传感器课程设计(基于labview的pt100温度测量系统)

合集下载

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书1.背景介绍现代工业生产和生活中,温度监测系统在各个领域中都扮演着非常重要的角色。

从工业生产中的温度控制,到医疗设备和环境监测中的温度监测,都需要可靠的温度检测系统来确保生产和生活的安全和稳定。

因此,设计一款高效、稳定、精准的温度监测系统是非常有必要的。

2.设计目标本次设计的目标是开发一款基于LabVIEW的温度监测系统,主要用于工业生产、医疗设备和环境监测等领域。

该系统需要满足以下主要设计目标:-提供高精度的温度监测功能,能够在工业生产中实时监测温度并进行控制;-能够实时采集温度数据,并能够对数据进行存储、分析和显示;-支持远程监控和控制功能,方便用户在远程地点对温度系统进行监测和控制。

3.技术需求为了实现设计目标,需要满足以下技术需求:-传感器:选择高精度、稳定的温度传感器,能够在-50℃至150℃范围内工作,并且具有快速的响应时间和高灵敏度;- LabVIEW软件:利用LabVIEW软件进行系统的设计和开发,实现数据采集、处理和显示功能;-远程通信技术:使用网络通信技术,实现远程监控和控制功能;-数据存储和分析:需要采用数据库存储技术,对采集的温度数据进行存储和分析。

4.系统设计4.1系统硬件设计传感器选择:选择一款高精度、稳定的温度传感器,例如PT1000,它具有高精度和稳定的特性,可以满足系统的测温要求。

数据采集和处理:使用DAQ卡进行数据采集和预处理,实现对温度数据的快速采集和处理。

远程监控功能:通过网络模块,实现系统远程监控和控制功能,便于用户随时随地监控温度系统的工作状态。

4.2系统软件设计数据采集和处理:使用LabVIEW软件进行数据采集和处理,通过编程实现对温度数据的实时采集和处理。

数据存储和分析:利用LabVIEW和数据库技术进行温度数据的存储和分析,实现对历史温度数据的查询和分析功能。

远程通信功能:通过LabVIEW和网络通信技术,实现对温度系统的远程监控和控制功能,方便用户进行远程操作。

《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告

《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告

《传感器原理及应用》基于PT100温度传感器的温度测量电路设计实验报告1.实验功能要求了解铂热电阻的特性与应用;熟悉铂热电阻测温电路;利用P100铂电阻测量温度源的温度;记录温度与测量电路电压输出数据2.实验所用传感器原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。

铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。

在0-650℃以内。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。

)。

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。

3.实验电路PT100铂电阻测温电路经验P100电压采集放大电路:前半部分是4.096V恒压源电路,然后是一个桥式电压采样电路,后面是一个电压放大电路。

一、4.096V恒压源电路因Vref=2.5V,故有4.096=(1+R1/R2)*2.5,得出R1/R2=1.6384,可以通过调节滑动变阻器实现。

二、桥式电压采样电路这是一个桥式电压采样电路,其原理是将V2作为参考电压,通过V1的变化去得到一个相对的电压数值,这样就能得到PT100的电阻数值,从而得到当前温度数值。

其中相对数值是通过R7去调节,可以是任意,其R7的主要作用还是在校准温度使用。

根据项目需要,现在使用的R7的阻值是138.5002Ω,也就是PT100在100摄氏度是的温度数值。

三、电压放大电路分析电路:1根据"虚断"原则,流过R3和R8电流相等(V1-Vx)/R3=Vx/R82根据“虚断"原则,流过R6和R1电流相等(V2-Vout)/(R6+R1)=(V2-Vy)/R6 3根据"“虚短"原则,Vy=Vx4根据这3个公式得出:11V1-10V2=Vout理想要的数值是10倍的放大倍数,但是现在在输出端多了减了V1,根据模拟的数值可知,V1的取值范围是0.215-0.36835241646对应温度范围是44.032- 75.43。

基于LabVIEW的温度测控系统设计

基于LabVIEW的温度测控系统设计

包头师范学院本科毕业论文论文题目:基于LabVIEW的温度测控系统设计姓名:刘欣宇学号:0914830039专业:电子信息科学与技术院系:信息科学与技术学院电子系指导教师:潘峰二〇一三年五月六日摘要LabVIEW(Laboratory Virtual Instrument Engineering Workbench)又称G语言,是一种用图标代替文本行创建应用程序的图形化编程语言。

LabVIEW采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序,它用图标表示函数,用连线表示数据流向。

温度测控系统在许多行业、工业系统中是非常重要、不可或缺的,本文由一个PC 机、一个单片机、LabVIEW程序及外电路中一些硬件器材来实现对温度的显示与控制。

PC机通过LabVIEW将温度上下限传递给下位机,单片机与PC机间通过串口来实现温度参数的传送,单片机将上位机传来的温度与采集到的温度进行对比,根据对比结果来控制外电路的硬件制冷,实现温度的控制。

