lf198a Precision Sample and Hold Amplifier122lf198ah Monolithic Sample-and-Hold Circuits123lf198al Sample/Track-and-Hold Amplifier124lf198fe$StartFalse125lf198h Monolithic Sample-and-Hold Circuits126lf198h/883Monolithic Sample-and-Hold Circuits127lf198l$StartFalse128lf298MONOLITHIC SAMPLE AND HOLD CIRCUITS129lf298fe Sample-and-hold amplifiers130lf298h$StartFalse131lf298hb Sample/Track-and-Hold Amplifier132lf298m$StartFalse133lf298n Sample-and-hold amplifiers134lf398$StartFalse135lf398a$StartFalse136lf398ah$StartFalse137lf398ah/a+$StartFalse138lf398al Sample/Track-and-Hold Amplifier139lf398an$StartFalse140lf398an/a+Sample/Track-and-Hold Amplifier141lf398an/b+$StartFalse142lf398an8Precision Sample and Hold Amplifier143lf398d$StartFalse144lf398d-t Sample/Track-and-Hold Amplifier145lf398fe$StartFalse146lf398h Monolithic Sample-and-Hold Circuits 147lf398h/a+Sample/Track-and-Hold Amplifier148lf398hb$StartFalse149lf398jg Sample/Track-and-Hold Amplifier150lf398l$StartFalse151lf398m Monolithic Sample-and-Hold Circuits 152lf398mx$StartFalse153lf398n MONOLITHIC SAMPLE AND HOLD CIRCUITS 154lf398n/a+Sample/Track-and-Hold Amplifier155lf398n/b+$StartFalse156lf398n8Precision Sample and Hold Amplifier 157lf398nb$StartFalse158lf398p Sample/Track-and-Hold Amplifier159lf398s8$StartFalse160lf39j8Precision Sample and Hold Amplifier 161lf6197$StartFalse162lf6197ccj$StartFalse163lf6197j$StartFalse164lh0053g-mil Sample/Track-and-Hold Amplifier165max5165$StartFalse166max5165lccm 32-Channel Sample/Hold Amplifier with a Single Multiplexed Input167max5165lecm$StartFalse168max5165mccm 32-Channel Sample/Hold Amplifier with a Single Multiplexed Input169max5165mecm$StartFalse170max5165nccm 32-Channel Sample/Hold Amplifier with aSingle Multiplexed Input171max5165necm$StartFalse172max516632-Channel Sample/Hold Amplifier with Four Multiplexed Inputs173max5166lccm$StartFalse174max5166lecm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs175max5166mccm$StartFalse176max5166mecm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs177max5166nccm$StartFalse178max5166necm 32-Channel Sample/Hold Amplifier with Four Multiplexed Inputs179max5167lccm$StartFalse180max5167lecm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 181max5167mccm$StartFalse182max5167mecm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 183max5167nccm$StartFalse184max5167necm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 185max5168$StartFalse186max5168lccm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 187max5168lecm$StartFalse188max5168mccm SAMPLE/TRACK-AND-HOLD AMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 189max5168mecm$StartFalse190max5168nccm SAMPLE/TRACK-AND-HOLDAMPLIFIER|32-CHANNEL|BICMOS|QFP|48PIN|PLASTIC 191max5168necm$StartFalse192ne5537Sample-and-hold amplifier193ne5537d$StartFalse194ne5537n Sample-and-hold amplifier195se5537$StartFalse196se5537fe Sample-and-hold amplifier197vn1025cc$StartFalse198vn1025ci Sample/Track-and-Hold Amplifier 199vn1025cm$StartFalse200vn1025dc Sample/Track-and-Hold Amplifier 201vn1025di$StartFalse202vn1025dm Sample/Track-and-Hold Amplifier 203vn1025mc$StartFalse204vn1025mi Sample/Track-and-Hold Amplifier 205vn1025mm$StartFalse206vn1025sc Sample/Track-and-Hold Amplifier 207vn1225cc$StartFalse208vn1225ci Sample/Track-and-Hold Amplifier 209vn1225cm$StartFalse210vn1225dc Sample/Track-and-Hold Amplifier 211vn1225di$StartFalse212vn1225dm Sample/Track-and-Hold Amplifier 213vn1225sc$StartFalse厂家Analog DevicesAnalog Devices Analog Devices Analog Devices Analog Devices Analog DevicesIntersil CorporationIntersil CorporationIntersil Corporation Intersil CorporationIntersil Corporation Intersil CorporationIntersil Corporation Intersil CorporationAnalog Devices Analog DevicesAnalog Devices Analog Devices Analog Devices Supertex, Inc ETCLinear Technology National Semiconductor National Semiconductor National SemiconductorETCPhilips Semiconductors Philips SemiconductorsLinear Technology National SemiconductorNational Semiconductor ETCLinear Technology Linear Technology Maxim IntegratedProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsMaxim Integrated ProductsPhilips SemiconductorsPhilips SemiconductorsPhilips Semiconductors。
MXT2043中文手册

第1页
北京时代民芯科技有限公司产品手册
MXT2043
14 位 3MHz 模数转换器
4、信号说明与封装管腿
管脚号
1 2,29
3 4,28
5 6 7 8—10 11 12—23 24 25
符号
DVSS
AVSS DVDD AVDD DRVSS DRVDD CLK
NC BIT14 BIT13—BIT2 BIT1 OTR
91 -78 40 40 1 40 167
19
单位
dB dB 位 dB dB MHz MHz ns ps ns ns ns ns ns
最大值
6.0 VS +0.3 VS +0.3
150 300 175
单位
V V V ℃ ℃ ℃
推荐工作条件
参数
电源电压 模拟输入电压 工作环境温度 工作频率
符号
VS VIA TA
内参考 外参考 VREF=1.0V VREF=2.5V 1V 模式 2.5V 模式
极限值
最小
0.986 2.465 4.75 4.75 4.75
最大
14 3 ±2.5 ±1.0 ±0.3 ±1.5 ±0.75 14 位 3.0 20.0 5.0 2 5 1.014 2.535 5.25 5.25 5.25
第5页
IAVDD IDRVDD IDVDD
VOH VOL VIH VIL IIH │IIL│
IOH=-0.5mA IOL=+1.6mA CMOS 接口 CMOS 接口 VI=VDD VI=VSS
交流参数
参数
符号
信噪比 信噪失真比 有效位 无杂散动态范围 总谐波失真
动态性能
取样探头 222.15 17 20 21 31 35 安装及使用说明书

取样探头222.15/17/20/21/31/35安装及使用说明书BC460017, 07/2017 Art. Nr. 90 31 059Bühler Technologies GmbH, Harkortstr. 29, D-40880 RatingenTel. +49 (0) 21 02 / 49 89-0, Fax. +49 (0) 21 02 / 49 89-20AP000005请在安装和使用前仔细阅读此手册。
敬请特别注意所有安全守则,以避免不必要的意外伤害事故。
Bühler Technologies GmbH /德国比勒科技有限责任公司对由不当操作以及在未授权情况下擅自改动机器设备所引起的后果不承担任何责任。
目录页1概述 (4)2重要注意事项 (4)2.1安全注意事项概述 (5)3铭片说明 (6)4产品说明 (6)4.1概述 (6)4.2发货内容 (6)5运输及存储要求 (7)6安装及线路连接 (7)6.1安装 (7)6.2探管的连接 (8)6.2.1样气管的连接 (9)6.2.2校正气体管的连接(可选) (9)6.3反吹和反吹气罐的连接(适用于 GAS 222.21, 31 和 35) (9)6.4电子线路连接 (10)6.4.1型号 GAS 222.15 / GAS 222.17 (10)6.4.2型号 GAS 222.20, 21, 31, 35 (10)6.4.3加热反吹气罐(可选) (11)6.4.4加热扩展件(可选) (11)7操作与维护 (11)7.1安全条款 (11)7.2操作前请检查 (12)7.3探头GAS 222.20, 21, 31, 35 上控制器的功能 (13)7.3.1所有控制器的功能 (13)7.3.2加热扩展件的内置控制器的更多功能(可选) (13)7.3.3内置反吹控制器的功能 (13)7.3.4附加PCB电路板用于电磁阀和限位开关(可选电磁阀控制板) (13)7.4滤芯的维护: (13)7.4.1带顺流过滤器的探头GAS 222.15 (13)7.4.2使用玻璃纤维滤芯的顺流过滤器 (14)7.4.3带顺流过滤器的探头GAS 222.17, 20 和 21 (14)7.4.4带直插过滤器的探头GAS 222.21, 31 和 35 (15)7.5工艺管道中直插过滤器的反吹 (16)7.5.1手动反吹 (16)7.5.2自动反吹 (16)7.5.3内置反吹控制器 (17)7.6控制器的设置 (18)7.6.1菜单选项 (18)7.6.2操作原则详述 (19)7.6.3菜单功能说明 (20)7.6.3.1主菜单 (20)7.6.3.2探头控制器的子菜单(Display: Prob) (21)7.6.3.3加热扩展件控制器的主菜单(display: Adon) (可选) (21)7.6.3.4反吹控制器的子菜单(display: bbc) (可选) (22)8故障及故障排除 (23)8.1备件 (24)9维修及报废处理 (24)9.1报废处理 (24)10制图,证明,数据表 (25)10.1接线图 GAS 222.15/17 (25)10.2接线图 GAS 222.20, 21, 31, 35 (26)10.3加热气罐的连线图 (27)10.4附加文件 (27)1 概述GAS 222.xx系列探头设计安装于气体分析系统内部。
采样/保持器.ppt

2020/5/13
15
孔径时间 tAP(Aperture time)
Vo max Vm
tAP
2
ftAP
1 2n1
由此可得
f
1
2n2 tAP
2020/5/13
16
孔径时间 tAP(Aperture time)
如 AD582的tAC在CH= 100pF,10 V阶跃输 入,0.l%的逼近误差时为 6μs,而 CH=1000pF,0.01%的逼近误差时为 25μs。 通常 用τ=RCH来估算捕捉时间tAC 。式中 R为充电回路中的电阻值,CH为保持电容 值,若要求逼近精度为0.l%,则电容至少 应充电到稳态值的99.9%,tAC=7τ;逼近精 度为 0.05%,则tAC= 7.6τ。
馈送误差常用输入电压的百分数或分贝值来
表示,它主要取决于开关的极间电容和保持
电容的比值。
