2020朝阳区一模试题及答案

合集下载

朝阳区2020年高三一模生物试卷(含答案)

朝阳区2020年高三一模生物试卷(含答案)

北京市朝阳区高三年级学业水平等级性考试练习一生物2020.4(考试时间90分钟满分100分)第一部分(共30分)本部分共15小题,每小题2分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.下图为细胞膜的结构模式图,说法正确的是A.磷脂双分子层是细胞膜的基本支架,③为疏水端,④为亲水端B.细胞癌变时,细胞表面发生变化,①减少使细胞的黏着性降低C.同种生物不同细胞的细胞膜上①、②、⑤的种类和数量完全相同D.性激素、甘油等小分子物质从A侧运输到B侧需要有②或⑤参与2.下列有关生物多样性的叙述正确的是A.群落演替过程中生物多样性一般会逐渐降低B.建立动植物园是保护生物多样性最有效的措施C.湿地能调节气候,体现了生物多样性的直接价值D.生物多样性包括遗传多样性物种多样性、生态系统多样性3.有一种变异发生在两条非同源染色体之间,它们发生断裂后片段相互交换,仅有位置的改变,没有片段的增减。

关于这种变异的说法错误的是A.这种变异使染色体结构改变,在光学显微镜下可见B.该变异一定导致基因突变,为生物进化提供原材料C.该变异可导致染色体上基因的排列顺序发生变化D.该变异是可遗传变异的来源,但不一定遗传给后代4.右图是人体缩手反射的反射弧结构,方框甲、乙代表神经中枢。

当手被尖锐的物体刺痛时,先缩手后产生痛觉。

对此生理过程的分析正确的是A.缩手反射的反射弧为A→B→C→D→EB.图中甲是低级神经中枢,乙是高级神经中枢C.未受刺激时,神经纤维D处的电位是膜内为正、膜外为负D.由甲发出的传出神经末梢释放的神经递质一定能引起乙的兴奋5.下列关于人体免疫的叙述,正确的是A.T细胞受到抗原刺激后可直接转变为效应T细胞B.浆细胞产生的抗体可消灭宿主细胞内的结核杆菌C.记忆细胞在二次免疫过程中产生更快更强的反应D.人体内的吞噬细胞只能参与非特异性免疫的过程6.下列关于细胞的叙述,正确的是A.都能进行细胞呼吸但不一定发生在线粒体中B.都能合成蛋白质但合成场所不一定是核糖体C.都具有细胞膜但不一定具有磷脂双分子层D.都具有细胞核但遗传物质不一定是DNA7.下列与人们饮食观念相关的叙述中,正确的是A.胆固醇会弓起血管粥样硬化,不要摄入B.谷物不含糖类,糖尿病患者可放心食用C.食物中含有的核酸可被消化分解D.过量摄人蛋白质类不会使人长胖8.眼皮肤白化病(OCA)是一种与黑色素(合成时需要酪氨酸酶)合成有关的疾病,虹膜、毛发及皮肤呈现白色症状。

北京市朝阳区2020届初三中考一模考试英语试卷及答案

北京市朝阳区2020届初三中考一模考试英语试卷及答案

2020北京朝阳初三一模英语一、单项选择(共6 分,每小题 0.5分)从下面各题所给的A、B、C、D 四个选项中,选择可以填入空白处的最佳选项1. Mike has a little sister. ______ name is Lily.A. MyB. HisC. HerD. Your2. Students usually start their new term ______ September every year.A. onB. inC. atD. for3. I called Jim last night, ______ he didn't answer the phone.A. forB. andC. butD. or4. Kobe Bryant was one of ______ basketball players in the world.A. goodB. betterC. bestD. the best5. - ______ do you usually do exercise on Saturdays?- At about 3 o'clock in the afternoon.A. WhenB. WhereC. WhyD. How6. My best friend ______ an old man get home yesterday evening.A. helpsB. helpedC. is helpingD. will help7. James enjoys watching movies, and he often ______ a movie in his free time.A. watchesB. watchedC. is watchingD. will watch8. As soon as the rain stops, we ______ out to play football.A. goB. wentC. will goD. have gone9. My father ______ in a panda protection center since 2010, so he knows a lot about pandas.A. workB. workedC. is workingD. has worked10. - What were you doing at 10 o'clock yesterday morning?- I ______ with my parents.A. readB. will readC. am readingD. was reading11. Look at the flowers on both sides of the street. They ______ last month.A. plantB. plantedC. are plantedD. were planted12. - Could you tell me ______? - Next Sunday.A. when we will have a picnicB. when we had a picnicC. when will we have a picnicD. when did we have a picnic二、完形填空。

朝阳区高三一模有答案

朝阳区高三一模有答案

朝阳区高三一模有答案数学试卷(理工类) 2020.3(考试时刻120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)注意事项:考生务必将答案答在答题卡上,在试卷上答无效。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数10i12i=- A. 42i -+ B. 42i - C. 24i - D. 24i +2. 已知平面向量,a b 满足()=3a a +b ⋅,且2,1ab ,则向量a 与b 的夹角为A.6π B. 3π C. 32π D. 65π 3.已知数列{}n a 的前n 项和为n S ,且21()n n S a n N *=-∈,则5a =A. 16-B. 16C. 31D. 324. 已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 有10件不同的电子产品,其中有2件产品运行不稳固.技术人员对它们进行一一测试, 直到2件不稳固的产品全部找出后测试终止,则恰好3次就终止测试的方法种数是( )A. 16B. 24C. 32D. 486.已知函数()f x 是定义在R 上的偶函数,且对任意的x ∈R ,都有(2)()f x f x +=.当01x ≤≤时,2()f x x =.若直线y x a =+与函数()y f x =的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是 A.0 B. 0或12-C. 14-或12-D. 0或14- 7. 某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收治理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对A 种产品 征收销售额的%x 的治理费(即销售100元要征收x 元),因此该产品定价每件比第一年增加了70%1%x x ⋅-元,估量年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的治理费许多于14万元,则x 的取值范畴是A. 2B. 6.5C. 8.8D. 108.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C.D. 4第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上.9. 已知双曲线的方程为2213x y -=,则此双曲线的离心率为 ,其焦点到渐近线的距离为 .10. 已知某几何体的三视图如图所示,则该几何体的体积为 .(第10题图) (第11题图)11. 执行如图所示的程序框图,若输入k 的值是4,则输出S 的值是 .12.在极坐标系中,曲线ρθ=和cos 1ρθ=相交于点,A B ,则线段AB 的中点E 到极点的距离是 .13.已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪<<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范畴是 .14.已知△ABC 中, 90,3,4C AC BC ∠=︒==.一个圆心为M ,半径为14的圆在△ABC正视图 侧视图内,沿着△ABC 的边滚动一周回到原位. 在滚动过程中,圆M 至少与△ABC 的一边相切,则点M 到△ABC 顶点的最短距离是 ,点M 的运动轨迹的周长是 .三、解答题:本大题共6小题,共80分.解承诺写出文字说明,演算步骤或证明过程.把答案答在答题卡上. 15. (本小题满分13分) 已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求sin 2α的值; (II )设()()2g x f x f x π⎛⎫=⋅+⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.16. (本小题满分13分)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.绩进行分析,求其中成绩为优秀的学生人数; (Ⅲ)在(II )中抽取的40名学生中,要随机选取2名学生参 加座谈会,记“其中成绩为优秀的人数”为X ,求X 的分布列与数学期望.17. (本小题满分14分)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB ,==1EB EF ,=BC ,且M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ; (Ⅱ)求二面角D-AF-B 的大小; (Ⅲ)在线段EB 上是否存在一点P, 使得CP 与AF 所成的角为30︒? 若存在,求出BP 的长度;若不 存在,请说明理由.18. (本小题满分13分)设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程;CA FEBMD(Ⅱ)求函数)(x f 单调区间. 19. (本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为1(F ,2F .点(1,0)M 与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点N 的坐标为(3,2),点P 的坐标为(,)(3)m n m ≠.过点M 任作直线l 与椭圆 C 相交于A ,B 两点,设直线AN ,NP ,BN 的斜率分别为1k ,2k ,3k ,若 1322k k k +=,试求,m n 满足的关系式.20.(本小题满分13分)已知各项均为非负整数的数列001:,,,n A a a a ()n *∈N ,满足00a =,1n a a n ++=.若存在最小的正整数k ,使得(1)k a k k =≥,则可定义变换T ,变换T 将数列0A 变为数列00111():1,1,,1,0,,,k k n T A a a a a a -++++.设1()i i A T A +=,0,1,2i =.(Ⅰ)若数列0:0,1,1,3,0,0A ,试写出数列5A ;若数列4:4,0,0,0,0A ,试写出数列0A ; (Ⅱ)证明存在唯独的数列0A ,通过有限次T 变换,可将数列0A 变为数列,0,0,,0n n 个;(Ⅲ)若数列0A ,通过有限次T 变换,可变为数列,0,0,,0n n 个.设1m m m n S a a a +=+++,1,2,,m n =,求证[](1)1mm m S a S m m =-++,其中[]1m S m +表示不超过1m Sm +的最大整数. 北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2020.3一、选择题:三、解答题:(15)(本小题满分13分) 解:(Ⅰ)因为π()cos()410f αα=-=, 因此(cos sin )210αα+=, 因此 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 因此 24sin 225α=.……………6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+ =(cos sin )(cos sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . ……………10分当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 因此,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……………13分 (16)(本小题满分13分)解:(Ⅰ)依题意,0.0451000200,0.025*******a b =⨯⨯==⨯⨯=. ……………4分 (Ⅱ)设其中成绩为优秀的学生人数为x ,则350300100401000x ++=,解得:x =30, 即其中成绩为优秀的学生人数为30名. ……………7分(Ⅲ)依题意,X 的取值为0,1,2,2102403(0)52C P X C ===,1110302405(1)13C C P X C ===,23024029(2)52C P X C ===, 因此X 的分布列为350125213522EX =⨯+⨯+⨯=,因此X 的数学期望为2. ……………13分(17)(本小题满分14分)证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,因此1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,因此MN//EF 且MN =EF .因此四边形MNFE 为平行四边形,因此EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,故EM//平面ADF . …………… 4分 解法二:因为EB ⊥平面ABD ,AB BD ⊥,故以B 为原点,建立如图所示的空间直角坐标系-B xyz . ……………1分 由已知可得 (0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M (Ⅰ)3=(,0,-3)(3,-2,0)2EM ,AD=, 设平面ADF 的一个法向量是()x,y,z n =. 由0,0,AD AF n n ⎧⋅=⎪⎨⋅=⎪⎩得32x -y =0,=0.⎧⎪⎨⎪⎩令y=3,则n =. 又因为3(=3+0-3=02EM n ⋅=⋅,因此EM n ⊥,又EM ⊄平面ADF ,因此//EM 平面ADF . ……………4分 (Ⅱ)由(Ⅰ)可知平面ADF 的一个法向量是n =. 因为EB ⊥平面ABD ,因此EB BD ⊥.又因为AB BD ⊥,因此BD ⊥平面EBAF . 故(3,0,0)BD =是平面EBAF 的一个法向量. 因此1cos <=2BD BD,BD n n n⋅>=⋅,又二面角D-AF -B 为锐角, 故二面角D-AF -B 的大小为60︒. ……………10分NCA F EBMD(Ⅲ)假设在线段EB 上存在一点P ,使得CP 与AF 所成的角为30︒. 不妨设(0,0,t)P(0t ≤≤,则=(3,-2,-),=PC AF t .因此2cos <2PC AF PC,AF PC AF ⋅>==⋅,2=, 化简得35-=, 解得0t =<. 因此在线段EB 上不存在点P ,使得CP 与AF 所成的角为30︒.…………14分 (18)(本小题满分13分)解:因为2e (),1ax f x x =+因此222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,因此(0)1,f = (0)1f '=.因此曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.因此函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,现在0∆>.由()0fx '>得1x a <,或1x a+>;由()0f x '<x <<.因此函数()f x单调递增区间是(-∞和)+∞,单调递减区间. ……………9分②当1a ≥时,现在0∆≤.因此()0f x '≥,因此函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,现在0∆>.由()0f x '>得11x a a +-<<; 由()0f x '<得1x a <,或1x a->.因此当10a -<<时,函数()f x单调递减区间是1(,a +-∞和1()a +∞,单调递增区间. ……………12分④当1a ≤-时, 现在0∆≤,()0f x '≤,因此函数()f x 单调递减区间是(,)-∞+∞. …………13分(19)(本小题满分14分) 解:(Ⅰ)依题意,c =1b =,因此a == 故椭圆C 的方程为2213x y +=. ……………4分 (Ⅱ)①当直线l 的斜率不存在时,由221,13x x y =⎧⎪⎨+=⎪⎩解得1,x y ==.不妨设(1,3A,(1,3B -,因为132233222k k +=+=,又1322k k k +=,因此21k =,因此,m n 的关系式为213n m -=-,即10m n --=. ………7分 ②当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-.将(1)y k x =-代入2213x y +=整理化简得,2222(31)6330k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,则2122631k x x k +=+,21223331k x x k -=+. ………9分又11(1)y k x =-,22(1)y k x =-. 因此12122113121222(2)(3)(2)(3)33(3)(3)y y y x y x k k x x x x ----+--+=+=---- 12211212[2(1)](3)[2(1)](3)3()9k x x k x x x x x x ---+---=-++121212122(42)()6123()9kx x k x x k x x x x -++++=-++222222223362(42)6123131336393131k k k k k k k k kk k -⨯-+⨯++++=--⨯+++ 222(126)2.126k k +==+………12分 因此222k =,因此2213n k m -==-,因此,m n 的关系式为10m n --=.………13分 综上所述,,m n 的关系式为10m n --=. ………14分 (20)(本小题满分13分)解:(Ⅰ)若0:0,1,1,3,0,0A ,则1:1,0,1,3,0,0A ;2:2,1,2,0,0,0A ; 3:3,0,2,0,0,0A ; 4:4,1,0,0,0,0A ; 5:5,0,0,0,0,0A .若4:4,0,0,0,0A ,则 3:3,1,0,0,0A ; 2:2,0,2,0,0A ; 1:1,1,2,0,0A ;0:0,0,1,3,0A . ………4分(Ⅱ)先证存在性,若数列001:,,,n A a a a 满足0k a =及0(01)i a i k >≤≤-,则定义变换1T -,变换1T -将数列0A 变为数列10()T A -:01111,1,,1,,,,k k n a a a k a a -+---.易知1T -和T 是互逆变换. ………5分 关于数列,0,0,,0n 连续实施变换1T -(一直不能再作1T -变换为止)得,0,0,,0n 1T -−−→1,1,0,,0n -1T -−−→2,0,2,0,,0n -1T -−−→3,1,2,0,,0n -1T -−−→1T-−−→01,,,n a a a ,则必有00a =(若00a ≠,则还可作变换1T -).反过来对01,,,n a a a 作有限次变换T ,即可还原为数列,0,0,,0n ,因此存在数列0A 满足条件.下用数学归纳法证唯独性:当1,2n =是明显的,假设唯独性对1n -成立,考虑n 的情形. 假设存在两个数列01,,,n a a a 及01,,,n b b b 均可通过有限次T 变换,变为,0,,0n ,那个地点000a b ==,1212n n a a a b b b n +++=+++=若0n a n <<,则由变换T 的定义,不能变为,0,,0n ;若n a n =,则120n a a a ====,通过一次T 变换,有0,0,,0,n T−−→1,1,,1,0由于3n ≥,可知1,1,,1,0(至少3个1)不可能变为,0,,0n .因此0n a =,同理0n b =令01,,,n a a a T−−→121,,,,na a a ''',01,,,n b b b T−−→121,,,,nb b b ''',则0n n a b ''==,因此1211n a a a n -'''+++=-,1211nb b b n -'''+++=-. 因为110,,,n a a -''T−−−−→有限次-1,0,,0n ,110,,,n b b -''T−−−−→有限次-1,0,,0n ,故由归纳假设,有i i a b ''=,1,2,,1i n =-.再由T 与1T -互逆,有01,,,n a a a T−−→111,,,,0n a a -'',01,,,n b b b T−−→111,,,,0nb b -'',因此i i a b =,1,2,,i n =,从而唯独性得证. ………9分(Ⅲ)明显i a i ≤(1,2,,)i n =,这是由于若对某个0i ,00i a i >,则由变换的定义可知,0i a 通过变换,不能变为0.由变换T 的定义可知数列0A 每通过一次变换,k S 的值或者不变,或者减少k ,由于数列0A 经有限次变换T ,变为数列,0,,0n 时,有0m S =,1,2,,m n =,因此m m S mt =(m t 为整数),因此1m m m S a S +=+1(1)m m a m t +=++,0m a m ≤≤, 因此m a 为m S 除以1m +后所得的余数,即[](1)1m m m S a S m m =-++.………13分。

