大棚温室自动控制系统毕业设计(精)

合集下载

大棚温湿度自动控制系统设计 毕业设计

大棚温湿度自动控制系统设计 毕业设计

大棚温湿度自动控制系统设计摘要:本设计是基于STC89C52RC单片机的大棚温湿度自动控制系统,采用SHT10作为温湿度传感器,LCD1602液晶屏进行显示。

SHT10使用类似于I2C总线的时序与单片机进行通信,由于它高度集成,已经包括A/D转换电路,所以使用方便,而且准确、耐用。

LCD1602能够分两行显示数据,第一行显示温度,第二行显示湿度。

这个控制系统能够测量温室大棚中的温度和湿度,将其显示在液晶屏LCD1602上,同时将其与设定值进行对比,如果超出上下限,将进行报警并启动温湿度调节设备。

此外,还可以通过独立式键盘对设定的温湿度进行修改。

通过设计系统原理图、用Proteus软件进行仿真,证明了该系统的可行性。

关键词:STC89C52RC,SHT10,I2C总线,独立式键盘,温湿度自动控制Abstract:This design is an automatic temperature and humidity controller for greenhouses,with the STC89C52RC MCU being its main controller. It uses the SHT10 as the temperature and humidity sensor,and the LCD1602 to display the messages。

The SHT10 uses a timing sequence much like the I2C to communicate with the micro—controller. Because it's a highly integrated chip, it already includes an analog to digital converter。

Therefore, it’s quite convenient to use, and also accurate and durable. The LCD1602 can display two lines of messages,with the first line for temperature and the second line for humidity。

温室大棚自动控制系统

温室大棚自动控制系统

2013届本科毕业论文(设计)基于飞思卡尔和51单片机的温室大棚自动控制系统学院:物理与电子工程学院专业班级:电子信息08-11班学生姓名:塔依尔·阿吉****:***答辩日期:2013年5月11日新疆师范大学教务处目录1 引言 (1)2 设计方案 (1)3 硬件设计方案 (1)4 采集端总体设计 (2)4.1 STC89C52特性 (2)4.2 DS18B20的特性 (3)4.3 RS232通信电路 (6)4.4 电源电路 (6)4.5 MAX485通信电路 (7)4.6 土壤湿度采集电路 (7)4.7 震荡电路 (7)4.8 复位电路 (8)4.9 总体电路的设计 (9)4.9.1 采集端原理图 (9)4.9.2 采集端的PCB图 (10)5 控制端的总体的设计 (11)5.1 MS8C12XS的工作原理 (11)5.2 12864的工作原理 (12)5. 3 ULN2803的工作原理 (13)5. 4 NRF24L01 (13)5.5控制端 (15)6 系统软件设计 (17)6.1 采集端软件设计 (17)6.1.1 程序流程图 (17)6.1.2 主要程序 (17)6.2控制端软件设计 (20)6.2.1 程序流程图 (20)6.2.2主要程序 (20)6.3 无线传输端软件设计 (28)6.4 上位机程序设计 (35)7 总结 (42)参考文献 (43)致谢 (44)基于飞思卡尔和51单片机的温室大棚自动控制系统摘要:目前传感器技术飞速发展,广泛应用于各种行业当中,为推动整个社会的发展作出了巨大的贡献。

本设计便利用温度传感器,土壤湿度传感器,光照度传感器来实现温室大棚里对多个点采集温度,湿度和光照度,存储,处理实现自动控制,远程控制来实现人工控制的方案。

本设计主要由一台电脑,两个飞思卡尔(MC9S12XS)单片机、多个STC89C52单片机、温度传感器、湿度和光照度传感器以及无线通信模块组成。

大棚仓库温湿度自动控制系统的毕业设计

大棚仓库温湿度自动控制系统的毕业设计

系统的应用场景和意义
应用场景:大棚仓库温湿度自动控制系统适用于农业大棚、食品仓库、 药品存储等需要精确控制温湿度的场所。
意义:该系统能够提高存储物品的品质和延长保质期,降低因温湿度失 控而产生的损失,提高生产效益和安全性。
系统的基本组成和原理
温湿度传感器: 实时监测大棚 仓库内的温湿
度数据
控制器:根据 传感器数据自 动调节温湿度
大棚仓库温湿度自动控 制系统的毕业设计
汇报人:
目录
添加目录标题
01
大棚仓库温湿度自动控制 系统的概述
02
大棚仓库温湿度自动控制 系统的硬件设计
03
大棚仓库温湿度自动控制 系统的软件设计
04
大棚仓库温湿度自动控制 系统的测试与验证
05
大棚仓库温湿度自动控制 系统的应用前景与展望
06
添加章节标题
大棚仓库温湿度 自动控制系面布局:简洁明了,操作方便 温湿度显示:实时更新,准确显示 控制功能:一键操作,快速响应 报警功能:及时提醒,保障安全
大棚仓库温湿度 自动控制系统的 测试与验证
测试环境的搭建
测试场地:选择一个适合大棚仓库 温湿度自动控制系统的场地进行测 试
测试网络:确保测试场地内的网络 连接稳定,以便实时传输数据
系统的定义和功能
系统的定义:大棚仓库 温湿度自动控制系统是 一种通过自动化技术对 大棚仓库内的温湿度进 行监测、调节和控制的 系统。
系统的功能:大棚仓库温 湿度自动控制系统具有实 时监测、数据记录、异常 报警、自动调节等功能, 能够有效地保证大棚仓库 内的温湿度环境,提高农 作物的生长质量和产量。
性能优化建议: 根据测试结果, 提出针对性的优 化建议,提高系 统的性能表现