2020/5/13
A1
S/H
A/D
I/O
A2
S/H
A/D
I/O
…
…
…
…
An
S/H
A/D
I/O
并行多通道A/D
A1
S/H
A2
S/H
…
…
An
S/H
多路
开关
A/D
I/O
MUX
共享A/D的多通道
CPU CPU
A1
多路
开关
A2
MUX
S/H
A/D
I/O
CPU
…
An
2020/5/13
共享S/H和A/D的多通道
采样保持器

采样保持器采样保持器计算机系统模拟量输入通道中的一种模拟量存储装置。
它是连接采样器和模数转换器的中间环节。
采样器是一种开关电路或装置,它在固定时间点上取出被处理信号的值。
采样保持器则把这个信号值放大后存储起来,保持一段时间,以供模数转换器转换,直到下一个采样时间再取出一个模拟信号值来代替原来的值。
在模数转换器工作期间采样保持器一直保持着转换开始时的输入值,因而能抑制由放大器干扰带来的转换噪声,降低模数转换器的孔径时间,提高模数转换器的精确度和消除转换时间的不准确性。
一般生产过程控制计算机的模拟量输入可能是每秒几十点、几百点,对于大型系统甚至上千点,往往需要高速采样(如5000~10000点/秒)。
为使这些模拟量信号逐个地送到模数转换器,而不至降低被测信号的真实性,必须采用采样保持器。
在低速系统中一般可以省略这种装置。
原理采样保持电路由模拟开关、存储元件和缓冲放大器A组成。
在采样时刻,加到模拟开关上的数字信号为低电平,此时模拟开关被接通,使存储元件(通常是电容器)两端的电压UB随被采样信号UA变化。
当采样间隔终止时,D变为高电平,模拟开关断开,UB则保持在断开瞬间的值不变。
缓冲放大器的作用是放大采样信号,它在电路中的连接方式有两种基本类型:一种是将信号先放大再存储,另一是先存储再放大。
对理想的采样保持电路,要求开关没有偏移并能随控制信号快速动作,断开的阻抗要无限大,同时还要求存储元件的电压能无延迟地跟踪模拟信号的电压,并可在任意长的时间内保持数值不变。
光栅的组成结构和检测原理光栅是一种在透明玻璃上或金属的反光平面上刻上平行、等距的密集刻线,制成的光学元件。
数控机床上用的光栅尺,是利用两个光栅相互重叠时形成的莫尔条纹现象,制成的光电式位移测量装置。
按制造工艺不同可分为透射光栅和反射光栅。
透射光栅是在透明的玻璃表面刻上间隔相等的不透明的线纹制成的,线纹密度可达到每毫米100条以上;反射光栅一般是在金属的反光平面上刻上平行、等距的密集刻线,利用反射光进行测量,其刻线密度一般为每毫米4~50条。
采样保持器课件

D
+5V
R1
+
I
C R2 V
-
R2
I
+ R1
C
R3
+ A
-
R5 V
R4
(a) 无源I/V变换电路
(b) 有源I/V变换电路
图 图2-23电-2流电/电流压/变电换压电变路换电路
有源I/V变换
有源I/V变换是利用有源器件——运算放大器
和电阻电容组成,如图3-2(b)所示。利用同
相放大电路,把电阻R1上的输入电压变成标准
输出电压。该同相放大电路的放大倍数为
G V 1 R4
IR1
R3
(3-1)
若取R1=200Ω,R3=100kΩ,R4=150kΩ, 则输入电流 I 的0 ~ 10 mA就对应电压输出V的0 ~ 5 V;若取R1=200Ω,R3=100kΩ,R4=25kΩ, 则4 ~ 20 mA的输入电流对应于1 ~ 5 V的电压输 出。
采样保持器
1、 零阶采样保持器--零阶采样保持器是在两次采样的
间隔时间内,一直保持采样值不变直到下一个采样时刻。它 的组成原理电路与工作波性如图3-8(a)、(b)所示。
采样保持器由输入输出缓冲放大器A1、A2和采样开关S、
保持电容CH等组成。采样期间,开关S闭合,输入电压VIN 通过A1对CH快速充电,输出电压VOUT跟随VIN变化;保持
结构原理
现以常用的CD4051为例,8路模拟开关的结构原 理如图3-3所示。CD4051由电平转换、译码驱动及 开关电路三部分组成。当禁止端为“1”时,前后级 通道断开,即S0~S7端与Sm端不可能接通;当为 “0”时,则通道可以被接通,通过改变控制输入端 C、B、A的数值,就可选通8个通道S0~S7中的一路。 比如:当C、B、A=000时,通道S0选通;当C、B、 A=001时,通道S通;……当C、B、A = 111时,通 道S7选通。其真值表如表3-1所示。
OMEGA PCL431 手持电流校准器说明书

PCL431Current CalibratorOperator’s ManualM1889/0994GENERAL DESCRIPTIONThe OMEGA®PCL431 Hand-Held Current Calibrator is designed to be a complete 4-20mA loop calibrator delivering high accuracy in a small, easy to use package. Its microprocessor based circuitry gives the usera large number of input/output options and operating modes without unnecessary complexity.Current can be sourced into loads up to 1000 ohms or simulated with external power supplies of up to60VDC. When operated in the read mode the user can input a current from a signal source directly, or in the read/power mode the PCL431 will supply 24 volt loop power to a two wire device and simultaneously monitor the resultant loop current. Both read and source measurements can be displayed directly inmilliamps or as a percentage of a 4-20mA loop.Commonly used outputs (up to 3) can be stored in the PCL431’s non-volatile memory for quick recall. In addition, an auto-step mode allows the calibrator to step through the selected setpoints at a user defined dwell time of 5 to 60 seconds.INSTALLATIONUNPACKINGRemove the Packing List and verify that all equipment has been received. If you have any questions about the shipment, please call the OMEGA Customer Service Department at 1-800-622-2378 or (203) 359-1660.When you receive the shipment, inspect the container and equipment for any signs of damage. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent.NOTE:The carrier will not honor any claims unless all shipping material is saved for theirexamination. After examining and removing contents, save packing material and carton in theevent reshipment is necessary.Check to see if your calibrator kit is complete - it should include:1. Carrying case (Qty=1)2. T est leads (Qty=1 set)3. 9V battery (Installed)4. Operator’s Manual (Qty=1)SET-UPBefore beginning, become familiar with the keypad layout and the configuration of the input/output jacks.Remember, these jacks are used in multiple configurations so pay careful attention to how the test leads are connected for the specific application.CJS0994RAF2BAOPERATING PROCEDURE1. Turn on power and select the desired range by depressing the ”RANGE SELECT” key.NOTE: When operating in the “%” range, 4mA=0% and 20mA=100%.2. Connections are made as follows:Current Source - Use jacks 1 and 2 (1 is +).Current Simulate - Use jacks 2 and 3 (2 is +).Current Read - Use jacks 3 and 4 (4 is +).Current Read/Power - Use jacks 1 and 4 (1 is +).3. The and keys adjust the output value up or down. Holding the ramp keys continuously forseveral seconds will increase the scroll rate. Going beyond the endpoints (0 and 24mA) will cause theoutput to wrap around, thus allowing a quick return to either end of the scale.4. Three calibration points can be stored in non-volatile memory by scrolling to the desired output,depressing the Store key, and then the desired setpoint key.5. The auto step will automatically step through the stored setpoints at pre-defined intervals. When theauto-step key is first depressed, the display will indicate the dwell time (in seconds) between steps.The factory set value is 15 seconds but you can set this value, from 5 to 60 seconds, by usingthe and keys when the dwell time is being displayed. Once you have scrolled to the desireddwell time, release the or key and wait approximately 3 seconds until the calibrator begins toautomatically step through the 3 setpoints. The calibrator will continue the stepping process until anykey is pressed. Your chosen dwell time will remain in a non-volatile memory location until you chooseto change it.OPERATING CONSIDERATIONS AND PRECAUTIONS1. When operating in the current source mode, the PCL431 has the capability to drive loads up to 1000ohms as shown in Figure 1.Figure 1 - Current Source Mode2. When operating in the current simulate mode, the PCL431 acts like a two-wire transmitter controlling acurrent loop with an external voltage of up to 60 VDC as shown in Figure 2.Figure 2 - Current Simulate Mode3. When reading a current loop, the PCL431 can measure over a range of 0-24mA. Connections areshown in Figure 3.Figure 3 - Current Loop Readings4. The PCL431 can simultaneously power a device with 24 volts and display the current flowing throughthe loop. This is particularly useful when calibrating a two-wire transmitter. A typical application isshown in Figure 4.Figure 4 - PCL431 Simultaneous Power/DisplayACCURACYThe PCL431 is checked against an NIST traceable reference before shipment to verify that each range falls within the 0.05%, ±1 count, of full scale accuracy specification. Long term accuracy should remain within0.1%, ±1 count, of FSR. All of these ratings are based on a 25°C ambient temperature. A change of 10°Cwill cause approximately a 1000 ppm change (based on 100 ppm/C temp.) in the output or the equivalent of a 0.1% output change. Therefore, allowances must be made for error caused by wide temperaturevariations.。