2020年朝阳区第一次模拟考试高三英语试题及答案(WORD版

2020年朝阳区第一次模拟考试高三英语试题及答案(WORD版

朝阳区2020届高三一模英语 2020.5第一部分:知识运用(共两节,45 分)第一节语法填空(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。

在未给提示词的空白处仅填写1个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。

AWith our graduation day around the corner, I was busy preparing presents for my friends. As usual, I walked into the classroom, only 1 (find) a big box standing there. Approaching, I saw my name 2 (write) on it. I was quite shocked when the box 3 (open) and I saw “myself”, a vivid statue, sitting inside smiling up at me. I was at a complete loss for words. It was the most unique, unconventional present in my life.BAnalysis finds Earth’s magnetic(有磁性的) field was in place by at least 3.7 billion years ago, as early life arose.Scientists think that having a magnetic field 4 (make) Earth more friendly to life. The field, 5 is generated by liquid iron moving about in the planet’s core, protects Earth 6 energetic particles(粒子) flowing from the Sun. It helps the planet hold on to its atmosphere and maintain liquid water on its surface.CDo you have a mentor(导师) helping you make decisions in your life? If you do, then you are a very lucky person. 7 if not, then read the book Tuesdays with Morrie.It tells the true story of the author, Mitch Albom, and his dying former professor, Morrie Schwartz. 8 you read this book, you will learn some verymeaningful lessons from a professor dying from Lou Gehrig’s disease. When Mitch visits Morrie every Tuesday, the 78-year-old professor shares words of 9 (wise) about love, life, communication, values, and openness with his former student. As a beautiful tale 10 (deliver) many powerful lessons about life, this book should be high on everyone’s reading list.第二节完形填空(共20 小题;每小题1.5 分,共30 分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2020年北京市朝阳区中考数学一模试卷 (含答案解析)

2020年北京市朝阳区中考数学一模试卷 (含答案解析)

2020年北京市朝阳区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.2017年4月8日,中国财经新闻报道中国3月外汇储备30090.9亿,这个数据用科学记数法表示为()A. 3.00909×104B. 3.00909×105C. 3.00909×1012D. 3.00909×10132.某几何体的三种视图如图所示,则该几何体是().A. 三棱柱B. 长方体C. 圆柱D. 圆锥3.已知实数a、b在数轴上的对应点的位置如图所示,那么√a+√−b是一个()A. 非负数B. 正数C. 负数D. 以上答案均不对4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. 18B. 13C. 38D. 355.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 36.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,已知tan∠CDB=34,BD=5,则OH的长度为()A. 23B. 56C. 1D. 767.如图,AB//CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F等于()A. 9.5°B. 19°C. 15°D. 30°8.根据下表中的信息解决问题:数据3738394041频数845a1若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共8小题,共16.0分)有意义,则x的取值范围是______.9.要使分式3x−110.分解因式:2mx2−4mx+2m=______ .11.如图所示,△ABC中,点D、E分别在AB、AC上,DE//BC,若AE=3,EC=1,,则BC=______且知DE=7212.如图,在边长为1的小正方形组成的网格中,则sin∠ABC的值为______.13.四边形ABCD中,若∠A:∠B:∠C:∠D=7:6:5:4,则它们的外角的比是________。

2020年北京市朝阳区高考物理一模试卷(含答案解析)

2020年北京市朝阳区高考物理一模试卷(含答案解析)

2020年北京市朝阳区高考物理一模试卷一、单选题(本大题共14小题,共42.0分)1.下列有关高中物理实验的说法中,正确的是()A. “探究动能定理”的实验中不需要直接求出合外力做的功B. 电火花打点计时器的工作电压是220V的直流电C. 在用欧姆表“×10”挡测量电阻时发现指针偏角太小,应该换“×1”挡进行测量D. 在“验证机械能守恒定律”的实验中,必须要用天平测出下落物体的质量2.用α粒子轰击 49Be得到了 612C和一种粒子,这种粒子是()A. 电子B. 质子C. 中子D. 正电子3.如图所示,甲图为沿x轴正方向传播的一列简谐横波在t=1.5s时刻的波形图象,乙图为参与波动的某质点的振动图象,则图乙可能是图甲中x分别等于1、2、3、4这四个质点中哪个质点的振动图象()A. 1B. 2C. 3D. 44.下列说法中正确的是()A. α粒子散射实验是卢瑟福建立原子核式结构模型的重要依据B. 根据玻尔理论,氢原子辐射出一个光子后,氢原子的电势能增大C. 在光电效应的实验中,入射光的强度增大,光电子的最大初动能也增大D. 根据爱因斯坦的光电效应方程可知,光电子的最大初动能与入射光的频率成正比5.夏天将到,在北半球,当我们抬头观看教室内的电扇时,发现电扇正在逆时针转动。

金属材质的电扇示意图如图,由于电磁场的存在,下列关于A. O两点的电势及电势差的说法,正确的是()A.A点电势比O点电势高B. A点电势比O点电势低C. A点电势比O点电势相等D. 扇叶长度越短,转速越快,两点间的电势差数值越大6.如图甲所示,交流发电机的矩形线圈边长ab=cd=0.2m,ad=bc=0.4m,线圈匝数为50匝,t/s 线圈的总电阻r=1Ω,线圈在磁感应强度B=0.2T的匀强磁场中绕垂直磁场的虚线轴以100π的转速匀速转动,外接电阻R=9Ω,电压表为理想交流电表,则()A. 图甲中交流电压表的示数为80√2VB. 图甲中电阻R上消耗的电功率为1152√2WC. 如图乙所示,在外电路接上原、副线圈匝数比n1:n2=3:1的理想变压器时,电阻R上消耗的电功率最大D. 如图乙所示,在外电路接上原、副线圈匝数比n1:n2=1:3的理想变压器时,电阻R上消耗的电功率最大7.太阳系中几乎所有天体包括小行星都自转,自转导致星球上的物体所受的重力与万有引力的大小之间存在差异,有的两者的差异可以忽略,有的却不能忽略。

2020年北京市朝阳区中考一模语文试题(含答案)

2020年北京市朝阳区中考一模语文试题(含答案)

语文答案一、基础·运用(共 15 分)1.(1)答案:C(2分)(2)答案:B(2分)2.(1)答案:朝花夕拾(1分)(2)答案:B(2分)(3)答案:①ɡuàn②ɡuān(共2分。

每空1分)3.(1)答案:丙(2分)(2)答案:A(2分)(3)答案示例:壮志凌云,航天人坚守初心(2分)二、古诗文阅读(共17分)(一)(共5分)4.答案:铜雀春深锁二乔(1分。

有错该空不得分)5.答案:山重水复疑无路(1 分。

有错该空不得分)6.答案示例:①孤山寺北贾亭西②水面初平云脚低③波澜不惊(共3分。

共3空,每空1分。

有错该空不得分)(二)(共5分)7.答案示例:鹤去楼空(1分)8.答案示例:在和煦的阳光照耀下,隔江相望的汉阳平野中葱郁的树木,清晰可辨;江中的鹦鹉洲上,芳草如茵,长势茂盛。

(共2分。

共2句,每句1分)9.答案:A(2分)(三)(共7分)10.答案:A(2分)11.答案:乙(2分)12.答案要点:①朴素安定②自然和谐③天下为公(共3分。

共3空,每空1分)三、名著阅读(5分)13.答案示例:我读《西游记》,在看孙悟空三调芭蕉扇时采用了精读。

仔细阅读作者对人物关系的回叙,我明白了孙悟空为什么借扇会被拒绝,理解了借扇的艰难。

在阅读一些我不感兴趣的描写环境的诗词,以及套路雷同的降妖除魔的故事时,我就跳过不读。

(共5分。

精读,2分;略读,2分;表达,1分)四、现代文阅读(共23分)(一)(共7分)14.答案:B(2分)15.答案示例:线上学习时,大多数学生学习专注度因多种因素受到不良影响。

(共2分。

“大多数学生”,1分;“多种因素”,1分)16.答案要点:①覆盖面广,参与人数多。

②有优势。

③有不足。

(共3分。

共3个要点,每个要点1分)(二)(共9分)17.答案示例:①读高力士的故事,体会他借荠菜表达的思念和感伤。

②在纽约,惊喜地发现荠菜,却没有吃出故乡的味道。

(共4分。

共2空,每空2分)18.答案示例一:摘录:人践踏,牲畜践踏,鸡鸭啄食,牛羊啃啮,驴车的轮子碾过。

朝阳区2020届高三一模数学(理)试题及答案(word版)

朝阳区2020届高三一模数学(理)试题及答案(word版)

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 3.>e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan a c b B +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同(第4题图)(注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A.0r << B.0r <<C.0r << D.0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=L ______.月23415689 10 7111258(第7题图)正视图侧视图俯视图11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+u u u u r u u u r u u u r.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =L )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =L ,1212(,,,)B b b b =L ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数21()sin 22x f x x ωω=+0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;AMPCBA 1C 1B 1(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2020学年度第二学期高三年级统一考试数学答案(理工类)一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =1sin 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由21()sin 22x f x x ωω=+-1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为随机变量X 的均值0123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =I ,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n . 所以二面角P AM B --9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=u u u r u u u r,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-,所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-u u u r.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u u rn n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-u u u r ,若1A C //平面AMP ,则10AC ⊥u u u rn . 所以10220AC λλ-⋅=--=u u u r n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e <e a x =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则12x x +=,21284m x x -=, 112m y +=,222m y +=.显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-===28)(m m ----+=2=220==. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分。

北京市朝阳区2020届高考数学一模试卷 (含答案解析)

北京市朝阳区2020届高考数学一模试卷 (含答案解析)