基于PLC的大棚温度自动控制系统设计

基于PLC的大棚温度自动控制系统设计

清华大学毕业设计(论文)题目基于PLC的大棚温度自动控制系统设计系(院)自动化系专业电气工程与自动化班级2009级3班学生姓名学号2009022321指导教师职称副教授二〇一三年六月二十日基于PLC的大棚温度自动控制系统设计摘要大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。

该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。

这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。

关键词:大棚,温度控制,PLCThe Automatic Greenhouse Temperature ControlSystem Based on PLCAbstractThe system is a way to providing the best conditions to plants and promoting them growth very well ,avoiding the bad weather and effect of seasons outside the shed .This system uses FX2N series PLC as the next machine and PC as upper machine, using the Mitsubishi D-720 general frequency Manager. The sensor of temperature, humidity and light collecting scene signal, these simulation volumes are turned into digital signal by PLC, then compared with the setting value. At last, the PLC disposes of them, then contorts with wind machine, covering Yin curtain. According to the actual measured value of each sensor and the value determined in advance about greenhouse environmental factors. This system can suitable for the automation and mass production, the laboring productivity has been increasing by a wide margin through changing the target value of greenhouse environment, and we can control the greenhouse temperature automatically.Key words: greenhouse, temperature control, PLC目录第一章绪论 (1)1.1 大棚温度控制系统发展背景及现状 (1)1.2 大棚温度控制系统研究目的及意义 (2)第二章系统概述 (3)2.1 系统设计任务 (3)2.2 系统技术介绍 (3)2.2.1 传感技术 (3)2.2.2 PLC (4)2.2.3 上位机 (5)2.3 系统工作原理 (5)2.4小结 (7)第三章硬件部分设计 (8)3.1 环境调控系统 (8)3.2 传感器的选择 (10)3.3 系统硬件接线图 (12)3.3.1 系统主电路设计 (12)3.3.2 系统其他部分电路设计 (14)3.3.3 PLC部分电路设计 (15)3.4小结 (16)第四章软件设计 (17)4.1 PLC的I/O分布图 (17)4.2 系统程序 (18)4.2.1 系统温度PID调节程序 (18)4.2.2 系统主程序 (18)4.3 小结 (19)第五章结论 (20)参考文献 (21)谢辞 (22)第一章绪论1.1 大棚温度控制系统发展背景及现状如今塑料大棚、日光温室逐渐成为我国设施结构的主要结构类型。

毕业设计(论文)-基于物联网技术的温室大棚控制系统设计[管理资料]

毕业设计(论文)-基于物联网技术的温室大棚控制系统设计[管理资料]

基于物联网技术的温室大棚控制系统设计(德州学院物理系,山东德州253023)摘要基于物联网技术的温室大棚控制系统以AT89S52单片机为核心,采用加热炉和风机、喷灌和渗灌、荧光灯,分别为温室大棚进行加热、增加二氧化碳浓度、增加空气湿度、灌溉、人工补光;使用SHT10数字式温湿度传感器、FDS-100型土壤水分传感器、SH-300-DH 二氧化碳传感器和TSL2561光强传感器,将采集的大棚内的数据信息在液晶1602上显示出来,并通过无线通信模块nRF905将信号传到从机。

主机完成各项数值预制和报警电路模块功能,从机完成采集数值的显示及加热炉和风机、喷灌和渗灌和荧光灯的控制功能。

本文设计的温室大棚控制系统,能够实时采集控制温室内的空气温湿度、土壤湿度、光照强度、二氧化碳浓度等环境参数,以直观的数据显示给用户,并可以根据种植作物的需求提供报警信息。

关键词AT89S52;传感器;nRF9051 绪论随着通信技术的飞速发展,人们已经不再满足于人一与人之间的通信方式以及需要人参与交互的通信方式,一种更加智能、更加便捷的通信方式为人们所期待。

物联网---一种物体、机器间不需要人的参与即可完成信息交互的通信方式(Internet of things)便应运而生[1]。

简单的说,物联网是物物相连的网络,在整个信息采集、传递、计算的过程中无需人的参与交互。

物联网是基于传感器技术的新型网络技术,在现代农业中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集与作物生产有关的各种生产信息和环境参数,可以帮助农民及时发现问题,准确地捕捉发生问题的位置,对耕作、播种、施肥、灌溉等田间作业进行数字化控制,使农业投入品的资源利用精准化、效率最大化[2]。

无线传感网络由部署在监测区域内大量的微型传感器节点通过无线通信形成的一个多跳自组织的网络,其主要目的是采集与处理该网络覆盖范围内监测参数的信息[3]。

无线传感网络在农业中的一个重要应用是在温室等农业设施中,采用不同的传感器和执行机构对土壤水分,空气温湿度和光照强度,二氧化碳浓度等影响作物生长的环境信息进行实时监测,系统根据监测到的数据将室内水、肥、气、光、热等植物生长所必需的条件控制到最佳状态,保证作物的增产增收。

毕业设计之基于单片机的温室大棚自动控制系统

毕业设计之基于单片机的温室大棚自动控制系统

毕业设计之基于单片机的温室大棚自动控制系统温室大棚自动控制系统是一种基于单片机的智能控制设备,旨在通过自动监测和调节环境参数,实现温室大棚内植物生长的最佳条件和增加农作物产量。