POSITAL编码器说明书

P O S I T A L编码器说明书 Prepared on 24 November 2020POSITAL编码器资料FRABA 编码器德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等。
编码器行业领导者上海精芬德国博思特POSITAL编码器、POSITAL工业编码器、POSITAL倾角仪,POSITAL 传感器、POSITAL线性传感器,POSITAL绝对值编码器、POSITAL旋转编码器等,如需询价或详细信息,方案选型与精芬联系。
德国POSITAL公司成立于1918年,致力于高端机电产品的研发及生产,是欧洲绝对值编码器产品的领跑者。
该公司产品广泛应用于冶金、汽车制造、水利、物流、机械制造、木材加工、造船等行业。
以下021列举部分型号:OCD-S200G-1412-B15S-PRL、OCD-S200G-1212-B150-PRL、OCD-S200G-1212-B15S-CRW、OCD-S200G-1213-B150-CAW、OCD-S200B-1213-SA1C-CRS-150、OCD-S200G-1416-S060-PRL、OCD-S200G-1213-B15C-CAS-182、OCD-S200G-1416-S100-CAW、OCD-S200G-1212-C100-PRL、OCD-S200G-1412-B150-PRL、OCD-S100G-1212-B150-PAL、OCD-S100G-0012-C100-PRL、OCD-S100G-1212-C10S-CRW-5m、OCD-S100G-1212-S100-PRL、OCD-S100G-1212-B15V-CAW-5m、OCD-S100G-0013-S100-PRL、OCD-S100G-1212-S10S-PRL、OCD-S100G-0016-S10S-PAL、OCD-S100B-1212-C10S-PRL、OCD-S100G-1416-C100-PRL、OCD-S100G-1213-C100-PA9、OCD-S100G-1213-C100-PAL、OCD-S100G-1212-S060-PRL-050、OCD-S100G-1212-B150-PRL、OCD-S100G-1213-C100-PRL、OCD-S100B-0016-B15S-CRW-136、OCD-S100G-1212-C100-PRL、OCD-S100G-1212-C100-CRW、OCD-S100G-1212-S060-PAL、OCD-S100B-0016-S060-PAL-135、OCD-S100G-0013-C100-PAL OCD-S100G-1213-T120-PRL、OCD-S100B-1212-S060-CRW、OCD-S100G-0016-T12C-CRW-163、OCD-S100G-1416-C10V-CAW-5m、OCD-S100G-1216-S10S-PRL、OCD-S100G-0016-T120-CRW、OCD-S100B-1212-C100-PRL、OCD-S100B-1212-B15V-CAW-5m、OCD-S100G-1212-B15S-PAL、OCD-S100B-0016-C100-CAW-5m、OCD-S100G-1212-C10S-PRL、OCD-S100B-0016-T120-CRW、OCD-S100G-1213-S10S-PRL、OCD-S100B-1213-C10S-PRL、OCD-S100G-0013-S060-PRL、OCD-S100B-0016-T120-PRL、OCD-SL00G-1213-SA1C-CRS-159、OCD-S100B-0016-B150-CRW、OCD-S100G-1212-S10V-PAL、OCD-S100B-0012-C100-PAL、OCD-S100G-1212-S100-CRW-10m、OCD-S100G-1212-B15S-PRL、OCD-S100B-1416-C100-CRW、OCD-S100G-1212-S060-CRW、OCD-S100B-12AJ-C10C-PRL-204、OCD-S100G-1213-S060-PAL、OCD-S100G-0013-C10C-PRL-050、OCD-S100B-1212-B15S-CRW-5m、OCD-S100G-1212-T120-PRL、OCD-S100G-0016-C10S-PRL、OCD-S100G-1213-S060-PRL、OCD-S100G-1213-B150-PRL、OCD-S100G-1213-C10C-PRL-050、OCD-S100G-1408-S10V-PAL、OCD-S100B-1212-B15S-CRW-10m、OCD-S100B-0013-S060-PAL、OCD-S100G-1213-B15S-PRL、OCD-S100G-1216-C10S-PRL、OCD-S100B-1416-B150-PRL、OCD-S100B-0016-S060-CAW、OCD-S100G-1212-S060-PRL、OCD-S100G-1212-C100-PAL、OCD-S100G-0013-C100-PRL、OCD-S100B-1213-B15V-PRL、OCD-S100B-0016-S060-PAL、OCD-SS00G-1412-C10S-PRL、OCD-SS00G-1212-C10S-PRL、OCD-SS00G-1212-C100-PRL、OCD-SS00G-1212-C100-CRB、OCD-SS00G-1212-C066-PA5、OCD-SS00G-1212-S06C-CRW-148、OCD-SS00G-0812-C106-PAL、OCD-SS00E-00AB-C066-PAB、OCD-SS00G-1212-C100-PR5、OCD-SS00G-0012-C106-PAB、OCD-SS00G-0412-C066-PRL、OCD-SS00G-0412-C066-PR5、OCD-SS00G-1212-C100-PAB、OCD-SS00G-0012-S06S-PRL、OCD-SS00G-0812-C066-PR5、OCD-SL00G-1212-C10V-CAW、OCD-SL00G-1213-S060-PAL-023、OCD-SL00G-1212-C10S-PAL、OCD-SL00G-0013-S060-CRS-010、OCD-SL00G-0812-C100-CRW、OCD-SL00B-0012-C100-PAL、OCD-SL00G-1212-C100-CRW-5m、OCD-SL00G-0016-C10S-CRW-097、OCD-SL00G-1213-SA5C-CRO-066、OCD-SL00G-1416-C100-PRL、OCD-SL00G-1214-C100-PRL-099、OCD-SL00G-0016-S06S-CAW-052、OCD-SL00B-1212-C100-PAL-050、OCD-SL00G-1212-S100-PRL、OCD-SL00B-0013-B150-PRL、OCD-SL00G-1212-B15S-PRL、OCD-SL00G-1412-C100-PRL-B、OCD-SL00G-0013-C100-PRB、OCD-SL00G-1213-C100-PRL-099、OCD-SL00G-0016-C100-CAW、OCD-SL00G-1213-C10S-CRW-2M、OCD-SL00B-0013-SB10-PAL、OCD-SL00G-1212-S06S-PRL、OCD-SL00G-1212-C100-PRB、OCD-SL00B-0012-C100-PAL-050、OCD-SL00G-1213-S060-CRW、OCD-SL00B-0014-B150-CRW-2m、OCD-S101G-1212-C100-CRW-2、OCD-S101G-1213-C100-CRW-2m旗下品牌BEN选型BEN是专业生产编码器的跨国公司,主要产品有绝对值编码器,增量和防爆编码器,BEN编码器总部在德国柏林,公司在欧洲、美洲和亚洲设有许多分支机构和代表处,是真正的国际性企业。
SBC-04缩分收集一体机

缩分收集一体机SBC-04使用指南北京通尼科技有限公司目 录1.前 言1.1 详细说明2.操作规程3.装配和拆卸说明3.1 皮带缩分组件3.2刮扫器组件3.3 样品收集组件4.全面的维修和润滑4.1 每周维修4.2 每月维修4.3 初次和年度维修4.4 定期润滑4.5 排除故障5.附 图5.1 缩分收集一体机 SBC-041.前 言本手册用于缩分收集一体机的维护和检修。
缩分收集一体机用于间歇和连续采样 ,单罐可收集样品16L。
1.1 SBC型缩分收集一体机SBC型缩分收集一体机是多年研究和发展的成果,它解决常规立式缩分器工作中所出现的问题。
SBC型缩分收集一体机采用二级皮带式缩分机,对破碎后的样品进行再次缩分,其进料口通过法兰全密封连接,与破碎机采用一体化设计和连接。
其特点是体积小,不发生堵塞,其工作过程平稳可靠,无噪音。
缩分比可由PLC方便进行调整,缩分比范围广,缩分精度≤0.37A无系统误差。
且其样品收集组件配有传感器,在PLC的控制之下能自动旋转更换样品罐,可按不同煤种进行样品收集。
六工位性能指标:缩分器开口: 40mm(可调)电动推杆行程: 150mm样品罐数量: 6个缩分比: 1:10~1:100额定电压: 380V额定功率: 1.1/0.18kw八工位性能指标:缩分器开口: 40mm(可调)电动推杆行程: 150mm样品罐数量: 8个缩分比: 1:10~1:100额定电压: 380V额定功率: 1.1/0.25kw2. 操作规程缩分收集一体机是采样系统一个部件,因此没有特别的操作规程。
当在使用缩分收集一体机时,应按照下列步骤进行:2.1 开机前的准备工作:(1) 检查所有电线、开关是否完好;(2) 检查各紧固件是否松动;(3)检查各润滑点是否按规定加足润滑油;(4)螺栓是否卡住。
2.2 为防止过载启动,必须保证空载启动设备,即在机壳内无输送物料时启动。
2.3 缩分收集一体机进料应当均匀,以免造成物料积塞。
ELX1046 PTS0603 SMD PTC 重置电流保护器说明说明书

Product features• Positive temperature coefficient (PTC)• Surface mount resettable fuse • Low resistance• Compact 0603 (1608 metric) footprint • Voltage rating 6 V to 15 V• Current rating from 0.04 A to 0.35 A • Fast time-to-tripApplications• Data ports• Micromotors and fans• Low voltage test and measurement • Low voltage hand held equipment • PC-based medical equipment • USB protection• Secondary Li-ion battery protection • Game consoles, set top boxes• Battery charging & charging connectionsPTS0603SMD PTC fusesAgency information• cURus Recognized file no. E343021• TUV: File R 50506608Part number system/ordering: PTS060315V004• PT= PTC resettable fuse • S= Surface mount • 0603= Dimension code • 15V= Maximum voltage• 004= Ihold current rating (004= 0.04 A)Environmental compliancePb HALOGENHFFREE2Technical Data ELX1046Effective June 2021PTS0603SMD PTC fuses/electronicsProduct specificationsVmax 1lmax 2lhold 3ltrip 4Pd 5Time-to-trip (maximum)Resistance 6Safety approvalsPart number(V dc )(A)(A)(A)typical (W)(A)(seconds)Initial (R i )minimum (Ω)Post trip (R 1)maximum (Ω)cU us TUVPTS060315V0041510.040.120.50.2 1.0 1.540√√PTS060315V0051510.050.150.50.25 1.0 1.040√√PTS060315V0101530.100.250.50.5 1.00.56√√PTS06039V016940.160.400.5 1.0 1.00.45√√PTS06039V020940.200.500.5 1.00.60.34√√PTS06036V035680.350.750.58.00.10.091.5√√Dimensions–mm 1.Vmax: Maximum continuous voltage the device can withstand without damage at rated current 2. Imax: Maximum fault current the device can withstand without damage at rated voltage 3. Ihold: Maximum current the device will pass without interruption at +23 °C still air4.Itrip: Minimum current that will transition the device from low resistance to high resistance at +23 °C still air5. Pd: Power dissipated from the device when in tripped state at +23 °C still air6. R i : Minimum resistance of the device at +23 °CR 1: Maximum resistance of the device one hour after tripping at +23 °CPart number A typ A max B typ B max C typ C max D min F G HPTS060315V004 1.65 1.800.80 1.000.560.800.150.80.60.8PTS060315V005 1.65 1.800.80 1.000.560.800.150.80.60.8PTS060315V010 1.65 1.800.80 1.000.530.800.150.80.60.8PTS06039V016 