北京市朝阳区2020届高考数学一模试卷一、选择题(本大题共10小题,共40.0分)1. 设集合A ={1,2,4,6},集合B ={1,5},则A ∪B 等于( )A. {1,3,5}B. {5}C. {1,2,4,5,6}D. {1}2. 下列函数中,既是偶函数,又在区间(1,2)上单调递减的是( )A. y =x 12B. y =2x +12x C. y =x 43 D. y =log 12|x |+1 3. 已知S n 为等比数列{a n }的前n 项和,a 1=1,a 2a 3=−8,则S 6=( )A. 1283B. −24C. −21D. 114. 在ΔOAB 中,点C 满足AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗⃗ ,则1x +1y=( ) A. 13B. 23C. 92D. 295. 已知抛物线C :y 2=2px(p >0)的焦点为F ,准线为l ,M 是C 上的一点,点M 关于l 的对称点为N ,若∠MFN =90°且|MF|=12,则p 的值为( )A. 18B. 12C. 6D. 6或18 6. 从甲、乙、丙、丁四人中,随机选取两名作为代表,则甲被选中的概率为( )A. 12B. 13C. 14D. 237. 已知双曲线C :x 24−y 2b 2=1经过点(4,3),则双曲线C 的离心率为( )A. 12B. √32C. √72D. √132 8. “φ=3π4”是“函数y =cos2x 与函数y =sin(2x +φ)在区间[0,π4]上的单调性相同”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件9. 已知定义在R 上的函数满足f(x +1)=f(x −1),f(x)={2x −5,0<x ≤1ln x−1e5,1<x ≤2,若关于x 的不等式f(x)+a(x −2018)≤0在(2018,2020]上恒成立,则实数a 的取值范围为( )A. (−∞,2]B. (−∞,2)C. (−∞,52]D. (−∞,52)10. 如图,在棱长为3的正方体ABCD −A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A. 92B. √3C. 6√55D. 2二、填空题(本大题共5小题,共25.0分)11. 复数21+i 的模等于__________.12. 如图是某四面体的三视图,则该几何体最长的棱长为__________.13. 张师傅驾车从公司开往火车站,途经4个交通岗,这4个交通岗将公司到火车站分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟.假设他在各交通岗是否遇到红灯是相互独立的,并且概率都是13.则张师傅此行程时间不少于16分钟的概率为________. 14. 已知数列{a n }的前n 项和为S n ,函数f(x)=2x−1x+1,a n =log 2f(n+1)f(n),则S 2013=______.15. 已知曲线C 的方程是x 4+y 2=1.关于曲线C 的几何性质,给出下列三个结论:①曲线C 关于原点对称; ②曲线C 关于直线y =x 对称; ③曲线C 所围成的区域的面积大于π. 其中,所有正确结论的序号是______. 三、解答题(本大题共6小题,共85.0分)16. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,.(1)求角B; (2)若,求b .17.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM//AC.(1)求证:平面MOE//平面PAC;(2)求证:平面PAC⊥平面PCB;(3)设二面角M−BP−C的大小为θ,求cosθ的值.18.某研究机构为了调研当代中国高中生的平均年龄,从各地多所高中随机抽取了40名学生进行年龄统计,得到结果如下表所示:年龄(岁)[15,16)[16,17)[17,18)[18,19)[19,20]数量6101284(1)若同一组数据用该组区间的中点值代表,试估计这批学生的平均年龄;(2)若在本次抽出的学生中随机挑选2个年龄在[15,17)间的学生人数记为X,求X的分布列及数学期望.19.已知圆O:x2+y2=4,若焦点在x轴上的椭圆x2a2+y2b2=1过点p(0,−1),且其长轴长等于圆O的直径.(1)求椭圆的方程;(2)过点P作两条互相垂直的直线l1与l2,l1与圆O交于A、B两点,l2交椭圆于另一点C.(Ⅰ)设直线l1的斜率为k,求弦AB长;(Ⅱ)求△ABC面积的最大值.20.求曲线y=f(x)=12x2−3x+2lnx在(3,f(3))处切线的斜率及切线方程.21.若数列{a n}的前n项和为S n,a1=2且S n+1=4a n−2(n=1,2,3…).(I)求a2,a3;(II)求证:数列{a n−2a n−1}是常数列;(III)求证:.-------- 答案与解析 --------1.答案:C解析:本题考查了并集及其运算,熟练掌握并集的定义是解题的关键.根据A与B,求出两集合的并集即可.解:∵A={1,2,4,6},B={1,5},∴A∪B={1,2,4,5,6}.故选C.2.答案:D解析:本题主要考查函数奇偶性和单调性的判断,熟悉常见函数的奇偶性和单调性是解决本题的关键,属于基础题.分别判断各函数的奇偶性和单调性即可得到结论.解:A:y=x12定义域为[0,+∞),为非奇非偶函数,不满足条件.B:y=2x+12x ,f(−x)=2−x+12−x=2x+12x=f(x),则f(x)为偶函数,f(1)=2+12=52,f(2)=4+14=174,则f(1)<f(2),则函数在(1,2)上不是减函数,不满足条件.C:y=x43,f(−x)=(−x)43=[(−x)2]23=x43=f(x),则f(x)是偶函数,f(1)=1,f(2)=√163,则f(1)<f(2),则函数在(1,2)上不是减函数,不满足条件.D:,,则f(x)为偶函数,由于为减函数,所以在(1,2)上是减函数,满足条件.故选D.3.答案:C解析:本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.由题意易得数列的公比q=−2代入求和公式计算可得.解:设等比数列{a n}公比为q,a1=1,a2a3=−8,则a2a3=a12q3=q3=−8,解得q=−2,∴S6=1×[1−(−2)6]1+2=−21,4.答案:C解析:本题主要考查平面向量的基本定理与应用,属于一般题. 解析:解:∵OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +23(OB ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),=13OA ⃗⃗⃗⃗⃗ +23OB⃗⃗⃗⃗⃗⃗ , 故x =13,y =23⇒1x +1y =92, 故选C5.答案:C解析:本题考查抛物线的性质及定义,考查转换思想,属于中档题. 构造直角三角形,根据抛物线的性质,即可求得p 的值. 解:直线MN 交准线x =−p2于点D ,l 交x 轴于点H ,∴∠MFN =90°,则|DM|=|MF|=|DF|=12, 则∠MDF =60°,∠FDH =30°, ∴|HF|=6,即p =6,6.答案:A解析:解:从甲、乙、丙、丁四人中,随机选取两名作为代表,基本事件总数n=C42=6,甲被选中包含的基本事件个数m=C11C31=3,∴甲被选中的概率为p=mn =36=12.故选:A.基本事件总数n=C42=6,甲被选中包含的基本事件个数m=C11C31=3,由此能求出甲被选中的概率.本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.7.答案:C解析:本题考查双曲线方程的求法,离心率的求法,考查计算能力,求出双曲线的方程,然后求解离心率.解:双曲线C:x24−y2b2=1经过点(4,3),可得424−32b2=1,解得b2=3,双曲线C:x24−y23=1,可得a=2,c=√a2+b2=√4+3=√7,e=ca =√72.故选C.8.答案:A解析:解:函数y=cos2x在区间[0,π4]上单调递减.“φ=3π4”时,函数y=sin(2x+3π4),x∈[0,π4],可得2x+3π4∈[3π4,5π4],∴函数y=sin(2x+3π4),在区间[0,π4]上单调递减.而φ=3π4+2π时,函数y=sin(2x+3π4),在区间[0,π4]上单调递减.因此“φ=3π4”是“函数y=cos2x与函数y=sin(2x+φ)在区间[0,π4]上的单调性相同”的充分不必要条件.故选:A.函数y=cos2x在区间[0,π4]上单调递减.“φ=3π4”时,函数y=sin(2x+3π4),x∈[0,π4],可得2x+。

2020年北京市朝阳区高考生物一模试卷 (含答案解析)

2020年北京市朝阳区高考生物一模试卷 (含答案解析)

2020年北京市朝阳区高考生物一模试卷一、单选题(本大题共15小题,共30.0分)1.如图为细胞膜的结构模型示意图,有关叙述不正确的是()A. 具有①的一侧为细胞膜的外侧B. ①与细胞表面的识别有关C. ②是构成细胞膜的基本支架D. 细胞膜的选择透过性与①的种类和数量有关2.下列关于生物多样性及其保护的叙述,正确的是()A. 地球上所有的植物、动物和微生物及他们拥有的全部基因共同组成生物的多样性B. 生物多样性包括物种、种群、生态系统三个层次的内容C. 人为因素是生物多样性面临威胁的主要原因D. 生物多样性保护的最有效措施是加强教育和法制管理3.下列情况引起的变异属于基因重组的是()①非同源染色体上非等位基因的自由组合②一条染色体的某一片段移接到非同源染色体上③同源染色体的非姐妹染色单体之间发生局部交换④DNA分子中发生碱基对的增添、缺失或替换A. ①②B. ①③C. ③④D. ②④4.下图是人体缩手反射的反射弧结构:图中表示从树突到胞体到轴突,方框甲、乙代表神经中枢。

当手被尖锐的物体刺痛时,先缩手后产生痛觉。

对此生理过程的分析正确的是()A. 图中A为感受器,E为效应器,痛觉在图中的乙方框处形成B. 当受到刺激,兴奋传至神经纤维D处时,D处的膜电位分布是外正内负C. 图中甲代表神经中枢脊髓,B代表传入神经D. 由甲发出的传出神经纤维末端释放的神经递质不一定能引起乙的兴奋5.关于人体非特异性免疫的叙述,正确的是( )A. 非特异性免疫是能够遗传的B. 过敏反应是由非特异性免疫异常引起的C. 机体能够通过非特异性免疫产生记忆细胞D. 非特异性免疫只对一种特定的病原体起作用6.下列关于细胞的叙述正确的是()A. 生物可根据细胞结构的特点分为原核生物和真核生物B. 所有生物都具有由磷脂和蛋白质组成的膜结构C. 大肠杆菌、霉菌、颤藻的细胞内都含有可形成肽键的结构D. 蛙成熟红细胞中的细胞核、线粒体和核糖体均不能发生碱基互补配对7.下列对葡萄糖、蛋白质、脂肪的相关叙述,正确的是A. 相同质量的葡萄糖和脂肪的含氧量相同B. 脂肪是构成细胞膜的重要成分C. 三者氧化分解的终产物都有CO2和水D. 三者都储存有能量,都是细胞的储能物质8.囊性纤维病是一种常染色体隐性遗传病。

