(word完整版)高中数学导数练习题(分类练习)讲义

合集下载

高中数学导数经典20题附解析

高中数学导数经典20题附解析

导数经典20题目录导数经典20题 (1)一、【不等式恒成立-单变量】5道 (3)二、【不等式恒成立-双变量】5道 (13)三、【不等式证明】5道 (23)四、【零点问题】5道 (32)一、【不等式恒成立-单变量】【第01题】(2017•广东模拟)已知()ln a f x x x=+.(1)求()f x 的单调区间和极值;(2)若对任意0x >,均有()2ln ln x a x a −≤恒成立,求正数a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间,从而求出函数的极值即可;(2)问题转化为2ln ln 1a a ≤+,求出a 的范围即可.【解答】解:(1)(0x >), ()221a x a f x x x x−′=−=(0x >), 当0a ≤时,()0f x ′>,在()0,+∞上递增,无极值;当0a >时,0x a <<时,()0f x ′<,在()0,a 上递减,x a >时,()0f x ′>,()f x 在(),a +∞上递增,()()ln 1f x f a a ==+极小值,无极大值.(2)若对任意0x >,均有恒成立,即对任意0x >,均有2ln ln a a x x≤+恒成立, 由(1)得:0a >时,()f x 的最小值是ln 1a +,故问题转化为:2ln ln 1a a ≤+,即ln 1a ≤,故0e a <≤.【点评】本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,考查()ln a f x x x =+()f x ()f x ()2ln ln x a x a −≤转化思想,是一道中档题.一、【不等式恒成立-单变量】【第02题】(2019•西安一模)已知函数()()21e x f x x ax =−−(其中e 为自然对数的底数). (1)判断函数()f x 极值点的个数,并说明理由;(2)若对任意的0x >,()3e x f x x x +≥+,求a 的取值范围.【分析】(1)首先求得导函数,然后分类讨论确定函数的极值点的个数即可;(2)将原问题转化为恒成立的问题,然后分类讨论确定实数a 的取值范围即可.【解答】解:(1)()()e 2e 2x xf x x ax x a ′=−=− ,当0a ≤时,()f x 在(),0−∞上单调递减,在()0,+∞上单调递增,()f x 有1个极值点; 当102a <<时,()f x 在(),ln 2a −∞上单调递增,在()ln 2,0a 上单调递减,在()0,+∞上单调递增,()f a 有2个极值点; 当12a =时,()f x 在R 上单调递增,此时函数没有极值点; 当12a >时,()f x 在(),0−∞上单调递增,在()0,ln 2a 上单调递减,在()ln 2,a +∞上单调递增,()f a 有2个极值点. 综上,当12a =时,()f x 没有极值点;当0a ≤时,()f x 有1个极值点;当0a >且12a ≠时,()f x 有2个极值点.(2)由得32e 0x x x ax x −−−≥.当0x >时,2e 10x x ax −−−≥, 即2e 1x x a x−−≤对0x ∀>恒成立. 设()2e 1x x g x x−−=(0x >), ()3e x f x x x +≥+则()()()21e 1x x x g x x −−−′=,设()e 1x h x x =−−,则()e 1x h x ′=−,由0x >可知()0h x ′>,()h x 在()0,+∞上单调递增,()()00h x h >=,即e 1x x >+,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()1e 2g x g ∴≥=−,e 2a ∴≤−,故a 的取值范围是(],e 2−∞−.【点评】本题主要考查导数研究函数的极值点,导数研究不等式恒成立的方法,分类讨论的数学思想等知识,属于中等题.【第03题】(2017春•太仆寺旗校级期末)已知函数()ln f x x a x =−,()1a g x x+=−(a ∈R ). (1)若1a =,求函数()f x 的极小值;(2)设函数()()()h x f x g x =−,求函数()h x 的单调区间;(3)若在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,求a 的取值范围.【分析】(1)先求出其导函数,让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间进而求出函数()f x 的极值;(2)先求出函数()h x 的导函数,分情况讨论让其大于0求出增区间,小于0求出减区间即可得到函数的单调区间;(3)先把()()00f x g x <成立转化为()00h x <,即函数()1ln a h x x a x x +=+−在[]1,e 上的最小值小于零;再结合(2)的结论分情况讨论求出其最小值即可求出a 的取值范围.【解答】解:(1)()f x 的定义域为()0,+∞,当1a =时,()ln f x x x =−,()111x f x x x −′=−=, x ()0,11 ()1,+∞ ()'f x− 0 + ()f x减 极小 增 所以()f x 在1x =处取得极小值1.(2)()1ln a h x x a x x +=+−, ()()()221111x x a a a h x x x x+−+ + ′=−−=, ①当10a +>时,即1a >−时,在()0,1a +上()0h x ′<,在()1,a ++∞上()0h x ′>, 所以()h x 在()0,1a +上单调递减,在()1,a ++∞上单调递增;②当10a +≤,即1a ≤−时,在()0,+∞上()0h x ′>,所以,函数()h x 在()0,+∞上单调递增.(3)在区间[]1,e 上存在一点0x ,使得()()00f x g x <成立,即在[]1,e 上存在一点0x ,使得()00h x <,即函数在[]1,e 上的最小值小于零. 由(2)可知,①当1e a +≥,即e 1a ≥−时,()h x 在[]1,e 上单调递减,所以()h x 的最小值为()e h ,由()1e e 0ea h a +=+−<可得2e 1e 1a +>−, 因为2e 1e 1+−e 1>−, 所以2e 1e 1a +>−; ②当11a +≤,即0a ≤时,()h x 在上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <−;③当11e a <+<,即0e 1a <<−时,可得()h x 最小值为()1h a +,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+−+>,此时,()10h a +<不成立.综上可得,所求a 的范围是:或2a <−. 【点评】本题第一问考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.()1ln a h x x a x x+=+−[]1,e 2e 1e 1a +>−【第04题】(2019•蚌埠一模)已知函数()()2ln f x a x x x =−−.(1)当1a =时,求函数()f x 的单调区间;(2)若()0f x ≥恒成立,求a 的值.【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论x 的范围,问题转化为01x <<时,2ln x a x x ≤−,1x >时,2ln x a x x ≥−,令()g x =2ln x x x−,根据函数的最值求出a 的范围,取交集即可. 【解答】解:(1)1a =时,()2ln f x x x x −−,(0x >) 故()()()211121x x f x x x x+−′=−−=, 令()0f x ′>,解得:1x >,令()0f x ′<,解得:01x <<,故()f x 在()0,1递减,在()1,+∞递增.(2)若()0f x ≥恒成立,即()2ln a x x x −≥,①()0,1x ∈时,20x x −<,问题转化为2ln x a x x ≤−(()0,1x ∈),1x >时,20x x −>,问题转化为2ln x a x x ≥−(1x >), 令()g x =2ln x x x −, 则()()()22121ln x x x g x x x −−−′=−, 令()()121ln h x x x x =−−−,则()112ln h x x x ′=−+−,()2120x x xh ′=−−<′, 故()h x ′在()0,1和()1,+∞内都递减,()0,1x ∈时,()()10h x h ′′>=,故()h x 在()0,1递增,()()10h x h <=,故()0,1x ∈时,()0g x ′<,()g x 在()0,1递减,而1x →时,()1g x →,故()0,1x ∈时,()1g x >,故1a ≤,()1,x ∈+∞时,()()10h x h ′′<=,故()h x 在()0,1递减,()()10h x h <=, 故()1,x ∈+∞时,()0g x ′<,()g x 在()1,+∞递减,而1x →时,()1g x →,故()1,x ∈+∞时,()1g x >,故1a ≥,②1x =时,显然成立.综上:1a =.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是一道综合题.【第05题】(2019•南昌一模)已知函数()()e ln x f x x x a =−++(e 为自然对数的底数,a 为常数,且1a ≤). (1)判断函数()f x 在区间()1,e 内是否存在极值点,并说明理由; (2)若当ln 2a =时,()f x k <(k ∈Z )恒成立,求整数k 的最小值. 【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可; (2)由题意结合导函数研究函数的单调性,据此讨论实数k 的最小值即可. 【解答】解:(1)()1e ln 1x f x x x a x ′=−++−,令()1ln 1g x x x a x=−++−,()1,e x ∈,则()()'e x f x g x =, ()2210x x g x x −+′=−<恒成立,所以()g x 在()1,e 上单调递减,所以()()110g x g a <=−≤,所以()'0f x =在()1,e 内无解. 所以函数()f x 在区间()1,e 内无极值点.(2)当ln 2a =时,()()e ln ln 2x f x x x =−++,定义域为()0,+∞,()1e ln ln 21x f x x x x ′=−++−,令()1ln ln 21h x x x x =−++−, 由(1)知,()h x 在()0,+∞上单调递减,又11022h => ,()1ln 210h =−<,所以存在11,12x∈,使得()10h x =,且当()10,x x ∈时,()0h x >,即()'0f x >,当()1,x x ∈+∞时,()0h x <,即()'0f x <.所以()f x 在()10,x 上单调递增,在()1,x +∞上单调递减, 所以()()()1111max e ln ln 2x f x f x x x ==−++. 由()10h x =得1111ln ln 210x x x −++−=,即1111ln ln 21x x x −+=−, 所以()1111e 1x f x x =−,11,12x∈ ,令()1e 1x r x x =− ,1,12x ∈ ,则()211e 10x r x x x′=−+> 恒成立, 所以()r x 在1,12上单调递增,所以()()1102r r x r <<= ,所以()max 0f x <,又因为1211e ln 2ln 2122f=−−+=>−,所以()max 10f x −<<,所以若()f x k <(k ∈Z )恒成立,则k 的最小值为0.【点评】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.二、【不等式恒成立-双变量】【第06题】(2019•广元模拟)已知函数()()ln 11xf x a x x=−++(a ∈R ),()2e mx g x x =(m ∈R ). (1)当1a =时,求函数()f x 的最大值;(2)若0a <,且对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立,求实数m 的取值范围.【分析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值即可; (2)令()()1x f x ϕ=+,根据函数的单调性分别求出()x ϕ的最小值和()g x 的最大值,得到关于m 的不等式,解出即可.【解答】解:(1)函数()f x 的定义域为()1,−+∞, 当1a =时,()()()2211111xf x xx x −′=−=+++,∴当()1,0x ∈−时,()'0f x >,函数()f x 在()1,0−上单调递增, ∴当()0,x ∈+∞时,()'0f x <,函数()f x 在()0,+∞上单调递减, ()()max 00f x f ∴==.(2)令()()1x f x ϕ=+,因为“对任意的1x ,[]20,2x ∈,()()121f x g x +≥恒成立”, 所以对任意的1x ,[]20,2x ∈,()()min max x g x ϕ≥成立, 由于()()211ax a x x ϕ−−+′=+,当0a <时,对[]0,2x ∀∈有()'0x ϕ>,从而函数()x ϕ在[]0,2上单调递增, 所以()()min 01x ϕϕ==, ()()222e e 2e mx mx mx g x x x mmxx ′=+⋅=+,当0m =时,()2g x x =,x ∈[]0,2时,()()max 24g x g ==,显然不满足()max 1g x ≤,当0m ≠时,令()'0g x =得10x =,22x m=−, ①当22m−≥,即10m −≤≤时,在[]0,2上()0g x ′≥,所以()g x 在[]0,2上单调递增, 所以()()2max 24e m g x g ==,只需24e 1m ≤,得ln 2m ≤−,所以1ln 2m −≤≤−. ②当202m <−<,即1m <−时,在20,m − 上()0g x ′≥,()g x 单调递增,在2,2m−−上()0g x ′<,()g x 单调递减,所以()22max 24eg x g m m== , 只需2241e m ≤,得2e m ≤−,所以1m <−. ③当20m−<,即0m >时,显然在[]0,2上()0g x ′≥,()g x 单调递增, 所以()()2max 24e m g x g ==,24e 1m ≤不成立. 综上所述,m 的取值范围是(],ln 2−∞−.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.【第07题】(2019•濮阳一模)已知函数()ln b f x a x x =+(0a ≠). (1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1x ,21,e e x ∈,都有()()12e 2f x f x −≤−成立,求实数b 的取值范围.【分析】(1)通过讨论a 的范围,求出函数的单调区间即可;(2)原问题等价于()()max min e 2f x f x −≤−成立,可得()()min 11f x f ==,可得()()max e e b f x f b ==−+,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),可得()b ϕ在()0,+∞单调递增,且()10ϕ=,即可得不等式e e 10b b −−+≤的解集.【解答】解:(1)函数()f x 的定义域为()0,+∞. 当2b =时,()2ln f x a x x =+,所以()22x a f x x+′=. ①当0a >时,()0f x ′>,所以函数()f x 在()0,+∞上单调递增.②当0a <时,令()0f x ′=,解得:x =当0x <<()0f x ′<,所以函数()f x 在 上单调递减;当x >()0f x ′>,所以函数()f x 在+∞上单调递增. 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在 上单调递减,在 +∞上单调递增. (2) 对任意1x ,21,e e x∈,有()()12e 2f x f x −≤−成立,()()max min e 2f x f x ≤∴−−成立,0a b += ,0b >时,()ln b f x b x x =−+.()()11bb b x b f x bx x x−−′=−+=. 当01x <<时,()0f x ′<,当1x >时,()0f x ′>,()f x ∴在1,1e单调递减,在[]1,e 单调递增,()()min 11f x f ==,1e e bf b − =+ ,()e e b f b =−+, 设()()1e e e 2e b b g b f f b −=−=−−(0b >),()e e 20b b g b −′=+−>. ()g b ∴在()0,+∞递增,()()00g b g ∴>=,()1e e f f ∴>.可得()max f x =()e e b f b =−+,e 1e 2b b ∴−+−≤−,即e e 10b b −−+≤,设()e e 1b b b ϕ=−−+(0b >),()e 10b b ϕ′−>在()0,b ∈+∞恒成立.()b ϕ∴在()0,+∞单调递增,且()10ϕ=,∴不等式e e 10b b −−+≤的解集为(]0,1. ∴实数b 的取值范围为(]0,1.【点评】本题考查了导数的应用,考查了转化思想、运算能力,属于压轴题.【第08题】(2019•衡阳一模)已知()32342f x x ax x −=+(x ∈R ),且()f x 在区间[]1,1−上是增函数.(1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立?若存在,求m 的取值范围;若不存在,请说明理由.【分析】(1)由()f x 在区间[]1,1−上是增函数.可得()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.可得()10f ′−≥,()10f ′≥,即可得出. (2)函数()f x 的两个极值点为1x 、2x ,可得12x x a +=,122x x =−.()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增,进而得出其最大值为7.()21213g t m tm x x ++≥−=对任意a A ∈及[]1,1t ∈−恒成立,可得()()1717g g −≥ ≥,解得m 范围即可得出.【解答】解:(1) ()f x 在区间[]1,1−上是增函数, ∴()24220f x ax x ′=+−≥在区间[]1,1−上恒成立.()14220f a ∴′−=−−≥,()14220f a ′=+−≥,解得11a −≤≤. []1,1A ∴=−.(2)函数()f x 的两个极值点为1x 、2x , ∴12x x a +=,122x x =−.∴()()1212121212322x x x x x x x x x x −−++≤−++==a A ∈ ,设()h a =[]1,1a ∈−,则()h a 是偶函数,且在[]0,1上单调递增.123x x ∴−的最大值为()17h =.设()2211g t m tm mt m ++=++=,[]1,1t ∈−,()123g t x x ≥−对任意a A ∈及[]1,1t ∈−恒成立,则()()1717g g −≥≥ ,解得3m ≤−或3m ≥. ∴存在实数3m ≤−或3m ≥,使得不等式21213m tm x x ++≥−对任意a A ∈及[]1,1t ∈−恒成立.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、转化方法、分类讨论方法,考查了推理能力与计算能力,属于难题.【第09题】(2018•呼和浩特一模)已知函数()ln f x x =,()212g x x bx =−(b 为常数). (1)当4b =时,讨论函数()()()h x f x g x =+的单调性;(2)2b ≥时,如果对于1x ∀,(]21,2x ∈,且12x x ≠,都有()()()()1212f x f x g x g x −<−成立,求实数b 的取值范围.【分析】(1)先求导,再根据导数和函数的单调性关系即可求出,(2)令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2(1,2]上单调递减,即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立,所以得1b x x ≥+,求出即可.【解答】解:(1)()21ln 2h x x x bx =+−的定义域为()0,+∞,当4b =时,()21ln 42h x x x x =+−,()2141'4x x h x x x x−+=+−=, 令()'0h x =,解得12x =−,22x =+(2x ∈时,()0h x ′<, 当(0,2x ∈或()2+∞时,()0h x ′>,所以,()h x 在(0,2和()2+∞单调递增;在(2单调递减. (2)因为()ln f x x =在区间(]1,2上单调递增, 当2b ≥时,()212g x x bx =−在区间(]1,2上单调递减, 不妨设12x x >,则()()()()1212f x f x g x g x −<−等价于()()()()1122f x g x f x g x +<+, 令()()()x f x g x ϕ=+,则问题等价于函数()x ϕ在区间(]1,2上单调递减, 即等价于()10x x b xϕ′=+−≤在区间(]1,2上恒成立, 所以得1b x x≥+在区间(]1,2上恒成立, 因为1y x x=+在(]1,2上单调递增, 所以max 15222y =+=,所以得5b≥.2【点评】本题考查了导数研究函数的单调性以及根据函数的增减性得到函数的最值,理解等价转化思想的运用,属于中档题.【第10题】(2018•邕宁区校级模拟)设函数()e xa f x x x=−,a ∈R 且0a ≠,e 为自然对数的底数. (1)求函数()f x y x=的单调区间; (2)若1ea =,当120x x <<时,不等式()()()211212m x x f x f x x x −−>恒成立,求实数m 的取值范围.【分析】(1)求出函数y 的导数y ′,利用导数判断函数y 的单调性与单调区间; (2)120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−;构造函数()()mg x f x x=−,由()g x 在()0,+∞上为减函数,得出()0g x ′≤, 再利用构造函数求最值法求出m 的取值范围. 