1.65 1.800.80 1.000.500.800.150.80.60.8PTS06039V020 1.65 1.800.90 1.000.450.800.150.80.60.8PTS06036V035 1.65 1.800.90 1.000.700.800.150.80.60.8RRecommended pad layoutNo marking3Technical Data ELX1046Effective June 2021PTS0603SMD PTC fuses /electronics General specificationsOperating temperature: -40 °C to + 85 °C (with derating)Storage temperature: -10 °C to + 40 °C Storage relative humidity: ≤70%Storage conditon: Keep away form corrosive atmosphere and sunlight Passive aging: IEC60738-1, +85 °C, 1000 hours, ≤20% Humidity aging: +85 °C, 85% RH, 100 hours, ≤20%Thermal shock: IEC60738-1, +85 °C/ -40 °C, 20 cycles, ≤50%Trip cycle life: UL1434, Vmax, Imax, 100 cycles, no arcing or burning Trip endurance: UL1434, Vmax, Itrip ≤ I ≤ Imax, 2 hours, no arcing or burning MSL test: J-STD-020, MSL=1, pass and no visible damageThermal derating curvePTS0603T emperature (°C)P e r c e n t a g e o f r a t e d c u r r e n t4Technical Data ELX1046Effective June 2021PTS0603SMD PTC fuses/electronicsWFE1E2P0P1P2D0D1A0B0K0T8.00 ± 0.30 3.50 ± 0.10 1.75 ± 0.10- 4.00 ± 0.10 4.00 ± 0.10 2.00 ± 0.05 1.50 + 0.10/-0- 1.10 ± 0.10 1.85 ± 0.100.60 ± 0.10 0.20 ± 0.05Packaging informationPTS0603xxV004-xxV020Supplied in tape and reel packaging, 5000 parts per 7.0” (178 mm) diameter reel (EIA-481 compliant)PTS06036V035Supplied in tape and reel packaging, 5000 parts per 7.0” (178 mm) diameter reel (EIA-481 compliant)PTS0603xxV004-xxV020WFE1E2P0P1P2D0D1A0B0K0T8.00 ± 0.30 3.50 ± 0.10 1.75 ± 0.10- 4.00 ± 0.10 4.00 ± 0.10 2.00 ± 0.05 1.50 + 0.10/-0- 1.10 ± 0.10 1.85 ± 0.100.85 ± 0.10 0.20 ± 0.05PTS06036V0355Technical Data ELX1046Effective June 2021PTS0603SMD PTC fuses /electronics Wave solder profileReference EN 61760-1:2006Profile featureStandard SnPb solderLead (Pb) free solderPreheat • Temperature min. (T smin )100 °C 100 °C • Temperature typ. (T styp )120 °C 120 °C • Temperature max. (T smax )130 °C 130 °C • Time (T smin to T smax ) (t s )70 seconds 70 seconds ∆ preheat to max Temperature 150 °C max.150 °C max.Peak temperature (T P )*235 °C – 260 °C 250 °C – 260 °C Time at peak temperature (t p )10 seconds max5 seconds max each wave 10 seconds max5 seconds max each wave Ramp-down rate~ 2 K/s min ~3.5 K/s typ ~5 K/s max ~ 2 K/s min ~3.5 K/s typ ~5 K/s max Time 25°C to 25°C4 minutes4 minutesManual solder+350 °C (4-5 seconds by soldering iron), generally manual/hand soldering is not recommendedT e m p e r a t u r eTimeT T T TEatonElectronics Division 1000 Eaton Boulevard Cleveland, OH 44122United States/electronics© 2021 EatonAll Rights Reserved Printed in USAPublication No. ELX1046 BU-ELX21046June 2021PTS0603SMD PTC fusesTechnical Data ELX1046Effective June 2021Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express writtenapproval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.Solder reflow profileTable 1 - Standard SnPb solder (T c )Package thicknessVolume mm3 <350Volume mm3 ≥350<2.5 mm)235 °C 220 °C ≥2.5 mm220 °C220 °CTable 2 - Lead (Pb) Free Solder (T c )Package thicknessVolume mm 3 <350Volume mm 3350 - 2000Volume mm 3 >2000<1.6 mm 260 °C 260 °C 260 °C 1.6 – 2.5 mm 260 °C 250 °C 245 °C >2.5 mm250 °C245 °C245 °CEaton is a registered trademark.All other trademarks are property of their respective owners.Follow us on social media to get thelatest product and support information.Reference J-STD-020Profile featureStandard SnPb solderLead (Pb) free solderPreheat and soak • Temperature min. (T smin )100 °C 150 °C • Temperature max. (T smax )150 °C 200 °C • Time (T smin to T smax ) (t s )60-120 seconds 60-120 seconds Ramp up rate T L to T p 3 °C/ second max. 3 °C/ second max.Liquidous temperature (T l ) Time (t L ) maintained above T L183 °C60-150 seconds 217 °C60-150 seconds Peak package body temperature (T P )*Table 1Table 2Time (t p )* within 5 °C of the specified classification temperature (T c )20 seconds*30 seconds*Ramp-down rate (T p to T L ) 6 °C/ second max. 6 °C/ second max.Time 25 °C to peak temperature6 minutes max.8 minutes max.* Tolerance for peak profile temperature (T p ) is defined as a supplier minimum and a user maximum.。
第5章 采样保持器

采样/保持器
15
5.3 采样/保持器的类型和主要性能参数
5.3.1 采样/保持器的类型
按结构分为两种类型:
1. 串联型采样/保持器
UK A1 K + A2 UO
Ui
+
CH
模拟地
串联型采样/保持器的结构
当K断开时,采样/保持器从跟踪状态变为保持状态,这 时CH没有充放电回路,在理想情况下,CH的电压将一直 保持在K断开瞬间Ui的最终值上。
5.3.1 采样/保持器的类型
2. 反馈型采样/保持器
优点:
采样/保持精度高:原因是只有eOS1影响精度。 跟踪速度快:因为是全反馈,直接把输出U0与 输入Ui比较,如果U0≠Ui,则其 差被A1放大,迅速对CH充电。
缺点:
结构复杂。
数据采集与处理技术
采样/保持器
21
5.3 采样/保持器的类型和主要性能参数
解决方法:采用一种器件,在A/D转换时保持住输 入信号电平,在A/D转换结束后跟踪输 入信号的变化。“模拟信号存储器”
采样/保持器:用于对模拟输入信号进行采样,然 后根据逻辑控制信号指令保持瞬态值,保证模数转 换期间以最小的衰减保持信号的一种器件。
数据采集与处理技术
采样/保持器
4
5.1 概述
微机系统的A/D通道
5.1 概述
5.2 采样/保持器的工作原理
5.3 类型和主要性能参数
5.4 采集速率与采样/保持器的关系
5.5 采样/保持器集成芯片
5.6 使用中应注意的问题
数据采集与处理技术
采样/保持器
3
5.1 概述
问题:模拟信号进行A/D转换时,从启动转换到 转换结束输出数字量,需要一定的转换时 间,在转换时间内,模拟信号必须保持不 变,否则会造成转换误差。
【第五章】采样保持器

55//5.1 5.1 问题模拟信号进行AD转换时从启动转换到转换结束输出数字量需要一定的转换时间当输入信号频率较高时会造成很大的转换误差。
解决方法采用一种器件在AD转换时保持住输入信号电平在AD转换结束后跟踪输入信号的变化。
采样保持器用于对模拟输入信号进行采样然后根据逻辑控制信号指令保持瞬态值保证模数转换期间以最小的衰减保持信号的一种器件。
5.2 5.2 模拟信号UiK驱动信号ACH模拟地UO采样保持器的一般结构形式采样/保持器是一种具有信号输入、信号输出以及由外部指令控制的模拟门电路。
组成模拟开关K、电容CH和缓冲放大器A。
UC5.2 5.2 UiK驱动信号CH模拟地UOUCAt控制信号t模拟输入At采样输出跟踪t1A2t2A1t3保持A3t4A采样保持器工作原理跟踪保持跟踪在t1时刻前控制电路的驱动信号为高电平时模拟开关K闭合模拟输入信号Ui通过模拟开关加到电容CH 上使得CH端电压UC 跟随Ui 变化而变化。
工作原理如下在t1时刻驱动信号为低电平模拟开关K断开此时电容CH 上的电压UC保持模拟开关断开瞬间的Ui 值不变并等待AD转换器转换。
而在t2时刻保持结束新一个跟踪时刻到来此时驱动信号又为高电平模拟开关K 重新闭合CH端电压UC 又跟随Ui 变化而变t3时刻驱动信号为低电平时模拟开关K 断开......。
采样保持器是一种用逻辑电平控制其工作状态的器件。
5.2 5.2 它具有两个稳定的工作状态跟踪状态在此期间它尽可能快地接收模拟输入信号并精确地跟踪模拟输入信号的变化一直到接到保持指令为止。
保持状态对接收到保持指令前一瞬间的模拟输入信号进行保持。
因此采样/保持器是在“保持”命令发出的瞬间进行采样而在“跟踪”命令发出时采样/保持器跟踪模拟输入量为下次采样做准备。
采样保持器主要起以下两种作用“稳定”快速变化的输入信号以减少转换误差。
用来储存模拟多路开关输出的模拟信号以便模拟多路开关切换下一个模拟信号。
威特门机

2.3 安装条件.......................................................................................................................................................................6
2.3.1
安装位置..............................................................................................................................................................6
7.1 设置模式.................................................................................................................................................................... 14 7.2 自学习模式............................................................................................................................................................... 14 7.3 常用模式.................................................................................................................................................................... 15 7.4 手动模式.................................................................................................................................................................... 15 7.5 自动模式.................................................................................................................................................................... 15