2020年北京市朝阳区中考数学一模试卷含答案

2020年北京市朝阳区中考数学一模试卷含答案

2020年北京市朝阳区中考数学一模试卷一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113800用科学记数法表示应为()A.1.138×105B.11.38×104C.1.138×104D.0.1138×106 2.(2分)右图是某几何体的三视图,该几何体是()A.圆锥B.球C.长方体D.圆柱3.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d4.(2分)一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A.m=n=8B.n﹣m=8C.m+n=8D.m﹣n=85.(2分)如果,那么代数式的值为()A.3B.C.D.6.(2分)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=,则AB的长为()A.2.5B.4C.5D.107.(2分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE 8.(2分)生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)1≤x<22≤x<33≤x<44≤x<55≤x≤6合计频数12b3m频率0.050.10a0.151表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④二、填空题(本题共16分,每小题2分)9.(2分)若分式有意义,则x的取值范围为.10.(2分)分解因式:2x2+8x+8=.11.(2分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,若AD=1,BD=4,则=.12.(2分)如图所示的网格是正方形网格,则∠AOB∠COD(填“>”、“=”或“<”).13.(2分)如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=°.14.(2分)用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a =.15.(2分)某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是.16.(2分)某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有人.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27,28题,每小题0分)17.计算:.18.解不等式组:;19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD=∠CDE.20.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE=2,求EG的长.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x <50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.1,75.7,79.9.c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“〇”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为亿件.(结果保留整数)23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.24.有这样一个问题:探究函数的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数的自变量x的取值范围是x≠2;(2)取几组y与x的对应值,填写在下表中.x…﹣4﹣2﹣101 1.2 1.252.75 2.834568…y…1 1.52367.5887.563m 1.51…m的值为;(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数的图象是轴对称图形,它的对称轴是;②过点P(﹣1,n)(0<n<2)作直线l∥x轴,与函数的图象交于点M,N(点M在点N的左侧),则PN﹣PM的值为.25.在平面直角坐标系xOy中,直线y=1与一次函数y=﹣x+m的图象交于点P,与反比例函数的图象交于点Q,点A(1,1)与点B关于y轴对称.(1)直接写出点B的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q两点中只有一个点在线段AB上,直接写出m的取值范围.26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.27.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.28.在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.2020年北京市朝阳区中考数学一模试卷一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113800用科学记数法表示应为()A.1.138×105B.11.38×104C.1.138×104D.0.1138×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据113800用科学记数法可表示为:1.138×105.故选:A.【点评】此题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.2.(2分)右图是某几何体的三视图,该几何体是()A.圆锥B.球C.长方体D.圆柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.故选:D.【点评】此题考查了由三视图判断几何体,关键是熟练掌握三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d【分析】首先根据:当数轴方向朝右时,右边的数总比左边的数大,可得:a<b<c<d;然后根据:哪个数越大,则它的相反数越小,判断出这四个数中,相反数最大的是哪个数即可.【解答】解:根据图示,可得:a<b<c<d,∴这四个数中,相反数最大的是a.故选:A.【点评】此题主要考查了实数大小比较的方法,在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.4.(2分)一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A.m=n=8B.n﹣m=8C.m+n=8D.m﹣n=8【分析】由一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率与不是黄球的概率相同,可得=,即可得求得m与n的关系.【解答】解:∵一个不透明的袋中装有8个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,∵是黄球的概率与不是黄球的概率相同,∴=,∴m+n=8.故选:C.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.5.(2分)如果,那么代数式的值为()A.3B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=(+)•=•=a+1,当a=﹣1时,原式=﹣1+1=.故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6.(2分)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=,则AB的长为()A.2.5B.4C.5D.10【分析】首先根据垂径定理和CD的长求得CE和DE的长,然后根据同弧所对的圆周角相等确定∠B=∠C,根据正切的定义求得AE和BE的长即可求得答案.【解答】解:∵AB⊥CD,CD=4,∴CE=DE=2,∵∠B=∠C,tan C=,∴tan B=,∴AE=1,BE=4,∴AB=AE+BE=1+4=5,故选:C.【点评】考查了圆周角定理及垂径定理的知识,解题的关键是根据垂径定理求得CE和DE的长,难度不大.7.(2分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE【分析】根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.【解答】解:∵直线l1∥l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,∴∠ABC=,故A正确;∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质得出∠CAB=40°解答.8.(2分)生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)1≤x<22≤x<33≤x<44≤x<55≤x≤6合计频数12b3m频率0.050.10a0.151表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④【分析】①根据数据总和=频数÷频率,列式计算可求m的值;②根据3≤x<4组的频率a满足0.20≤a≤0.30,可求该范围的频数,进一步得到b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.【解答】解:①1÷0.05=20.故表中m的值为20,是合理推断;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15故这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D.【点评】考查频数(率)分布表,从表中获取数量及数量之间的关系是解决问题的关键.二、填空题(本题共16分,每小题2分)9.(2分)若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.(2分)分解因式:2x2+8x+8=2(x+2)2.【分析】首先提公因式2,再利用完全平方公式进行分解即可.【解答】解:原式=2(x2+4x+4)=2(x+2)2.故答案为:2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.(2分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,若AD=1,BD=4,则=.【分析】证明△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.12.(2分)如图所示的网格是正方形网格,则∠AOB<∠COD(填“>”、“=”或“<”).【分析】连接OE,由图可知,∠DOE=∠BOA,然后根据∠DOC=∠DOE+∠EOC,可得∠DOC>∠DOE,从而可以得到∠AOB和∠COD的大小关系.【解答】解:连接OE,则∠DOE=∠BOA,∵∠DOC=∠DOE+∠EOC,∴∠DOC>∠DOE,∴∠DOC>∠AOB,即∠AOB<∠COD,故答案为:<.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2分)如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=360°.【分析】根据多边形的外角和等于360°解答即可.【解答】解:∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.【点评】本题考查多边形的外角与内角,解题的关键是灵活应用多边形的外角和为360°解决问题,属于中考常考题型.14.(2分)用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a=﹣1(答案不唯一).【分析】根据题意找到一个使得命题不成立的a的值即可.【解答】解:当a=﹣1时,2a=﹣2,﹣1>﹣2,故答案为:﹣1(答案不唯一)【点评】考查了命题与定理的知识,解题的关键是能够根据题意举出反例,难度不大.15.(2分)某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是①②③.【分析】根据题意和函数图象中的数据,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:由题意可得,甲出发10分钟后与乙相遇,故①正确;甲的速度为2400÷6=400(米/分),故②正确;乙返回办公室用时14﹣10=4(分钟),故③正确;故答案为:①②③.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.(2分)某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有20人.【分析】可设该小组共有x人,往返的有y人,根据等量关系:①去程时的人数+返程时的人数﹣往返的人数=该小组一共的人数;②乘坐缆车的总费用是2400元;列出方程组求解即可.【解答】解:设该小组共有x人,往返的有y人,依题意有,解得.故该小组共有20人.故答案为:20.【点评】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程(组)求解.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27,28题,每小题0分)17.计算:.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=+2×﹣1+3=+1﹣1+3=+3.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.解不等式组:;【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>1,则不等式组的解集为1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD=∠CDE.【分析】由等腰三角形的性质可得∠B=∠C,可证△ADB∽△DEC,可得结论.【解答】解:∵AB=AC,∴∠B=∠C,∵AD⊥BC,DE⊥AC,∴∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴∠BAD=∠CDE.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,证明△ADB∽△DEC 是本题的关键.20.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.【分析】(1)先根据方程有两个不相等的实数根得出△=(m+1)2﹣4×1×m2>0,解之可得答案;(2)取m=0,代入后利用因式分解法求解可得(答案不唯一).【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△=(m+1)2﹣4×1×m2>0,解得m>﹣;(2)取m=0,此时方程为x2+x=0,则x(x+1)=0,∴x=0或x+1=0,解得x=0或x=﹣1(答案不唯一).【点评】本题主要考查根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE=2,求EG的长.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)由直角三角形的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,且BE=DF,∠B=∠D,∴△AEB≌△AFD(AAS),∴AB=AD,∴四边形ABCD是菱形;(2)如图,∵AD∥BC,∴∠CEG=∠G=30°,∵AE⊥BC,AD∥BC,∴∠EAG=90°,且∠G=30°,∴EG=2AE=4.【点评】本题考查了菱形的判定和性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x <50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.1,75.7,79.9.c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第3;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“〇”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为31亿件.(结果保留整数)【分析】(1)由城市先进制造业创新指数得分为79.9以上(含79.9)的城市有2个,即可得出结果;(2)根据北京在虚线l的上方,北京的先进制造业城市发展指数得分为79.9,找出该点即可;(3)根据30个城市的先进制造业城市发展指数得分情况统计图,即可得出结果.【解答】解:(1)∵在这30个城市中,先进制造业创新指数得分为79.9以上(含79.9)的城市有3个,∴北京的先进制造业城市发展指数排名3,故答案为:3;(2)如图所示:(3)由30个城市的先进制造业城市发展指数得分情况统计图可知,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为31万亿件;故答案为:31.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.【分析】(1)根据题意可得三角形ABC是直角三角形,再根据切线长定理即可求出a的值;(2)①根据题意可得点O是三角形ABC的内心,再根据三角形内角和即可得结论;②作OE⊥MN于点E,根据角平分线的性质可得OD=OE,所以得OE为圆O的半径,进而可得MN为圆O的切线,即可得出结论.【解答】解:(1)如图,∵AB=3,AC=4,BC=5,∴33+42=52,∴∠A=90°,∴△ABC是直角三角形,由题意可知:图形G是以O为圆心,a为半径的圆,AB,AC,BC与圆O相切,设切点分别为F,D,Q,连接OF,OD,OQ,∴OF⊥AB,OD⊥AC,OQ⊥BC,∴四边形AFOD为正方形,∴AF=AD=OF=OD=a,根据切线长定理可知:BF=BQ=3﹣a,CD=CQ=4﹣a,∴3﹣a+4﹣a=5,解得a=1;(2)①由题意可知:点O是△ABC的内心,∴∠ABM=∠CBM,∵MA⊥AB,MB⊥BC,∴∠A=∠BNM=90°,∴∠BMA=∠BMN;②如图,作OE⊥MN于点E,∵∠BMA=∠BMN,∵OD⊥AC,∴OD=OE,∴OE为圆O的半径,∴MN为圆O的切线,∴直线MN与图形G的公共点个数为1.【点评】本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内心定义.24.有这样一个问题:探究函数的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数的自变量x的取值范围是x≠2;(2)取几组y与x的对应值,填写在下表中.x…﹣4﹣2﹣101 1.2 1.252.75 2.834568…y…1 1.52367.5887.563m 1.51…m的值为2;(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数的图象是轴对称图形,它的对称轴是x =2;②过点P(﹣1,n)(0<n<2)作直线l∥x轴,与函数的图象交于点M,N(点M在点N的左侧),则PN﹣PM的值为6.【分析】(2)把x=5代入函数解析式求出函数值即可.(3)利用描点法画出函数图象即可.(4)①根据轴对称图形的定义判断即可.②求出PN,PM的长(用n表示)即可解决问题.【解答】解:(2)由题意x=5时,y==2,∴m=2,故答案为2.(3)函数图象如图所示:(4)①观察图象可知图象是轴对称图形,对称轴x=2.故答案为x=2.②由题意,M(﹣+2,n),N(+2,n),∴PN=+2+1=+3,PM=﹣1﹣(﹣+2)=﹣3,∴PN﹣PM=+3﹣(﹣3)=6,故答案为6.【点评】本题考查反比例函数的性质,解题的关键是学会用描点法画出函数图象,学会利用参数解决问题,属于中考常考题型.25.在平面直角坐标系xOy中,直线y=1与一次函数y=﹣x+m的图象交于点P,与反比例函数的图象交于点Q,点A(1,1)与点B关于y轴对称.(1)直接写出点B的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q两点中只有一个点在线段AB上,直接写出m的取值范围.【分析】(1)根据关于y轴对称的两点,其纵坐标相等横坐标互为相反数,即可写出点B 的坐标;(2)把y=1代入y=﹣x+m,求出x,进而得到点P的坐标;把y=1代入,求出x,进而得到点Q的坐标;(3)由点P,Q的坐标,可知点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况进行讨论:①只有P点在线段AB上;②只有Q点在线段AB上.分别列出关于m的不等式组,求解即可.【解答】解:(1)∵点A(1,1)与点B关于y轴对称,∴点B的坐标是(﹣1,1);(2)把y=1代入y=﹣x+m,得1=﹣x+m,解得x=m﹣1,∴点P的坐标为(m﹣1,1);把y=1代入,得1=,解得x=m,∴点Q的坐标为(m,1);(3)∵点P的坐标为(m﹣1,1),点Q的坐标为(m,1),∴点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况:①只有P点在线段AB上时,由题意,得,解得1<m≤2;②只有Q点在线段AB上时,由题意,得,解得﹣1≤m<0.综上可知,所求m的取值范围是﹣1≤m<0或1<m≤2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了关于y轴对称的点的坐标特征,一元一次不等式组的应用.26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合。

2020年北京市朝阳区高考数学一模试卷(含答案解析)

2020年北京市朝阳区高考数学一模试卷(含答案解析)