由虚拟仪器和单片机组成的该系统成本低、灵活性高、可拓展性强,更实用于当今科学技术对温度测控技术性能的拓展。

关键词:LabVIEW;单片机;温度测控;串口AbstractLabVIEW(Laboratory Virtual Instrument Engineering Workbench),also known as the G language is a graphical programming language to create applications with icons instead of lines of bVIEW dataflow programming block diagram data flow between the nodes determines the order of execution of the program,with icons representing functions,and lines to show the flow of data.Temperature control system in many industries,industrial systems is very important and indispensable,the paper consists of a PC,a microcontroller,the LabVIEW program and the external circuit to achieve temperature display and control hardware equipment.PC through LabVIEW upper and lower temperature is passed to the next crew,SCM and PC via the serial port to achieve the transmission of the temperature parameter,single-chip host computer from the temperature and the temperature of the collected compared to control external circuit, according to the comparison results hardware equipment heating or cooling,temperature control.The system is composed of virtual instruments and microcontroller low cost,high flexibility,scalability,more practical expansion of the temperature measurement and control technology performance with today's science and technology.Keywords:LabVIEW,;microcontroller,;temperature measurement and control;serial目录1引言 (1)2绪论 (2)2.1课题的研究目的及意义 (2)2.2课题研究的主要内容 (2)3概述 (3)3.1虚拟仪器的概述 (3)3.2LabVIEW的概述 (4)3.3LabVIEW的框图介绍 (4)3.3.1前面板 (4)3.3.2程序框图 (5)4上位机测控系统设计 (6)4.1测控系统的整体设计思路 (6)4.2LabVIEW串口VISA (7)4.2.1VISA串口配置 (8)4.2.2VISA串口写入 (8)4.2.3VISA串口读取 (9)4.2.4VISA串口关闭 (9)4.3温度测控前面板 (10)4.4温度测控程序框图 (11)4.4.1温度写入程序框图 (12)4.4.2温度的比较与显示程序框图 (13)5下位机测控系统设计 (15)5.1串口连接 (15)5.2硬件设计 (15)5.3软件设计 (16)5.3.1下位机软件设计流程图 (17)5.3.2软件设计主要源程序 (18)结论 (18)致谢 (23)参考文献 (24)1引言随着生产技术的发展,温度测控技术应用于很多行业中,例如电厂、医院、钢铁厂等。

基于LabVIEW的温度测量系统的设计

基于LabVIEW的温度测量系统的设计

基于LabVIEW的温度测量系统的设计作者:杨亮来源:《决策探索·收藏天下(中旬刊)》 2019年第2期摘要:随着现代化技术的不断发展,传统温度测量系统功能单一、灵活性差等缺点越发明显,对新型采集系统的需求日益剧烈。

LabVIEW作为一种程序开发环境,拥有强大的数据处理能力和良好的人机交互界面,集成度高,用户可根据需求自行升级,扩展功能。

文章采用美国国家仪器公司LabVIEW为开发平台,通过USB数据采集卡结合铂热电阻温度传感器,设计了一种具有友好人机交互的实时温度测量系统。

关键词:温度测量系统:人机交互:系统设计基金项目:本文系陕西工业职业技术学院(ZK17-12)研究成果。

很多工控场合都需要对温度进行测量,其精度要求也随着科技的发展越发严格。

但传统温度测量系统功能单一、灵活性差,复杂工况下性能也有可能不太稳定,往往不具备扩展性,硬件升级速度跟不上生产力的发展所以需要一个灵活的检测温度的系统。

故以虚拟仪器技术为核心,以图形化编程软件LabVIEW为软件开发平台,设计高精度的温度测量系统,其具有温度超出范围报警以及采取对应变温措施等功能。

目前国内温度测量系统均以硬件为主,可扩展性较差。

针对现有的温度测量系统,本文采用虚拟仪器技术,通过LabVIEW设计了温度测量系统,大大降低了开发成本.并为后期功能扩展提供了很大的灵活1生。

一、系统整体设计温度测量系统整体设计如图l所示,主要包括温度传感器、数据采集卡和Lab VIEW软件开发平台组成。

本系统温度传感器选择铂热电阻,其具有电阻率较高、易于提纯、复制性好、易加工等特性。

二、系统硬件设计硬件部分利用传感器及其信号调理电路,通过数据采集卡进行模数转换,再经USB接口将数据导入计算机中。

(一)温度传感器本文选用的铂热电阻是工业测量中低温区应用最多的温度传感器,其铂的物理化学1生能非常稳定,抗氧化能力强,测温区间内(12000C以下)均可保持优良特性。

(完整word版)传感器课程设计(基于labview的pt100温度测量系统)

(完整word版)传感器课程设计(基于labview的pt100温度测量系统)

目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节 PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节 TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的.在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。

热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。

常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等.近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要.热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。

基于PT100传感器的温度测量系统的设计

基于PT100传感器的温度测量系统的设计
图3.3 液晶串行发送一个字节数据时序
程序如下
void LCD_WriteByte(BYTE bt)//写单字节函数
{
char i;
SCLK = 0;
for (i=0;i<8;i++)//下降沿串行发送8位数据
{
bt <<= 1;
SDIN = CY;
SCLK = 1;
SCLK = 0;
}
}
void LCD_WriteCmd(BYTE x)// 写命令函数
设计时间
第一周
查找相关资料,制定设计方案,画出电路图,根据电路图进行电路板的焊接及检测
2012.3.5

2012.3.11
第二周
找相关资料,编写软件程序,进查行调试并完成功能
2012.3.12

2012.3.18
第三周
撰写并修改设计论文,直至完成
2012.3.19

2012.3.25
五、指导教师评语及学生成绩
图2.1系统结构框图
2.2
PT100传感器,是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,可以工作在 -200℃ 至 650℃ 的范围,其电阻和温度变化的关系式如下:
R=Ro(1+αT)
其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度。
PT100温度传感器测量范围广,偏差小,响应时间短,还具有抗振动、稳定性好、准确度高、耐高压等优点,得到了广泛的应用,本设计采用PT100作为温度传感器。
在离散数据的基础上插补连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其它点的近似值。