第5章 采样保持器

A
UO
5.2 采样/保持器的工作原理
模 拟 输 入
采 样 输 出 控 制 信 号
t1时刻之前,开关闭 合,模拟信号对电容 进行充电,电容电压 随模拟信号电压变化, 跟踪期; t1时刻,开关断开, 电容电压为断开瞬间 的模拟信号电压,保 持期;
t1 t2 t3 t4
5.2 采样/保持器的工作原理
5.3.2 采样保持器的主要性能参数
捕捉时间tAC
是指当采样保持器从保持状态转到跟踪状态 时,采样保持器的输出从保持状态的值变到 当前的输入值所需的时间 捕捉时间不影响采样精度,但对采样频率的 提高有影响 产品手册上给出的捕捉时间通常是指采样保 持器在输出为-FSR,而保持结束时输入已 变至+FSR情况下的捕捉时间
Δt不再是A/D的转换时间,而是采样保持器 的孔径时间 1 f max n 1LSB要求时 1/2LSB要求时
f max
2 t AP 1 n 1 2 t AP
5.4 系统采集速率与采样保持器的关系
例5.2 用采样保持器芯片AD582和A/D转 换器芯片ADC0804组成一个采集系统。 已知AD582的孔径时间tAP=50ns, ADC0804的转换时间tCONV=100 μs(时 钟频率为640kHz),计算系统可采集的 最高信号频率 Fmax=12.44 kHz
U
max
1 U m f U m 2 在转换时间tCONV内, 输入模拟信号电压最大变化可能为 U i tCONV dU i dt tCONV f U m
max
Um/2 0 t ΔU Δt
A/D转换时间与系统采集速率的关系
若限定在转换时间之内,正弦信号电压 的变化最大不超过1LSB,在Um=FSR条 件下,数据采集系统可采集的信号最高 频率为
采样保持器

反馈型采样/保持器的结构
采样保持器 李为民
35
跟踪状态
当 K1闭合, K2断开时,
两块运放A1和
A2共同组成一个跟随器, 采样保持器工作于跟踪状态。 采样保持器工作于跟踪状态
此时,保持电容CH的端电压UC为 UC UI+eos1-eos2
式中eos1和eos2分别为运放A1和 A2 的失调电压。
使得当采样/保持器再次转入跟踪状态时A1 能立即跟踪 UI。
采样保持器 李为民
39
保持状态
反馈型采样/保持器的跟踪速度也较快, 因为它是全反馈,直接把输出 UO与输入UI 比较, 如果UOUI ,则其差被A1放大,迅速对CH 充电。 充电
采样保持器 李为民
40
3.2采样/保持器的主要性能参数
采样保持器 李为民
13
两个稳定的工作状态
从以上讨论可知,采样保持器是一种用逻辑电平 控制其工作状态的器件, 它具有两个稳定的工作状态: (1) 跟踪状态。 跟踪状态
在此期间它尽可能快地接收模拟输入信号, 并精确地跟踪模拟输入信号的变化,一直到接到保持 并精确地跟踪模拟输入信号的变化 直到接到保持
3
第二节
采样/保持器的工作原理
采样保持器是一种具有信号输入、信号输 出以及由外部指令控制的模拟门电路。 它主要由模拟开关K、电容CH和缓冲放大器 A组成,它的一般结构形式如图所示。 采样/保持器的一般结构形式 保持器的 般结构形式
采样保持器 李为民
4
采样保持放大器
采样保持放大器 (SHA)
采样保持器 李为民 16
电容 CH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REV. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aCMOS QuadSample-and-Hold AmplifierFUNCTIONAL BLOCK DIAGRAMFEATURESFour Independent Sample-and-Holds Internal Hold Capacitors High Accuracy: 12 BitVery Low Droop Rate: 2 mV/s typ Output Buffers Stable for C L ≤ 500 pF TTL/CMOS Compatible Logic Inputs Single or Dual Supply Applications Monolithic Low Power CMOS Design APPLICATIONSSignal Processing SystemsMultichannel Data Acquisition Systems Automatic Test EquipmentMedical and Analytical Instrumentation Event Analysis DAC DeglitchingThe SMP04 offers significant cost and size reduction over equivalent module or discrete designs. It is available in a 16-lead hermetic or plastic DIP and surface mount SOIC packages. It is specified over the extended industrial tem-perature range of –40°C to +85°C.GENERAL DESCRIPTIONThe SMP04 is a monolithic quad sample-and-hold; it has four internal precision buffer amplifiers and internal hold capacitors.It is manufactured in ADI’s advanced oxide isolated CMOS technology to obtain the high accuracy, low droop rate and fast acquisition time required by data acquisition and signal process-ing systems. The device can acquire an 8-bit input signal to ±1/2 LSB in less than four microseconds. The SMP04 can operate from single or dual power supplies with TTL/CMOS logic compatibility. Its output swing includes the negative supply.The SMP04 is ideally suited for a wide variety of sample-and-hold applications, including amplifier offset or VCA gain adjust-ments. One or more can be used with single or multiple DACs to provide multiple setpoints within a system.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106,U.S.A.Tel: 781/329-4700World Wide Web Site: Fax: 781/326-8703© Analog Devices, Inc., 1998SMP04**Protected by U.S. Patent No. 4,739,281.SMP04–SPECIFICATIONSELECTRICAL CHARACTERISTICSParameter Symbol ConditionsMin Typ Max Units Linearity Error0.01%Buffer Offset Voltage V OS V IN = 6 V–10±2.5+10mV Hold StepV HS V IN = 6 V, T A = +25°C to +85°C 2.54mV V IN = 6 V, T A = –40°C 5mV Droop Rate∆V/∆t V IN = 6 V, T A = +25°C 225mV/s Output Source Current 1I SOURCE V IN = 6 V 1.2mA Output Sink Current 1I SINK V IN = 6 V 0.5mA Output Voltage Range OVRR L = 20 k Ω0.0610.0V R L = 10 k Ω0.069.5V LOGIC CHARACTERISTICS Logic Input High Voltage V INH 2.4V Logic Input Low Voltage V INL 0.8V Logic Input Current I IN 0.51µA DYNAMIC PERFORMANCE 2Acquisition Time 3t AQ T A = +25°C, 0 V to 10 V Step to 0.1% 3.5 4.25µs –40°C ≤ T A ≤ +85°C3.75 5.25µs Acquisition Time 3t AQ T A = +25°C, 0 V to 10 V Step to 0.01%9µs Hold Mode Settling Time t H To 1 mV 1µs Slew Rate 4SR R L = 20 k Ω34V/µs Capacitive Load Stability C L<30% Overshoot 500pF Analog Crosstalk0 V to 10 V Step –80dB SUPPLY CHARACTERISTICS Power Supply Rejection Ratio PSRR 10.8 V ≤ V DD ≤ 13.2 V6075dB Supply Current I DD 47mA Power DissipationP DIS84mWELECTRICAL CHARACTERISTICS Parameter Symbol ConditionsMin Typ Max Units Linearity Error0.01%Buffer Offset Voltage V OS V IN = 0 V–10±2.5+10mV Hold StepV HS V IN = 0 V, T A = +25°C to +85°C 2.54mV V IN = 0 V, T A = –40°C 5mV Droop Rate∆V/∆t V IN = 0 V, T A = +25°C 225mV/s Output ResistanceR OUT 1ΩOutput Source Current 1I SOURCE V IN = 0 V 1.2mA Output Sink Current 1I SINK V IN = 0 V 0.5mA Output Voltage Range OVR R L = 20 k Ω–3.0+3.0V LOGIC CHARACTERISTICS Logic Input High Voltage V INH 2.4V Logic Input Low Voltage V INL 0.8V Logic Input Current I IN 0.51µA DYNAMIC PERFORMANCE 2Acquisition Time 3t AQ –3 V to +3 V Step to 0.1% 3.611µs Acquisition Time 3t AQ –3 V to +3 V Step to 0.01%9µs Hold Mode Settling Time t H To 1 mV 1µs Slew Rate 5SR R L = 20 k Ω3V/µs Capacitive Load Stability C L <30% Overshoot 500pF SUPPLY CHARACTERISTICS Power Supply Rejection Ratio PSRR ±5 V ≤ V DD ≤ ±6 V6075dB Supply Current I DD 3.55.5mA Power DissipationP DIS55mWNOTES 1Outputs are capable of sinking and sourcing over 20 mA, but linearity and offset are guaranteed at specified load levels.2All input control signals are specified with t R = t F = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.3This parameter is guaranteed without test.4Slew rate is measured in the sample mode with a 0 V to 10 V step from 20% to 80%.5Slew rate is measured in the sample mode with a –3 V to +3 V step from 20% to 80%.Specifications are subject to change without notice.REV. D–2–(@ V DD = +12.0 V, V SS = DGND = 0 V, R L = No Load, T A = Operating Temperature Rangespecified in Absolute Maximum Ratings, unless otherwise noted.)(@ VDD = +5.0 V, V SS = –5.0 V, DGND = 0.0 V, R L = No Load, T A = Operating TemperatureRange specified in Absolute Maximum Ratings, unless otherwise noted.)SMP04–3–REV. DABSOLUTE MAXIMUM RATINGS(T A = +25°C unless otherwise noted)V DD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V, 17 V V DD to V SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–0.7 V, 17 V V LOGIC to DGND . . . . . . . . . . . . . . . . . . . . . . . .