2020年北京市朝阳区高考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.已知集合3,,,则A. B.C. 2,3,D. 2,3,4,2.下列函数中,既是偶函数又在区间上单调递增的是A. B. C. D.3.在等比数列中,,,则的前6项和为A. B. 11 C. 31 D. 634.如图,在中,点D,E满足,若,则A.B.C.D.5.已知抛物线C:的焦点为F,准线为l,点A是抛物线C上一点,于若,,则抛物线C的方程为A. B. C. D.6.现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为A. B. C. D.7.在中,,若以A,B为焦点的双曲线经过点C,则该双曲线的离心率为A. B. C. D.8.已知函数的图象上相邻两个最高点的距离为,则“”是“的图象关于直线对称”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件9.已知函数若关于x的不等式在R上恒成立,则实数a的取值范围为A. B. C. D.10.如图,在正方体中,M,N分别是棱AB,的中点,点P在对角线上运动.当的面积取得最小值时,点P的位置是A. 线段的三等分点,且靠近点B. 线段的中点C. 线段的三等分点,且靠近点CD. 线段的四等分点,且靠近点C二、填空题(本大题共5小题,共25.0分)11.复数,则______.12.已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长为______,它的体积为______.13.某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:摇号的初始中签率为;当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加为了使中签率超过,则至少需要邀请______位好友参与到“好友助力”活动.14.已知函数数列满足,则数列的前100项和是______.15.数学中有许多寓意美好的曲线,曲线C:被称为“四叶玫瑰线”如图所示给出下列三个结论:曲线C关于直线对称;曲线C上任意一点到原点的距离都不超过1;存在一个以原点为中心、边长为的正方形,使得曲线C在此正方形区域内含边界.其中,正确结论的序号是______.三、解答题(本大题共6小题,共85.0分)16.在中,.Ⅰ求B;Ⅱ若,求a.从,这两个条件中任选一个,补充在上面问题中并作答.17.如图,在三棱柱中,平面平面ABC,四边形是正方形,点D,E分别是棱BC,的中点,,,.Ⅰ求证:;Ⅱ求二面角的余弦值;Ⅲ若点F在棱上,且,判断平面与平面是否平行,并说明理由.18.某科研团队研发了一款快速检测某种疾病的试剂盒.为了解该试剂盒检测的准确性,质检部门从某地区人数众多随机选取了80位患者和100位非患者,用该试剂盒分别对他们进行检测,结果如表:患者的检测结果人数阳性76阴性4非患者的检测结果人数阳性1阴性99Ⅰ从该地区患者中随机选取一人,对其检测一次,估计此患者检测结果为阳性的概率;Ⅱ从该地区患者中随机选取3人,各检测一次,假设每位患者的检测结果相互独立,以X表示检测结果为阳性的患者人数,利用Ⅰ中所得概率,求X的分布列和数学期望;Ⅲ假设该地区有10万人,患病率为从该地区随机选取一人,用该试剂盒对其检测一次.若检测结果为阳性,能否判断此人患该疾病的概率超过?并说明理由.19.已知椭圆,圆O:为坐标原点过点且斜率为1的直线与圆O交于点,与椭圆C的另一个交点的横坐标为.Ⅰ求椭圆C的方程和圆O的方程;Ⅱ过圆O上的动点P作两条互相垂直的直线,,若直线的斜率为且与椭圆C相切,试判断直线与椭圆C的位置关系,并说明理由.20.已知函数.Ⅰ求曲线在点处的切线方程;Ⅱ判断函数的零点的个数,并说明理由;Ⅲ设是的一个零点,证明曲线在点处的切线也是曲线的切线.21.设数列A:,,,的各项均为正整数,且若对任意4,,,存在正整数i,使得,则称数列A具有性质T.Ⅰ判断数列:1,2,4,7与数列:1,2,3,6是否具有性质T;只需写出结论Ⅱ若数列A具有性质T,且,,,求n的最小值;Ⅲ若集合2,3,,2019,,且任意i,2,,,求证:存在,使得从中可以选取若干元素可重复选取组成一个具有性质T的数列.-------- 答案与解析 --------1.答案:C解析:解:集合,2,3,,故选:C.先求出集合B,再利用集合并集的运算即可算出结果.本题考查了并集及其运算,熟练掌握并集的定义是解本题的关键,属于基础题.2.答案:D解析:解:若函数具有奇偶性,则定义域关于原点对称,所以C错;由偶函数的定义:,故A错;在上递减,故B错;显然,故该函数是偶函数,当时,是增函数,故D对.故选:D.根据幂函数、对数函数、以及二次函数的单调性规律和奇偶性的定义判断即可.本题考查奇偶性、单调性的定义与性质,注意转化思想在解题中的应用.属于基础题.3.答案:A解析:解:设公比为q,由,可得,前6项和,故选:A.先由,求出公比q,再代入前n项和公式求和.本题主要考查等比数列基本量的运算,属于基础题.4.答案:B解析:解:中,点D,E满足,.,又,,.故选:B.在中,,因为,通过转化的思想,将用和表示,求出x和y的值,计算即可.本题主要考查平面向量的基本定理,属基础题,解题时需认真审题,注意向量线性运算的合理性.5.答案:B解析:解:如图所示,由抛物线的定义可知,,,为等边三角形,,,,轴,,即,,抛物线的方程为,故选:B.由抛物线的定义可知,,从而确定为等边三角形,于是得到,,再结合平行关系和三角函数即可求得p的值,进而得解.本题考查抛物线的方程、定义与几何性质,熟练运用抛物线的几何性质是解题的关键,考查学生的观察力和计算能力,属于基础题.6.答案:D解析:解:甲、乙、丙、丁、戊5种在线教学软件,某学校要从中随机选取3种作为教师“停课不停学”的教学工具,基本事件总数,甲、乙、丙至多有2种被选取包含的基本事件个数,则其中甲、乙、丙至多有2种被选取的概率.故选:D.基本事件总数,甲、乙、丙至多有2种被选取包含的基本事件个数,由此能求出其中甲、乙、丙至多有2种被选取的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.答案:C解析:解:设,取AB的中点为O,由题意可得双曲线的一条渐近线为直线OC,在三角形OBC中,,,所以,,所以双曲线的离心率为:.故选:C.设,取AB的中点为O,由余弦定理可得AC,通过双曲线的定义,求解离心率即可.本题考查双曲线的方程和性质,主要是离心率的求法,考查学生的计算能力,属于中档题.8.答案:A解析:解:函数的图象上相邻两个最高点的距离为,,解得.的图象关于直线对称,,解得,解得.则“”是“的图象关于直线对称”的充分不必要条件.故选:A.函数的图象上相邻两个最高点的距离为,可得,解得根据的图象关于直线对称,可得,解得,即可判断出结论.本题考查了三角函数的图象与性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9.答案:C解析:解:当时,,的对称轴为,开口向上.当时,在递减,递增,当时,有最小值,即,解得;当时,在上递减,当时,有最小值,即,.综合得:当时,;当时,,,当时,,在上递增,,,此时;当,即时,在上递增,同理可得;当,即时,在递减,递增,,,解得.综合得:当时,;关于x的不等式在R上恒成立,,故选:C.当时,,分、两类讨论,可求得;当时,,分、、三类讨论,可求得;取其公共部分即可得到答案.本题考查分段函数的应用,考查不等式恒成立问题,着重考查分类讨论思想和等价转化思想,考查导数的运用,考查运算求解能力和推理能力,属于难题.10.答案:B解析:解:以A为原点,AB为x轴,AD为y轴,为z轴,建立空间直角坐标系,设正方体中棱长为1,P为上的动点,设,其中,,0,,,,,为等腰三角形,底边,设底边MN上的高为h,则有.,时的面积取得最小值,此时P为的中点.故选:B.以A为原点,AB为x轴,AD为y轴,为z轴,建立空间直角坐标系,利用向量法能求出的面积取得最小值时,P为的中点.本题考查点的位置瓣判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.11.答案:解析:解:复数..故答案为:.利用复数的运算法则和模的计算公式即可得出.本题考查了复数的运算法则和模的计算公式,属于基础题.12.答案:5 4解析:解:由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ABC为等腰直角三角形,,高.最长棱为,体积.故答案为:5;4.由三视图还原原几何体,可知该几何体为三棱锥,底面三角形ABC为等腰直角三角形,,高再由勾股定理求最长棱的长,由棱锥体积公式求体积.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.13.答案:15解析:解:某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:摇号的初始中签率为;当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加.为了使中签率超过,设至少需要邀请n位好友参与到“好友助力”活动,则,解得.为了使中签率超过,则至少需要邀请15位好友参与到“好友助力”活动.故答案为:15.为了使中签率超过,设至少需要邀请n位好友参与到“好友助力”活动,则,由此能求出结果.本题考查概率的求法,考查互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题.14.答案:100解析:解:由题意,当,时,.设数列的前n项和为,则.故答案为:100.本题先根据余弦函数的周期性可计算出当,时,,,,连续四项和的值,可发现为固定值2,然后设数列的前n项和为,然后代入进行整理转化,利用周期性得到的规律即可计算出结果.本题主要考查数列的三角函数的综合问题.考查转化与化归思想,整体思想,余弦函数的周期性的应用,逻辑推理能力和数学运算能力.本题属中档题.15.答案:解析:解:对,用替换方程中的,方程形式不变,所以曲线C关于直线对称,正确;对,设点是曲线上任意一点,则,则点P到原点的距离为,由,解得,正确;对,由可知,包含该曲线的以原点为圆心的最小的圆的半径为1,所以最小圆应该是包含该曲线的最小正方形的内切圆,即正方形的边长最短为2,所以不正确;故答案为:.根据曲线的方程以及图象逐个判断3个结论即可得出.本题主要考查函数曲线的性质应用,意在考查学生的直观想象能力和分析能力,属于中档题.16.答案:解:Ⅰ在中,由正弦定理得,得,又,即,,又,.Ⅱ若选,则在中,由余弦定理,可得,解得,或舍去,可得.若选,则,由正弦定理,可得,解得.解析:Ⅰ由正弦定理得,与由此能求出B.Ⅱ若选,由余弦定理可得,即可解得a的值;若选,利用两角和的正弦函数公式可求sin A的值,由正弦定理即可解得a的值.本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.17.答案:Ⅰ证明:四边形是正方形,,又平面平面ABC,平面平面,平面ABC,又平面ABC,;Ⅱ解:由Ⅰ知,,,.又,,,,得.以A为坐标原点,分别以AB,,AC所在直线为x,y,z轴建立空间直角坐标系.则0,,0,,0,,2,,0,,2,,1,,,.平面的一个法向量,设平面的一个法向量为.由,取,得.设二面角的平面角为,则.由题意,二面角为锐角,则其余弦值为;Ⅲ解:平面与平面不平行.理由如下:由Ⅱ知,平面的一个法向量,.,与平面不平行.又平面,平面与平面不平行.解析:Ⅰ由题意,结合平面平面ABC,由平面与平面垂直的性质可得平面ABC,进一步得到;Ⅱ解:由Ⅰ知,,得到,求解三角形得,以A为坐标原点,分别以AB,,AC所在直线为x,y,z轴建立空间直角坐标系.分别求出平面的一个法向量与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值;Ⅲ由Ⅱ知,平面的一个法向量,,由数量积不为0可得与平面不平行,即可得到平面与平面不平行.本题考查空间中直线与直线、直线与平面、平面与平面位置关系的判定及其应用,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.18.答案:解:Ⅰ由题意知,80位患者中有76位用该试剂盒检测一次,结果为阳性,所以从该地区患者中随机选取一位,用该试剂盒检测一次,结果为阳性的概率估计为.Ⅱ由题意,可知,,,,,的分布列为:X 0 1 2 3P.Ⅲ此人患该疾病的概率未超过.理由如下:由题意得,如果该地区所有人用该试剂盒检测一次,那么结果为阳性的人数为,其中患者人数为950,若某人检测结果为阳性,则他患该疾病的概率为,此人患该疾病的概率未超过.解析:Ⅰ位患者中有76位用该试剂盒检测一次,结果为阳性,从该地区患者中随机选取一位,用该试剂盒检测一次,能估计结果为阳性的概率.Ⅱ由题意,可知,由此能求出X的分布列和.Ⅲ如果该地区所有人用该试剂盒检测一次,结果为阳性的人数为,其中患者人数为950,由此能求出此人患该疾病的概率未超过.本题考查概率、离散型随机变量的分布列、数学期望的求法及应用,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题.19.答案:解:Ⅰ因为圆O过点,所以圆O的方程为:,因为过点且斜率为1的直线方程为,又因为过点,所以,所以直线方程为:,因为直线与椭圆C的另一个交点的横坐标为,所以纵坐标为,所以,解得:,所以椭圆C的方程为:;Ⅱ直线与椭圆C相切,理由如下:设圆O上动点,所以,依题意,设直线的方程为:,联立方程,消去y得:,因为直线与椭圆C相切,所以,所以,所以,因为,所以,所以,设直线的方程为:,联立方程,消去y得:,所以,所以直线与椭圆C相切.解析:Ⅰ把点代入圆O的方程,即可求出r,得到圆O的方程,再求出直线方程,得到与椭圆的交点坐标,代入椭圆方程,即可求出椭圆C的方程;Ⅱ设圆O上动点,所以,设直线的方程为:,与椭圆方程联立利用得到,设直线的方程为:,与椭圆方程联立,把上式代入化简,所以直线与椭圆C相切.本题主要考查了圆的方程,考查了椭圆方程,以及直线与椭圆的位置关系,是中档题.20.答案:解:Ⅰ因为,所以,所以,,故切线方程为:.Ⅱ函数有且仅有两个零点.易知的定义域为,且,且,所以在,上是增函数.因为,,所以在上有唯一零点;又因为,所以在上有唯一零点;综上,有且仅有两个零点.Ⅲ易知,曲线在点处的切线为,即.再设曲线在点处的切线斜率为,则,即切点为.所以曲线的切线方程为,即.因为是的一个零点,所以,,故两条切线重合,结论成立.解析:Ⅰ求出处的导数,利用点斜式写出切线方程即可;Ⅱ研究函数的单调性、极值的符号等求解;Ⅲ只需要说明零点处的切线重合即可.本题考查导数的几何意义和综合应用,同时考查了学生的逻辑推理、数学抽象、数学运算等数学核心素养.属于较难的题目.21.答案:解:Ⅰ,,3,4,7不具有性质P;,,,,2,3,5具有性质P,即数列不具有性质T,数列具有性质T.Ⅱ由题意可知,,,,,,.若,且,,同理,,,,,,数列各项均为正整数,,数列前三项为1,2,4.数列A具有性质T,只可能为4,5,6,8之一,而又,,同理,有,,,,此时数列为1,2,4,8,16,32,64,128,200.但数列中存在,使得,该数列不具有性质T,.当时,取A:1,2,4,8,16,32,36,64,100,构造数列不唯一,A:1,2,4,8,16,32,36,64,100,200,经验证,此数列具有性质T,的最小值为10.Ⅲ假设结论不成立,即对任意2,,都有:若正整数a,,,则,否则,当时,a,,b是一个具有性质T的数列;当时,,a,b是一个具有性质T的数列;当时,a,a,b是一个具有性质T的函数.由题意可知,这6个集合中至少有一个集合的元素个数不少于337个,不妨设此集合为,从中取出337个数,记为,,,且,令集合2,,.由假设,对任意,2,,336,,,在,,,,中至少有一个集合包含中的至少68个元素,不妨设这个集合为,从中取出68个数,记为,,,,且,令集合2,,.由假设,对任意,2,,68,存在2,,使得,对任意,由假设,,,.在,,,中至少有一个集合包含中的至少17个元素,不妨设这个集合为,从中取出17个数,记为,,,,且,令集合2,,,由假设,对任意,2,,17,存在2,,使得,对任意,同样,由假设可得,,.同样,在,中至少有一个集合包含中的至少3个元素,不妨设这个集合为,从中取出3个数,记为,,,且,同理可得.由假设可得,同上可知,,而又,,矛盾.假设不成立,原命题得证.解析:Ⅰ根据,可知1,3,4,7不具有性质P,由,,,可知1,2,3,5具有性质P;Ⅱ由数列A具有性质T,结合条件可知,然后分别考虑,,时是否符合条件,进一步得到n的最小值;Ⅲ假设结论不成立,即对任意2,,都有:若正整数a,,,则,否则,当时,a,,b是一个具有性质T的数列;当时,,a,b是一个具有性质T的数列;当时,a,a,b是一个具有性质T的函数,然后找出矛盾结论,从而证明结论成立.本题考查了新定义、等差数列的通项公式、数列递推关系和不等式的性质,考查了考查了转化思想和分类讨论思想,属难题.。

【完整版】2020年北京市朝阳区高三一模物理试卷逐题解析

【完整版】2020年北京市朝阳区高三一模物理试卷逐题解析

2020年北京市朝阳区高三一模物理试卷逐题解析一、选择题〔此题共14小题,共42分〕1.能量守恒定律是自然界最普遍的规律之一。

以下不能表达能量守恒定律的是〔〕A.热力学第一定律B.牛顿第三定律C.闭合电路欧姆定律D.机械能守恒定律【答案】B【解析】热力学第一定律:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。

表达了能量的转化与守恒;根据电源产生的电能等于输出的电能与内电路放出的焦耳热有EIt=UIt+I²rt,可得闭合电路欧姆定律E=U+Ir,这一过程表达了能量的转化与守恒;机械能守恒定律,指的是动能、重力势能与弹性势能之间的互相转化,表达了能量的转化与守恒;故不能表达能量守恒的应为B选项。

2.宇宙射线进入地球大气层时同大气作用产生中子,中子撞击大气中的氮核14N引发核7反响,产生碳核14C和原子核X,那么X为〔〕6A.1H B.21H C.32He D.42He1【答案】A【解析】参照题目中的描绘,可以写出该过程的核反响方程式n01+N714=C614+X y x。

根据核反响前后,核电荷数守恒、质量数守恒。

故1+14=14+x,0+7=6+y。

1,应选A。

可解得x=1,y=1。

因此反响生成的原子核X为H13.图甲为一列简谐横波在t =0时的波动图象,图乙为该波中x =2cm 处质点P 的振动图象,那么t =3.0s 时的波动图象是〔 〕【答案】A【解析】根据乙图〔振动图〕可知,在t=3s 时,P 点振动到负向最大位移处,且仍在x=2cm 的位置。

应选A4.把一块带负电的锌板连接在验电器上,验电器指针张开一定的角度。

用紫外线灯照射锌板发现验电器指针的张角发生变化。

以下推断合理的是〔 〕 A .验电器指针的张角会不断变大 B .验电器指针的张角会先变小后变大C .验电器指针的张角发生变化是因为锌板获得了电子D .假设改用红外线照射锌板也一定会使验电器指针的张角发生变化 【答案】B【解析】此题考察光电效应,初始锌板带负电,验电器张角大小与带电量正相关,紫外线照射情况下,张角发生变化,锌板与验电器带电量发生了变化,说明发生了光电效应,在紫外线照射情况下,有光电子溢出,导致锌板与验电器刚开场所带负电荷减少,验电器张角变小,负电荷减少至0后,继续溢出电子,导致锌板与验电器带正电,溢出电子越多,所带正电越多,验电器张角变大。

北京市朝阳区2020届高三一模英语试题及答案

北京市朝阳区2020届高三一模英语试题及答案

朝阳区2020届高三一模英语 2020.5第一部分:知识运用(共两节,45 分)第一节语法填空(共10小题;每小题1.5分,共15分)阅读下列短文,根据短文内容填空。

在未给提示词的空白处仅填写1个适当的单词,在给出提示词的空白处用括号内所给词的正确形式填空。

AWith our graduation day around the corner, I was busy preparing presents for my friends. As usual, I walked into the classroom, only 1 (find) a big box standing there. Approaching, I saw my name 2 (write) on it. I was quite shocked when the box 3 (open) and I saw “myself”, a vivid statue, sitting inside smiling up at me. I was at a complete loss for words. It was the most unique, unconventional present in my life.BAnalysis finds Earth’s magnetic(有磁性的) field was in place by at least 3.7 billion years ago, as early life arose.Scientists think that having a magnetic field 4 (make) Earth more friendly to life. The field, 5 is generated by liquid iron moving about in the planet’s core, protects Earth 6 energetic particles(粒子) flowing from the Sun. It helps the planet hold on to its atmosphere and maintain liquid water on its surface.CDo you have a mentor(导师) helping you make decisions in your life? If you do, then you are a very lucky person. 7 if not, then read the book Tuesdays with Morrie.It tells the true story of the author, Mitch Albom, and his dying former professor, Morrie Schwartz. 8 you read this book, you will learn some verymeaningful lessons from a professor dying from Lou Gehrig’s disease. When Mitch visits Morrie every Tuesday, the 78-year-old professor shares words of 9 (wise) about love, life, communication, values, and openness with his former student. As a beautiful tale 10 (deliver) many powerful lessons about life, this book should be high on everyone’s reading list.第二节完形填空(共20 小题;每小题1.5 分,共30 分)阅读下面短文,掌握其大意,从每题所给的A、B、C、D 四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

2020 朝阳一模(答案版)

2020 朝阳一模(答案版)