本文将探讨温室大棚自动控制系统的设计原理、功能以及其在农业生产中的应用价值。

温室大棚是一种有利于农作物种植的环境,通过温室大棚能够调节大气温度、湿度、二氧化碳浓度等因素,提供良好的种植环境。

然而,由于温室大棚环境参数无法自动调节,需要人工干预,导致工作量大、效率低下。

温室大棚自动控制系统的出现,能够解决这一问题。

温室大棚自动控制系统主要由传感器、执行器和控制器组成。

传感器负责监测环境参数,如温度、湿度、二氧化碳浓度等;执行器通过控制器的信号进行动作,如控制加热、通风、灌溉系统等;控制器则负责采集传感器数据,根据预设的控制策略进行决策,发送控制信号给执行器。

温室大棚自动控制系统具有以下功能:首先,能够实时监测温室大棚的环境参数,获取相关数据,并显示在控制面板上,方便人员了解温室大棚的状态。

其次,能够根据预设的设定值,自动调节温室大棚的温度、湿度、二氧化碳浓度等参数,实现温室大棚环境的精确控制。

最后,能够实现温室大棚内的报警功能,在异常情况下发出警报,并通过手机短信等方式通知操作人员。

温室大棚自动控制系统在农业生产中具有广泛的应用价值。

首先,它能够提高农作物的产量和质量,通过智能控制温室大棚的温度、湿度等参数,为农作物提供最适宜的生长环境。

其次,它能够节约人力资源,自动监测和调节温室大棚的环境参数,减少了人工干预的工作量。

最后,它能够降低能源消耗,通过智能控制加热、通风等设备的使用,实现能源的最优利用。

总之,基于单片机的温室大棚自动控制系统是一种高效、智能的农业生产设备。

通过自动监测和调节环境参数,实现温室大棚内植物生长的最佳条件和增加农作物产量。

它在农业生产中具有广泛的应用价值,可以提高农作物产量和质量,节约人力资源,降低能源消耗。

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现

温室大棚自动化控制系统设计与实现一、引言随着科技的不断进步和农业发展的需求,现代农业越来越多地依赖于自动化技术。

温室大棚自动化控制系统作为农业自动化的重要组成部分,可以提高种植效率,降低劳动成本,改善环境条件,保障农作物的生长。

本文将介绍温室大棚自动化控制系统的设计与实现。

二、温室大棚自动化控制系统的概念与原理温室大棚自动化控制系统是指利用传感器、执行器、控制器等设备,根据农作物的生长环境需求,自动调控温度、湿度、光照、通风等参数,实现对农作物生长环境的精确控制。

其原理是通过传感器对环境参数进行监测,然后通过控制器对执行器进行指令控制,从而实现对温室大棚环境的自动调节。

三、温室大棚自动化控制系统的硬件设计1. 传感器选择与布置:温度、湿度、光照等环境参数是温室大棚生长的关键因素,因此需要选择相应的传感器对这些参数进行准确检测。

同时,要合理布置传感器位置,尽量避免测量误差和干扰。

2. 执行器选择与布置:根据温室大棚的要求,选择合适的执行器进行控制操作。

比如温度控制可以通过风机、加热器等设备来实现,湿度控制可以通过雾化器,通风控制可以通过开关门等方式实现。

3. 控制器选择:温室大棚自动化控制系统中,控制器起到控制传感器和执行器的作用。

可以选择单片机、PLC等控制器,根据实际需求进行配置和编程。

四、温室大棚自动化控制系统的软件设计1. 数据采集与处理:根据传感器采集到的环境参数数据,进行处理和分析,得出决策结果。

可以使用数据采集协议,如MODBUS等。

2. 控制策略设计:根据农作物的需求和环境参数,设计合理的控制策略。

比如温度过高,可以通过控制风机加大通风量以降低温度;湿度过低,可以通过控制雾化器增加湿度等。

3. 用户界面设计:为了方便用户对温室大棚自动化控制系统进行操作和监控,需要设计一个友好的用户界面。

可以通过触摸屏、远程监控等方式实现。

五、温室大棚自动化控制系统的实现与应用1. 系统搭建与调试:按照设计需求和硬件配置,搭建温室大棚自动化控制系统,并进行连通性测试和功能调试。

温室大棚温湿度测控系统设计毕业设计论文

温室大棚温湿度测控系统设计毕业设计论文

温室大棚温湿度测控系统设计[摘要]随着计算机应用技术的发展,用计算机控制的方面也涉及到各个领域,其中在塑料大棚内用单片机控制温度、湿度是应用于实践的主要方面之一。

这对于农作物的生长发育有非常大的促进作用,它可以避免因为外面气候的剧烈变化对农作物造成的伤害,而使农作物能够在一个最适合它的温度、湿度的环境中生长发育,从而可以促进作物健康生长,抑制微生物的危害,提高产量,增加经济效益。

本设计由AT89S52单片机,温度检测电路,湿度检测电路,控制系统,报警电路,采用LCD12864作为显示电路组成;温度检测和湿度检测采用DHT90温湿度传感器采集信息,将其采集到的数字信号传入AT89S52单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作,实现了对大棚里植物生长温度及土壤和空气湿度的检测、监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。