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书一、项目背景随着工业和生活水平的提高,对温度监测系统的需求日益增加。

温度监测系统是通过传感器对环境或物体的温度进行实时监测、采集和处理,以达到控制、报警、记录或调节的目的。

本项目旨在设计一套基于LabVIEW的温度监测系统,能够实现高精度、高稳定性的温度监测,并具有数据可视化、报警提示、远程监测等功能。

二、项目目标1.设计一套温度监测系统,能够实现对环境或物体的温度进行实时监测、采集、处理和显示。

2.实现对温度数据的实时监测和记录,能够生成温度曲线图,并具有数据查询、导出、打印等功能。

3.实现对温度数据的报警处理,能够根据设定的温度阈值进行报警提示,并具有报警记录和处理功能。

4.设计一套用户界面友好、操作简便的温度监测系统,能够实现远程监控和操作。

三、系统总体设计1.系统硬件设计:包括传感器、数据采集模块、数据处理模块、显示模块等。

2.系统软件设计:采用LabVIEW软件进行开发,包括数据采集、数据处理、数据显示、报警处理、远程监控等功能的实现。

3.用户界面设计:设计用户界面友好、操作简便的温度监测系统,包括温度曲线图显示、数据查询、报警设置等功能。

四、具体实施方案1.系统硬件设计:选择高精度、高稳定性的温度传感器,并通过数据采集模块进行数据采集和处理;数据采集模块采用高速ADC进行温度数据转换,并通过数据处理模块进行数据存储和处理;显示模块采用高清晰度显示屏进行温度数据的显示。

2.系统软件设计:采用LabVIEW软件进行开发,包括数据采集模块、数据处理模块、数据显示模块、报警处理模块和远程监控模块等功能的实现;利用LabVIEW的图形化编程和数据可视化功能,实现对温度数据的实时监测、记录、显示和分析。

3.用户界面设计:设计用户界面友好、操作简便的温度监测系统,包括温度曲线图显示、数据查询、报警设置、远程监控等功能的实现;实现对温度数据的可视化和直观显示,使用户能够方便地进行操作和管理。

课程设计(论文)-基于Labview的智能温度计设计

课程设计(论文)-基于Labview的智能温度计设计

北京理工大学设计报告报告名称基于Labview的智能温度计设计学院/专业生命学院/生物医学工程班级16131401班成员1 成员2任课老师2016年11月10日目录一、前言 (3)二、系统设计目标 (3)三、人员分工 (4)四、实验硬件 (4)(1)硬件设备 (4)(2)硬件结构图 (4)五、各子模块的设计 (4)(1)数据采集及换算部分 (5)(2)曲线拟合部分 (6)(3)清零部分 (6)(4)判断是否发烧部分 (7)(4)发烧报警程序 (8)五、系统测试 (8)(1),数据采集模块调试 (8)(2),判断是否发烧模块调试 (8)(3),发烧报警模块调试 (9)(4),整体程序调试 (9)(5)调试中出现的问题 (10)六、程序分析 (10)七、改进方向 (10)八、结论 (11)基于Labview的智能体温计设计一、前言Labview是一款程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是Labview与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而Labview使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。

Labview是一种用图标代替文本行创建应用程序的图形化编程语言。

传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而Labview采用数据流编程方式,程序框图中节点之间的数据流向决定了VI及函数的执行顺序。

VI指虚拟仪器,是Labview的程序模块。

Labview提供很多外观与传统仪器类似的控件,可用来方便地创建用户界面。

用户界面在Labview中被称为前面板。

使用图标和连线,可以通过编程对前面板上的对象进行控制。

这就是图形化源代码,又称G代码。

Labview的图形化源代码在某种程度上类似于流程图,因此又被称作程序框图代码。

二、系统设计目标因此,我们的设计目标是设计一个智能体温计,它通过前面板指示灯的亮或灭显示是否发烧,并在发烧的情况下发出报警声,在温度明显不符合体温范围时报错。

基于labview的温湿度测试系统

基于labview的温湿度测试系统

基于labview的温湿度测试系统摘要虚拟仪器(virtual instrumention)是基于计算机的仪器。

计算机和仪器的密切结合是⽬前仪器发展的⼀个重要⽅向。

使⽤虚拟仪器⽤户可以通过操作显⽰屏上的“虚拟”按钮或⾯板,完成对被测量的采集、分析、判断、调节和存储等功能。

本⽂设计就是建⽴在VI基础上,在此平台上完成对温度和湿度的实时测量。

关键词:虚拟仪器;采集;VI;温度;湿度2正⽂2.1Labview简介LabVIEW是⼀种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语⾔的显著区别是:其他计算机语⾔都是采⽤基于⽂本的语⾔产⽣代码,⽽LabVIEW使⽤的是图形化编辑语⾔G编写程序,产⽣的程序是框图的形式。