北京市朝阳区高三年级高考练习一数学参考答案 2020.04第一部分(选择题 共40分)一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)(1)C (2)D (3)A (4)B (5)B (6)D (7)C (8)A (9)C (10)B第二部分(非选择题 共110分)二、填空题(共5小题,每小题5分,共25分)(11 (12)5:4 (13)15 (14)100 (15)①② 三、解答题(共6小题,共85分.解答应写出文字说明、演算步骤或证明过程) (16)(本小题14分)解:(1)因为sin cos 6b A a B π⎛⎫=-⎪⎝⎭,sin sin a b A B =.所以sin sin sin cos 6B A A B π⎛⎫=- ⎪⎝⎭.又因为sin 0A ≠,所以sin cos 6B B π⎛⎫=-⎪⎝⎭,即1sin cos sin 22B B B =+. 所以sin 03B π⎛⎫-= ⎪⎝⎭. 又因为2333B πππ-<-<,所以03B π-=,所以3B π=. (Ⅱ)若选①7b =,则在ABC △中,由余弦定理2222cos b a c ac B =+-, 得25240a a --=,解得8a =或3c =-(舍).所以8a =.若选②4c π=,则sin sin()A B C =+=sincoscossin3434ππππ+=, 由正弦定理sin sin a cA C=,得2=,解得a =所以52a =. (17)(本小题14分)解:(1)因为四边形11ACC A 是正方形, 所以1CC AC ⊥.又因为平面ABC ⊥平面11ACC A , 平面ABC ⋂平面11ACC A AC =, 所以1CC ⊥平面ABC . 又因为AB ⊂平面ABC , 所以1AB CC ⊥.(Ⅱ)由(Ⅰ)知,1CC AB ⊥,11AA CC ∥, 所以1AA AB ⊥.又4AB =,12AC AA ==,BC = 所以222AB AC BC +=. 所以AC AB ⊥.如图,以A 为原点,建立空间直角坐标系A xyz -.所以(0,0,0)A ,(4,0,0)B ,(0,0,2)C ,1(0,2,0)A . 则有(2,0,1)D ,1(0,2,2)C ,(4,1,0)E ,平面1ACC 的一个法向量为(1,0,0)u =. 设平面1AC D 的一个法向量为(,,)v x y z =, 又(2,0,1)AD =,1(0,2,2)AC =,由10,0.v AD v AC ⎧⋅=⎪⎨⋅=⎪⎩得20,220.x z y z +=⎧⎨+=⎩令1x =,则2z =-,2y =.所以(1,2,2)v =-. 设二面角1D AC C --的平面角为θ,则||11|cos |133||||u v u v θ⋅===⨯.由题知,二面角1D AC C --为锐角,所以其余弦值为13. (Ⅲ)平面1AC D 与平面1A EF 不平行.理由如下:由(Ⅱ)知,平面1AC D 的一个法向量为(1,2,2)v =-,1(4,1,0)A E =-, 所以120A E v ⋅=≠,所以1A E 与平面1AC D 不平行. 又因为1A E ⊂平面1A EF ,所以平面1AC D 与平面1A EF 不平行. 14分 (18)(本小题14分)(Ⅰ)由题意知,80位患者中有76位用该试剂盒检测一次,结果为阳性.所以从该地区患者中随机选取一位,用该试剂盒检测一次,结果为阳性的概率估计为76198020=. (Ⅱ)由题意可知~(,)X B n p ,其中3n =,1920p =. X 的所有可能的取值为0,1,2,3.03031911(0)20208000P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭, 121319157(1)20208000P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,21231911083(2)20208000P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭,3331916859(3)20208000P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. 所以X 的分布列为故X 的数学期望57()20E X np ==. (Ⅲ)此人患该疾病的概率未超过0.5.理由如下:由题意得,如果该地区所有人用该试剂盒检测一次,那么结果为阳性的人数为11999000100010020⨯+⨯9909501940=+=,其中患者人数为950.若某人检测结果为阳性,那么他患该疾病的概率为9509700.519401940<=. 所以此人患该疾病的概率未超过0.5. 14分 (19)(本小题14分)解:(Ⅰ)因为圆O 过点(1,2),所以圆O 的方程为:225x y +=.因为过点(0,)b 且斜率为1的直线方程为y x b =+, 又因为过点(1,2),所以1b =.因为直线与椭圆相交的另一个交点坐标为83,55⎛⎫-- ⎪⎝⎭,所以222835511a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=,解得24a =.所以椭圆C 的方程为2214x y +=.(Ⅱ)直线2l 与椭圆C 相切.理由如下:设圆O 上动点()00,P x y ()02x ≠±,所以22005x y +=.依题意,设直线()100:l y y k x x -=-.由()220044,x y y kx y kx ⎧+=⎪⎨=+-⎪⎩得()()()2220000148440k x k y kx x y kx ++-+--=. 因为直线1l 与椭圆C 相切, 所以()()()22200008414440k y kx ky kx ⎡⎤∆=--+--=⎡⎤⎣⎦⎣⎦. 所以()220014k y kx +=-.所以()()22200004210x k x y k y -++-=.因为22005x y +=,所以220041x y -=-. 所以()()22200001210y k x y k y -++-=. 设直线()2001:l y y x x k-=--, 由()220044,1,x y y y x x k ⎧+=⎪⎨-=--⎪⎩得2200002481440x x x y x y k k k k ⎛⎫⎛⎫⎛⎫+-+++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ()()222100001116421x x y y k k ⎡⎤⎛⎫⎛⎫∆=--+-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()()2220000216421x kx y y k k⎡⎤=--+-⎣⎦ ()()2220000216121y kx y y k k⎡⎤=--+-⎣⎦ ()()22200002161210y k kx y y k⎡⎤=--++-=⎣⎦. 所以直线2l 与椭圆C 相切. 14分 (20)(本小题15分)解:(Ⅰ)因为1()1xx f x ex +=-, 所以001(0)201f e +=-=-,22()(1)x f x e x '=+-,022(0)3(01)f e '=+=-. 所以曲线()y f x =在点(0,(0))f 处的切线的方程为320x y -+=. (Ⅱ)函数()f x 有且仅有两个零点.理由如下:()f x 的定义域为{|,1}x x x ∈≠R .因为22()0(1)xf x e x '=+>-, 所以()f x 在(,1)-∞和(1,)+∞上均单调递增.因为(0)20f =>,21(2)03f e --=-<, 所以()f x 在(,1)-∞上有唯一零点1x .因为2(2)30f e =->,545904f e ⎛⎫=-< ⎪⎝⎭,所以()f x 在(1,)+∞上有唯一零点2x . 综上,()f x 有且仅有两个零点.(Ⅲ)曲线xy e =在点()00,x x e处的切线方程为()000x x y ee x x -=-,即0000x x xy e x x e e =-+.设曲线ln y x =在点()33,x y 处的切线斜率为0x e ,则031x e x =,031e x x =,30y x =-,即切点为001,x x e ⎛⎫- ⎪⎝⎭. 所以曲线ln y x =在点001,x x e ⎛⎫-⎪⎝⎭处的切线方程为 y 0001xx y x e x e ⎛⎫+=-⎪⎝⎭,即001x y e x x =--.因为0x 是()f x 的一个零点,所以00011x x e x +=-. 所以()()0000000011111xx x x x e ee x x x x +-+=-=-=---. 所以这两条切线重合.所以结论成立. 15分 (21)(本小题14分)解:(Ⅰ)数列1A 不具有性质T ;数列2A 具有性质T .(Ⅱ)由题可知22a =,3224a a =,4328a a ,…,872128a a , 所以9n .若9n =,因为9200a =且982a a ,所以8128100a .同理,76450a ,63225a ,51612.5a ,48 6.25a ,34 3.125a . 因为数列各项均为正整数,所以34a =.所以数列前三项为1,2,4.因为数列A 具有性质T ,4a 只可能为4,5,6,8之一,而又因为48 6.25a , 所以4=8a .同理,有516a =,632a =,764a =,8128a =. 此时数列为1,2,4,8,16,32,64,128,200.但数列中不存在19i j <使得200i j a a =+,所以该数列不具有性质T . 所以10n .当10n =时,取A :1,2,4,8,16,32,36,64,100,200.(构造数列不唯一) 经验证,此数列具有性质T . 所以,n 的最小值为10.(Ⅲ)反证法:假设结论不成立,即对任意(1,2,,6)i S i =都有:若正整数,i a b S ∈,a b <,则i b a S -∉.否则,当a b a <-时,a ,b a -,b 是一个具有性质T 的数列; 当a b a >-时,b a -,a ,b 是一个具有性质T 的数列;当a b a =-时,a ,a ,b 是一个具有性质T 的数列.(ⅰ)由题意可知,这6个集合中至少有一个集合的元素个数不少于337个,不妨设此集合为1S ,从1S 中取出337个数,记为12337,,,a a a ,且12337a a a <<<.令集合3137|{1,2,,336}i N a a i S =-=⊆.由假设,对任意33711,2,,336,i i a a S =-∉,所以123456N S S S S S ⊆⋃⋃⋃⋃.(ⅱ)在2S ,3S ,4S ,5S ,6S 中至少有一个集合包含1N 中的至少68个元素,不妨设这个集合为2S ,从21S N ⋂中取出68个数,记为1268,,,b b b ,且8162b b b <<<.令集合{}268|1,2,,67i N b b i S =-=⊆.由假设682i b b S -∉. 对任意1,2,,68k =,存在{1,2,,336}k s ∈使得337k k s b a a =-.所以对任意1,2,,67i =,()()686868337337i i i s s s s b b a a a a a a -=---=-,由假设681i s s a a S -∉,所以681i b b S -∉,所以6812i b b S S -∉⋃, 所以23456N S S S S ⊆⋃⋃⋃.(ⅲ)在3S ,4S ,5S ,6S 中至少有一个集合包含N 中的至少17个元素,不妨设这个集合为3S ,从32S N ⋂中取出17个数,记为1217,,,c c c ,且1217c c c <<<.令集合{}317|1,2,,16i N c c i S =-=⊆.由假设173i c c S -∉. 对任意1,2,,17k =,存在{1,2,,67}k t ∈使得68k k t c b b =-.所以对任意1,2,,16i =,()()1717176868i i t t t t i c c b b b b b b -=---=-,同样,由假设可得1712i t t b b S S -∉⋃,所以17123i c c S S S -∉⋃⋃, 所以3456N S S S ⊆⋃⋃.(ⅳ)类似地,在4S ,5S ,6S 中至少有一个集合包含3N 中的至少6个元素,不妨设这个集合为4S ,从43S N ⋂中取出6个数,记为126,,,d d d ,且126d d d <<<,则{}4665|1,2,,5i N d d i S S =-=⊆⋃.(ⅰ)同样,在5S ,6S 中至少有一个集合包含4N 中的至少3个元素,不妨设这个集合为5S ,从54S N ⋂中取出3个数,记为123,,e e e ,且123e e e <<, 同理可得{}153326,N e e e e S =--⊆.(ⅰ)由假设可得()()2131326e e e e e e S -=---∉. 同上可知,2112345e e S S S S S -∉⋃⋃⋃⋃, 而又因为21e e S -∈,所以216e e S -∈,矛盾. 所以假设不成立.所以原命题得证. 14分。

2020年吉林省长春市朝阳区中考数学一模试卷(解析版)

2020年吉林省长春市朝阳区中考数学一模试卷(解析版)