该设计还具有对温度和湿度的显示功能,对大棚内环境温度和湿度的预设功能。

[关键词]温度检测、湿度检测、控制系统、报警系统Design in Greenhouse Temperature and HumidityMonitoring SystemXXTutor: xxxAbstract: With the development of computer application technology, the computer-controlled areas are also involved, including the plastic canopy temperature using SCM and humidity is one of the main aspects used in practice. This crop growth and development of a very large role in promoting, it could avoid severe climate change outside the damage to crops, Er Shi crops it can be one of the most suitable temperature and humidity of the environment, growth and development, which can promote healthy crop growth, inhibition of microbial hazards, increase productivity, increase economic benefits. The design by the AT89S52 microcontroller, temperature detection circuit, humidity detection circuit, control system, alarm circuit, as shown by LCD12864 circuit; temperature measurement and humidity detected by DHT90 temperature and humidity sensors to collect information, its collection to the digital signal incoming A T89S52 SCM, SCM by comparing the input temperature and set temperature to control fan or electric drive circuit, when the studio, the set temperature range, the microcontroller does not send fan or electric action, realized in the canopy and the plant growth and soil and air temperature humidity detection, monitoring, and can exceed the normal temperature and humidity range of state of real-time processing, so a good greenhouse environment control.The design also features display of temperature and humidity, ambient temperature and humidity of the shed by default.Key words: temperature testing, humidity testing, control system, alarm system.毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得或其他教育机构的学位或证书使用过的材料。

温室大棚控制系统设计

温室大棚控制系统设计

本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。

该系统运行可靠,成本低。

系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。

促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。

关键词: STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测第1章绪论§1.1选题背景§1.2选题的现实意义第2章系统硬件电路的设计§2.1系统硬件电路构成系统整体框图§2.1.2系统整体电路图§2.1.3系统工作原理§2.2温度传感器的选择§2.2.1 DS18B20简介§2.2.2 DS18B20的性能特点§2.2.3 DS18B20的管脚排列§2.2.4 DS18B20的内部结构§2.2.5 DS18B20的控制方法§2.2.6 DS18B20的测温原理§2.2.7 DS18B20的时序§2.2.8 DS18B20使用中的注意事项§2.3单片机的选择§2.3.1单片机概述§2.3.2 AT89C2051芯片的主要性能§2.3.3 AT89C2051芯片的内部结构框图§2.3.4 AT89C2051芯片的引脚说明§2.3.5使用AT89C2051芯片编程时的注意事项§2.4 RS-485通信设计§2.4.1串行通信的分类§2.4.2串行通信的制式§2.4.3串行通信的总线接口标准§2.4.4 RS-485的硬件设计§2.5小结第3章系统软件的设计§3.1系统主程序§3.2系统部分子程序§3.2.1 DS18B20初始化子程序§3.2.2 DS18B20读子程序§3.2.3 DS18B20写子程序(有具体的时序要求) §3.2.4 DS18B20定时显示子程序§3.2.5 DS18B20温度转换子程序§3.3 DS18B20的流程图第4章总结参考文献致谢附录第一章绪论1.1选题背景在人类的生活环境中,温湿度扮演着极其重要的角色。

温室大棚控制系统毕业设计

温室大棚控制系统毕业设计

论文题目:温室大棚控制系统专业:测控技术与仪器本科生:(签名)指导教师:(签名)摘要温室种植在农业生产中占有越来越重要的地位,传统的温室种植自动化程度很低,基本是靠人工控制温湿度、光照的方式,既耗费人力又不精确,因此需要研制一种造价低廉、使用方便且测量准确的温湿度、光照控制系统。

本课题研究的主要内容是利用单片机作为主控机,对温室内的温度、湿度和光照进行实时监测和控制,以满足温室内作物生长的环境要求。

通过数字式温度传感器DS18B20进行温度采集,电容式湿度传感器HS1100对湿度参数进行采集,模块GY-30对光照进行采集,单片机STC12C5A60S2对采集到的数据进行处理,由LCD12864对当前的温湿度值和光照值进行显示。

并实时判断温湿度、光照值是否满足设定的温湿度、光照范围,若超出设定范围,将及时启动报警装置进行报警,并采取相应的措施保证温室内温湿度、光照在合适的范围,初步实现了温室大棚的自动控制。