【解答】解:(1)函数()2e 1xf x a y x x==−, ()243e 2e 2e xx x a x a x x a y x x −⋅−⋅∴′==, ①当0a >时,由0y ′>得02x <<,由0y ′<得0x <或2x >; ②当0a <时,由0y ′>得0x <或2x >,由0y ′<得02x <<. 综上:①当0a >时,函数()f x y x=的增区间为()0,2,减区间为(),0−∞,()2,+∞; ②当0a <时,函数()f x y x=的增区间为(),0−∞,()2,+∞,减区间为()0,2. (2)当120x x <<时,()()()211212m x x f x f x x x −−>等价于()()1212m mf x f x x x −>−,即函数())e (e x m mg x f x x x x x=−=−−在()0,+∞上为减函数,则()()()1212221e 1e 10x x x x x m m g x x x x−−−−−+′=−+=≤, ()121e x m x x −∴≤−−;令()()121e x h x x x −=−−, 则()()11 e 2e 2x x h x x xx −−′=−=−,由()0h x ′=得ln 2e x =;当()0,ln 2e x ∈时,()0h x ′<,()h x 为减函数; 当()ln 2e,+x ∈∞时,()0h x ′>,()h x 为增函数.()h x ∴的最小值为()()()()22ln 2e 12ln 2e ln 2e 1e ln 2e 2ln 2ln 21ln 21h −=−−=−+=−−; 2ln 21m ∴≤−−,m ∴的取值范围是(22,ln 1 −−∞− .【点评】本题考查了利用导数研究函数的单调性与最值问题,也考查了不等式恒成立问题,是综合题.三、【不等式证明】【第11题】(2018新课标I)已知函数()e ln 1x f x a x =−−.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【分析】(1)推导出0x >,()1e x f x a x ′=−,由2x =是()f x 的极值点,解得212ea =,从而()21e ln 12exf x x =−−,进而()211e 2e x f x x ′=−,由此能求出()f x 的单调区间. (2)当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e xg x x =−−,则()e 1e x g x x ′=−,由此利用导数性质能证明当1ea ≥时,()0f x ≥. 【解答】解:(1)∵函数()e ln 1x f x a x =−−. ∴0x >,()1e xf x a x′=−, ∵2x =是()f x 的极值点,∴()212e 02f a ′=−=,解得212ea =,∴()21e ln 12exf x x =−−,∴()211e 2e x f x x ′=−, 当02x <<时,()0f x ′<,当2x >时,()0f x ′>, ∴()f x 在()0,2单调递减,在()2,+∞单调递增.(2)证明:当1e a ≥时,()e ln 1e xf x x ≥−−,设()e ln 1e x g x x =−−,则()e 1e x g x x ′=−, 由()e 10e x g x x ′=−=,得1x =,当01x <<时,()0g x ′<, 当1x >时,()0g x ′>, ∴1x =是()g x 的最小值点,故当0x >时,()()10g x g ≥=, ∴当1ea ≥时,()0f x ≥. 【点评】本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.【第12题】(2018新课标Ⅲ)已知函数()21e xax x f x +−=. (1)求曲线()y f x =在点()0,1−处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【分析】(1)()()()()2221e 1e e x xx ax ax x f x +−+−′=由()02f ′=,可得切线斜率2k =,即可得到切线方程. (2)可得()()()()()()2221e 1e 12ee x xxx ax ax x ax x f x +−+−+−′==−.可得()f x 在1,a−∞−,()2,+∞递减,在1,2a−递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.只需()min e f x ≥−,即可. 【解答】解:(1)()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.∴()02f ′=,即曲线()y f x =在点()01−,处的切线斜率2k =, ∴曲线()y f x =在点()01−,处的切线方程方程为()12y x −−=. 即210x y −−=为所求.(2)证明:函数()f x 的定义域为:R , 可得()()()()()()2221e 1e 12e e x xxx ax ax x ax x f x +−+−+−′==−.令()0f x ′=,可得12x =,210x a=−<, 当1,x a∈−∞−时,()0f x ′<,当1,2x a ∈− 时,()0f x ′>,当()2,x ∈+∞时,()0f x ′<.∴()f x 在1,a−∞−,()2,+∞递减,在1,2a − 递增,注意到1a ≥时,函数()21g x ax x =+−在()2,+∞单调递增,且()2410g a =+>.函数()f x 的图象如下:∵1a ≥,∴(]10,1a∈,则11e e a f a−=−≥−, ∴()1min e e af x =−≥−, ∴当1a ≥时,()e 0f x +≥.【点评】本题考查了导数的几何意义,及利用导数求单调性、最值,考查了数形结合思想,属于中档题.【第13题】(2016新课标Ⅲ)设函数()ln 1f x x x =−+. (1)讨论()f x 的单调性; (2)证明当()1,x ∈+∞时,11ln x x x−<<; (3)设1c >,证明当()0,1x ∈时,()11x c x c +−>.【分析】(1)求出导数,由导数大于0,可得增区间;导数小于0,可得减区间,注意函数的定义域;(2)由题意可得即证ln 1ln x x x x <−<.运用(1)的单调性可得ln 1x x <−,设()ln 1F x x x x =−+,1x >,求出单调性,即可得到1ln x x x −<成立;(3)设()()11x G x c x c =+−−,求()G x 的二次导数,判断()G x ′的单调性,进而证明原不等式.【解答】解:(1)函数()ln 1f x x x =−+的导数为()11f x x′=−, 由()0f x ′>,可得01x <<;由()0f x ′<,可得1x >. 即有()f x 的增区间为()0,1;减区间为()1,+∞; (2)证明:当()1,x ∈+∞时,11ln x x x−<<,即为ln 1ln x x x x <−<. 由(1)可得()ln 1f x x x =−+在()1,+∞递减, 可得()()10f x f <=,即有ln 1x x <−;设()ln 1F x x x x =−+,1x >,()1ln 1ln F x x x ′=+−=, 当1x >时,()0F x ′>,可得()F x 递增,即有()()10F x F >=, 即有ln 1x x x >−,则原不等式成立; (3)证明:设()()11x G x c x c =+−−,则需要证明:当()0,1x ∈时,()0G x >(1c >);()1ln x G x c c c ′=−−,()()2ln 0x G x c c ′′=−<,∴()G x ′在()0,1单调递减,而()01ln G c c ′=−−,()11ln G c c c ′=−−, 由(1)中()f x 的单调性,可得()01ln 0G c c ′=−−>,由(2)可得()()11ln 1ln 10G c c c c c ′=−−=−−<,∴()0,1t ∃∈,使得0G t ′=(),即()0,x t ∈时,()0G x ′>,(),1x t ∈时,()0G x ′<; 即()G x 在()0,t 递增,在(),1t 递减; 又因为:()()010G G ==,∴()0,1x ∈时()0G x >成立,不等式得证; 即1c >,当()0,1x ∈时,()11x c x c +−>.【点评】本题考查导数的运用:求单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.【第14题】(2015新课标I)设函数()2e ln x f x a x =−. (1)讨论()f x 的导函数()f x ′零点的个数; (2)证明:当0a >时,()22lnf x a a a≥+. 【分析】(1)先求导,在分类讨论,当0a ≤时,当0a >时,根据零点存在定理,即可求出;(2)设导函数()f x ′在()0,+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值()0f x ,只要最小值大于22ln a a a+,问题得以证明.【解答】解:(1)()2e ln x f x a x =−的定义域为()0,+∞, ∴()22e x xx af =′−. 当0a ≤时,()0f x ′>恒成立,故()f x ′没有零点, 当0a >时,∵2e x y =为单调递增,ay x=−单调递增, ∴()f x ′在()0,+∞单调递增, 又()0f a ′>,假设存在b 满足0ln2a b <<时,且14b <,()0f b ′<, 故当0a >时,导函数()f x ′存在唯一的零点;(2)由(1)知,可设导函数()f x ′在()0,+∞上的唯一零点为0x , 当()00,x x ∈时,()0f x ′<, 当()0,x x ∈+∞时,()0f x ′>,故f(x)在()00,x 单调递减,在()0,x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为()0f x , 由于0202e 0x ax −=,所以()002a f x x =+02ax +2ln a a ≥2a +2ln a a. 故当0a >时,()22lnf x a a a≥+. 【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.【第15题】(2015安徽)设n ∗∈N ,n x 是曲线221n y x +=+在点()1,2处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式; (2)记2221321n n T x x x −= ,证明:14n T n≥. 【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)2221'1'22n n y x n x ++=+=+()(),曲线221n y x +=+在点()1,2处的切线斜率为22n +,从而切线方程为()()2221y n x −=+−.令0y =,解得切线与x 轴的交点的横坐标为1111n n x n n =−=++;(2)证明:由题设和(1)中的计算结果可知:22213222211321242n n n n T x x x−− = =, 当1n =时,114T =, 当2n ≥时,因为()()()()2222212221211212212222n n n n n n n n n n n x −−−−−−−=>=== , 所以2112112234n T n n n − >××××= ;综上所述,可得对任意的n ∗∈N ,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.四、【零点问题】【第16题】(2018秋•龙岩期末)已知函数()()2ln 12f x x ax a x a =−−−+(a ∈R ). (1)讨论()f x 的单调性;(2)令函数()()()()22e 1ln 1x g x f x x a x −=+−+−−,若函数()g x 有且只有一个零点0x ,试判断0x 与3的大小,并说明理由.【分析】(1)由()222211a x x a f x x a x x +− ′−−−−(1x >),分212a +≤和212a +>两类分析函数的单调性;(2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+,求其导函数,可得()21e 1x g x a x −′=−−−,令()()h x g x ′=,对()h x 求导,分析可得()g x ′在()1,+∞上有唯一零点1x ,结合已知可得01x x =,则()()0000g x g x ′ = = ,由此可得()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 再利用导数判断其单调性,结合函数零点的判定可得03x <. 【解答】解:(1)()222211a x x a f x x a x x +− ′−−−−(1x >), 当212a +≤,即0a ≤时,()0f x ′>在()1,+∞上恒成立,()f x 在()1,+∞上单调递增; 当212a +>,即0a >时,若21,2a x + ∈ ,则()0f x ′<,若2,2a x + ∈+∞,则()0f x ′>, ∴()f x 在21,2a + 上单调递减,在2,2a ++∞上单调递增; (2)函数()()()()()222e 1ln 1e ln 12x x g x f x x a x ax x a −−=+−+−−=−−−+. 则()21e 1x g x a x −′=−−−,易知()g x ′在()1,+∞上单调递增,当1x >且1x →时,()g x ′→−∞,x →+∞,()g x ′→+∞, ∴()g x ′在()1,+∞上有唯一零点1x ,当()11,x x ∈时,()0g x ′<,当()1,x x ∈+∞时,()0g x ′>. ∴()()1min g x g x =,由已知函数()g x 有且只有一个零点0x ,则01x x =. ∴()()0000g x g x ′ = = ,即()0022001e 01e ln 120x x a x ax x a −− −−= − −−−+=, 消a 得,()000222000011e ln 1e 2e 011x x x x x x x −−−−−−−+−= −−, ()()0200013e ln 1101x x x x −−−−+−=−, 令()()()213e ln 111x t x x x x −−−−+−−(1x >). 则()()()2212e 1x t x x x −′=−+−. ∴()1,2x ∈时,()0t x ′>,()2,x ∈+∞时,()0t x ′<. ∴()t x 在()2,+∞上单调递减. ∵()210t =>,()13ln 202t =−+<, ∴()t x 在()2,3上有一个零点,在()3,+∞上无零点. 若()t x 在()1,2上有一个零点,则该零点必小于3. 综上,03x <.【点评】本题考查了利用导数研究函数的单调性,考查函数零点的判定,考查了推理能力与计算能力,属于难题.【第17题】(2019•大庆二模)已知函数()22ln f x x a x =−(a ∈R ). (1)当12a =时,点M 在函数()y f x =的图象上运动,直线2y x =−与函数()y f x =的图象不相交,求点M 到直线2y x =−距离的最小值; (2)讨论函数()f x 零点的个数,并说明理由.【分析】(1)首先写出函数的定义域,对函数求导,分析在什么情况下满足距离最小,构造等量关系式,求解,得到对应的点的坐标,之后应用点到直线的距离公式进行求解即可;(2)对函数求导,分情况讨论函数的单调性,依次得出函数零点的个数. 【解答】解:(1)()f x 的定义域为()0,+∞, 12a =时,()2ln f x x x =−,()12f x x x ′=−,令()1f x ′=,解得:1x =或12x =−,又()11f =,故图像上的点到直线20x y −−=的距离的最小值即为点()1,1M 到直线20x y −−=的距离,其距离d(2)由()0f x =,得22ln x a x =(0x >且1x ≠),设()2ln x g x x=(0x >且1x ≠),2y a =, 问题转化为讨论()y g x =的图象和2y a =的图象的交点个数问题, ()()22ln 1ln x x g x x−′=,(0x >且1x ≠),令()0g x ′=,解得x ,当01x <<或1x <<时,()0g x ′<,当x 时,()0g x ′>,故()g x 在()0,1,(递减,在)+∞递增,故()2e g x g =极小值,又01x <<时,()0g x <,当1x >时,()0g x >,故当20a <或22e a =即0a <或e a =时,直线2y a =与函数()y g x =的图象有1个交点, 当22e a >即e a >时,有2个交点, 当0e a ≤<时没有交点,故函数()f x 当0a <或e a =时1个零点,当0a <或e a =时2个零点,0e a ≤<时没有零点.【点评】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有图象上的点到直线的距离的最小值的求解,导数的几何意义,应用导数研究函数的零点的问题,注意对分类讨论思想的应用,要做到不重不漏,属于较难题目.【第18题】(2018秋•周口期末)已知函数()22ln f x ax x =−(a ∈R ). (1)讨论函数()f x 的单调性; (2)当21e a =时,若函数()y f x =的两个零点分别为1x ,2x (12x x <),证明:()12ln ln 21x x +>+.【分析】(1)求函数的定义域和函数的导数,分0a ≤和0a >分类讨论函数的单调性即可;(2)欲证()12ln ln 21x x +>+,只需证122e x x +>,即证122e x x >−,只需证()()212e 0f x f x −>=,将()22e f x −表示出来化简整理并构造函数()()442ln 2ln 2e 1etg t t =−+−−,由函数()g t 的单调性即可证明. 【解答】解:(1)易知()f x 的定义域是()0,+∞,()()22122ax f x ax x x−′=−=, 当0a ≤时,()0f x ′<,()f x 在()0,+∞递减,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞递增; (2)证明:当21ea =时,()222ln e x f x x =−,由(1)知()()min e 1f x f ==−,且()10,e x ∈,()2e,x ∈+∞,又由()2e 22ln 20f =−>知22e x <,即()2e,2e x ∈,故()22e 0,e x −∈,由()222222ln 0e x f x x =−=,得22222e ln x x =,故()()()()222222222e 42e 2ln 2e 42ln 2ln 2e eex x f x x x x −−=−−=−+−−,()2e,2e x ∈,令()()442ln 2ln 2e etg t t t =−+−−,()e,2e t ∈, 则()()()24e 0e 2e t g t t t −′=>−, 故()g t 在()e,2e 递增,故()()e 0g t g >=,即()()212e 0f x f x −>=, 又()f x 在()0,e 上单调递减,故212e x x −<,即()12ln ln 21x x +>+.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想考查不等式的证明,是一道综合题.(2018秋•咸阳期末)已知函数()221ln 2f x x a x =−(0a >). (1)讨论()f x 的单调性;(2)若()f x 在[]1,e 上没有零点,求a 的取值范围.【分析】(1)求出()f x ′,解不等式()0f x ′>,()0f x ′<,即可求出()f x 的单调区间; (2)用导数求出函数()f x 在区间[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <,分类讨论,根据导数和函数的最值得关系即可求出.【解答】解:(1)()222a x a f x x x x −′=−=(0x >), 令()0f x ′>,解得x a >;令()0f x ′<,解得0x a <<, ∴函数()f x 的单调增区间为(),a +∞,单调减区间为()0,a .(2)要使()f x 在[]1,e 上没有零点,只需在[]1,e 上()min 0f x >或()max 0f x <, 又()1102f =>,只需在区间[]1,e 上,()min 0f x >. ①当e a ≥时,()f x 在区间[]1,e 上单调递减,则()()22min 1e e 02f x f a ==−>,解得0a <<与e a ≥矛盾. ②当1e a <<时,()f x 在区间[)1,a 上单调递减,在区间(],e a 上单调递增, ()()()2min 112ln 02f x f a a a ==−>,解得0a <1a <③当01a <≤时,()f x 在区间[]1,e 上单调递增,()()min 10f x f =>,满足题意, 综上所述,实数a 的取值范围是:0a <<【点评】本题是导数在函数中的综合运用,考查运用导数求单调区间,求极值,求最值,考查分类讨论的思想方法,同时应注意在闭区间内只有一个极值,则一定为最值的结论的运用.(2018秋•芜湖期末)已知函数()2ln 1f x x a x =−−(a ∈R ). (1)求()f x 的极值点;(2)若函数()f x 在区间()0,1内无零点,求a 的取值范围.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,求出函数的极值点即可;(2)求出函数的导数,通过讨论a 的范围,求出函数的单调区间,从而确定是否存在零点,进而判断a 的范围.【解答】解:(1)()222a x a f x x x x −′=−=(0x >),当0a ≤时,()0f x ′>,()f x 在()0,+∞递增,当0a >时,令()0f x ′>,解得x >,故()f x 在 递减,在 +∞ 递增,故x =是极小值点,无极大值点; (2)()22x af x x −′=(01x <<), ∵01x <<,∴2022x <<,当0a ≤时,()0f x ′>,()f x 在()0,1递增, 故()()10f x f <=,函数无零点,符合题意; 当2a ≥时,()0f x ′<,()f x 在()0,1递减, 故()()10f x f >=,函数无零点,符合题意;当02a <<时,存在()00,1x =,使得()00f x ′=,故()f x 在 递减,在递增,又10e1a−<<,1e 0a f −> ,()10f f <=, 故()f x 在()0,1有零点,不合题意;综上,若函数()f x 在区间()0,1内无零点,则2a ≥或0a ≤.【点评】本题考查了函数的单调性,极值问题,考查导数的应用以及函数零点问题,考查分类讨论思想,转化思想,是一道综合题.。