与C和BASIC⼀样,LabVIEW也是通⽤的编程系统,有⼀个完成任何编程任务的庞⼤函数库。

LabVIEW的函数库包括数据采集、GPIB、串⼝控制、数据分析、数据显⽰及数据存储,等等。

LabVIEW也有传统的程序调试⼯具,如设置断点、以动画⽅式显⽰数据及其⼦程序(⼦VI)的结果、单步执⾏等等,便于程序的调试。

虚拟仪器(virtual instrumention)是基于计算机的仪器。

计算机和仪器的密切结合是⽬前仪器发展的⼀个重要⽅向。

粗略地说这种结合有两种⽅式,⼀种是将计算机装⼊仪器,其典型的例⼦就是所谓智能化的仪器。

随着计算机功能的⽇益强⼤以及其体积的⽇趋缩⼩,这类仪器功能也越来越强⼤,⽬前已经出现含嵌⼊式系统的仪器。

另⼀种⽅式是将仪器装⼊计算机。

以通⽤的计算机硬件及操作系统为依托,实现各种仪器功能。

虚拟仪器主要是指这种⽅式。

下⾯的框图反映了常见的虚拟仪器⽅案。

虚拟仪器的主要特点有:尽可能采⽤了通⽤的硬件,各种仪器的差异主要是软件。

可充分发挥计算机的能⼒,有强⼤的数据处理功能,可以创造出功能更强的仪器。

⽤户可以根据⾃⼰的需要定义和制造各种仪器。

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书基于LabVIEW的温度监测系统设计任务书:1. 任务概述本任务旨在设计一个基于LabVIEW的温度监测系统,能够实时监测传感器输出的温度数据,并能够进行数据采集、处理、存储和实时显示。

该系统将使用一个传感器、一个数据采集模块和一个图形化用户界面,以实现对温度的监测和控制。

2. 系统功能2.1 数据采集该系统将使用一个温度传感器来采集温度数据。

传感器将实时输出温度值,并将其发送到数据采集模块。

数据采集模块将接收传感器输出并将其转换为数字信号,以便在图形化用户界面中进行显示。

2.2 数据处理数据采集模块将接收传感器输出并将其转换为数字信号。

这些数据将存储在一个数据库中,以便进行后续分析和处理。

数据处理模块将使用SQL语言或其他数据库技术来访问数据库,并提取所需的数据。

2.3 实时显示系统将使用图形化用户界面来实时显示温度数据。

用户将能够通过拖拽和放置控件来自定义用户界面,并使用控件来实时监测温度数据。

2.4 控制系统将使用LabVIEW编程语言来控制系统的运行。

用户可以通过编程来设置温度传感器的阈值、设定温度报警阈值等,以便对系统进行控制。

3. 系统硬件3.1 传感器该系统将使用一个温度传感器来采集温度数据。

传感器将实时输出温度值,并将其发送到数据采集模块。

3.2 数据采集模块该系统将使用一个数据采集模块来接收传感器输出并将其转换为数字信号。

数据采集模块将具有多个输入端口,以满足不同的温度传感器输出。

3.3 图形化用户界面该系统将使用图形化用户界面来实时显示温度数据。

用户将能够通过拖拽和放置控件来自定义用户界面,并使用控件来实时监测温度数据。

4. 系统软件4.1 LabVIEW编程语言该系统将使用LabVIEW编程语言来控制系统的运行。

用户可以通过编写程序来设置温度传感器的阈值、设定温度报警阈值等,以便对系统进行控制。

4.2 数据库技术系统将使用SQL语言或其他数据库技术来访问数据库,以提取所需的数据。

基于LabVIEW温度监测虚拟仪器设计课程设计

基于LabVIEW温度监测虚拟仪器设计课程设计

摘要: (2)1. 虚拟仪器 (3)1.1虚拟仪器概述 (3)1.2虚拟仪器的通用仪器硬件平台 (5)1.3虚拟仪器的软件层次结构 (5)2. LaVIEW 的程序构成与模块简介 (6)2.1前面板 (7)2.2程序框图 (7)3. 设计要求及设计方案 (8)3.1设计要求 (8)3.2设计方案 (8)4. 设计内容 (9)4.1基于虚拟仪器的数据采集设计 (9)4.2基于虚拟仪器的温度检测设计 (9)4.3显示及记录软件设计 (10)5.程序的运行与调试 (11)5.1程序的运行 (11)5.2程序调试技术 (12)5.3运行结果 (13)5.4总程序框图 (14)6. 设计体会 (14)7. 参考文献 (15)摘要:虚拟仪器(virtual instrumention)是基于计算机的仪器。

计算机和仪器的密切结合是目前仪器发展的一个重要方向。

虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。

目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的LabVIEW。

LabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。

LabVIEW开发环境集成了工程师和科学家快速构建各种应用所需的所有工具,旨在帮助工程师和科学家解决问题、提高生产力和不断创新。

随着科学技术的发展,人们在监控与监测生产过程、居住环境、生活质量等过程中,制造了各种各样科学仪器。

本文设计就是建立在VI基础上,在此平台上完成对温度实时监测。

关键词:虚拟仪器LaVIEW 温度监测1.虚拟仪器1.1虚拟仪器概述虚拟仪器,是一种以计算机和测试模块的硬件为基础、以计算机软件为核心所构成的,并且在计算机显示屏幕上虚拟的仪器面板,以及由计算机所完成的仪器功能,都可由用户软件来定义的计算机仪器。

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书设计任务书1.项目背景温度监测是很多领域中非常重要的一项工作,包括工业生产、环境监测、实验室等。