键关词:温室,温湿度,光照,单片机,监测,控制Subject: De sign of greenhouse control sy stemSpecialty: technology of measuring and controllingName: (Signature) _____Instructor: (Signature)ABSTRACTWith the rapid socio-economic development, people's living standard continues to improve, greenhouse cultivation plays an increasingly important role in agricultural production. The degree of automation of traditional greenhouse cultivation is very low, basically rely on manual control of temperature and humidity, light way, both labor-intensive and not precise temperature and humidity and light regulation measures showed greatly limitations. Therefore, we need a low cost, easy to use and accurate measurement of temperature and humidity, light control system.The main content of this research is to use microcontroller as the host computer, the temperature, humidity and light inside the greenhouse for real-time monitoring and control, in order to meet the environmental requirements of greenhouse crops. Temperature can be collected by digital temperature sensor DS18B20, capacitive humidity sensor HS1100 humidity parameters collection, illumination module GY-30 is collected by the microcontroller STC12C5A60S2 the collected data are processed by LCD12864 the current temperature and humidity values and display illumination values. And real-time to determine the temperature and humidity, light value is set to meet the temperature and humidity, light range, if beyond the set range, will promptly start the alarm device alarm, and take appropriate measures to ensure that the temperature and humidity inside the greenhouse, in a suitable range of light, the initial realization of automatic control greenhouse.KEY WORDS: greenhouse, temperature, humidity, light, single-chip, monitoring, control目录前言 (1)第1章绪论 (2)1.1选题的背景及目的 (2)1.2国内外研究现状 (2)1.3发展趋势 (3)1.4本系统主要研究内容 (4)第2章总体设计 (5)2.1设计要求 (5)2.2设计原则 (5)2.2.1可靠性高 (6)2.2.2操作维护方便 (6)2.2.3性价比高 (6)2.3硬件设计系统总体框图 (6)第3章系统硬件设计 (7)3.1主控模块 (7)3.1.1方案选择 (7)3.1.2 STC12C5A60S2单片机简介 (8)3.1.3单片机最小系统电路 (10)3.2显示模块 (11)3.2.1方案选择 (11)3.2.2 LCD12864简介 (11)3.2.3 LCD124显示电路 (13)3.3温度测量模块 (14)3.3.1温度定义 (14)3.3.2方案选择 (14)3.3.3 DS18B20的介绍 (14)3.3.4 DS18B20测温电路 (16)3.4湿度测量模块 (16)3.4.1湿度定义 (16)3.4.2 方案选择 (17)3.4.3 HS1101湿度传感器介绍 (17)3.4.4 HS1101测湿电路 (18)3.5光照测量模块 (21)3.5.1光照定义 (21)3.5.2方案选择 (21)3.5.3 GY-30模块介绍 (22)3.5.4 GY-30测光强电路 (22)3.6键盘模块 (23)3.6.1选择方案 (23)3.6.2 键盘电路 (23)3.7报警模块 (24)3.8温度控制模块 (25)3.9湿度控制模块 (26)3.10光照控制模块 (26)第4章系统软件设计 (29)4.1软件设计的整体思想 (29)4.2系统主程序 (29)4.3采集模块子程序 (30)4.3.1.温度采集模块子程序 (30)4.3.2湿度采集模块子程序 (31)4.3.3光照采集子程序 (32)4.4显示模块子程序 (33)4.5键盘模块子程序 (34)4.6报警和控制模块 (35)第5章系统调试和实验 (37)5.1 Altium Designer软件介绍 (37)5.2硬件调试 (37)5.3实验验证 (38)第6章总结 (41)致谢 (42)参考文献: (43)附录:电路原理图 (44)前言现代社会随着科技的发展尤其是农业科技的日新月异,使得人们能通过创造适合农作物生长的环境来改变其生长周期。

温室大棚智能控制系统毕业设计任务书

温室大棚智能控制系统毕业设计任务书

毕业设计(论文)任务书1.本毕业设计(论文)课题应达到的目的:系统掌握单片机应用系统的硬件设计与软件开发;特殊功能模块的使用;单片机与PC机的通讯。

提高综合利用控制理论、微型计算机技术、传感器与检测技术、通讯技术、电气控制技术等知识解决实际问题的能力。

2.本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):系统设计技术指标:任务:(1)温室智能控制技术国内外研究动态(2)现场参数检测与调节控制(3)环境因子参考模型的建立(4)仿人控制与算法(5)单片机与PC机通讯内容:(1)设计温室环境因子归一化参考模型(2)针对地区性差异、季节性差异、种植类差异,设计归一化的仿人控制模型(3)电气控制逻辑及电气控制线路设计(4)现场参数检测与调节控制模拟实验(5)单片机与PC机通讯模拟实验工作要求:(1)现场检测参数16路,12位A/D精度,输出控制16路,开关控制。

(2)参数设置可单片机键盘输入,也可上位PC机给定。

(3)LCD液晶显示(4)论文在2万字以上。

翻译一篇与该课题相关的外文资料5000字以上。

参考文献在10篇以上。

同时绘制单片机应用系统的主板图和操作面板图,模拟现场东、西侧窗,排风扇,气泵,遮荫帘等执行机构的调节控制。

模拟与PC机进行现场检测参数的传输和受令控制。

3.本毕业设计(论文)课题工作进度计划:起迄日期工作内容2012年2 月12日~3 月 2日3 月5日~ 3月 23 日3 月26日~5 月 11日5月14日~ 5 月 25日5月28日~ 6 月 8日6月1日~ 6月 10日6月11日~ 6 月 18日熟悉论文题目,了解任务书所要求的工作内容,查询资料,深入了解本课题在相关领域国内外研究动态。