高中数学导数练习题

高中数学导数练习题

高中数学导数练习题高中数学导数练习题在高中数学学习中,导数是一个重要的概念和工具。

它不仅在微积分中起着重要的作用,也在其他数学领域中有广泛的应用。

为了加深对导数的理解和掌握,我们可以通过练习题来提高自己的能力。

一、基础练习题1. 求函数f(x) = 3x² + 2x的导数。

解答:根据导数的定义,我们可以通过求函数的斜率来求导数。

对于f(x) = 3x²+ 2x,我们可以使用求导法则来求导数。

根据常数乘法法则和幂函数求导法则,我们可以得到f'(x) = 6x + 2。

2. 求函数g(x) = sin(x) + cos(x)的导数。

解答:对于g(x) = sin(x) + cos(x),我们可以使用三角函数的求导法则来求导数。

根据三角函数的导数公式,我们可以得到g'(x) = cos(x) - sin(x)。

3. 求函数h(x) = e^x的导数。

解答:对于h(x) = e^x,我们可以使用指数函数的求导法则来求导数。

根据指数函数的导数公式,我们可以得到h'(x) = e^x。

二、应用练习题1. 求函数y = x³ - 2x² + 3x的极值点。

解答:对于函数y = x³ - 2x² + 3x,我们需要先求导数,然后令导数等于零来求得极值点。

求导得到y' = 3x² - 4x + 3。

令y' = 0,我们可以解方程得到x = 1和x = 3/2。

将这两个x值代入原函数,我们可以得到对应的y值。

所以,极值点为(1, 2)和(3/2, 9/8)。

2. 求函数y = x² - 4x的拐点。

解答:对于函数y = x² - 4x,我们需要求二阶导数,然后令二阶导数等于零来求得拐点。

求二阶导数得到y'' = 2。

由于二阶导数恒大于零,所以该函数没有拐点。

3. 求函数y = ln(x)的渐近线。

(word完整版)导数的运算练习题

(word完整版)导数的运算练习题

导数的运算练习一、常用的导数公式(1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________;二、导数的运算法则 1、(1) ; (2);(3)______________________________________; (4)=___________________________________;(C 为常数)2、复合函数的导数设 .三、练习1、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、32y x = ) A .23xB .213x C .12- D 33x4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫⎪⎝⎭8、设()sin y f x =是可导函数,则x y '等于( )A .()sin f x 'B .()sin cos f x x '⋅C .()sin sin f x x '⋅D .()cos cos f x x '⋅ 9、函数()22423y x x=-+的导数是( )A .()2823x x -+B .()2216x -+ C .()()282361x x x -+-D .()()242361x x x -+-10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-11、点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A .0,2π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦12、求函数212y x =-在点1x =处的导数。

(word完整版)高中数学导数练习题.docx

(word完整版)高中数学导数练习题.docx

导数练习题1. f ( x) 是f ( x) 1 x32x 1 的导函数,则 f ( 1)的值是。

31x 2 ,则2.已知函数 y f ( x)的图象在点 M (1, f (1))处的切线方程是 y2f (1) f(1)。

3.曲线y x32x24x 2 在点 (1, 3) 处的切线方程是。

5.已知f x ax 33x2x1在R上是减函数,求 a 的取值范围。

6. 设函数 f ( x) 2x33ax23bx 8c 在x 1 及 x 2 时取得极值。

(1)求 a、b 的值;(2)若对于任意的x [0,3] ,都有f ( x) c2成立,求c的取值范围。

7. 已知a为实数,f xx 2 4 x a 。

求导数 f ' x ;(2)若 f ' 10 ,求 f x在区间2,2 上的最大值和最小值。

8. 设函数 f (x) ax3bx c ( a 0) 为奇函数,其图象在点(1, f (1)) 处的切线与直线x 6 y 7 0 垂直,导函数 f '( x) 的最小值为12 。