随着科技的发展,温度监测系统的要求也越来越高,需要实时、准确地采集和显示温度数据,并具备远程监控和报警功能。

本项目旨在设计一套基于LabVIEW的温度监测系统,满足实时监测、报警和远程控制的需求。

2.项目目标设计一套基于LabVIEW的温度监测系统,并实现以下功能:-实时采集温度数据:系统能够通过传感器实时采集环境温度数据,并在界面上显示。

-数据存储和显示:系统能够对采集的温度数据进行存储和显示,用户可以随时查看历史数据。

-温度报警功能:系统能够监测温度是否超过预设阈值,当温度超过阈值时能够及时报警。

-远程监控和控制:系统能够实现远程监控和控制,用户可以通过网络远程查看温度曲线和控制设备。

3.项目内容-硬件设计:选择适合的温度传感器,并与LabVIEW开发平台进行连接,实现温度数据的实时采集。

-软件设计:使用LabVIEW开发平台,设计温度监测界面,并实现温度数据的存储、显示和报警功能。

-网络通信:实现通过网络实现远程监控和控制的功能。

-系统集成与测试:对硬件和软件进行集成调试,并进行测试和优化,确保系统正常运行。

4.项目进度安排-第一周:项目启动会议,明确项目需求和目标,进行相关文献调研。

-第二周:选择合适的硬件传感器,并进行硬件连接和驱动程序的编写。

-第三周:使用LabVIEW开发界面,实现温度数据的实时采集和显示。

-第四周:实现温度数据的存储和报警功能,进行相关功能测试。

-第五周:实现远程监控和控制功能,进行网络通信测试。

-第六周:对整个系统进行集成调试,进行性能测试和优化。

-第七周:项目总结和报告书的撰写。

5.项目预算本项目的预算主要用于购买硬件传感器、LabVIEW开发平台软件及相关设备,预计总预算为3000元。

6.项目评估项目最终评估将根据以下几个方面进行:-功能评估:根据设计目标中所提及的功能进行测试,评估系统是否满足需求。

基于PT100传感器的温度测量系统的设计

基于PT100传感器的温度测量系统的设计
PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:
R=Ro(1+αT)
其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度。因此白金作成的电阻式温度检测器,又称为PT100。
PT100是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。
具体的需求对象可以从以下几个方面进行表述:
1、在人类社会进入知识经济时代、信息技术高速发展的背景下,热电阻及其测量控制技术得到日益广泛应用,给热电阻行业的快速发展提供了良好契机。热电阻是信息产业的源头和组成部分,是信息技术的重要基础。
2、热电阻广泛应用于装备、改造传统产业的工艺流程的测量和控制,是现代化大型重点成套装备的重要组成部分,是信息化带动工业化的重要纽带。
图3.2 信号采集调理电路
根据运放的“虚短”、“虚断”作用,电压信号放大转换为可以输入A/D转换器的合适电压值。
2.3 A/D模数转换模块
2.3.1 ICL7135功能介绍
ICL7135是一种四位半的双积分A/D转换器,可以转换出±20000个数字量选通控BCD码输出,与单片机接口十分方便。它具有精度高(相当于14位A/D转换),价格低的优点。其转换速度与时钟频率相关,每个转换周期均有:自校准(调零),正向积分(被测模拟电压积分),反向积分(基准电压积分)和过零检测四个阶段组成,其中自校准时间为10001个脉冲,正向积分时间为10001个脉冲,反向积分直至电压到零为止(最大不超过20001个脉冲)。故设计者可以采用从正向积分开始计数脉冲个数,到反向积分为零时停止计数。将计数的脉冲个数减10000,即得到对应的模拟量。具体电路如图2.3所示。

基于labview的虚拟温度计的设计

基于labview的虚拟温度计的设计

目录1绪论 (2)1.1 虚拟仪器的概念 (2)1.2虚拟仪器的特点 (3)1.3虚拟仪器技术的发展现状 (3)2接触式温度传感器 (5)3硬件设计 (6)3.1 PT100铂热电阻温度传感优点 (7)3.2 PT100铂热电阻温度传感结构 (7)4设计思路 (8)4.1总程序框图 (8)4.2数据采集系统 (9)4.3温度信号分析功能 (10)4.4温度回放、查询和数据存储系统 (11)4.5温度报警系统 (11)5总结 (12)基于labview的虚拟温度计的设计摘要温度是一个非常重要的物理量,因为它直接影响燃烧、化学反应、发酵、煅烧、蒸馏、浓度结晶以及空气流动等物理和化学过程。

温度控制失误就可能引起生产安全、产品质量、产品产量等一系列问题。

因此对温度的检测的意义就越来越大。

温度计在工业生产、科学研究和人们生活领域中,得到了广泛的应用。

在工业生产过程中,很多时候都需要对温度进行严格的控制,才能够是生产顺利的进行,产品的质量才能得到保证。

使用温度计可以对生产环境进行监控,保证产品的自动化,智能化能够顺利安全进行,从而提高企业的生产效率。

本文介绍了利用传感器测量温度的方法,引出虚拟仪器labview 的相关知识,利用labview设计一个虚拟温度计,实现了温度数据储存、回放、查询和温度超范围自动报警等功能。

关键字:labview;温度计;传感器1绪论1.1 虚拟仪器的概念虚拟仪器 (Virtual Instrument,VI) 是 20 世纪 80 年代末由美国国家仪器公司 (National Instru-ments Corporation,NI)提出的新概念 , 是对传统仪器概念上的重大突破。

虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。

一个典型的倒子是在计算机上插数据采集卡,然后用软件在屏幕上生成仪器面板,用软件来进行信号分析的处理,实现传统仪器的功能。

基于LabVIEW的温度测控系统设计

基于LabVIEW的温度测控系统设计

数字化 互联网+数码世界 P .154目前上海城建职业学院图书馆的微信公众号只是图文信息的推送,后续还要请专业的公司来开发接口,实现馆藏书目查询、图书借阅等功能。