进一步学习单片机、计算机测控技术、接口技术、通讯技术等相关专业知识。

根据论文内容要求和研究对象,进行单片机应用系统的硬件配置方案设计,绘制原理图,对部分电路通过实验板进行调试。

温室大棚自动控制系统设计毕业论文

温室大棚自动控制系统设计毕业论文

温室⼤棚⾃动控制系统设计毕业论⽂温室⼤棚⾃动控制系统设计毕业论⽂⽬录第⼀章绪论 (1)1.1温室⼤棚⾃动控制技术发展的背景 (1)1.2温室⼤棚在国内外的发展概况 (1)1.3温室控制系统研究与开发的意义 (3)第⼆章设计⽅案 (4)2.1⽅案论述 (4)2.1.1系统设计任务 (4)2.2温室⼤棚⾃动控制系统设计⽅案 (5)2.2.1基于PLC为基础的温室⼤棚⾃动控制系统设计 (5)2.2.2基于单⽚机为基础的温室⼤棚⾃动控制系统设计 (6)第三章硬件设计 (8)3.1 PLC的简介 (9)3.1.1 PLC的概述 (9)3.1.2基本结构 (9)3.1.3⼯作原理 (10)3.1.4功能特点 (11)3.1.5选型规则 (12)3.1.6西门⼦S7-200 (15)3.2温度传感器 (16)3.2.1温度控制 (16)3.2.2 DS18B20的主要特性 (17)3.3湿度传感器 (17)3.3.1 湿度定义 (17)3.3.2湿度传感器的分类 (18)3.3.3 TRS-1 ⼟壤⽔分传感器 (19)3.4光照强度传感器 (20)3.4.1光照强度传感器的简介 (20)3.3.2 HA2003 光照传感器 (21)3.5⼆氧化碳浓度传感器 (22)3.5.1 ⼆氧化碳浓度传感器的⼯作原理 (23)3.5.2 GRG5H 型红外⼆氧化碳传感器 (24)3.6 EM 235模拟量输⼊模块 (25)3.7 温室⾃动控制系统的控制量与控制措施 (26)3.7.1 灌溉系统 (26)3.7.2 温度控制 (27)3.7.3 湿度控制 (27)3.7.4 光照强度控制 (27)3.7.5 ⼆氧化碳控制 (27)3.8硬件总体设计 (28)3.8.1 I/O分配表 (28)3.8.2硬件接线图 (28)第四章系统软件设计 (30)4.1 软件结构 (30)4.2温度控制软件设计 (30)4.2.1温度控制原理 (30)4.2.2温度控制流程图 (30)4.2.3温室温度控制梯形图 (32)4.3湿度控制软件设计 (34)4.3.1湿度控制原理 (34)4.3.2湿度控制流程图 (34)4.3.3温室湿度控制梯形图 (36)4.4光照强度控制软件设计 (38)4.4.1光照强度控制原理 (38)4.4.2光照强度控制流程图 (39)4.4.3温室光照强度软件控制流程图 (40)4.5⼆氧化碳浓度控制软件设计 (42)4.5.1⼆氧化碳浓度控制原理 (42)4.5.2⼆氧化碳浓度软件控制流程图 (43)4.5.3温室⼆氧化碳浓度控制流程图 (44)总结 (46)参考⽂献 (47)附录A 外⽂⽂献 (49)附录B中⽂翻译 (61)致谢 (71)第⼀章绪论1.1温室⼤棚⾃动控制技术发展的背景随着农业现代化的发展,设施园艺⼯程因其涉及学科⼴、科技含量⾼、与⼈民⽣活关系密切,已经越来越受到世界各国的重视。

基于单片机的智能温室大棚控制系统_毕业论文设计

基于单片机的智能温室大棚控制系统_毕业论文设计

基于单片机的智能温室大棚控制系统摘要温室是现代农业生产所必需的基本设备,用它有效地控制温度、光照、湿度、二氧化碳浓度等是改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的前提。

本设计以STC89C52单片机为核心完成了对空气温度、土壤湿度、光照度进行数据的采集、处理、显示等系统的基本框图、工作原理和继电器控制的设计的工作。

主要内容有:(1)通过单片双端集成温度传感器AD590采集实时温度。

(2)通过湿度传感器HS1100采集实时湿度。

(3)通过固态电化学性二氧化碳传感器TGS4160采集二氧化碳浓度。

(4)判断采集到的参数值与设置值是否一致,并进行继电器控制。

通过以上设计可以对植物生长过程中的土壤湿度、环境温度、光照度以及二氧化碳浓度进行了实时地、连续地检测、直观地显示并进行自动地控制。

克服了传统的人工测量方法不能进行连续测量的弊端,节省了工作量,并避免了人为的疏漏或错误造成的不必要的损失。

关键词:单片机温度传感器湿度传感器二氧化碳传感器In this paperGreenhouse is essential for modern agriculture basic equipment, use it to effectively control, such as temperature, light, humidity, carbon dioxide concentration is to change the plant growth environment, create the best condition for plant growth, avoid the seasons change and the influence of bad weather. This design to STC89C52 single-chip microcomputer as the core to complete the air temperature, soil moisture, and light for data acquisition, processing and display system of the basic block diagram, working principle and the design of relay control work. Main contents are: (1) by monolithic integrated temperature sensor AD590 to collect real-time temperature. (2) by the humidity sensor HS1100 gathering real-time humidity. (3) through solid electric chemical carbon dioxide sensor TGS4160 collecting carbon dioxide concentrations. (4) determine whether collected parameter value and set value, and relay control.Through the above can be designed for plants to grow in the process of soil humidity, environment temperature, light and co2 concentration in real time, continuous detection, display visually and automatically control. Overcomes the traditional continuous measurement of the shortcomings of manual measurement method does not, and save the workload, and avoid the unnecessary loss caused by the omission or human error. Key words:SCM temperature sensor humidity sensor carbon dioxide sensor目录1.绪论 (1)1.1 课题背景及研究意义 (1)1.2 国内外温室控制技术发展概况 (2)1.2.1国外状况 (3)1.2.2国内状况 (3)1.3 选题的目的和意义 (3)2. 温室大棚自动控制系统控制方案设计 (5)2.1 控制方案设计 (5)2.2 系统硬件结构 (6)2.3 温室大棚的硬件组成 (7)2.3.1 传感器 (7)2.3.2 单片机控制系统和微机系统 (10)2.4 温室大棚的软件组成 (11)2.4.1 单片机软件设计 (11)2.5 测试系统的组成及原理 (13)2.5.1 测试系统的设计 (13)(1)温度测量电路 (13)(2)湿度测量电路 (14)(3)CO2含量测量电路 (15)2.5.2 微处理器系统 (16)2.6 程序模块 (16)2.6.1 主程序 (16)2.6.2 显示子程序 (16)2.6.3 A /D转换测量子程序 (17)2.6.4 显示数据转换子程序 (17)3.温室大棚的数据采集系统 (18)3.1 系统设计 (18)3.1.1 系统组成 (18)3.1.2 系统工作原理 (19)3.2 系统软件设计 (19)3.2.1 上位机软件设计 (19)3.2.2 下位机软件设计 (19)3.3 误差分析 (19)3.4 可靠性设计 (19)3.4.1 硬件可靠性设计 (20)3.4.2 软件可靠性设计 (20)4.温室大棚监测控制系统 (21)4.1 系统的总体结构和特点 (21)4.1.1 系统的总体结构 (21)4.2 主要特点 (22)4.2.1 信号检测的多元化 (22)4.2.2 信号检测的连续化 (22)4.2.3数据采集与处理的实时化 (22)4.2.4系统功能的易扩充性 (22)4.3硬件结构 (22)4.4系统软件设计 (23)4.4.1控制系统软件结构 (23)4.4.2软件的实现 (24)5.总结 (25)致谢 (26)英汉互译 (27)参考文献 (35)附主程序流程图 (36)第1章绪论1.1 课题背景及研究意义中国农业的发展必须走现代化农业这条道路,随着国民经济的迅速增长,农业的研究和应用技术越来越受到重视,特别是温室大棚已经成为高效农业的一个重要组成部分。