–0.3 V, V DD V IN to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V SS , V DD V OUT to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V SS , V DD Analog Output Current . . . . . . . . . . . . . . . . . . . . . . .±20 mA (Not Short-Circuit Protected)Digital Input Voltage to DGND . . . . . . .–0.3 V, V DD + 0.3 V Operating Temperature RangeEQ, EP, ES . . . . . . . . . . . . . . . . . . . . . . . .–40°C to +85°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Storage Temperature . . . . . . . . . . . . . . . . . .–65°C to +150°C Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . .+300°CPackage Type JA *JC Units 16-Lead Cerdip 9412°C/W 16-Lead Plastic DIP 7633°C/W 16-Lead SO9227°C/W*JA is specified for worst case mounting conditions, i.e., JA is specified for device in socket for cerdip and plastic DIP packages; JA is specified for device soldered to printed circuit board for SO package.CAUTION1.Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; function operation at or above this specification is not implied. Exposure to the above maximum rating conditions for extended periods may affect device reliability.2.Digital inputs and outputs are protected; however, permanent damage may occur on unprotected units from high energy electrostatic fields. Keep units in conductive foam or packaging at all times until ready to use. Use proper antistatic handling procedures.3.Remove power before inserting or removing units from their sockets.ORDERING GUIDETemperature Package Package Model Range Description Options*SMP04EQ –40°C to +85°C Cerdip-16Q-16SMP04EP –40°C to +85°C PDIP-16N-16SMP04ES–40°C to +85°CSO-16R-16A*Q = Cerdip; N = Plastic DIP; R = Small Outline.PIN CONNECTIONS 16-Lead Cerdip 16-Lead Plastic DIP16-Lead SONC = NO CONNECTV OUT2V SSV OUT4V OUT3V DD V OUT1V IN1NC S /H 4V IN3V IN4V IN2S /H 1S/H 2DGND S /H 3CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection.Although the SMP04 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.–4–SMP04REV. DWAFER TEST LIMITSSMP04G ParameterSymbol Conditions Limits Units Buffer Offset Voltage V OS V IN = +6 V±10mV maxHold StepVHSVIN= +6 V±4mV maxDroop Rate∆V/∆tV IN= +6 V 25mV/s maxOutput Source Current ISOURCEVIN = +6 V1.2mA min Output Sink CurrentISINK V IN = +6 V 0.5mA min Output Voltage RangeOVRR L = 20 k Ω0.06/10.0V min/max R L = 10 k Ω0.06/9.5V min/max LOGIC CHARACTERISTICS Logic Input High Voltage V INH 2.4V min Logic Input Low Voltage V INL 0.8V max Logic Input CurrentI IN 1µA max SUPPLY CHARACTERISTICS Power Supply Rejection Ratio PSRR 10.8 V ≤ V DD ≤ 13.2 V60dB min Supply Current I DD 7mA max Power DissipationP DIS84mW maxNOTEElectrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.(@ V DD = +12 V, V SS = DGND = 0 V, R L = No Load, T A = +25؇C, unless otherwise noted.)V OUT3V OUT1V OUT2V OUT4V IN1V IN2V IN3V IN4S /H 1S /H 3S /H 4DGNDV SS V DD S /H 2Dice CharacteristicsDie Size: 0.80 x 0.120 mil = 9,600 sq. mil (2.032 x 3.048mm = 6.193 sq. mm)Typical Performance Characteristics–SMP04–5–REV. DFigure 2.Droop Rate vs. Input Voltage (T A = +25°C)Figure 5.Hold Step vs. TemperatureFigure 8.Offset Voltage vs. Input Voltage (T A = +125°C)Figure 3.Droop Rate vs. Input Voltage (T A = +125°C)Figure 6.Slew Rate vs. VDDFigure 9.Offset Voltage vs. Input Voltage (T A = –55°C)Figure 1.Droop Rate vs. TemperatureFigure 4.Hold Step vs. Input VoltageFigure 7.Offset Voltage vs. Input Voltage (T A = +25°C)–6–SMP04REV. DFigure 10.Offset Voltage vs.TemperatureP H A S E S H I F T – D e g r e e sFigure 13.Gain, Phase Shift vs.FrequencyFigure 11.Supply Current vs. V DDFREQUENCY – HzO U T P U T I M P E D A N C E – ⍀35300101001M1k 10k 100k 201510525Figure 14.Output Impedance vs.FrequencyFigure 12.Sample Mode Power Supply RejectionFigure 15.Maximum Output Voltage vs. FrequencySMP04–7–REV. DGENERAL INFORMATIONThe SMP04 is a quad sample-and-hold with each track-and-hold having its own input, output, control, and on-chip hold capacitor. The combination of four high performance track-and-hold capacitors on a single chip greatly reduces board space and design time while increasing reliability.After the device selection, the primary considerations in using track-and-holds are the hold capacitor and layout. The SMP04eliminates most of these problems by having the hold capacitors internal, eliminating the problems of leakage, feedthrough,guard ring layout and dielectric absorption.POWER SUPPLIESThe SMP04 is capable of operating with either single or dual supplies over a voltage range of 7 to 15 volts. Based on the supply voltages chosen, V DD and V SS establish the output volt-age range, which is:V SS + 0.05 V ≤ V OUT ≤ V DD –2 VNote that several specifications, including acquisition time,offset and output voltage compliance will degrade for a total supply voltage of less than 7 V. Positive supply current is typi-cally 4 mA with the outputs unloaded. The SMP04 has an inter-nally regulated TTL supply so that TTL/CMOS compatibility will be maintained over the full supply range.Single Supply Operation Grounding ConsiderationsIn single supply applications, it is extremely important that the V SS (negative supply) pin be connected to a clean ground. This is because the hold capacitor is internally tied to V SS . Any noise or disturbance in the ground will directly couple to the output of the sample-and-hold, degrading the signal-to-noise performance.It is advisable that the analog and digital ground traces on the circuit board be physically separated to reduce digital switching noise from entering the analog circuitry.Power Supply BypassingFor optimum performance, the V DD supply pin must also be bypassed with a good quality, high frequency ceramic capacitor.The recommended value is 0.1 µF. In the case where dual sup-plies are used, V SS (negative supply) bypassing is particularly important. Again this is because the internal hold capacitor is tied to V SS . Good bypassing prevents high frequency noise from entering the sample-and-hold amplifier. A 0.1 µF ceramic bypass capacitor is generally sufficient. For high noise environments,adding a 10 µF tantalum capacitor in parallel with the 0.1 µF provides additional protection.Power Supply SequencingIt may be advisable to have the V DD turn on prior to having logic levels on the inputs. The SMP04 has been designed to be resis-tant to latch-up, but standard precautions should still be taken.OUTPUT BUFFERS (Pins 1, 2, 14 and 15)The buffer offset specification is ±10 mV; this is less than 1/2 LSB of an 8-bit DAC with 10 V full scale. Change in offset over the output range is typically 3 mV. The hold step is the magnitude of the voltage step caused when switching from sample-to-hold mode. This error is sometimes referred to as the pedestal error or sample-to-hold offset, and