另外,公众号的难点是高质量的原创。

通过实践发现,如果不是原创,读者的阅读量则较低,哪怕排版一样地精美,也吸引不了读者。

所以如何持续地原创是个难题,馆员来经营公号,时间和精力上都很有限,公号上文章的内容不仅仅是资讯的输入,而且是自身价值观的输入,文章写得如何有趣、有吸引读者读下去的欲望,很考验原创者的功力,可是持续性的原创很耗精力、心力,毕竟馆员除了公众号运营外还有其他工作要做,所以如何组建一个团队来做原创是一个问题,如果馆员专门来运营,是不是加强这方面新媒体的培训力度,这都是今后值得探讨的问题。

参考文献1.田蓉,叶炜.高校图书馆微信公众平台信息推送服务研究[J].图书馆学刊,2017(3):99-103.2.林佳喜.微信公众平台在高校图书馆信息推送服务中的应用研究[J].吉林工程技术师范学院学报,2016,32(12):3.张钰梅.公共图书馆微信公众平台运营推广研究[J].图书馆,2015(3):45-48基金项目该项目受“2017年长三角地区高校图书馆联盟-图书情报研究基金”(项目编号:2017B020)资助。

基于LabVIEW 的温度测控系统设计辛建官 江西工业贸易职业技术学院 王文军 聂何婷 江西水利职业学院摘要:在该温度测控系统的设计中以AT89S51型单片机为硬件核心,利用LabVIEW、PID 工具包作为软件开发平台。

该温度测控系统的现场温度全部由单片机进行现场采集,信号由LabVIEW 进行分析、处理和采集,从而使当前温度值向设定值靠近以实现对温度的实时控制。

另外,需要采集数据存盘供该系统运行时查阅和分析。

经测试后可知,该温度测控系统界面友好,具有测量精度高、安全可靠、操作简单以及可扩展性强的优点,具有很强的应用价值。

关键词:LabVIEW 温度测控系统 设计传统的温度测控系统的功能和规格具有固定性,一般都由厂家进行定义和设置,不可随意更改,难以适应当今时代对温度测控系统的要求。

基于LabVIEW的温度测量系统设计

基于LabVIEW的温度测量系统设计

基于LabVIEW的温度测量系统设计作者:李菲江世明来源:《现代电子技术》2014年第06期摘要:虚拟仪器将计算机技术与测量技术紧密融合,它在进行环境参数测量时无需使用大量的测量设备,最大限度地降低了开发成本。

鉴于此,设计了一个基于虚拟仪器技术的温度测量系统。

该系统主要由下位机和上位机两部分构成,下位机通过传感器采集温度信号,经单片机以串口通信的方式传送给上位机,上位机中由LabVIEW软件编写的温度测量系统可实时进行温度的显示与报警。

测试结果表明,该设计系统的测量精度较高,操作简单,而且可视性很好。

关键词:温度采集; AT89S52;串口通信; LabVIEW中图分类号: TN964⁃34 文献标识码: A 文章编号: 1004⁃373X(2014)06⁃0114⁃03温度是我们日常生活中常见的物理量,也是工业、农业等领域需实时检测的物理量,那么如何进行温度实时有效的检测是必须考虑的一个问题。

传统的测量方法大多偏硬件电路和C/C++语言,设计过程复杂,且可视效果不好,针对这些问题,本文中引入了虚拟仪器技术。

虚拟仪器技术是计算机与仪器测量技术结合的产物,它不再依托复杂的编程过程,而是采用一种图形化的编程形式,根据工程的实际需求构建虚拟的测量仪器与信号分析处理软件,不再需要大量的硬件设备,大大降低了系统的开发成本[1]。

其中,LabVIEW作为虚拟仪器主要的开发软件,目前已广泛应用于数据采集、仪器控制、测量分析等应用系统的开发。

1 系统的组成与工作原理本文设计的温度测量系统是基于LabVIEW平台来实现的,整个系统分为上位机和下位机2部分。

上位机由装有LabVIEW软件平台的PC机来实现,下位机由温度采集模块、单片机控制模块、LCD显示模块、串口通信模块来构成,具体的系统框图如图1所示。

在上述设计的系统中,首先通过温度传感器采集当前实时温度,将温度信号转换成电信号传送到单片机进行处理,且实时温度在LCD1206上显示出来,同时将采样数据通过MAX232串口通信模块发送到PC机,PC机上的用LabVIEW实现的温度测量应用软件读取到串口数据后,把接收到的数据进行解码,将处理后的数据以波形的形式显示出来,且能进行相应的报警处理等。