温室大棚智能化控制系统毕业设计选题、审题表

温室大棚智能化控制系统毕业设计选题、审题表

河 北 科 技 大 學 本科生畢業設計(論文)選題、審題表學 專 院 業 電氣資訊學院 電氣工程 選 題 教 師 教師姓名 專業技術 職 務 劉建業 正高  副高 中級申報課題 名稱 課題性質農業大棚環境參數智能控制系統及與 PC 機通訊 B C D E A B C D 課題來源   分佈式集散控制 (DCS) 其主要核心思想是集中管理、 分散控制。

分佈式集散控制通常採用兩級結構: 控制系統的下位機以單片機為核 心,外接數據採集輸入電路、輸出電路、鍵盤和 LCD 顯示等部分, 能夠獨立工作,被配置在每個溫室內部。

下位機能夠與上位機點對點 通訊。

A課題簡介完成 2 萬字以上畢業論文, 繪製單片機應用系統的主板圖和操作 設計(論文) 要 求 面板圖,模擬現場東、西側窗,排風扇,氣泵,遮蔭簾等執行機構的 調節控制。

模擬與 PC 機進行現場檢測參數的傳輸和受令控制。

課題預計 工作量大小大適中 適中小課題預計 難易程度難一般 一般易所在專業審定意見:負責人(簽名):年月日注:本課題由同學選定,學號:填 表 說 明1.該表的填寫只針對 1 名學生做畢業設計(論文)時選擇使用,如同一課題由 2 名及 2 名以 上同學選擇,應在申報課題的名稱上加以區別(加副標題) ,並且在“設計(論文)要求”一欄中 加以體現。

2. “課題性質”一欄: A.工程設計; B.工程技術研究; C.軟體工程(如 CAI 課題等) ; D.文獻型綜述; E.其他。

3. “課題來源”一欄: A.自然科學基金與部、省、市級以上科研課題; B.企、事業單位委託課題; C.校、院(系)級基金課題; D.自擬課題。

4. “課題簡介”一欄: 主要指研究設計該課題的背景介紹及目的、意義。

5.“設計(論文)要求(包括應具備的條件)”一欄: 主要指本課題技術方面的要求,而“條件”指從事該課題必須應具備的基本條件(如儀器 設備、場地、文獻資料等)。

温室大棚自动控制系统的设计

温室大棚自动控制系统的设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第1章绪论 (1)1.1选题背景 (1)1.2 国内外发展现状 (2)1.3 课题内容、目的及思路 (3)1.4 设计过程及工艺要求 (5)第2章方案的比较和选择 (6)2.1 湿度传感器的选择 (6)2.2温度传感器的选择 (8)2.3 光照度传感器的选择 (9)第3章系统的总体设计 (10)3.1 确定系统任务 (11)3.2 系统的组成和工作原理 (12)3.3 元件的特性 (15)3.3.1 STC89C52特点 (15)3.3.2 AD0804特点 (16)第4章电路设计 (18)4.1 湿度测量电路 (18)4.2 温度测量电路 (19)4.3 光照度测量电路 (19)4.4 数据显示电路 (20)4.5 复位电路 (21)4.6 键盘电路 (22)4.7继电器控制电路 (22)4.8 电源设计 (23)第5章软件设计 (25)5.1系统概述 (25)5.2 Keil C51单片机软件开发系统的整体结构 (25)5.3 使用独立的Keil仿真器时,注意事项 (26)5.4 Keil C51单片机软件基本操作步骤 (26)5.5 主程序流程图 (26)5.6 参数测量子程序流程图 (28)5.7 键盘扫描子程序流程 (28)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第6章结论 (31)致谢 (32)参考文献 (33)附录 (35)附录1.系统总体电路图 (36)附录2.系统源代码 (36)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第1章绪论1.1选题背景随着改革开放,特别是90年代以来,我国的温室大棚产业得到迅猛的发展,以蔬菜大棚、花卉为主植物栽培设施栽培在大江南北遍地开花,随着政府对城市蔬菜产业的不断投入,在乡镇内蔬菜大棚产业被看作是21世纪最具活力的新产业之一。