(1)求a, b ,c的值;1(2)求函数 f (x) 的单调递增区间,并求函数f ( x) 在 [ 1,3] 上的最大值和最小值。

第一章导数及其应用一、选择题 1.若函数 yf ( x) 在区间 ( a, b) 内可导,且 x 0 ( a, b) 则 limf ( x 0h)f ( x 0 h)h 0h的值为()A . f ' ( x 0 )B . 2 f '( x 0 )C . 2 f ' ( x 0 )D . 02.一个物体的运动方程为 s1 tt 2 其中 s 的单位是米, t 的单位是秒,那么物体在3 秒末的瞬时速度是( )A . 7 米 /秒B . 6 米 /秒C . 5 米 /秒D . 8 米 / 秒3.函数 y = x 3+ x 的递增区间是()A . (0,)B . (,1)C . ( , )D . (1,).f ( x) ax 33x 22 若'则 a 的值等于()4,f( 1) 4 ,19B .1613 D .10A .3C .3335.函数 yf (x) 在一点的导数值为0 是函数 yf ( x) 在这点取极值的()A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数 yx 44x3 在区间2,3 上的最小值为()A . 72B . 36C . 12D . 0二、填空题1.若 f ( x)x 3, f ' ( x 0 ) 3 ,则 x 0 的值为 _________________ ;2.曲线 y x 34x 在点 (1,3) 处的切线倾斜角为__________ ;3.函数 ysin xx 的导数为 _________________ ;4.曲线 y ln x 在点 M (e,1) 处的切线的斜率是 _________,切线的方程为 _______________; 5.函数 yx 3 x 2 5x 5 的单调递增区间是 ___________________________ 。

word版高二数学导数大题及练习题

word版高二数学导数大题及练习题

word 版高二数学导数大题及练习题一、解答题1.求下列函数的导数: (1)221()(31)y x x =-+; (2)2321xy x -=+; (3)e cos x y x =2.已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.3.已知函数()()()211e 2x f x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.4.已知函数()()2e 2e 1e 2e x xf x x =-++.(1)若函数()()g x f x a =-有三个零点,求a 的取值范围. (2)若()()()()123123f x f x f x x x x ==<<,证明:120x x +>. 5.函数()3e x f x ax =-,0a >. (1)讨论函数()f x 的极值点个数;(2)已知函数()g x 的定义域为[)0,∞+,且[)0,x ∞∀∈+满足()()()g x xg x xg x '+>.若[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,且0x 是函数()f x 的极值点,求a 的取值范围.6.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<. 7.已知函数()ln f x x =(1)过原点作()f x 的切线l ,求l 的方程;(2)令()()f x g x x=,求()g x a ≥在4⎤⎦恒成立,求a 的取值范围 8.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.9.已知函数()1ln xf x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 10.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.【参考答案】一、解答题1.(1)21843x x +-;(2)222262(1)x x x --+;(3)e (cos sin )x x x -. 【解析】 【分析】(1)(2)(3)由基本初等函数的导数公式,结合求导的乘除法则求各函数的导函数. (1)2222(21)(31)(21)(31)4(31)3(21)1843y x x x x x x x x x '''=-++-+=++-=+-.(2)2222222222(32)(1)(32)(1)2(1)2(32)262(1)(1)(1)x x x x x x x x x y x x x ''-+--+-+----'===+++.(3)(e )cos e (cos )e (cos sin )x x x y x x x x '''=+=-.2.(1)10x y +-=;(2)ln 3⎡-⎣.【解析】 【分析】(1)根据导数的几何意义可利用斜率求得切点坐标,由此可得切线方程;(2)令()()2213222m g x f x x ⎛⎫=-+- ⎪⎝⎭,将问题转化为当0x ≥时,()min 0g x ≥恒成立;①当10m +≥时,由导数可证得()g x 单调递增,由()00g ≥可求得m 范围; ②当10+<m 时,利用零点存在定理可说明存在()00g x '=,并得到()g x 单调性,知()()020min 13e e 022x xg x g x ==-++≥,由此可解得0x 的范围,根据00e x x m -=可求得m 范围. (1)当2m =-时,()e 2x f x x =-,()e 2xf x '=-;令()e 21xf x '=-=-,解得:0x =,∴切点坐标为()0,1,∴所求切线方程为:1y x =-+,即10x y +-=;(2)令()()22221313e 222222x m m g x f x x mx x ⎛⎫=-+-=+--+ ⎪⎝⎭,则原问题转化为:当0x ≥时,()0g x ≥恒成立,即()min 0g x ≥恒成立;()e x g x m x '=+-,()e 1x g x ''=-,则当0x ≥时,()0g x ''≥,()g x '∴在[)0,∞+上单调递增,()()01g x g m ''∴≥=+; ①当10m +≥,即1m ≥-时,()0g x '≥,()g x ∴在[)0,∞+上单调递增,()()2min301022m g x g ∴==-+≥,解得:m ≤≤m ⎡∴∈-⎣; ②当10+<m ,即1m <-时,()00g '<,当x →+∞时,()g x '→+∞;()00,x ∴∃∈+∞,使得()00g x '=,即00e x x m -=,则当()00,x x ∈时,()0g x '<;当()0,x x ∈+∞时,()0g x '>;()g x ∴在()00,x 上单调递减,在()0,x +∞上单调递增,()()()()00022022000000min e 1313e e e 222222x x x x x m g x g x mx x x x x -∴==+--+=+---+00213e e 022x x =-++≥, 解得:01e 3x -≤≤,即0ln 3x ≤,又()00,x ∈+∞,(]00,ln3x ∴∈,令()e xh x x =-,则()1e xh x '=-,∴当(]0,ln3x ∈时,()0h x '<,()h x ∴在(]0,ln3上单调递减,()[)000e ln33,1x h x x ∴=-∈--,即[)ln33,1m ∈--;综上所述:实数m 的取值范围为ln 3⎡-⎣.【点睛】思路点睛:本题重点考查了导数中的恒成立问题的求解,解题基本思路是通过构造函数的方式,将问题转化为()min 0g x ≥,从而利用对含参函数单调性的讨论来确定最小值点,根据最小值得到不等式求得参数范围. 3.(1)答案见解析 (2)0a < 【解析】 【分析】(1)求出导函数()(e )x f x x a '=-,对a 分0a ≤、01a <<、1a =、1a >四种情况讨论即可求解;(2)由(1)问结论,对a 分0a <、0a =、1a =、01a <<、1a >讨论即可得答案. (1)解:()e (1)e (e )x x x f x x ax x a '=+--=-,若0a ≤,则当(,0)x ∈-∞时,()0f x '<,当()0,x ∈+∞时()0f x '>, 所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 若0a >,由()0f x '=得0x =或1x na =,①若1a =,则()()e 10xx f x '-=≥,所以()f x 在(),-∞+∞上单调递增;②若01a <<,则ln 0a <,当(,ln )(0,)x a ∈-∞⋃+∞时,()0f x '>;当(ln ,0)x a ∈时,()0f x '<,所以()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减;③若1a >,则ln 0a >,当(,0)(ln ,)x a ∈-∞⋃+∞时,()0f x '>;当(0,ln )x a ∈时,()0f x '<,所以()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; 综上,当0a ≤时,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增; 当01a <<时,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减; 当1a =时,()f x 在(),-∞+∞上单调递增;当1a >时,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减; (2)解:当0a <时,由(1)知,()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增, 又()()1010,102f f a =-<=->,取b 满足3b <-且ln(b a <-),则()()()2211122022f b a b ab a b b >---=+->,所以()f x 有两个零点;当0a =时,令()(1)e 0x f x x =-=,解得0x =,所以()f x 只有一个零点; 当1a =时,令()()01x f x e x -==,解得0x =,所以()f x 只有一个零点;当01a <<时,由(1)知,()f x 在(,ln )a -∞和(0,)+∞上单调递增,在(ln ,0)a 上单调递减,又()01f =-,当ln b a =时,()f x 有极大值()()()2211122022f b a b ab a b b =--=--+<,所以()f x 不存在两个零点;当1a >时,由(1)知,()f x 在(,0)-∞和(ln ,)a +∞上单调递增,在(0,ln )a 上单调递减,当0x =时,()f x 有极大值()010f =-<,所以()f x 不存在两个零点; 综上,a 的取值范围为0a <. 【点睛】关键点点睛:本题(2)问解题的关键是,当0a <时,取b 满足3b <-且ln(b a <-),从而可得()()()2211122022f b a b ab a b b >---=+->.4.(1)2(e ,2e 1)--- (2)证明见详解 【解析】 【分析】(1)令e x t =换元得函数2()2(e 1)2eln ,0h t t t t t =-++>,然后通过导数求极值,根据y a =与函数图象有三个交点可得;(2)构造函数1()()()m t h t h t=-,通过导数研究在区间(1,e)上的单调性,然后由单调性结合已知可证. (1)令e x t =,则ln x t =,记2()2(e 1)2eln ,0h t t t t t =-++> 令2e 2(1)(e)()22(e 1)0t t h t t t t--'=-++==,得121,e t t == 当01t <<时,()0h t '>,1e t <<时,()0h t '<,t e >时,()0h t '>所以当1t =时,()h t 取得极大值(1)2e 1h =--,e t =时,()h t 取得极大值2(e)e h =-, 因为函数()()g x f x a =-有三个零点⇔()y h t =与y a =有三个交点, 所以2e 2e 1a -<<--,即 a 的取值范围为2(e ,2e 1)---. (2)记221111()()()2(e 1)2eln 2(e 1)2eln m t h t h t t t t t t t=-=-++-++- 2212(e 1)2(e 1)4eln t t t t t+=-++-+4323234e 22(e 1)22(e 1)4e 2(e 1)2()22(e 1)t t t t m t t t t t t +-++-++'=-+++-= 记432()22(e 1)4e 2(e 1)2n t t t t t =-++-++ 则32()86(e 1)8e 2(e 1)n t t t t '=-++-+ 记32()86(e 1)8e 2(e 1)s t t t t =-++-+ 则2()2412(e 1)8e s t t t '=-++易知()s t '在区间(1,e)上单调递增,所以()(1)124e 0s t s ''>=-> 所以()s t 在区间(1,e)上单调递增,所以()(1)0s t s >= 所以()n t 在区间(1,e)上单调递增,所以()(1)0n t n >= 所以()m t 在区间(1,e)上单调递增因为()()()()123123f x f x f x x x x ==<<,记312123e ,e ,e x x xt t t ===所以()()()()123123h t h t h t t t t ==<< 由(1)可知,12301e t t t <<<<<所以2221()()()(1)0m t h t h m t =->=,即221()()h t h t > 又()()12h t h t =,所以121()()h t h t > 因为21e t <<,所以2101t << 由(1)知()h t 在区间(0,1)上单调递增,所以121t t >,即1212e1x xt t +=> 所以120x x +> 【点睛】本题第二问属于极值点偏移问题,关键点在于构造一元差函数,通常构造成00()()()F x f x x f x x =+--或0()()(2)F x f x f x x =--,本题由于采取了换元法转化问题,因此构造函数为1()()()m t h t h t=-. 5.(1)答案见解析(2)2e e ,123⎛⎤⎥⎝⎦【解析】 【分析】(1)求出()'f x ,由()0f x '=知0x ≠,分离参数得2e 3xa x =,引入函数2e ()3x G x x=,由()G x 的导数确定单调性与极值,可作出函数的大致图象,结合图象分类讨论得出零点个数,根据极值定义得极值点个数;(2)令()()exxg x h x =,求导后得()h x 是增函数,不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e xxx g x xg x ---≤,即()()2h x h x -≤,由单调性得x 的范围,从而得出0x 的范围,结合极值点的要求得0[1,2)x ∈,然后由(1)的函数()G x 的性质得a 的范围. (1)()3e x f x ax =-,则()23e x f x ax '=-,函数的极值点为导函数的变号零点,显然0x =不是()0f x '=的解,当0x ≠时,令()2e 3xG x x=,则()2431e 2e e 233x x x x x x G x x x⋅-⋅-'=⋅=⋅, 故()G x 的单调性如表格所示:x(),0∞-()0,22()2,+∞()G x '0>0<0=0>()G x单调递增 单调递减 极小值 单调递增则极小值为()2e 212G =,可得函数()G x 的大致图象如图,故当2e 0,12a ⎛⎤∈ ⎥⎝⎦时,2e 3xa x =有两个解12,x x (120x x <<),在1x 两侧()'f x 的符号相等,在2x 两侧,()'f x 不变号,()f x 有1个极值点;当2e ,12a ⎛⎫∈+∞ ⎪⎝⎭时,2e 3xa x =有三个解123,,x x x ,在这三个解两侧()'f x 均变号,()f x有3个极值点. (2) 令()()e x xg x h x =,则()()()()1e xx g x xg x h x '-+'=, 因为[)0,x ∞∀∈+满足()()()g x xg x xg x '+>,故()()()10x g x xg x '-+>, 则()0h x '>,故函数()h x 是一个在定义域上单调递增的函数;又[)00,x ∃∈+∞,满足不等式()()()22e 22e x x g x xg x --≤,整理得()()()222e e x x x g x xg x ---≤,即()()2h x h x -≤,结合定义域有0,20,2,x x x x ≥⎧⎪-≥⎨⎪-≤⎩故0x 的取值范围是[]1,2,又0x 是函数()f x 的极值点,即函数()f x 的变号零点,∴02x ≠,由(1)知,函数()G x 在区间[)1,2上单调递减,故2e e ,123a ⎛⎤∈ ⎥⎝⎦.【点睛】本题考查用导数确定函数的极值点,研究不等式恒成立问题,解题关系是问题的转化,极值点的个数问题转化为方程的根的个数,再转化为函数图象交点个数.不等式问题通过引入函数,利用函数单调性化简得出参数范围,本题属于困难题,对学生的逻辑思维能力,运算求解能力要求较高. 6.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72, 则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 7.(1)1ey x =; (2)4e 4a ≤.【解析】 【分析】(1)设切线的方程为y kx =,设切点为(,ln )t t ,求出e t =即得解;(2)利用导数求出函数()g x 在4⎤⎦上的单调区间即得解. (1)解:设切线的方程为y kx =,设切点为(,ln )t t , 因为()1f x x '=,则()1k f t t'==所以切线方程为()1ln y t x t t-=-即1ln 1y x t t =+- 由题得ln 10t -=则e t = ∴切线l 的方程为1ey x =. (2) 解:()21ln xg x x -'=,e x <<时,()0g x '>;4e e x <<时,()0g x '<,所以函数()g x 在单调递增,在4(e,e )单调递减,∵g=,()44e e 4g =, 因为44e <=所以最小值()44e e 4g =. 4e 4a ∴≤. 8.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-. 当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值.因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减,则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-.9.(1)1y =(2)(],4∞-【解析】【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x ++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围.(1)()2211ln ln x xf x x x --'==-,()10f '∴=,又()11f =,()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x ++≤+=, 令()()()e 1ln x x g x x ++=,则()2eln x x g x x -'=, 令()eln h x x x =-,则()ee 1x h x x x-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=, ()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-. 【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.10.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--,因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-,故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.。