2020年吉林省长春市朝阳区中考数学一模试卷一.选择题(共8小题)1.实数a、b、c、d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d2.12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()A.7.2×1010B.72×108C.72×109D.7.2×10113.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.4.下列计算正确的是()A.a•a2=a2B.a3÷a=a3C.(ab2)2=a2b4D.(a3)2=a55.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)6.如图,在相距am的东西两座炮台A、B处同时发现入侵敌舰C,在炮台A处测得敌舰C 在它的南偏东α度的方向,在炮台B测得敌舰在它的正南方,则敌舰C与炮台B之间的距离为()A.B.a sinαm C.D.a tanαm7.如图,在平面直角坐标系中,点A、B在函数y=(x>0)的图象上,分别过点A、B 作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,E是y轴上的点,连结AB、AD、AE、CE,若点A、B的横坐标分别为2、3,△ACE与△ABD的面积之和为2,则k 的值为()A.B.5C.6D.128.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()A.B.C.D.二.填空题(共6小题)9.计算:=.10.原价为x元的衬衫,若打六折销售,则现在的售价为元(用含x的代数式表示)11.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是度.12.如图,在平面直角坐标系中,直线y=﹣x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是(写一个即可).13.把边长为2的正方形纸片ABCD分割成如图的三块,其中点O为正方形的中心,E为AD的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是.14.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过h水位达到桥拱最高点O.三.解答题(共10小题)15.先化简,再求值:(2a﹣1)2+2a(3﹣2a),其中a=2020.16.甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出两个小球上的数字之和为4的倍数的概率.17.为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.18.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)19.2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析,下面给出了部分信息:a.关于“网络授课”问题发言次数的频数分布直方图如下:(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24)b.关于“网络授课”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“网络授课”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:问题平均数(单位:次)中位数(单位:次)众数(单位:次)网络授课12m10家庭教育11109根据以上信息,回答下列问题:(1)上表中m的值为.(2)在这次培训会中,参会教师更感兴趣的问题是(填“网络授课”或“家庭教育”),并说明理由.(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.20.图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在图①、图②、图③中,分别以AB 为边画一个面积为的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使∠BAC=45°.(2)在图②中画△ABD,使△ABD是轴对称图形.(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.21.如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x(min)之间的函数图象如图②所示.(1)长方体的高度为cm.(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围.(3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.22.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图③,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=,BC=4,∠C=45°,则EF的长为.23.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m 为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k ﹣n,求s与m之间的函数关系式,并写出m的取值范围.参考答案与试题解析一.选择题(共8小题)1.实数a、b、c、d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【分析】直接利用绝对值的性质结合各字母的位置进而得出答案.【解答】解:由数轴可得:|a|>3,|b|=1,|c|=0,1<|d|<2,故这四个数中,绝对值最大的是:a.故选:A.2.12月24日,第八次中日韩领导人会议在四川成都举行,数据表明2018年三国间贸易总额超过7200亿美元,请将数据7200亿用科学记数法表示为()A.7.2×1010B.72×108C.72×109D.7.2×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7200亿=7200 0000 0000=7.2×1011,故选:D.3.如图是由5个完全相同是正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边有一个小正方形,故选:B.4.下列计算正确的是()A.a•a2=a2B.a3÷a=a3C.(ab2)2=a2b4D.(a3)2=a5【分析】根据同底数幂的乘法运算法则和除法运算法则,积的乘方的性质、幂的乘方的性质进行计算即可.【解答】解:A、a•a2=a3,故原题计算错误;B、a3÷a=a2,故原题计算错误;C、(ab2)2=a2b4,故原题计算正确;D、(a3)2=a6,故原题计算错误;故选:C.5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9B.3(x﹣2)=2x+9C.D.3(x﹣2)=2(x+9)【分析】设车x辆,根据乘车人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设车x辆,根据题意得:3(x﹣2)=2x+9.故选:B.6.如图,在相距am的东西两座炮台A、B处同时发现入侵敌舰C,在炮台A处测得敌舰C 在它的南偏东α度的方向,在炮台B测得敌舰在它的正南方,则敌舰C与炮台B之间的距离为()A.B.a sinαm C.D.a tanαm【分析】根据炮台B在炮台A的正东方向,敌舰C在炮台B的正南方向,得出∠ABC=90°,再利用tan∠ACB=,求出BC的值即可.【解答】解:根据题意,得∠ACB=∠DAC=α,AB=am在Rt△ABC中,∵tan∠ACB=,∴tanα=,∴BC=,即敌舰C与炮台B之间的距离为m,故选:C.7.如图,在平面直角坐标系中,点A、B在函数y=(x>0)的图象上,分别过点A、B 作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,E是y轴上的点,连结AB、AD、AE、CE,若点A、B的横坐标分别为2、3,△ACE与△ABD的面积之和为2,则k 的值为()A.B.5C.6D.12【分析】根据题意由对应的反比例函数的解析式求出A、B、C、D点坐标,进而得AC、BD,再根据三角形的面积公式,由△ACE与△ABD的面积之和为2,列出k的方程,便可求得k的值.【解答】解:∵点A、B的横坐标分别为2、3,点A、B在函数y=(x>0)的图象上,∴A(2,),B(3,1),∵分别过点A、B作x轴的垂线交函数y=(x>0,k>0)的图象于点C、D,∴C(2,),D(3,),∴AC=,BD=,∵△ACE与△ABD的面积之和为2,∴,解得,k=6,故选:C.8.如图,在△ABC中,∠ACB=110°,∠A=25°,用直尺和圆规过点C作射线CD⊥AB,交边AB于点D,则下列作法中错误的是()A.B.C.D.【分析】依据基本作图,圆周角定理以及线段垂直平分线的判定方法,即可得出结论.【解答】解:A.由作图痕迹可得,属于过一点作已知直线的垂线,故CD⊥AB,作法正确;B.由作图痕迹可得,直径所对的圆周角等于90°,故CD⊥AB,作法正确;C.由作图痕迹可得,AB是线段的垂直平分线,故AB⊥CD,作法正确;D.由作图痕迹可得,CD与AB不一定垂直,故作法错误;故选:D.二.填空题(共6小题)9.计算:=3.【分析】直接化简二次根式进而利用二次根式的加减运算法则计算得出答案.【解答】解:+=+2=3.故答案为:3.10.原价为x元的衬衫,若打六折销售,则现在的售价为0.6x元(用含x的代数式表示)【分析】根据“原价×=现售价”列出代数式便可.【解答】解:由题意得,现在的售价为x•60%=0.6x元,故答案为0.6x.11.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是30度.【分析】直接利用平行线的性质得出∠EAB=∠EFC=80°,进而利用三角形的外角得出答案.【解答】解:如图所示:延长DC交AE于点F,∵AB∥CD,∠EAB=80°,∠ECD=110°,∴∠EAB=∠EFC=80°,∴∠E=110°﹣80°=30°.故答案为:30.12.如图,在平面直角坐标系中,直线y=﹣x+3分别交x轴、y轴于A、B两点,点P(m,1)在△AOB的内部(不包含边界),则m的值可能是1(答案不唯一)(写一个即可).【分析】直线y=﹣x+3,当y=1时,即1=﹣x+3,即x=4,故0<m<4,即可求解.【解答】解:直线y=﹣x+3,当y=1时,即1=﹣x+3,即x=4,故0<m<4,m可以在0到4任意取一个实数,故答案为:1(答案不唯一).13.把边长为2的正方形纸片ABCD分割成如图的三块,其中点O为正方形的中心,E为AD的中点,用这三块纸片拼成与该正方形不全等且面积相等的四边形MNPQ(要求这三块纸片不重叠无缝隙),若四边形MNPQ为矩形,则四边形MNPQ的周长是10.【分析】根据四边形MNPQ为矩形,点O为正方形的中心,E为AD的中点,可得OE =1,根据图形的剪拼即可求出矩形MNPQ的周长.【解答】解:如图所示:四边形MNPQ为矩形,∵点O为正方形的中心,E为AD的中点,∴OE=1,∴MB=OE=CN=1,且PN=AF=1,所以矩形MNPQ的周长是:2(MB+BC+CN+PN)=2(1+2+1+1)=10.故答案为:10.14.如图,有一座抛物线拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m达到警戒水位时,水面CD的宽是10米,建立如图所示的平面直角坐标系,O为坐标原点,如果水位以0.2m/h的速度匀速上涨,那么达到警戒水位后,再过5h水位达到桥拱最高点O.【分析】根据题目中所给的数据求出函数解析式,再求出时间t.【解答】解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,CD=10米,所以D点横坐标为5,设点B(10,n),点D(5,n+3),,解得:,∴抛物线解析式为y=﹣x2,当x=5时,y=﹣1,则t=1÷0.2=5,故答案为:5.三.解答题(共10小题)15.先化简,再求值:(2a﹣1)2+2a(3﹣2a),其中a=2020.【分析】直接利用完全平方公式以及单项式乘以多项式进而合并同类项,再把a的值代入求出答案.【解答】解:(2a﹣1)2+2a(3﹣2a)=4a2+1﹣4a+6a﹣4a2=2a+1,当a=2020时,原式=2×2020+1=4041.16.甲、乙两个不透明的袋子中分别装有三个标有数字的小球,小球除数字不同外,其余均相同,甲袋中三个小球上分别标有数字1、2、7,乙袋中三个小球上分别标有数字4、5、6,小明分别从甲、乙口袋中通随机摸出一个小球,用画树状图(或列表)的方法,求小明摸出两个小球上的数字之和为4的倍数的概率.【分析】画树状图得出所有9种等可能的结果数,然后根据概率公式求解.【解答】解:如图所示:,P(小明摸出的两个小球上的数字之和为4的倍数)=.17.为迎接五•一国际劳动节,某商店准备采购一批服装,经调查,用1000元采购A种服装的件数与用800元采购B种服装的件数相等,A种服装每件的进价比B种服装多10元,求B种服装每件的进价.【分析】直接根据题意表示出采购A、B种服装的件数,进而得出等式求出答案.【解答】解:设B种服装每件的进价为x元,由题意可得:=,解得:x=40,经检验得:x=40为原方程的解,且符合题意,答:B种服装每件的进价为40元.18.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.19.2020年2月21日,某市有600名教师参加了“网络”培训活动,会议就“网络授课”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析,下面给出了部分信息:a.关于“网络授课”问题发言次数的频数分布直方图如下:(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24)b.关于“网络授课”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 11 11 11 11c.“网络授课”和“家庭教育”这两问题发言次数的平均数、中位数、众数如下:问题平均数(单位:次)中位数(单位:次)众数(单位:次)网络授课12m10家庭教育11109根据以上信息,回答下列问题:(1)上表中m的值为11.(2)在这次培训会中,参会教师更感兴趣的问题是网络授课(填“网络授课”或“家庭教育”),并说明理由.(3)如果参加这次培训的600名教师都接受调查,估计在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.【分析】(1)根据直方图中的数据,可以得到m的值;(2)根据表格中的数据,可知教师更感兴趣的问题是网络授课,然后根据表格中的数据说明理由即可;(3)根据直方图中的数据,可以计算出在“网络授课”这个问题上发言次数不小于8次的参会教师的人数.【解答】解:(1)由直方图可知,网络授课的中位数落在8≤x<12这一组,m=(11+11)÷2=11,故答案为:11;(2)在这次培训会中,参会教师更感兴趣的问题是网络授课,理由:网络授课问题的发言次数的平均数、中位数都大于家庭教育问题发言次数的平均数、中位数,说明参会教师网络授课的发言次数高于家庭教育的发言次数,故在这次培训会中,参会教师更感兴趣的问题是网络授课;故答案为:网络授课;(3)600×=420(人),答:发言次数不小于8次的参会教师有420人.20.图①、图②、图③都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的端点都在格点上,在图①、图②、图③中,分别以AB 为边画一个面积为的三角形,在给定的网格中,只用无刻度的直尺,按下列要求画图,只保留作图痕迹,不要求写画法.(1)在图①中画△ABC,使∠BAC=45°.(2)在图②中画△ABD,使△ABD是轴对称图形.(3)在图③中画△ABE,使AB边上的高将△ABE分成面积比为1:2的两部分.【分析】(1)利用数形结合的思想画出三角形即可.(2)利用勾股定理结合数形结合的思想解决问题即可(答案不唯一).(3)取格点E,连接AE,BE即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABD即为所求(答案不唯一).(3)如图③中,△ABE即为所求(答案不唯一).21.如图①,一个底面是正方形的长方体铁块放置在高为50cm的圆柱形容器内,现以一定的速度往容器内注水,注满容器为止,容器顶部离水面的距离y(cm)与注水时间x(min)之间的函数图象如图②所示.(1)长方体的高度为20cm.(2)求该容器水面没过长方体后y与x之间的函数关系式,并写出自变量x的取值范围.(3)若该长方体的底面边长为15cm,直接写出该圆柱形容器的底面积.【分析】(1)直接利用一次函数图象结合水面高度的变化得出长方体的高;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x的取值范围;(3)利用一次函数图象结合水面高度的变化得出该圆柱形容器的底面积.【解答】解:(1)由题意可得:0至3min时,容器顶部离水面的距离变小得快,3分钟后容器顶部离水面的距离变小减慢,故长方体的高为50﹣30=20(cm);故答案为:20.(2)容器水面没过长方体后y与x之间的函数关系式为y=kx+b,由题意得,解得,∴该容器水面没过长方体后y与x之间的函数关系式为,当y=0时,,解答x=21,∴自变量x的取值范围为3≤x≤21.(3)设每分钟的注水量为mcm3.则下底面中未被长方体覆盖部分的面积是:m÷(cm2),圆柱体的底面积为:m÷(cm2),二者比为,∴长方体底面积:圆柱体底面积=3:4.∴该圆柱形容器的底面积为:(cm2),答:该圆柱形容器的底面积为300cm2.22.【教材呈现】如图是华师版八年级下册数学教材第117页的部分内容.结合图①,补全证明过程.【应用】如图②,直线EF分别交矩形ABCD的边AD、BC于点E、F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=3,BC=4,则四边形ABFE的周长为.【拓展】如图③,直线EF分别交▱ABCD的边AD、BC于点E、F,将▱ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为D′,若AB=,BC=4,∠C=45°,则EF的长为.【分析】【教材呈现】由“ASA”可证△AOE≌△COF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;【应用】过点F作FH⊥AD于H,由折叠的性质可得AF=CF,∠AFE=∠EFC,由勾股定理可求BF的长,EF的长,【拓展】过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,由等腰直角三角形的性质可求AN=BN=2,由勾股定理可求AE=AF=,再利用勾股定理可求EF的长.【解答】解:【教材呈现】∵四边形ABCD是矩形,∴AE∥CF,∴∠EAO=∠FCO,∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA)∴OE=OF,又∵AO=CO,∴四边形AFCE是平行四边形,∵EF⊥AC,∴平行四边形AFCE是菱形;【应用】如图,过点F作FH⊥AD于H,∵将矩形ABCD沿EF翻折,使点C的对称点与点A重合,∴AF=CF,∠AFE=∠EFC,∵AF2=BF2+AB2,∴(4﹣BF)2=BF2+9,∴BF=,∴AF=CF=,∵AD∥BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF=,∵∠B=∠BAD=∠AHF=90°,∴四边形ABFH是矩形,∴AB=FH=3,AH=BF=,∴EH=,∴EF===,∴四边形ABFE的周长=AB+BF+AE+EF=3+++=,故答案为:.【拓展】如图,过点A作AN⊥BC,交CB的延长线于N,过点F作FM⊥AD于M,∵四边形ABCD是平行四边形,∠C=45°,∴∠ABC=135°,∴∠ABN=45°,∵AN⊥BC,∴∠ABN=∠BAN=45°,∴AN=BN=AB=2,∵将▱ABCD沿EF翻折,使点C的对称点与点A重合,∴AF=CF,∠AFE=∠EFC,∵AD∥BC,∴∠AEF=∠EFC=∠AFE,∴AE=AF,∵AF2=AN2+NF2,∴AF2=4+(6﹣AF)2,∴AF=,∴AE=AF=,∵AN∥MF,AD∥BC,∴四边形ANFM是平行四边形,∵AN⊥BC,∴四边形ANFM是矩形,∴AN=MF=2,∴AM===,∴ME=AE﹣AM=,∴EF===,故答案为:.23.如图,在△ABC中,AB=BC=15,sin B=,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).(1)求点A到边BC的距离.(2)当点G在边AC上时,求t的值.(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S 与t之间的函数关系式.(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.【分析】(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,解直角三角形即可;(2)如图2,在Rt△BDP中,用含t的式子分别表示出BD、PD、DE、DG和CD,根据题意得关于t的方程,解得t即可;(3)分三种情况:①当0<t≤时,重叠部分为正方形DEFG,②当<t≤时,如图3,重叠部分为五边形DEFMN,③当<t≤3时,如图4,重叠部分为梯形DEMN,分别根据重叠部分的图形形状,计算出S与t之间的函数关系式即可;(4)分三种情况:①当DG的中点O在线段AC上时,如图5,此时DC=DO,②当EG的中点O在线段AC上时,如图6,此时NC=NO,③当DE的中点O在线段AC上时,如图7,此时NC=NO,分别列出关于t的方程得出t的值即可.【解答】解:(1)如图1,过点A作AH⊥BC于点H,在Rt△ABH中,∠AHB=90°,AB=15,∴sin B==,∴AH=AB=×15=12.(2)如图2,在Rt△BDP中,∠BPD=90°,BP=3t,∴sin B==,∴cos B==,∴BD=5t,PD=4t,∴DE=DG=2t,CD=15﹣5t.∴15﹣5t=2t,∴t=.(3)①当0<t≤时,重叠部分为正方形DEFG,∴S=(2t)2=4t2;②当<t≤时,如图3,重叠部分为五边形DEFMN,∴S=S正方形DEFG﹣S△MGN=4t2﹣[2t﹣(15﹣5t)]2=﹣45t2+210t﹣225;③当<t≤3时,如图4,重叠部分为梯形DEMN,∴S=×2t(15﹣4t+15﹣5t)=﹣9t2+30t.(4)①当DG的中点O在线段AC上时,如图5,∵AB=BC,∴∠A=∠C,∵DG∥AB,∴∠COD=∠A∴∠C=∠COD,∴DC=DO,∴15﹣5t=t,解得t=;②当EG的中点O在线段AC上时,如图6,此时NC=NO,∴15﹣×5t=t+t,解得t=;③当DE的中点O在线段AC上时,如图7,此时NC=NO,∴15﹣×5t=t,解得t=.24.定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)、Q(x,y0),m 为任意实数,若,则称点Q是点P的变换点,例如:若点P(m,y)在直线y=x上,则点P的变换点Q在函数的图象上,设点P(m,y)在函数y=x2﹣2x的图象上,点P的变换点Q所在的图象记为G.(1)直接写出图象G对应的函数关系式.(2)当m=3,且﹣2≤x≤3时,求图象G的最高点与最低点的坐标.(3)设点A、B的坐标分别为(m﹣1,﹣2)、(2m+2,﹣2),连结AB,若图象G与线段AB有交点,直接写出m的取值范围.(4)若图象G上的点Q的纵坐标y0的取值范围是y0≥k或y0≤n,其中k>n,令s=k ﹣n,求s与m之间的函数关系式,并写出m的取值范围.【分析】(1)根据变换点的定义即可求解;(2)根据配方法和二次函数的增减性即可求解;(3)由﹣x2+x+1=﹣2求出x的值,再根据点P的变换点Q在函数的图象上求解即可;(4)分当m>1、m≤1两种情况求解即可.【解答】解:(1)图象G对应的函数关系式y=;(2)当m=3时,图象G对应的函数关系式y=,当x=3时,y=9﹣6﹣1=2.当﹣2≤x≤3时,y=﹣x2+x+1=﹣(x﹣1)2+,当x=1时,y取得最大值为;当x=﹣2时,y取得最小值为﹣3.故图象G的最高点的坐标为(3,2),最低点的坐标为(﹣2,﹣3).(3)当y=﹣2时,﹣x2+x+1=﹣2,解得x1=1﹣,x2=1+,∵点P的变换点Q在函数的图象上,∴m的取值范围为1﹣<m≤2﹣或﹣≤m≤1或1+≤m≤2+;(4)当m>1时,x=m左侧的最高点的坐标为(1,),x=m右侧的最低点的坐标为(m,m2﹣2m﹣1),∵点Q的纵坐标y0的取值范围是y0≥k或y0≤n,∴y0≥m2﹣2m﹣1或y0≤,∴k=m2﹣2m﹣1,n=,当k=时,m2﹣2m﹣1=,解得m1=1+,m2=1﹣(舍去),∵k>n,∴当m>1+时,s=m2﹣2m﹣1﹣=m2﹣2m﹣;当m≤1时,x=m左侧图象无最高点,x=m右侧的最低点的坐标为(1,﹣2),没有符合点Q的纵坐标y0的取值范围是y0≥k或y0≤n.综上所述,求s与m之间的函数关系式为s=m2﹣2m﹣(m>1+).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区2020学年九年级第一学期期末统一考试考生须知1、本试卷共8页,共四道大题,35道小题。