is about 2 mV with little variation. The droop rate of a held channel is 2 µV/ms typical and ±25 µV/ ms maximum.The buffers are designed primarily to drive loads connected to ground. The outputs can source more than 1.2 mA each, over the full voltage range and maintain specified accuracy. In split supply operation, symmetrical output swings can be obtained by restricting the output range to 2 V from either supply.On-chip SMP04 buffers eliminate potential stability problems associated with external buffers; outputs are stable with capaci-tive loads up to 500 pF. However, since the SMP04’s buffer outputs are not short-circuit protected, care should be taken to avoid shorting any output to the supplies or ground.SIGNAL INPUT (Pins 3, 5, 11 and 12)The signal inputs should be driven from a low impedance voltage source such as the output of an op amp. The op amp should have a high slew rate and fast settling time if the SMP04’s fast acquisition time characteristics are to be maintained. As with all CMOS devices, all input voltages should be kept within range of the supply rails (V SS ≤ V IN ≤ V DD ) to avoid the possibil-ity of setting up a latch-up condition.The internal hold capacitance is typically 60 pF and the internal switch ON resistance is 2 k Ω.If single supply operation is desired, op amps such as the OP183or AD820, that have input and output voltage compliances including ground, can be used to drive the inputs. Split sup-plies, such as ±7.5 V, can be used with the SMP04 and the above mentioned op amps.APPLICATION TIPSAll unused digital inputs should be connected to logic LOW and the analog inputs connected to analog ground. For connec-tors or driven analog inputs that may become temporarily dis-connected, a resistor to V SS or analog ground should be used with a value ranging from 0.2 M Ω to 1 M Ω.Do not apply signals to the SMP04 with power off unless the input current’s value is limited to less than 10 mA.Track-and-holds are sensitive to layout and physical connections.For the best performance, the SMP04 should not be socketed.–8–SMP04REV. DOptimizing Dynamic Performance of the SMP04Various operating parameters such as input voltage amplitude,sampling pulsewidth and, as mentioned before, supply bypass-ing and grounding all have an effect on the signal-to-noise ratio.Table I shows the SNR versus input level for the SMP04.Distortion of the SMP04 is reduced by increasing the supply voltage. This has the effect of increasing the positive slew rate.Table II shows data taken at 12.3 kHz sample rate and 2 kHz input frequency. Total harmonic distortion is dominated by the second and third harmonics.FREQUENCY DOMAIN PERFORMANCEThe SMP04 has been characterized in the frequency domain for those applications that require capture of dynamic signals. See Figure 16a for typical 86.1 kHz sample rate and an 8 kHz input signal. Typically, the SMP04 can sample at rates up to 85 kHz.In addition to the maximum sample rate, a minimum sample pulsewidth will also be acceptable for a given design. Our testing shows a drop in performance as the sample pulsewidth becomes less than 4 µs.a.b.Figure 16.Spectral Response at a Sampling Frequency of 86 kHz. Photo (a) Shows a 20 kHz Carrier Frequency and Photo (b) Shows an 8 kHz Frequency.Table III shows the effect of sampling pulsewidth on the SNR of the SMP04. The recommended operating pulsewidth should be a minimum of 5 µs to achieve a good balance between acqui-sition time and SNR for the 1.4 V p-p signal shown. For larger swings the pulsewidth will need to be larger to account for the time required for the signal to slew the additional voltage.This could be used as a method of measuring acquisition time indirectly.Table I.SNR vs. V INInput Voltage SNR (V p-p)(dB)1–612–533–504–475–456–44Conditions: V S = ±6 V, f S = 14.4 kHz,f IN = 1.8 kHz, t PW = 10 µs.Table II.SNR vs. Supply VoltageSupply Voltage 2nd 3rd (V)(dB)(dB)10–49–6212–55–7114–60–8015–62<–8016–63<–8317–65<–85Table III.SNR vs. Sample PulsewidthSample Pulsewidth SNR (s)(dB)1–372–443–504–545–54.96–557–55.3Conditions: V S = ±6 V, V IN = 1.4 V p-p,f S = 14.4 kHz, f IN = 1.8 kHz.SMP04–9–REV. DSample-Mode Distortion CharacteristicsAlthough designed as a sample-and-hold, the SMP04 may be used as a straight buffer amplifier by configuring it in a continu-ous sample mode. This is done by connecting the S /H control pin to a logic LOW. Its buffer bandwidth is primarily limited by the distortion content as the signal frequency increases. Figure 17 shows the distortion characteristics of the SMP04 versus frequency. It maintains less than 1% total harmonic distortion over a voiceband of 8 kHz. Output spot noise voltage measures 4 nV/√Hz at f = 1 kHz.Figure 17.THD+N vs. FrequencySampled Data Dynamic PerformanceIn continuous sampled data applications such as voice digitiza-tion or communication circuits, it is important to analyze the spectral response of a sample-and-hold. Figures 16a and 16b show the SMP04 sampling at a frequency of 86 kHz with a 1.4 V p-p pure sine wave input of 20 kHz and 8 kHz respec-tively. The photos include the sampling carrier frequency as well as its multiplying frequencies. In the case of the 20 kHz carrier frequency, the second harmonic measures 41 dB down from the fundamental, because the second is dominant, the signal-to-noise ratio is –40.9 dB. The 8 kHz case produces an improved S/N performance of –48 dB.In the V.32 and V.33 modem environment, where a 1.8 kHz carrier signal frequency is applied to the SMP04, Figure 18compares the spectral responses of the SMP04 under threedifferent sampling frequencies of 14.4 kHz, 9.6 kHz and 7.2 kHz. The signal-to-noise ratios measure 58.2 dB, 59.3 dB and 60 dB respectively.Figure 19 depicts SMP04’s spectral response operating with voice frequency of 3 kHz sampling at a 15.7 kHz rate. Under this condition, the signal-to-noise measures 53 dB.Figure 19.SMP04 Spectral Response with an Input Carrier Frequency of 3 kHz and the Sampling Frequency of 15.7 kHz Sampled Data Dynamic PerformanceIn continuous sampled data applications such as voice digitiza-tion or communication circuits, it is important to analyze the spectral response of a sample-and-hold. Figures 16a and 16b show the SMP04 sampling at a frequency of 86 kHz with a1.4 V p-p pure sine wave input of 20 kHz and 8 kHz respec-tively. The photos include the sampling carrier frequency as well as its multiplying frequencies. In the case of the 20 kHz carrier frequency, the second harmonic measures 41 dB down from the fundamental, because the second is dominant, the signal-to-noise ratio is –40.9 dB. The 8 kHz case produces an improved S/N performance of –48 dB.In the V.32 and V.33 modem environment, where a 1.8 kHz carrier signal frequency is applied to the SMP04, Figure 18compares the spectral responses of the SMP04 under three different sampling frequencies of 14.4 kHz, 9.6 kHz and7.2 kHz. The signal-to-noise ratios measure 58.2 dB, 59.3 dB and 60 dB respectively.Figure 18.SMP04 Spectral Response with a 1.8 kHz Carrier Frequency. (a) Shows the Sampling Frequency at 14.4 kHz;it Exhibits a S/N Ratio of 58.2 dB. (b) Shows a 59.3 dB S/N at a Sampling Frequency of 8.6 kHz. (c) Shows a 60 dB S/N at 7.2 kHz.a. c.b.