(word完整版)高中文科数学导数练习题

(word完整版)高中文科数学导数练习题

专题 8:导数(文)经典例题分析考点一:求导公式。

例 1. f (x) 是 f (x) 1 x32x 1 的导函数,则 f ( 1) 的值是。

3分析: f ' x x 22,所以 f ' 1 1 23答案: 3考点二:导数的几何意义。

例 2.已知函数 y f ( x) 的图象在点 M (1, f (1)) 处的切线方程是 y 1x 2 ,则2f (1) f (1)。

分析:由于 k 1,所以25,所以 f 15,所以221f ' 1,由切线过点M (1,f (1)),可得点M的纵坐标为2f 1 f ' 13答案: 3例 3.曲线y x32x24x 2 在点 (1, 3) 处的切线方程是。

分析: y'3x24x 4 ,点 (1, 3) 处切线的斜率为k 3 4 4 5 ,所以设切线方程为 y5x b ,将点 (1, 3) 带入切线方程可得b 2 ,所以,过曲线上点(1,3)处的切线方程为:5x y 2 0答案: 5x y 20评论:以上两小题均是对导数的几何意义的考察。

考点三:导数的几何意义的应用。

例 4.已知曲线 C :y x33x 22x,直线 l : y kx ,且直线l 与曲线C相切于点x0 , y0 x00 ,求直线l的方程及切点坐标。

解析:直线过原点,则 k y0 x0 0 。

由点x0, y0在曲线 C 上,则x0y 0 x 0 3 3x 0 22x 0 , y 0x 0 23x 02。

又 y' 3x 26x2 ,在x 0x 0 , y 0处 曲 线 C 的 切 线 斜 率 为 k f ' x 03x 0 2 6x 02 ,23x 0 22 6x 02 ,整理得: 2 x 0 3x 0 0 ,解得: x 03 0x 03x 0或 x 02(舍),此时,y 03 , k 1 。

所以,直线 l 的方程为 y1x ,切点坐标是8443 , 3 。

word版高二数学导数大题及练习题

word版高二数学导数大题及练习题

word 版高二数学导数大题及练习题一、解答题1.已知函数2()cos sin e f x x x x -=--,[]0,x π∈. (1)求()f x 的最大值;(2)证明:2e sin e e cos 1x x x x x x x -+>+-;(3)若320()2e f x ax -++≥恒成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围. 4.已知函数()()()1111ln k knk x f x x k-=-⋅-=-∑.(1)分别求n=1和n=2的函数()f x 的单调性; (2)求函数()f x 的零点个数.5.已知函数()()24e 1xf x x =-+.(1)求()f x 的极值.(2)设()()()f m f n m n =≠,证明:7m n +<. 6.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围.7.已知函数()e 2x f x ax =-,()22sin 1g x a x x =-+,其中e 是自然对数的底数,a ∈R .(1)试判断函数()f x 的单调性与极值点个数;(2)若关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,求实数a 的最小值. 8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数2()ln f x a x x =+,其中a R ∈且0a ≠. (1)讨论()f x 的单调性;(2)当1a =时,证明:2()1f x x x ≤+-;(3)求证:对任意的*n N ∈且2n ≥,都有:222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211e n⎛⎫+< ⎪⎝⎭.(其中e 2.718≈为自然对数的底数) 10.设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.【参考答案】一、解答题1.(1)2max ()e f x -=- (2)证明见解析 (3)1,6a ⎡⎫∈+∞⎪⎢⎣⎭【解析】 【分析】(1)直接利用导数判断单调性,求出最大值; (2)利用分析法,转化为证明1e x x ->f (x ). 令g (x )=1e xx-,[]0,x π∈,利用导数求出g (x )≥g (2)=-2e -,而2max ()(0)e f x f -==-,即可证明;(3)把问题转化为x cos x -sin x +2ax 3≥0恒成立,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,二次求导后,令()6sin x ax x ϕ=-,对a 分类讨论:i. a ≤-16, ii. a ≥16,iii.-16<a <16,分别利用导数计算即可求解. (1)∵2()cos sin e f x x x x -=--,[]0,x π∈,∴()cos sin cos sin 0f x x x x x x x '=--=-,∴f (x )在[0,π]上单调递减,∴2max ()(0)e f x f -==-.(2)要证2e sin e e cos 1x x x x x x x -+>+-,只要证21cos sin e e x x x x x -->--,即证1e xx ->f (x ), 令g (x )=1e x x -,[]0,x π∈,则()2e xx g x -'=,故g (x )在(0,2)上单调递减;g (x )在(2,π)上单调递增,所以g (x )≥g (2)=-2e -,又 f (x )≤-2e -,且等号不同时取到,所以2e sin e e cos 1x x x x x x x -+>+- (3)()3220f x ax -≥++e ,等价于x cos x -sin x +2ax 3≥0,令h (x )=x cos x -sin x +2ax 3,[]0,x π∈,则()2sin 66sin h x x x ax x ax x '=-+=(-),令()6sin x ax x ϕ=-,则()6cos x a x ϕ=-',i.当a ≤-16时,()0x ϕ',所以()ϕx 在[0,π]上递减,所以()(0)0x ϕϕ=, 所以()0h x '≤,所以h (x )在[0,π]上递减,所以h (x )≤h (0)=0,不合题意. ii.当a ≥16时,()0x ϕ',所以()ϕx 在[0,π]上递增,所以()(0)0x ϕϕ= 所以()0h x '≥,所以h (x )在[0,π]上递增,所以h (x )≥h (0)=0,符合题意. iii.当-16<a <16时,因为(0)610a ϕ=-<',()160a ϕπ=+>',且()x ϕ'在[0,π]上递增,所以0x ∃[]0,π∈,使得()00x ϕ'=,所以当0(0,)x x ∈时,()0x ϕ'<,此时()ϕx 在(0,x 0)上递减,所以()(0)0x ϕϕ<=,所以()0h x '<,所以h (x )在(0,x 0)上递减,所以h (x )<h (0)=0,不合题意.综上可得: 1,6a ⎡⎫∈+∞⎪⎢⎣⎭. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x=+-的两个零点得到1212122ln x x x x x x -=,分别解出1211212ln x x x xx -=,2121212ln x x x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x =+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x xx x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;当2n =时,()f x 在()0,∞+上单调递增; (2)1个. 【解析】 【分析】(1)利用导数求函数的单调区间得解;(2)求出()()1nx f x x-'=,再对n 分奇数和偶数两种情况讨论得解.(1)解:由已知,得()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦. ①当1n =时,()()ln 1f x x x =--,()11f x x'=-.由()110f x x '=->,得01x <<;由()110'=-<f x x,得1x >.因此,当1n =时,函数()f x 在()0,1上单调递增,在()1,+∞上单调递减.②当2n =时,()()()21ln 12x f x x x ⎡⎤-=---⎢⎥⎢⎥⎣⎦,()()()21111x f x x x x -'=-+-=.因为()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=,所以()f x 在()0,∞+上单调递增. (2)解:由()()()()()()2311111ln 123n nx x x f x x x n-⎡⎤----=---+++⎢⎥⎢⎥⎣⎦, 得()()()()()()()()211111111111111nnn n x x f x x x x x x x x-----⎡⎤'=---+-++--=-=⎣⎦--. 当n 为偶数时,()0f x '≥在()0,∞+恒成立,且只有当1x =时,()0f x '=, 所以()f x 在()0,∞+上单调递增.因为()10f =,所以()f x 有唯一零点1x =. 当n 为奇数时,由()()10nx f x x-'=>,得01x <<;由()()10nx f x x-'=<,得1x >.因此,()f x 在()0,1上单调递增,在()1,+∞上单调递减. 因为()10f =,所以()f x 有唯一零点1x =.综上,函数()f x 有唯一零点1x =,即函数()f x 的零点个数为1. 5.(1)极小值为71e 12-+,()f x 无极大值; (2)证明见解析﹒ 【解析】 【分析】(1)根据f (x )的导数判断f (x )的单调性,根据单调性即可求其极值; (2)由函数单调性指数函数性质可得x <72时,f (x )<1,设m <n ,则若()()()f m f n m n =≠,则m <72,n >72,由()()1f m f n =<可求742n <<﹒当m ≤3时,易证7m n +<;当732m <<时,构造函数()()()7p m f m f m =--,根据p (m )单调性即可证明7m n +<﹒ (1)()()227e x f x x =-',由()0f x '=,得72x =.当7,2x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当7,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.∴()f x 的单调递减区间为7,2⎛⎫-∞ ⎪⎝⎭,单调递增区间为7,2⎛⎫+∞ ⎪⎝⎭.故()f x 的极小值为771e 122f ⎛⎫=-+ ⎪⎝⎭,()f x 无极大值.(2)由(1)可知,()f x 的极值点为72,f (x )在7,2⎛⎫-∞ ⎪⎝⎭上单调递减,在7,2⎛⎫+∞ ⎪⎝⎭上单调递增,∵当x →-∞时,2e 0x →,∴f (x )→1, 故当x <72时,f (x )<1.设m n <,则若()()()f m f n m n =≠,则m <72,n >72, 则()()1f m f n =<,则()274e 1142n n n -+<⇒<<. ①当3m ≤时,7m n +<,显然成立.②当732m <<时,77,42m ⎛⎫-∈ ⎪⎝⎭,()()()()214274e 3e m m f m f m m m ---=---.设()()()7p m f m f m =--,则()()()214227e em mp m m -=--'. 设()2142e e x xh x -=-,73,2x ⎛⎫∈ ⎪⎝⎭,则()h x 为增函数,则()702h x h ⎛⎫<= ⎪⎝⎭.∵732m <<,∴270m -<,()0p m '>,则()p m 在73,2⎛⎫⎪⎝⎭上为增函数,∴()()()()77()()77022p m p f m f m f n f m p ⎛⎫<⇒--=--<= ⎪⎝⎭,∴()()7f n f m <-.又∵7,42n ⎛⎫∈ ⎪⎝⎭,77,42m ⎛⎫-∈ ⎪⎝⎭,且()f x 在7,42⎛⎫ ⎪⎝⎭上单调递增,∴7n m <-,即7m n +<. 综上,7m n +<. 6.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤ ⎥⎝⎦ 【解析】 【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论;(3)分情况讨论,根据函数的单调性和极限求解. (1)解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+- '(0)0f =,(0)1f =故曲线()y f x =在点(0,(0))f 处的切线的方程1y =. (2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120aa-<,解得0a < ②0a >且120a a->,解得102a <<当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意; 综上:a 的取值范围为1(,)2-∞. (3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥ 若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)aa-单调递增,在(0,)+∞上单调递减,无最小值;若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a aaa a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值; 综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦.7.(1)答案见解析 (2)e π-- 【解析】 【分析】(1)求出()f x ',分类讨论,分0a ≤和0a >讨论()f x 的单调性与极值; (2)利用分离参数法得到sin 1e x x a -=,令()()sin 10e xx h x x π-=≤≤,利用导数判断 ()h x 的单调性与最值,根据直线y a =与函数()h x 的图像有两个交点,求出实数a 的最小值.(1)()e 2x f x ax =-,则()e 2x f x a '=-.①当0a ≤时,()0f x '>,则()f x 在R 上单调递增,此时函数()f x 的极值点个数为0;②当0a >时,令()20e x f x a '=-=,得()ln 2x a =,当()ln 2x a >时,()0f x '>,则()f x 在()()ln 2,a +∞上单调递增,当()ln 2x a <时,()0f x '<,则()f x 在()(),ln 2a -∞上单调递减,此时函数()f x 的极值点个数为1.综上所述,当0a ≤时,()f x 在R 上单调递增,极值点个数为0;当0a >时,()f x 在()()ln 2,a +∞上单调递增,在()(),ln 2a -∞上单调递减,极值点个数为1.(2)由()()0af x g x +=,得sin 1x x a e -=. 令()()sin 10xx h x x e π-=≤≤, 因为关于x 的方程()()0af x g x +=在[]0,π上有两个不等实根,所以直线y a =与函数()sin 1xx h x e -=的图像在[]0,π上有两个交点. ()1cos sin 14x x x x x h x e eπ⎛⎫-+ ⎪-+⎝⎭'==, 令()0h x '=,则sin 42x π⎛⎫-= ⎪⎝⎭[]0,x π∈,所以2x π=或x π=, 所以当02x π<<时,()0h x '>;当2x ππ<<时,()0h x '<, 所以()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫ ⎪⎝⎭上单调递减,所以()max 02h x h π⎛⎫== ⎪⎝⎭. 又()01h =-,()e h ππ-=-, e 1π-->- 所以当)e ,0x a -⎡∈-⎣时,直线y a =与函数()h x 的图像有两个交点,所以实数a 的最小值为e π--.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数研究零点问题,考查数形结合思想的应用.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点;②利用独立重复试验的期望公式代入可求出答案.(1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯. 故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关.(2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>;当3,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)答案见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)求得()'f x ,对参数a 进行分类讨论,即可求得不同情况下函数的单调性; (2)构造函数()ln 1g x x x =-+,利用导数研究函数单调性和最值,即可证明; (3)根据(2)中所求得2211ln 1n n ⎛⎫+< ⎪⎝⎭,结合累加法即可求证结果. (1)函数()f x 的定义域为(0,)+∞,22()2a a x f x x x x'+=+=, ①当0a >时,()0f x '>,所以()f x 在(0,)+∞上单调递增;②当0a <时,令()0f x '=,解得x =当0x <<220a x +<,所以()0f x '<,所以()f x 在⎛ ⎝上单调递减,当x >220a x +>,所以()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a >时,函数()f x 在(0,)+∞上调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当1a =时,2()ln f x x x =+,要证明2()1f x x x ≤+-,即证ln 1≤-x x ,即ln 10x x -+≤,设()ln 1g x x x =-+,则1()x g x x -'=,令()0g x '=得,可得1x =,当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<.所以()(1)0g x g ≤=,即ln 10x x -+≤,故2()1f x x x ≤+-.(3)由(2)可得ln 1≤-x x ,(当且仅当1x =时等号成立), 令211x n =+,1,2,3,n =,则2211ln 1n n ⎛⎫+< ⎪⎝⎭, 故2211ln 1ln 123⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭…222111ln 123n ⎛⎫++<++ ⎪⎝⎭…21111223n +<++⨯⨯…()11n n +- 1111223⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭…11111lne 1n n n ⎛⎫+-=-<= ⎪-⎝⎭, 即222111ln[111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭…211]lne n ⎛⎫+< ⎪⎝⎭, 故222111111234⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ (2)11e n ⎛⎫+< ⎪⎝⎭. 【点睛】本题考察利用导数研究含参函数单调性,以及构造函数利用导数证明不等式,以及数列和导数的综合,属综合困难题.10.(1)单调递增区间为(-∞,)+∞;单调递减区间为( (2)55a -<+【解析】【分析】(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间;(2)由(1)中所得函数的单调性,得极值,可结合函数的图象得其与直线y a =三个交点时的a 的范围.(1)由已知可得:2()36f x x '=-,令()0f x '=,即2360x -=,解得1x =1x = 所以当x x <()0f x '>,当x <()0f x '<.所以()f x 的单调递增区间为(-∞,)+∞;单调递减区间为(.(2)由(1)可知()y f x =的图象的大致走势及走向,如图所示,又(2542f -=-2542f =+ 所以当542542a -<+y a =与函数()y f x =的图象有三个不同的交点,方程()f x a =有三个不等实根.。