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书

基于labview的温度监测系统设计任务书一、任务背景及意义随着科学技术的不断发展,温度监测系统在各个领域中的应用越来越广泛。

无论是工业生产、医疗卫生、环境监测还是日常生活,温度监测系统都扮演着重要的角色。

一个高效可靠的温度监测系统能够有效地保障生产、医疗和环境的安全,提高生产效率,降低生产成本,减少环境污染和资源浪费。

本次设计任务的背景是为了研发一款基于LabVIEW的高性能温度监测系统,以满足不同领域对于温度监测系统的需求。

设计任务的意义在于通过研发出符合实际需求的温度监测系统,提高生产效率和产品质量,保障医疗仪器的正常运行,改善环境监测的精度和准确性。

二、任务目标1.设计一款基于LabVIEW的温度监测系统,能够满足不同领域对于温度监测的需要。

2.保证温度监测系统的高性能,包括准确性、稳定性和实时性。

3.设计可靠的温度数据存储和分析功能,满足用户对于温度数据的管理和利用需求。

4.提供友好的操作界面和便捷的数据输出方式,确保用户能够方便地使用和管理温度监测系统。

三、任务内容1.系统架构设计基于LabVIEW平台,设计出符合不同领域需求的温度监测系统框架,包括硬件和软件的整体架构。

确保系统具有高度的可扩展性和灵活性,能够满足不同领域对于温度监测系统的个性化需求。

2.传感器选择与接口设计根据不同环境的需要,选择适合的温度传感器,并设计相应的接口电路,保证数据采集的准确性和稳定性。

同时,确保传感器和接口电路能够与LabVIEW平台进行良好的连接和通讯。

3.数据采集与处理通过LabVIEW平台进行温度数据的实时采集和处理,保证系统具有高度的实时性和稳定性。

同时,设计出合理的数据处理算法,确保温度数据的准确性和可靠性。

4.数据存储与管理设计合理的数据存储结构和管理系统,确保温度数据能够便捷地进行存储和管理。

并能够提供数据查询、分析和导出的功能,满足用户对于温度数据的管理和利用需求。

5.用户界面设计设计友好的操作界面,包括数据显示、操作控制和配置管理等功能,确保用户能够方便地使用和管理温度监测系统。

基于LabVIEW和RBF神经网络的PT100测温系统的设计

基于LabVIEW和RBF神经网络的PT100测温系统的设计

丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌丌保山学院学报基于LabVIEW 和RBF 神经网络的PT100测温系统的设计周先飞1杨会伟1夏跃武1(芜湖职业技术学院,安徽芜湖241000)[摘要]在NI-ELVIS 平台下建立PT100热电阻测温系统硬件和软件设计,硬件部分对PT100检测电路进行分析设计,软件部分介绍以LabVIEW 软件为平台的系统设计;为了提高温度测量精度,用径向基(RBF )神经网络建立了PT100热电阻温度测量模型,对电阻与温度之间的非线性关系进行了逼近,结果表明:该设计具有精度高、范围广、界面友好的特点,适合对测温精度要求比较高的场合。

[关键词]温度测量;PT100;RBF 神经网络;LabVIEW [中图分类号]TP3[文献标识码]Adoi:10.3969/j.issn.1674-9340.2020.02.009[文章编号]1674-9340(2020)02-038-05收稿日期:2020-02-24基金项目:2019安徽省优秀青年人才资助计划项目“基于虚拟仪器和ELVIS 的多传感器数据采集系统设计与实现”(项目编号:gxyq2019200);安徽省教育厅自然科学研究重点项目“物联网融合中基于FPGA 多协议间转换系统的设计与实现”(项目编号:KJ2019A0980);2018芜湖职业技术学院”计算机应用专业综合改革试点项目”(项目编号:WHZY201807)。

作者简介:周先飞(1982—),男,安徽芜湖人,副教授,研究方向为计算机测控。

温度的测量广泛应用于工业化生产、国防、科研等领域,因此研究温度的测量方法和测温装置具有重要的意义。

铂热电阻PT100是常用的一种温度传感器,它的主要特点是测量精度高,性能稳定,在工业中应用广泛,但其电阻与温度为非线性关系。

描述热电阻特性的传统方法是直接建立数学表达式,分段描述,其拟合精度较低。

对非线性关系,很难用精确的显式公式描述,却比较适合于用神经网络方法进行逼近。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。

在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。

热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。

常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。

近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。

热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。

常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。

热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

非接触式温度传感器主要是被测物体通过热辐射能量来反映物体温度的高低,这种测温方法可避免与高温被测体接触,测温不破坏温度场,测温范围宽,精度高,反应速度快,既可测近距离小目标的温度,又可测远距离大面积目标的温度。

目前运用受限的主要原因一是价格相对较贵,二是非接触式温度传感器的输出同样存在非线性的问题,而且其输出受与被测量物体的距离、环境温度等多种其它因素的影响。

由于本设计的任务是要求测量的范围为0℃~100℃,测量的分辨率为±0.1℃,综合价格以及后续的电路,决定采用线性度相对较好的PT100作为本课题的温度传感器,具体的型号为WZP型铂电阻,该传感器的测温范围从-200℃~+650℃。

具体在0℃~100℃的分度特性表见附录A所示。

第二节方案论证温度测量的方案有很多种,可以采用传统的分立式传感器、模拟集成传感器以及新兴的智能型传感器。

方案一:采用模拟分立元件如电容、电感或晶体管等非线形元件,该方案设计电路简单易懂,操作简单,且价格便宜,但采用分立元件分散性大,不便于集成数字化,而且测量误差大。

方案二:采用温度传感器通过温度传感器采集温度信号,经信号放大器放大后,送到A/D转换芯片,将模拟量转化为数字量,通过labview显示。

热电阻也是最常用的一种温度传感器。

它的主要特点是测量精度高,性能稳定,使用方便,测量范围为-200℃~650℃,完全满足要求,考虑到铂电阻的测量精确度是最高的,所以我们设计最终选择铂电阻PT100作为传感器。

该方案采用热电阻PT100做为温度传感器、AD620作为信号放大器,TLC2543作为A/D 转换部件,对于温度信号的采集具有大范围、高精度的特点。

相对与方案一,在功能、性能、可操作性等方面都有较大的提升。

在这里我选用方案二完成本次设计。

第三节系统的工作原理测温的模拟电路是把当前PT100热电阻传感器的电阻值,转换为容易测量的电压值,经过放大器放大信号后送给虚拟仪器实验室的PCI-6251数据采集卡,再通过虚拟仪器把当前的电压值转变成温度第四节系统框图本设计系统主要包括温度信号采集单元,数据处理单元,时间、温度显示单元。