满分80分,考试时间100分钟。

2、在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3、试卷答案一律填涂或书写在答题卡上,在试卷上作答无效。

4、考试结束,请将试卷和答题卡一并交回。

一、选择题(每小题只有一个选项符合题意。

每小题1分,共25分。

)1.下列生活中常见的一些变化,其中属于化学变化的是A.夏天雪糕慢慢融化B.潮湿的衣服在空气中变干C.洗净的铁锅出现锈迹D.夏天从冰箱取出的瓶子外壁附着一层水珠2、下列能源不应大力开发的是A.太阳能B.风能发电C.水能发电D.火力发电3. 决定元素化学性质的是原子的A. 最外层电子数B. 中子数C. 相对原子质量D. 质子数4.下列物质中,属于氧化物的是A.石灰水B.空气C.生铁D.干冰5.下列符号中,表示2个氢原子的是A.H2B.2H C.2H +D.2H26、我国的“神州”号载人飞船发射成功,使飞天的梦想成为现实,火箭发动机里使用液态氧的作用是A、作燃料B、供给宇航员呼吸C、保护发动机D、用作火箭的助燃剂7.下列事实不能..用分子观点解释的是A.柳絮纷飞B.给轮胎打气时气体被压缩C.花香四溢D.1滴水中大约有1.67×1021个水分子8、下图所示的化学实验基本操作中,正确的是A.倾倒液体B.称量固体C.检查气密性D.加热液体9.下列物质的用途主要不是由化学性质决定的是A.氮气用作保护气B.水可用于灭火C.天然气作清洁燃料D.氧气用于炼钢10. 下列物质中,属于单质的是A. 干冰B. 液态氧C、煤D、水11、下列物质的化学式书写不正确的是A、氧化镁MgO2B.氧化钠Na2OC、硫酸锌ZnSO4 D.氢氧化铜Cu(OH)212. 对有关实验现象的描述正确的是A. 碳在氧气中燃烧放出白烟B. 干冰在空气中升华周围出现白雾C. 铁丝在氧气中燃烧生成四氧化三铁D. 硫在氧气中燃烧发出淡蓝色的火焰13.实验室制取氧气的主要步骤有:①固定装置②装入药品③加热④检查装置的气密性⑤用排水法收集。

其操作顺序正确的是A.①②③④⑤B.②③①④⑤C.④②①③⑤D.④①②⑤③14.加油站必须粘贴的标志是15.有关铝、铁、铜的说法中不正确的是A.铜可以用来做电线B.铝可以与硫酸铜溶液反应C.三种金属中最活泼的是铁D.铝是地壳中含量最多的金属元素16、下列对一些事实的解释中,不合理的是17.下列有关仪器用途的说法不恰当的是A.温度计代替玻璃棒用于搅拌B.试管用于装配简易气体发生器C、烧杯用于较多量试剂的反应容器D.胶头滴管用于吸取或滴加少量液体18.如右图所示,过氧化氢(H2O2)在催化剂二氧化锰的作用下,迅速分解放出大量的氧气,下列现象正确的是A. 气球胀大,红墨水左移B. 气球缩小,红墨水右移C. 气球胀大,红墨水右移D. 气球缩小,红墨水左移选项事实解释A 食盐是咸的,白糖是甜的不同种物质的性质不同BCO2和N2都能使燃着的木条熄灭一般都不支持燃烧C 将墨汁滴入一杯清水中,清水很快变黑分子在不断运动D 25m3的氧气可以装入0.024m3的钢瓶中氧分子的体积变小19、下列物质鉴别的实验方法错误的是鉴别物质实验方法A. 过氧化氢和蒸馏水分别加入MnO2,看是否有气泡B. 镁和锌分别加入稀盐酸,看是否有气泡C、二氧化碳、氧气和空气将燃着的木条分别伸入瓶中,观察现象D. 活性炭和氧化铜分别投入盛有红棕色二氧化氮气体的集气瓶中,观察现象20、某同学利用右图装置测定空气中氧气的含量,红磷燃烧后恢复到室温,打开弹簧夹发现进入的液体量小于广口瓶内气体体积的1/5。

造成这一现象的原因可能是A.实验前没有夹弹簧夹B. 实验中所取的红磷不足C.实验中所取的红磷过量D. 实验装置可能未冷却就打开弹簧夹21.以下对O2、CO2、SO2、MnO2四种物质组成的说法中,正确的是A. 都含有氧分子B、都是氧化物C. 都含有氧元素D、都含有2个氧原子22. 如下图,这四位同学描述的可能同是下面的哪一个化学符号23.用“ ”和“ ”代表两种不同的单质分子,它们在一定条件下能发生化学反应,反应前后的微观示意图如下所示,下列说法正确的是A.该反应是化合反应B.该反应有2种生成物C.每个生成物分子由3个原子构成D.参加反应的“ 和“ ”分子的个数比是2︰124、通过化学式“CO2”可获得的正确信息是①表示二氧化碳这种物质②表示1个二氧化碳分子③二氧化碳属于氧化物④二氧化碳相对分子质量为44g ⑤碳元素的化合价为+2价⑥二氧化碳由碳元素和氧元素组成⑦二氧化碳中碳、氧元素的质量比为3∶8 ⑧1个二氧化碳分子由1个碳原子和1个氧分子构成A.①②③④⑥⑦B.①③⑤⑥⑦C.①②③⑥⑦D.①②④⑥⑦⑧A、HClOB、O3C、H2OD、MgO+反应前反应后25.下图所示的四个图像,能正确反映对应变化关系的是A .水的电解B .木炭在密闭的容器内燃烧C .加热一定量的高锰酸钾制氧气D .等质量的锌、铁与足量的稀硫酸反应二、填空题(共5各小题,共30分)26. (6分)通过化学学习我们认识了许多的物质,请回答以下问题(1)氮气约占空气体积的 ;供给呼吸的气体是 。

(2)煤、石油和 是重要的化石燃料,大量使用化石燃料会使二氧化碳过多的排放,导致全球变暖。

科学家采用高新技术,将二氧化碳和氢气在一定条件下组合,生成一种重要的化工原料乙烯(C 2H 4)和水,该反应的化学方程式为 。

(3)下列日常生活中的做法,符合“低碳生活”理念的是 (填字母,下同)。

A .节约使用纸张B .分类回收处理垃圾C .减少使用塑料袋D .减少使用一次性纸杯(4)上海世博会在环保节能方面有一些新技术、新能源和新材料。

下列表述不属于上述情况的是 。

A .太阳能的利用B .地源热泵节能技术的使用C .世博会开幕倒计时D .园区内交通工具实现零排放E 、优化建筑设计,增强室内自然采光,减少照明用电 27.(7分)水是宝贵的自然资源,是人类生命之源。

(1)下列各种水中,属于纯净物的是 (填字母)。

A.汽水 B. 矿泉水 C.蒸馏水 D. 经过净化处理的自来水(2)蒸馏水、矿泉水、白醋、酒精都是常见的无色液体,其中白醋具有酸味,酒精具有特殊气味的是酒精,常被称为绿色能源,请写出酒精燃烧的化学方程式 ;另外两种无色液体可用多种方法区分,例如:加入 ,根据产生泡沫的多少来区分。

(3)小刚为了净化收集到的雨水,自制了一个如右图所示的简易净水器,其中小卵石、石英沙和膨松棉的作用是 。

(4)ClO 2是新一代饮用水的消毒剂,可以用来代替Cl 2进行自来水的消毒。

制取ClO 2的反应过程示意图如下,请回答:表示钠原子,C 物质中氯元素的化合价是 ,D 物质的名称是 ,该反应的化学方程式是 。

1 2 g g g 0 0 二氧化碳质量0 氧气质量 B C 0 生成气体质量t H 2 O 2 A 氢气质量/g时间/(s)Zn YFe + + ABCD28(6分).请根据要求填空:(1)一氧化碳和二氧化碳只有一字之差。

①二者就像孪生兄弟,这是因为 (填字母), A .它们都有毒 B .它们由同种分子构成 C .它们都能溶于水 D .它们由同种元素组成 ②二者化学性质相差甚远,请举一例说明: 。

③在密闭容器中,将少量乙醇置于一定量氧气中燃烧,生成二氧化碳、水蒸气和一种未知根据质量守恒定律,得出表中x 的值为 ;(2)下面是钠元素和氯元素在元素周期表中的信息和3种粒子的结构示意图。

请回答下列问题:钠原子的相对原子质量是 ;钠元素与氯元素最本质的区别是 。

Na +的结构示意图是 (填字母)。

29、(6分)早在春秋战国时期,我国就开始生产和使用铁器。

(1)写出用CO 和赤铁矿(主要成分Fe 2O 3)为原料炼铁的化学方程式,盛水的铁锅与水面接触的一圈最易生锈。

钢铁生锈的条件是 ,利用新技术能将不锈钢加工成柔软的金属丝,这是利用了不锈钢的 (填字母)。

A .耐腐蚀性 B .延展性 C .导热性 D .导电性(2)设计从废水中回收硫酸亚铁固体和铜的实验方案如下:金属X 是 ,写出上述实验方案中有关反应的化学方程式① ② 。

30.(5分) 下列用字母表示的10种物质是由H 、C 、O 、Ca 、Cl 、Fe 中的几种元素组成,它们是初中化学常见的物质。

题中“→”表示物质间存在转化关系,部分反应物、生成物及反应条件已略去。

已知圈Ⅰ中的转化均是分解反应,圈Ⅱ中的转化均是化合反应。

物质 乙醇 氧气 二氧化碳 水蒸气W 反应前质量/g48 80 0 0 0 反应后质量/g2 0 44 54 x 加入适量的溶液Y 过滤、洗涤②加入过量 的金属X 过滤①含FeSO 4和 CuSO 4的废水滤液铜 不纯 的铜滤液蒸干硫酸亚 铁固体11 Na 钠 22.99 17 Cl 氯 35.45(1)Y是大理石的主要成分,则Y的化学式为。

(2)N和F是常见的非金属单质。

化合物A和B的元素种类相同,化合物D和E的元素种类也相同,请写出A →B反应的化学方程式,E+N反应的化学方程式。

(3)从上述物质中任选物质,按下图所示装置进行实验。

当胶头滴管中的液体滴入瓶中,U型管中的液面发生了明显变化,请分别写出符合下列实验现象的物质的化学式。

三、实验题(共3个小题,共19分)31、(8分)请根据以下实验装置,回答问题:(1)写出图中标号仪器的名称:①,②。

(2)写出实验室用A装置制取氧气的化学方程式,收集氧气可选用C装置或装置,若选用C装置收集较纯净氧气的适宜时间是(填字母)A.当导管口刚有气泡冒出时B.当导管口停止冒出气泡时C.当导管口有连续均匀气泡冒出时(3)下列是有关二氧化碳制取的相关问题:①鸡蛋壳的主要成分是碳酸钙,用鸡蛋壳与稀盐酸反应制取和收集二氧化碳气体,其反应的化学方程式是。

②如果用右图装置制取二氧化碳气体,反应进行一段时间后,将燃着的木条放在集气瓶口,火焰不熄灭的可能原因是:③实验操作中将鸡蛋壳捣碎的目的是现象序号a处水液降低b处液面降低①②①②A B C D E稀盐酸鸡蛋壳32.(7分) 科技节活动中,化学实验小组做了如下实验,请回答以下问题。

(1)图A所示实验可观察到“铁树”上浸有无色酚酞试液的棉团由白色变为色,该实验中没有涉及的性质是(填字母)。

A.氨分子是不断运动的B.氨分子有一定质量C.浓氨水具有挥发性(2)图B所示实验,将注射器中浓石灰水注入瓶中,会看到鸡蛋被“吞”入瓶中,该实验中涉及的化学方程式为。

(3)图C所示实验,当通过导管向热水中通入氧气时,白磷在水下燃烧,该实验说明燃烧需要的条件为:①可燃物;②达到燃烧所需要的;③,反应的化学方程式为。

相关文档
最新文档