(完整word版)高二数学导数大题练习(详细答案)(word文档良心出品).doc

(完整word版)高二数学导数大题练习(详细答案)(word文档良心出品).doc

1.已知函数 f ( x) ax 3bx 2(c 3a 2b) x d 的图象如图所示.(I)求c, d的值;(II )若函数f (x)在x 2处的切线方程为3x y 11 0,求函数 f (x)的解析式;(III )在( II )的条件下,函数y f ( x) 与y 1 f (x) 5x m 的3图象有三个不同的交点,求m 的取值范围.2.已知函数 f (x) a ln x ax 3(a R) .(I)求函数f ( x)的单调区间;( II )函数 f ( x)的图象的在x 4 处切线的斜率为 3 , 若函数2g( x) 1x 3 x2 [ f '( x)m] 在区间(1,3)上不是单调函数,求m 的取值范围.3 23.已知函数 f ( x) x3 ax2 bx c 的图象经过坐标原点,且在 x 1 处取得极大值.(I)求实数a的取值范围;(II )若方程f ( x) (2a 3) 2 恰好有两个不同的根,求 f ( x) 的解析式;9(III )对于(II )中的函数f (x),对任意、R,求证:| f ( 2sin ) f ( 2sin ) | 81 .4.已知常数a0 ,e为自然对数的底数,函数 f ( x) e x x ,g(x)x 2 a ln x .(I)写出f (x)的单调递增区间,并证明e a a;(I I )讨论函数y g( x)在区间(1,e a)上零点的个数.5.已知函数 f (x)ln( x 1) k( x 1) 1.(I)当k 1时,求函数 f ( x)的最大值;(I I )若函数f ( x)没有零点,求实数k的取值范围;6.已知x 2 是函数f (x)(x2ax 2a 3)e x的一个极值点(e 2.718).(I)求实数a的值;(I I )求函数f ( x)在x [3,3]的最大值和最小值.27.已知函数 f ( x)x24x (2 a) ln x, (a R, a 0)(I)当 a=18 时,求函数 f ( x)的单调区间;(I I )求函数f (x)在区间[ e, e2]上的最小值.8.已知函数 f (x) x(x 6) a ln x在x (2, ) 上不具有单调性....(I)求实数a的取值范围;( II )若f ( x)是f (x)的导函数,设g( x) f ( x) 6 22,试证明:对任意两个不相38 x等正数 x1、x2,不等式 | g( x1 ) g ( x2 ) | | x1 x2 | 恒成立.279.已知函数 f ( x) 1 x2 ax (a 1) ln x, a 1.2(I)讨论函数 f (x)的单调性;(II )证明:若a 5, 则对任意 x1 , x2 (0, ), x1 x2 f ( x1 ) f (x2 ),有 1.x1 x210.已知函数 f (x) 1 x2 a ln x, g ( x) (a 1)x , a1.2(I)若函数f ( x), g( x)在区间[1,3]上都是单调函数且它们的单调性相同,求实数 a 的取值范围;(II )若a (1, e] ( e 2.71828 ) ,设 F (x) f (x) g (x) ,求证:当 x , x [1,a] 时,不1 2等式 | F ( x1 ) F ( x2 ) | 1 成立.11.设曲线C:f (x)ln x ex (e 2.71828), f ( x)表示 f ( x)导函数.(I )求函数f ( x)的极值;(II )对于曲线C上的不同两点A( x1, y1),B( x2, y2)x0( x1 ,x2 ) ,使直线AB的斜率等于 f ( x0 ) ., x1 x2,求证:存在唯一的12.定义F (x, y) (1 x) y , x, y ( 0, ) ,(I )令函数f (x) F (3,log2 (2 x x2 4)) ,写出函数 f ( x) 的定义域;使得(II )令函数g( x) F (1,log2 ( x3 ax2 bx 1)) 的图象为曲线,若存在实数bC曲线 C 在x0( 4 x0 1) 处有斜率为-8的切线,求实数a的取值范围;(III )当x, y N*且x y 时,求证 F ( x, y) F ( y, x) .高二数学 数部分大答案1.解:函数 f (x) 的 函数 f ' ( x) 3ax 2 2bx c 3a 2b (I )由 可知 函数 f (x) 的 象 点( 0,3),且 f ' (1)⋯⋯⋯⋯ (2 分)得d 3d 33a2b c 3a2b 0c 0(II )依 意f ' (2)3 且 f ( 2) 5⋯⋯⋯⋯ (4 分)12a 4b 3a 2b3 8a 4b 6a 4b 35解得 a 1,b 6 所以 f ( ) x 3 6 x 29 x 3 ⋯⋯⋯⋯ (8 分) x(III ) f ( x) 3x 2 12 x 9 .可 化 : x 3 6x 2 9 x 3 x 2 4x 3 5x m 有三个不等 根,即: g x x 3 7 x 2 8x m 与 x 有三个交点;g x 3x 214 x 8 3x 2 x 4 ,x,2 22,44,3 343g x+-+ g x增极大减极小增 g268 m, g 416 m .⋯⋯⋯⋯ (10 分)327当且 当 g268 m 0且g 416 m 0 ,有三个交点,327故而,16 m68所求.⋯⋯⋯⋯ (12 分)272.解:(I ) f '( x)a(1 x) ( x 0)(2 分)x当 a 0时, f ( x)的单调增区间为 0,1 , 减区间为 1,当 a 0时 , f (x)的单调增区间为 1,, 减区间为 0,1 ;当 a=1 , f ( x) 不是 函数(5 分)(II ) f ' (4) 3a3得 a 2, f ( x) 2 ln x 2x 34 2g (x)1 x3( m2) x 2 2x, g' (x) x 2 ( m 4)x 2 (6 分)3 2g (x)在区间 (1,3)上不是单调函数 , 且 g' (0) 2g' (1) 0, g' (3) 0.m 3,19, 3) (8 分)m 19 ,(10分)m (33(12 分)3.解:(I ) f (0)0 c 0, f ( x) 3x 2 2axb, f (1) 0 b 2a 3 f ( x)3x 22ax (2a 3) ( x 1)(3x 2a 3),由 f ( x)0 x1或 x2a 3,因 当 x1 取得极大 ,3所以2a 3 1a3 ,所以 a 的取值范围是 : (, 3) ;3(II )由下表:x(,1)12 a 32a 32a 3(1,)3(, )33f (x)+ 0- 0-极大极小f (x)增减增a6(2a3)2a 227依 意得:a6 ( 2a 3)2( 2a 3)2,解得: a9279所以函数 f (x) 的解析式是: f ( x) x 3 9x 2 15x(III ) 任意的 数,都有 22sin 2, 2 2 sin2,在区 [-2,2] 有:f (2)8 36 30 74, f (1) 7, f ( 2)8 36 30 2f ( x)的最大值是 f (1) 7, f ( x)的最小值是 f ( 2)8 36 3074函数 f ( x)在区间 [ 2,2] 上的最大 与最小 的差等于81,所以 | f (2 sin ) f (2sin ) | 81.4.解:(I ) f (x) e x1 0 ,得 f (x) 的 增区 是 (0, ) , ⋯⋯⋯⋯ (2 分)∵ a 0 ,∴ f (a) f (0) 1,∴ e aa 1 a ,即 e aa . ⋯⋯⋯⋯ (4 分)(II ) g (x)a2( x2a)( x 2a )2a,列表2x 2x2,由 g (x)0 ,得 xx2x( 0, 2a2a2a ))2(,22g (x)-+g( x)减极小增当 x2a,函数 yg( x) 取极小 g( 2a )22由( I ) eae 2 ae aa,∴ e aa ,∵a ,∴ e 2 aa22g (1) 1 0 , g(e a ) e 2 aa 2 (e a a)(e aa) 0a (1 ln a) ,无极大 .2 2 2a 2⋯⋯⋯⋯ (8 分)( i )当( ii )当2a 1 ,即 0 a 2 ,函数 yg( x) 在区 (1, e a ) 不存在零点22a1 ,即 a 22若 a (1 ln a) 2 2若 a (1 ln a) 2 2若a(1 ln a) 2 2上所述, y0 ,即 2 a 2e ,函数 y g (x) 在区 (1,e a ) 不存在零点0 ,即 a 2e ,函数 yg( x) 在区 (1, e a ) 存在一个零点 xe ;0 ,即 a 2e ,函数 y g( x) 在区 (1, e a ) 存在两个零点;g(x) 在 (1,e a) 上,我 有 :当 0 a 2e ,函数 f (x) 无零点; 当 a 2e ,函数 f ( x) 有一个零点;当 a 2e ,函数 f (x) 有两个零点.5.解:(I )当 k1 , f( x)2 xx 1f ( x) 定 域 ( 1,+),令 f ( x) 0, 得x2 ,∵当 x (1,2)时 , f ( x) 0 ,当 x (2, )时, f (x) 0 ,∴ f (x)在 (1,2) 内是增函数, 在(2, ) 上是减函数 ∴当 x 2 , f ( x) 取最大 f (2) 0 (II )①当 k 0时 ,函数 y ln( x 1) 象与函数 y k( x 1) 1 象有公共点,∴函数 f ( x) 有零点,不合要求;②当 k 0时 ,11 k kx k ( x 1 k )f ( x)kk⋯⋯⋯⋯⋯⋯ (6 分)1x1x令x1f ( x)0, 得xk1,∵ xk 1 时, f ( x) 0, x1,) 时, f( x) 0 ,k (1,k) (1 ∴11 k在(1,1) 内是增函数,在 [1 ) 上是减函数,f (x)k,1k∴ f ( x) 的最大 是 f (1ln k,)k∵函数 f ( x) 没有零点,∴ ln k 0 , k1 ,因此,若函数 f ( x) 没有零点, 数 k 的取 范 k(1,)6. 解:(I )由 f (x)( x 2 ax 2a 3)e x 可得f (x)(2 x a)e x (x 2 ax 2a 3)e x [ x 2 (2 a) x a3]e x ⋯⋯ (4 分)∵ x 2 是函数 f (x) 的一个极 点,∴ f (2)∴ (a 5)e 2 0 ,解得 a5,1) 增,在 ( 2,) 增,(II )由 fx( x2)( x 1) ex0 ,得 f ( x) 在 (( )由 f (x) 0 ,得 f (x) 在在 (1,2) 减∴ f (2)e 2 是f ( x) 在 x [ 3,3] 的最小 ;⋯⋯⋯⋯⋯ (8 分)e 232e 23e 23f ( 3 ) 7 , f (3)e 3∵ f (3) f (3 ) e 37 1 ( 4e e 7) 0, f (3) f (3 )242442∴ f (x) 在 x [ 3,3] 的最大 是 f (3)e 3 .27.解:(Ⅰ) f (x)x 2 4x 16 ln x ,f ' ( x) 2x 4162( x 2)( x 4)2 分x x由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 x4 或 x2注意到 x 0,所以函数 f ( x) 的 增区 是( 4,+∞) 由 f ' (x) 0 得 ( x 2)( x 4) 0 ,解得 -2< x <4, 注意到 x 0,所以函数 f ( x) 的 减区 是 (0,4] .