–10–SMP04REV. DAPPLICATIONSMULTIPLEXED QUAD DAC (Figure 20)The SMP04 can be used to demultiplex a single DAC converter’s output into four separate analog outputs. The circuit is greatly simplified by using a voltage output DAC such as the DAC8228.To minimize output voltage perturbation, 5 µs should be allowed to settle to its final voltage before a sample signal is asserted.Each sample-and-hold amplifier must be refreshed every second or less in order to assure the droop does not exceed 10 mV or 1/2 LSB.Figure 20.Multiplexed Quad DACSMP04POSITIVE AND NEGATIVE PEAK DETECTOR WITH HOLD CONTROL (Figure 21)In this application the top amplifier (Amplifier A) is the positive peak detector and the bottom amplifier (Amplifier B) is the negative peak detector. Operation can be analyzed as follows:Assume that the S /H switch is closed. As a positive increasing voltage is applied to V IN , D 2 turns on, and D 1 turns off, closing the feedback loop around Amplifier A and the SMP04, causing the output to track the input. Conversely, in the negative peak detector circuit at the bottom, D 4 turns off and D 3 turns on,holding the last most negative input voltage on the SMP04.This voltage is buffered to the V O(NEG) output.As V IN falls in voltage the above conditions reverse, causing the most positive peak voltage to be held at V O(POS) output. This voltage will be held until the input has a more positive voltage than the previously held peak voltage, or a reset condition is applied.An optional HOLD control can be used by applying a logic HIGH to the PD /H inputs. This HOLD mode further reduces leakage current through the reverse-biased diodes (D 2 and D 4) during peak hold.Figure 21.Positive and Negative Peak Detector with Hold ControlGAIN OF 10 SAMPLE-AND-HOLD (Figure 22)This application places the SMP04 in a feedback loop of an amplifier. Because the SMP04 has no sign inversion and the amplifier has very high open-loop gain, the gain of the circuit is set by the ratio of the sum of the source and feedback resistancesFigure 22.Gain of 10 Sample-and-Hold Amplifierto the source resistance. When a logic LOW is applied to the S /H control input, the loop is closed around the OP490,yielding a gain of 10 (in the example shown) amplifier. When the S /H control goes HIGH, the loop opens and the SMP04holds the last sampled voltage. The loop remains open and the output is unaffected by the input until a logic LOW is reapplied to the S /H control. The pair of back-to-back diodes from the output of the op amp to the output of the track-and-hold pre-vents the op amp from saturating when the track-and-hold is in the hold mode and the loop is open.SMP04SAMPLE AND DIFFERENCE AMPLIFIER (Figure 23)This circuit uses two sample-and-holds to measure the voltage difference of a signal between two time points, t 1 and t 2. The sampled voltages are fed into the differential inputs of the AMP02instrumentation amplifier. A single resistor R G sets the gain of this instrumentation amplifier. Using two channels of the SMP04 in this application has the advantage of matched sample-and-hold performance, since they are both on the same chip.Figure 23.Time Delta Sample-and-Difference MeasurementSINGLE SUPPLY, SAMPLING, INSTRUMENTATION AMPLIFIER (Figure 24)This application again uses two channels of the SMP04 and an instrumentation amplifier to provide a sampled difference signal.The sample-and-hold signals in this circuit are tied together to sample at the same point in time. The other two parts of the SMP04 are used as amplifiers by grounding their control lines so they are always sampling. One section is used to drive a guard to the common-mode voltage and the other to generate a+6 V reference to serve as an offset for single supply operation.Figure 24.+12 V Single Supply Sampling Instrumentation Amplifier with Guard DriveSMP04D/A CONVERTER DEGLITCHERMost D/A converters output an appreciable amount of glitch energy during a transition from one code to another. The glitch amplitude can range from several millivolts to hundreds of milli-volts. This may become unacceptable in many applications. By selectively delaying the DAC’s output transition, the SMP04can be used to smooth the output waveform. Figure 25 shows the schematic diagram of such a deglitcher circuit. Two simple logic gates (an OR and a NAND gate) provide the proper timing sequence for the DAC WR strobe and the S /H control signal to the SMP04. In this example a linear ramp signal is generated by feeding the most significant eight bits of the 10-bit binary counter to the DAC. The two least significant bits are used to produce the delayed WR strobe and the S /H control signals.Referring to Figure 26a, new data to the DAC input is set up at the S /H’s falling edge, but the DAC output does not change until a WR strobe goes active. During this period, the SMP04 is in a sample mode whose output tracks the DAC output. When S /H goes HIGH, the current DAC output voltage is held by the SMP04. After 1.2 µs settling, the WR strobe goes LOW to allow the DAC output to change. Any glitch that occurs at the DAC output is effectively blocked by the SMP04. As soon as the WR strobe goes HIGH, the digital data is latched; at the same time the S /H goes LOW, allowing the SMP04 to track to the new DAC output voltage.Figure 26b shows the deglitching operation. The top trace shows the DAC output during a transition, while the bottom trace shows the deglitched output of the SMP04.Figure 25.DAC Deglitcher1/Ha.b.Figure 26. (a) Shows the Logic Timing of the Deglitcher.The Top Two Traces Are the Two Least Significant Bits,DB 0 and DB 1, Respectively. These Are Used to Generate the WR and S /H Signals Which Are Shown in the Bottom Two Traces. (b) Shows the Typical Glitch Amplitude of a DAC (Top Trace) and the Deglitched Output of the AMP04(Bottom Trace).SMP04Figure 27.Simplified Schematic of One ChannelFigure 28.Burn-In CircuitSMP04OUTLINE DIMENSIONSDimensions shown in inches and (mm).16-Lead Cerdip(Q-16)BSC16-Lead Plastic DIP(N-16)16-Lead SO (R-16A)P R I N T E D I N U .S .A .C 3131–0–4/98。