其中温度信号的数据采集单元部分包括温度传感器、温度信号的获取电路(采样)、放大电路。

系统的总结构框图所示。

第二章硬件设计第一节 PT100传感器特性和测温原理电阻式温度传感器(RTD, Resistance Temperature Detector)是指一种物质材料作成的电阻,它会随温度的改变而改变电阻值。

PT100温度传感器是一种以铂(Pt)做成的电阻式温度传感器,属于正电阻系数,其电阻阻值与温度的关系可以近似用下式表示:在0~650℃范围内:Rt =R0 (1+At+Bt2)在-200~0℃范围内:Rt =R0 (1+At+Bt2+C(t-100)t3)式中A、B、C 为常数,A=3.96847×10-3;B=-5.847×10-7;C=-4.22×10-12;由于它的电阻—温度关系的线性度非常好,因此在测量较小范围内其电阻和温度变化的关系式如下:R=Ro(1+αT)其中α=0.00392, Ro为100Ω(在0℃的电阻值),T为华氏温度,因此铂做成的电阻式温度传感器,又称为PT100。

PT100温度传感器的测量范围广:-200℃~+650℃,偏差小,响应时间短,还具有抗振动、稳定性好、准确度高、耐高压等优点,其得到了广泛的应用,本设计即采用PT100作为温度传感器。

主要技术指标:1. 测温范围:-200~650摄氏度;2. 测温精度:0.1摄氏度;3. 稳定性:0.1摄氏度Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变化转换成电压或电流等模拟信号,然后再将模拟信号转换成数字信号,再由处理器换算出相应温度。

采用Pt100 测量温度一般有两种方案:方案一:设计一个恒流源通过Pt100 热电阻,通过检测Pt100 上电压的变化来换算出温度。

方案二:采用惠斯顿电桥,电桥的四个电阻中三个是恒定的,另一个用Pt100 热电阻,当Pt100电阻值变化时,测试端产生一个电势差,由此电势差换算出温度。

两种方案的区别只在于信号获取电路的不同,其原理上基本一致。

第二节信号调理电路调理电路的作用是将来自于现场传感器的信号变换成前向通道中A/D转换器能识别的信号,作为本系统,由于温度传感器是热电阻PT100,因此调理电路完成的是怎样将与温度有关的电阻信号变换成能被A/D转换器接受的电压信号。

第三节恒流源电路从上述关于PT100传感器测温原理可知,由PT100构成信号的获取电路常用的方法有2种,一种是构成的十分常见的电桥电路,当然,在本系统中,考虑成本的问题,一般采用单臂桥;还有一种是运用恒流源电路,将恒流源通过温度传感器,温度传感器两端的电压即反映温度的变化。

上述两种电路的结构形式见图2-1所示。

A图单臂桥式 B图恒流源式图2-1 两种信号获取的结构电路硬件电路如图所示图2-2 硬件电路图第四节TL431主要参数简介TL431是一种并联稳压集成电路。

因其性能好、价格低,因此广泛应用在各种电源电路中。

其封装形式与塑封三极管9013等相同,如图a所示。

同类产品还有图b所示的双直插外形的。

三端可调分流基准源可编程输出电压:2.5V~36V电压参考误差:±0.4% ,典型值@25℃(TL431B)低动态输出阻抗:0.22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2.5--36V连续可调,参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆,输出电流1.0--100毫安。

全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。

封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2.5V输出电压范围为2.5~36V替换型号及应用领域:ZTL431AH6TAZTL431ASE5TAZTL431BH6TAZTL431BZTAZTL431BCSTZZTL431BE5TAUTCTL431LZTL431BFFTA应用领域::电平值转换内部结构图cTL431的具体功能可以用图c的功能模块示意。

由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。

由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1的电流将从1到100mA变化。

当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。

第三章软件设计软件设计部分在labview上完成,前面板如图所示,对温度进行实时采集图3-1 采集显示前面板Vi子程序部分图3-2 Vi程序结论本温度测量系统设计,是采用PT100温度传感器经过放大和A/D转换器送到单片机进行控制温度显示和时间显示。

另外本系统还可以通过外接电路扩展实现温度报警功能,从而更好的实现温度现场的实时控制。

经过多次的修改和调试测量,本设计基本符合设计要求,由于受人为因素和软硬件的限制,系统难免不了带来一些误差,但通过调节和精确计算可以减小误差。

通过本次温度测量系统的设计,我对温度测量控制有了进一步的熟悉和更深入的学习。

在整个设计的过程中,本设计的重点和难点是:怎样将PT100热电阻的非电量信号转换为能识别的电量信号,其中的信号如何放大及放大倍数的确定等等。

-这次毕业设计从一开始的课题确定,到后来的资料查找、理论学习,再有就是近来的调试和测试过程,这一切都使我的理论知识和动手能力进一步得到提升。

在画原理图、电路仿真和调试过程中不可避免地遇到各种问题,这要求保持沉着冷静,联系书本理论知识积极地思考,实在解决不了时候可以请教同学或指导老师。

虽然在制作过程中不可避免地遇到很多问题,但是最后还是在老师以及同学的帮助下圆满解决了这些问题,实现了整个系统设计与最后调试,相关指标达到预期的要求,很好地完成了本次设计任务。

通过本次毕业设计,我了解并掌握了一些传感器和labview的基本理论知识。

相关文档
最新文档