高二数学 数部分大上所述,函数 f ( x) 的 增区 是( 4,+∞), 减区 是 ( 0,4] 6 分(Ⅱ)在 x [e,e 2 ] , f ( x) x 2 4x (2 a) ln x 所以 f ' ( x) 2x 42 a2x 2 4x 2 a ,g ( x) 2x 2xx 4x 2 a当 a 0 ,有 △=16+4×2 ( 2 a) 8a 0 ,此 g (x) 0,所以 f ' (x) 0 , f ( x) 在[ e, e 2 ] 上 增,所以 f (x)min f (e) e 2 4e 2 a 8 分当 a 0 , △=16 4 2(2 a) 8a 0 ,令 f ' (x) 0 ,即 2x 2 4x 2 a 0 ,解得 x 令 f ' (x) 0 ,即 2x 2 4x 2 a0 , ①若 12a≥e 2,即 a ≥2( e21)2 ,2f (x) 在区 [ e, e 2 ] 减,所以 f ( x)min②若 e 12a e 2 ,即 2(e 1) 2a 2(e 2212a 或 x 1 2a ; 22解得 12a x 12a .22f (e 2 ) e 4 4e 2 4 2a .1)2 ,f (x) 在区 [ e,12a] 上 减,在区 [12a, e 2 ] 上 增,22所以 f (x)minf (12a ) a 2a3 ( 2 a) ln(12a) .222③若 12a e(e 1) 2,f ( x)在区[ e, e 2 ]增,2 ≤ ,即 0a ≤2所以 f (x)min f (e) e 2 4e 2 a上所述,当 a ≥2(e 21)2 , f ( x) mina 4 4e 2 4 2a ;当 2(e 1) 2 a 2(e 2 1) 2 , 当 ≤1)2, f ( x) min e 2a 2(e8.解:(I )f ( x)2x a 2x 26xf ( x)mina2a 3 ( 2 a) ln(12a ) ;2 24e2 a14 分6x a ,x∵ f ( x) 在 x (2,) 上不具有 性, ∴在 x (2,) 上 f ( x) 有正也有 也有0,...即二次函数 y 2x 2 6x a 在 x (2,) 上有零点 ⋯⋯⋯⋯⋯⋯ (4 分)∵ y 2x 2 6xa 是 称 是 x3,开口向上的抛物 ,∴ y 2 22 6 2 a2的 数 a 的取 范 ( ,4)(II )由( I ) g( x)2x a 22,x x方法 1: g( x)f (x)2 6 2 xa 2 ( x 0) ,x 2x x 2高二数学 数部分大∵ a 4 ,∴g ( x)2a 42442x 34x 4 ,⋯⋯⋯⋯ (8 分)x2x 3x2x 3x3h( x) 244, h ( x)8 12 4(2 x 3)x 2x 3x 3x 4x 4h( x) 在 (0, 3 ) 是减函数,在 ( 3 , ) 增函数,当 x3, h( x) 取最小382 2 227∴从而 g ( x) 38 ,∴ ( g( x) 380 ,函数 y g( x) 38x 是增函数,x)27 27 27x 1、x 2 是两个不相等正数,不妨x 1x 2 , g (x 2 )3838x 2 g ( x 1 )x 12727∴ g ( x 2 ) g (x 1 )38( x 2 x 1 ) ,∵ x 2x 10 ,∴ g ( x 1 ) g( x 2 ) 3827x 1 x 2 27∴g( x 1 ) g ( x 2 )38 ,即 | g ( x 1 )g ( x 2 ) | 38x 2 |⋯⋯⋯⋯⋯⋯ (12 分)x 1 x 227| x 127方法 2: M ( x 1 , g( x 1 )) 、 N (x 2 , g( x 2 )) 是曲 yg( x) 上任意两相异点,g ( x 1 ) g( x 2 )22( x 1 x 2 ) a ,12 21 2,x 1 x 2x 12x 22x 1 x 2x xx xa 42( x 1 x 2 )a(4a44⋯⋯⋯ (8 分)2 x 12 x 22x 1x 22x 1 x 2 )3x 1 x 22( x 1 x 2 )3 x 1x 2t1 ,t 0 ,令 k MNu(t)2 4t3 4t 2 , u (t)4t(3t2),x 1 x 2由 u (t)0,得 t2, 由 u (t) 0 得 0 t2 ,2323u( t) 在 (0, ) 上是减函数,在 ( ,) 上是增函数,33u(t) 在 t2 取极小38, u(t)38 ,∴所以 g( x 1 )g( x 2 ) 3832727x 1x 227即 | g ( x ) g( x ) |38| x x 2 |1227 1x 29. (1) f ( x) 的定 域 (0,) , f ' ( x)x a a 1 ax a 1 ( x 1)( x 1 a)xxx(i )若 a 1 1, 即 a 2 , f ' ( x)( x 1) 2 . 故 f ( x) 在 (0,) 增加.(ii )若 ax1 1,而 a 1,故1 a 2,则当 x (a 1,1)时 , f ' (x) 0.当 x (0, a 1) 及 x (1,)时 , f ' ( x)0,故 f ( x)在(a 1,1) 减少,在( 0,a-1),(1,) 增加.(iii )若 a1 1,即 a 2,同理可得 f ( x)在 (1, a 1)单调减少 ,在 (0,1), (a 1,) 增加.(II )考 函数 g( x)f ( x) x1 x2 ax (a1) ln x x.2由 g ' ( x) x ( a 1)a 1 2 x a 1(a 1) 1 ( a 1 1) 2 .x x由于 a a5,故 g' ( x) 0,即 g( x)在 (0, )单调增加 ,从而当 x 1 x 2 0 有g(x 1 ) g( x 2 )0,即 f (x 1 )f (x 2 ) x 1x 2 0,高二数学导数部分大题练习故f (x 1)f ( x 2 ) 1 ,当 0 x 1 x 2 时,有 f (x 1 ) f ( x 2 ) f (x 2 ) f ( x 1 )1x 1x 2x 1x 2x 2 x 110.解:(I ) f (x)aa 1 ,x, g ( x)x∵函数 f (x), g(x) 在区间 [1,3] 上都是单调函数且它们的单调性相同,∴当 x [1,3] 时, f (x) g ( x) ( a 1)( x 2 a) 0 恒成立,即 (a 1)( x 2a) 0 恒x成立,∴∵a 1在 x [1,3] 时恒成立,或 a 1在 x [1,3] 时恒成立,ax 2 ax 2 9 x1 ,∴ a1 或 a 9(II ) F ( x)1 x2 a ln x,(a 1)x , F (x) xa (a 1) ( x a)( x 1)2xx ∵ F ( x) 定义域是 (0, ) , a (1, e] ,即 a 1∴ F ( x) 在 (0,1) 是增函数,在 (1,a) 实际减函数,在 ( a, ) 是增函数 ∴当 x 1 时, F ( x) 取极大值 MF (1)a 1 ,2当 x a 时, F ( x) 取极小值 mF (a) aln a1 a2 a ,2∵ x , x2 [1,a] ,∴121| F ( x ) F ( x ) | | M m | M m设 G (a) M m1 a2 a ln a 1,则 G (a) a ln a 1 ,2 2∴ [G (a)]11,∵ a (1, e] ,∴ [ G (a)] 0a∴ G ( a) a ln a 1 在 a (1, e] 是增函数,∴ G ( a)G (1)∴ G(a) 1 a2a ln a1在 a (1, e] 也是增函数221)2∴ G (a) G(e) ,即 G (a) 1 e 2 e 1 (e 1,22 2而 1 e 2 e 1 (e 1)21 (3 1)2 1 1 ,∴ G (a) M m 12 2 2 2 ∴当 x 1 , x 2 [1,a] 时,不等式 | F (x 1 ) F (x 2 ) | 1 成立.11.解:(I ) f ( x) 1 e 1 ex 1x x 0 ,得 xe当 x 变化时, f (x) 与 f ( x) 变化情况如下表:x(0, 1)e1( 1, )eef ( x)+ 0-f ( x) 单调递增 极大值 单调递减 ∴当 x 1 时, f ( x) 取得极大值 f (1)2 ,没有极小值;ee(II )(方法 1)∵ f (x 0 ) k AB ,∴1e ln x 2 ln x 1e( x 2x 1),∴x 0x 2 x 1x 2x 1lnx2x 0 x 1高二数学 数部分大即 x 0 lnx2( x 2 x 1 )x 1g (x 1) x 1 lnx 2( x 2x 1∵ x 1 x 2 ,∴ g (x 1)0 , g (x) x lnx 2( x 2 x 1 )x 1/lnx2x 1) , g (x 1) x 11 0 , g (x 1) 是 x 1 的增函数,x 1g(x 2 ) x 2 lnx 2( x 2 x 2 ) 0 ;x 2g (x 2 ) x 2 lnx 2( x 2/ lnx 2 1 0 , g( x 2 ) 是 x 2 的增函数,x 1 ) ,g(x 2 ) x2x 1x 1∵ x 1x 2 ,∴ g (x 2 ) g( x 1 )x 1 lnx 1(x 1 x 1) 0 ,x 1∴函数 g ( x) x lnx 2(x 2 x 1 ) 在 ( x 1 , x 2 ) 内有零点 x 0 ,x 1又∵ x 21, ln x 2 0,函数 g(x) xln x 2( xx )在 1 2) 是增函数,x 1x 1x 121( x , x∴函数 g ( x) x 2 x 1 ln x 2在 ( x 1 ,x 2 ) 内有唯一零点 x 0 ,命 成立xx 1(方法 2)∵ f (x 0 )kAB ,∴1e ln x 2 ln x 1 e( x 2x 1),x 0x 2 x 1即 x 0 ln x 2 x 0 ln x 1 x 1 x 2 0 , x 0 ( x 1 , x 2 ) ,且 x 0 唯一g ( x) x ln x 2 x ln x 1 x 1 x 2 , g ( x 1 ) x 1 ln x 2 x 1 ln x 1 x 1 x 2 , 再 h(x) x ln x 2x ln x x x 2 , 0x x 2 ,∴ h (x) ln x 2ln x 0∴ h( x) x ln x 2 x ln x x x 2 在 0 x x 2 是增函数∴ g ( x 1 ) h( x 1 ) h(x 2 ) 0 ,同理 g (x 2 ) 0 ∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有解∵一次函数在 ( x 1 , x 2 ) g( x) (ln x 2ln x 1) x x 1 x 2 是增函数∴方程 x ln x 2 x ln x 1 x 1 x 2 0 在 x 0 ( x 1 , x 2 ) 有唯一解,命 成立 ⋯⋯⋯(12 分)注: 用函数 性 明,没有去 明曲C 不存在拐点,不 分. 12.解:(I ) log 2 (2 x x 2 4) 0 ,即 2x x 2 4 1得函数 f ( x) 的定 域是 ( 1,3) , (II ) g( x) F (1,log 2 ( x 2 ax 2 bx 1)) x 3 ax 2 bx 1,曲 C 在x 0 ( 4x 01) 有斜率 - 8 的切 ,又由 log 2 (x 3ax 2bx 1)0, g ( x) 3x 22axb,3x 02 2ax 0 b8∴存在 数 b 使得①4 x 01②有解,由①得x 03ax 02bx 0 1③ 1b8 3x 02 2ax 0 , 代入③得 2x 02 ax 0 8 0 ,由 2x 02 ax 08 0 有4 x 01解, ⋯⋯⋯⋯⋯⋯⋯⋯ (8 分)高二数学数部分大方法 1:a 2( x) 8 ,因 4 x0 1 ,所以 2( x0 ) 8 [8,10) ,( x0 ) ( x0 )当 a 10 ,存在数 b ,使得曲C在x0( 4 x0 1) 有斜率-8的切方法 2:得2 ( 4)2⋯⋯⋯⋯⋯⋯(10 分)a ( 4) 8 0或 2 ( 1) 2 a ( 1) 8 0 ,a 10或a 10, a 10.方法 3:是 2 ( 4) 2 a ( 4) 8 0的集,即 a 102 ( 1)2 a ( 1) 8 0ln(1 x) , x xln(1 x)(III )令h( x)1,由h( x) 1 xx2 x又令 p( x) x ln(1 x), x 0, p ( x) 1 1 x 0 ,x (1 x) 2 1 x (1 x) 21p( x)在[ 0, )减. ⋯⋯⋯⋯⋯⋯⋯⋯(12)分当 x 0时有 p( x) p(0) 0, 当x 1时有 h ( x) 0,h( x)在[1, ) 减,1 x y时,有 ln(1 x) ln(1 y), y ln(1 x) x ln(1 y), (1 x) y (1 y)x,x y当 x, y N 且 x y时 F (x, y) F ( y, x).。

高中求导简单练习题及讲解

高中求导简单练习题及讲解

高中求导简单练习题及讲解练习题1:求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

解答:首先,我们需要知道基本的求导法则。

对于多项式函数,每一项的导数可以通过求导法则分别求得,然后将它们相加。

对于 \( f(x) = 3x^2 \),导数是 \( 6x \)。

对于 \( f(x) = 2x \),导数是 \( 2 \)。

对于常数项 \( -5 \),导数是 \( 0 \)。

将这些导数相加,我们得到 \( f'(x) = 6x + 2 \)。

练习题2:求函数 \( g(x) = \sin(x) \) 的导数。

解答:对于三角函数,我们使用基本的三角函数导数公式。

对于 \( \sin(x) \),导数是 \( \cos(x) \)。

因此,\( g'(x) = \cos(x) \)。

练习题3:求函数 \( h(x) = (x^3 - 1)^4 \) 的导数。

解答:这里我们使用链式法则和幂法则。

首先,设 \( u = x^3 - 1 \),那么 \( h(x) = u^4 \)。

\( u \) 的导数是 \( u' = 3x^2 \)。

接下来,我们对 \( u^4 \) 求导,使用幂法则,得到 \( h'(x) = 4u^3 \cdot u' \)。

将 \( u \) 和 \( u' \) 的表达式代入,我们得到 \( h'(x) =4(x^3 - 1)^3 \cdot 3x^2 \)。

练习题4:求函数 \( k(x) = \frac{1}{x^2 + 1} \) 的导数。

解答:对于复合函数的导数,我们使用商法则。

设 \( u = x^2 + 1 \),那么 \( k(x) = \frac{1}{u} \)。

\( u \) 的导数是 \( u' = 2x \)。

使用商法则,我们得到 \( k'(x) = -\frac{u'}{u^2} \)。

高中数学导数及其应用典型例题专题练习40题(详解版)

高中数学导数及其应用典型例题专题练习40题(详解版)

高中数学导数及其应用典型例题专题练习40(详解版)一、单选题1.函数“x) = (x—3),的单调递增区间是()A. (-00,-2)B.(2,+8)C. (1,4) D, (0,3)【答案】B【府】【分析】求出函数y = /(x)的导数,在解出不等式ra)>o可得出所求函数的单调递增区间.【详解】\ /(.r) = (x-3)e' , :.f\x) = (x-i)e x ,解不等式解得x>2,因此,函数/(6 =(工一3)/的单调递增区间是(2,+8),故选B.【点睛】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.in2.若函数/*) = Inx+ —在[1,3]上为增函数,则〃?的取值范围为( )xA. [L+8)B. [3,+co)C. (3,1]D. (一8,3]【答案】C【的】【分析】Y— JM转化为r(x) 二—即〃7对XW[1,3]恒成立,继而得解. 厂【详解】由题意函数/(x) = lnx+”在[1,3]上为增函数,X可知/")==之0,厂即机< X对x W [1,3]恒成立,所以"ML故选:C【点睛】本题考查了导数在函数单调性中的应用,考查了学生综合分析,数学运算的能力,属于中档题.3.设/(X)、g(x)是R上的可导函数,/'(X)、/(X)分别为“X)、g(x)的导函数,且满足r(x)g(x)+/(x),(x)<0,则当时,有( )A. /(x)g(x)>/(〃)g(〃)B. /(x)g(G>/(a)g(x)c. 7(x)g(b)>/(b)g(x) D. f(x)g(x)>/(a)g(a)【答案】A【解析】【分析】构造函数/?(x) = /(x)g(x),利用导数判断出函数y = 〃(x)的单调性,结合a <x<b可得出结论.【详解】构造函数%(x) = /(x)g(x),则"(x) = r(x)g(x) + /(x)g,(x)vO,所以,函数〃(x) = /(x)g(x)为减函数,\'a<X<b, .,./?(/?) </7(X)</?(6/),即/(人)g(人)</(工)且(工)</(4)且(。

高中数学导数练习题(分类练习)讲义

高中数学导数练习题(分类练习)讲义

导数专题经典例题剖析考点一:求导公式。

1 3例1. f (x)是f(x) x 2x 1的导函数,贝y f(-1)的值是 _______________________________3解析:f' x =x22,所以f' -1 =1^3答案:3考点二:导数的几何意义。

1例2.已知函数y = f(x)的图象在点M (1, f (1)处的切线方程是y x 2,则2f(1) f (1> _______________ 。

1 」1解析:因为k ,所以f' 1 ,由切线过点M(1, f (1)),可得点M的纵坐标为2 25 5-,所以f 1;=—,所以f 1 • f' 1 A32 2答案:33 2例3.曲线y二x -2x -4x 2在点(1,-3)处的切线方程是___________________ 。

解析:y' = 3x2-4x-4,•点(1,-3)处切线的斜率为k=3-4-4 =「5,所以设切线方程为y二_5x b,将点(1, -3)带入切线方程可得 b = 2,所以,过曲线上点(1, - 3) 处的切线方程为:5x,y-2=0答案:5x y -2 =0点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4•已知曲线C : y =x3 -3x2 2x ,直线l : y =kx,且直线l与曲线C相切于点x0, y0 x0 = 0,求直线l的方程及切点坐标。

解析:;直线过原点,则k 0 X Q = 0 。

由点x 0,y 0在曲线C 上,则 Xy 0 = X Q 3 _ 3X Q 2 2X Q , 西=X Q 2 -3X Q 2。

又 y' = 3x 2 _ 6x 2 , 在X Q-。

所以,直线l 的方程为yx ,切点坐标是 44、 、 1直线I 的方程为y - - — x , 4本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。

高中数学求导练习题及讲解

高中数学求导练习题及讲解

高中数学求导练习题及讲解### 高中数学求导练习题及讲解#### 练习题1. 基本函数求导求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

2. 复合函数求导已知 \( g(x) = (x^3 + 1)^2 \),求 \( g'(x) \)。

3. 链式法则应用若 \( h(t) = \sin(2t + 1) \),求 \( h'(t) \)。

4. 高阶导数求函数 \( f(x) = x^3 \ln(x) \) 的一阶和二阶导数。

5. 隐函数求导若 \( xy = x^2 + y^2 \),求 \( y' \)。

6. 参数方程求导给定参数方程 \( x = t^2 \) 和 \( y = t^3 \),求 \( dy/dx \)。

7. 反函数求导若 \( y = \sqrt{x + 1} \),求 \( \frac{dx}{dy} \)。

8. 乘积法则与商法则求函数 \( f(x) = (x^2 + 1)(3x - 1) \) 和 \( g(x) =\frac{x^2}{x + 1} \) 的导数。

9. 应用问题某物体的位移函数为 \( s(t) = t^3 - 6t^2 + 4t \),求其在\( t = 2 \) 时的瞬时速度。

10. 最优化问题若 \( C(x) = 100x + 0.02x^2 \) 是生产成本函数,求使成本最小化的 \( x \) 值。

#### 讲解1. 基本函数求导\( f'(x) = 6x + 2 \),根据幂函数的导数规则 \( (x^n)' =nx^{n-1} \)。

2. 复合函数求导\( g'(x) = 2(x^3 + 1)(x^3)' = 2(x^3 + 1)(3x^2) = 6x^2(x^3+ 1) \),应用链式法则。

3. 链式法则应用\( h'(t) = \cos(2t + 1) \cdot (2t + 1)' = 2\cos(2t + 1) \)。

(word版)高二数学导数及其应用复习讲义有答案

(word版)高二数学导数及其应用复习讲义有答案

高二数学复习讲义—导数及其应用知识归纳1.导数的概念 函数y=f(x), 如果自变量x 在x 0处有增量x ,那么函数y 相应地有增量 y =f 〔x 0+x 〕 -f 〔x 0〕,比值 y 叫做函数y=f 〔x 〕在x 0x到x 0+x 之间的平均变化率,即y f(x 0 x) f(x 0)。

如果当x0时, x =xy 有极限,我们就说函数 y=f(x)在点x 0处 x可导,并把这个极限叫做f 〔x 〕在点x 0处的导数,记作f ’〔x 0〕或y ’|xx 0。

即f 〔x 0 〕=limy=lim f(x 0 x)f(x 0)。

x 0xx0x说明:〔1〕函数f 〔x 〕在点x 0处可导,是指 x 0时,y 有极限。

如果y不存在极限,x x就说函数在点x 0处不可导,或说无导数。

〔2〕x 是自变量x 在x 0处的改变量,x0时,而y 是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f 〔x 〕在点x 0处的导数的步骤:〔1〕求函数的增量 y =f 〔x 0+x 〕-f 〔x 0〕;〔2〕求平均变化率yf(x 0x)f(x 0);x =x〔3〕取极限,得导数f ’(x 0)=lim y 。

x 0 x 2.导数的几何意义函数y=f 〔x 〕在点x 0处的导数的几何意义是曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率。

也就是说,曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率是f ’〔x 0〕。

/〕〔x -x 0 〕。

相应地,切线方程为y -y 0=f 〔x 0 3.几种常见函数的导数:①C0; ②x nnx n1;③(sinx)cosx ;④(cosx)sinx ;⑤(e x ) e x ;⑥(a x ) a x lna ;4.两个函数的和、差、积的求导法那么法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(u v)' u ' v '. 2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:(uv)' u 'vuv '.假设C 为常数,(Cu)' C 'uCu ' 0Cu ' Cu '. 即常数与函数的积的导数等于常数乘以函数 的导数:(Cu)' Cu '. 法那么 3:两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子的积再除以分母的平方:u‘=u'v uv'v v 2 v0〕。

导数练习题及答案

导数练习题及答案

导数练习题及答案为了帮助学习者更好地理解与掌握导数的概念与计算方法,以下是一些导数练习题及其详细答案解析。

通过解题的过程,读者可以加深对导数的理解,并熟练掌握导数的计算技巧。

题目一:计算函数 f(x) = x^3 在点 x = 2 处的导数。

解答一:对 f(x) = x^3 进行求导,根据求导规则,可以得到:f'(x) = 3x^2计算 f'(2) 得到导数的值。

代入 x = 2:f'(2) = 3(2)^2 = 12因此,函数 f(x) = x^3 在点 x = 2 处的导数为 12。

题目二:计算函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数。

解答二:对 f(x) = 2x^2 + 3x - 5 进行求导,根据求导规则,可以得到:f'(x) = 4x + 3计算 f'(-1) 得到导数的值。

代入 x = -1:f'(-1) = 4(-1) + 3 = -1因此,函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数为 -1。

题目三:计算函数 f(x) = e^x 在点 x = 1 处的导数。

解答三:对 f(x) = e^x 进行求导,根据求导规则,可以得到:f'(x) = e^x计算 f'(1) 得到导数的值。

代入 x = 1:f'(1) = e^1 = e因此,函数 f(x) = e^x 在点 x = 1 处的导数为 e。

题目四:计算函数 f(x) = ln(x) 在点 x = 3 处的导数。

解答四:对 f(x) = ln(x) 进行求导,根据求导规则,可以得到:f'(x) = 1/x计算 f'(3) 得到导数的值。

代入 x = 3:f'(3) = 1/3因此,函数 f(x) = ln(x) 在点 x = 3 处的导数为 1/3。

通过以上导数练习题的解答,读者可以进一步掌握导数的概念与计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数专题经典例题剖析 考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000≠=x x y k 。

由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。

又263'2+-=x x y ,∴ 在()00,y x 处曲线C的切线斜率为()263'0200+-==x x x f k ,∴26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。

所以,直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫⎝⎛-83,23。

答案:直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23 点评:本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。

函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2-+=x ax x f 。

对于R x ∈都有()0'<x f 时,()x f 为减函数。

由()R x x ax ∈<-+01632可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。

所以,当3-<a 时,函数()x f 对R x ∈为减函数。

(1) 当3-=a 时,()98313133323+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。

由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。

所以,当3->a 时,函数()x f 在R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a点评:本题考查导数在函数单调性中的应用。

对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.,解得3a =-,4b =。

(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--。

当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。

所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。

则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。

因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞U ,,。

点评:本题考查利用导数求函数的极值。

求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

考点六:函数的最值。

例7. 已知a 为实数,()()()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。

(2)()04231'=-+=-a f ,21=∴a 。

()()()14343'2+-=--=∴x x x x x f令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-()291=-f ,275034-=⎪⎭⎫ ⎝⎛f 。

所以,()x f 在区间[]2,2-上的最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

点评:本题考查可导函数最值的求法。

求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。

(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.(2)3()212f x x x =-。

2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练(一) 选择题1. 已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A )A .1B .2C .3D .42. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( B )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D )A .1B .2C .3D .44. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D )(A )2 (B )3 (C )4 (D )56. 函数32()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( A )8. 函数231()23f x x x=-在区间[0,6]上的最大值是( A) A .323B .163C .12D .99. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0B .1C .2D .410. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( A )A . 0>aB .0<aC .1=aD .31=a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D ) A .3B .2C .1D .012. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个B .2个C .3个D . 4个(二) 填空题13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为____38____。

14. 已知曲线31433y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是A xDCxB__044=+-x y _ 15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n fx =0,则n 的最少值为 7 。

相关文档
最新文档