毕业设计论文-温室大棚智能控制系统设计

毕业设计论文-温室大棚智能控制系统设计

第1章緒論1.1 課題背景及研究意義中國農業的發展必須走現代化農業這條道路,隨著國民經濟的迅速增長,農業的研究和應用技術越來越受到重視,特別是溫室大棚已經成為高效農業的一個重要組成部分。

現代化農業生產中的重要一環就是對農業生產環境的一些重要參數進行檢測和控制。

例如:空氣的溫度、濕度、二氧化碳含量、土壤的含水量等。

在農業種植問題中,溫室環境與生物的生長、發育、能量交換密切相關,進行環境測控是實現溫室生產管理自動化、科學化的基本保證,通過對監測數據的分析,結合作物生長發育規律,控制環境條件,使作物達到優質、高產、高效的栽培目的。

以蔬菜大棚為代表的現代農業設施在現代化農業生產中發揮著巨大的作用。

大棚內的溫度、濕度與二氧化碳含量等參數,直接關係到蔬菜和水果的生長。

國外的溫室設施己經發展到比較完備的程度,並形成了一定的標準,但是價格非常昂貴,缺乏與我國氣候特點相適應的測控軟體。

而當今大多數對大棚溫度、濕度、二氧化碳含量的檢測與控制都採用人工管理,這樣不可避免的有測控精度低、勞動強度大及由於測控不及時等弊端,容易造成不可彌補的損失,結果不但大大增加了成本,浪費了人力資源,而且很難達到預期的效果。

因此,為了實現高效農業生產的科學化並提高農業研究的準確性,推動我國農業的發展,必須大力發展農業設施與相應的農業工程,科學合理地調節大棚內溫度、濕度以及二氧化碳的含量,使大棚內形成有利於蔬菜、水果生長的環境,是大棚蔬菜和水果早熟、優質高效益的重要環節。

目前,隨著蔬菜大棚的迅速增多,人們對其性能要求也越來越高,特別是為了提高生產效率,對大棚的自動化程度要求也越來越高。

由於單片機及各種電子器件性價比的迅速提高,使得這種要求變為可能。

當前農業溫室大棚大多是中小規模,要在大棚內引人自動化控制系統,改變全部人工管理的方式,就要考慮系統的成本,因此,針對這種狀況,結合郊區農戶的需要,設計了一套低成本的溫濕度自動控制系統。

該系統採用感測器技術和單片機相結合,由上位機和下位機構成,採用RS232介面進行通訊,實現溫室大棚自動化控制。

毕业论文-温室温度自动控制系统设计

毕业论文-温室温度自动控制系统设计

温室温度自动控制系统设计毕业论文摘要本系统以AT89C51单片机为控制核心,利用温度传感器AD590对蔬菜大棚内的温度进行实时采集与控制,实现温室温度的自动控制。

本系统由单片机小系统模块、温度采集模块、加热模块、降温模块、按键以及显示模块六个部分组成。

可以通过按键设定温室的温度值,采集的温度和设定的温度通过LED数码管显示。

当所设定的温度值比采集的温度大时,通过加热器加热,以达到设定值;反之,开启降温风扇,以快速达到降温效果。

通过该系统,对蔬菜大棚内的温度进行有效、可靠地检测与控制,从而保证大棚内作物在最佳的温度条件下生长,提高质量和产量。

关键词:单片机;温度传感器;温度控制;温度显示;键盘输入;温室Automatic Temperature-Control System of GreenhouseLi **(College of Physics Science and Information Engineering, Jishou University, Jishou, Hunan 416000)AbstractThis system takes the AT89C51 single chip as the control core, using the temperature sensor AD590 to carry on real-time gathering and controlling to the greenhouse of vegetables, so it can realizes auto-control to the greenhouse’s temperature. This system contains the miniature single chip system module, the temperature gathering module, the heater module, the drop-temperature module, the key pressed module and the display module. The gathering temperature or the setting temperature is displayed through the seven-seg LED. It can be established new temperature value in the greenhouse through pressing buttons, when this temperature value is higher than the gathering temperature value, then makes the heater work in order to achieve the defined value; Otherwise, the heater knocks off, and opens the ventilator as fast as to achieve the supposed temperature. It will be effective and reliable to exam and control the temperature of the greenhouse by using this system, thus guarants the crop growing fine under the best temperature condition, and enhances the crops’ quality and out put.Key words: Single chip; Temperature sensor; Temperature control; Temperature display; Keyboard entry; Greenhouse目录第一章引言 (1)第二章工作原理 (3)2.1设计思路 (3)2.2总体设计框图 (3)第三章硬件设计 (4)3.1基于AT89C51的单片机小系统 (4)3.2温度采集模块 (5)3.3显示模块 (8)3.4键盘扫描 (10)3.5WP型温室加热器 (12)3.6降温模块 (13)第四章软件设计 (14)4.1主程序 (14)4.2定时器T0中断 (16)4.3显示模块 (18)4.4按键扫描 (19)第五章测试分析 (22)结束语 (23)参考文献 (24)致谢 (25)附录 (26)附录1系统电路图 (26)附录2源程序代码 (26)第一章引言温度、压力、流量和液位是四种最常见的过程变量[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。

温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。

实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。

该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。

第一章概述大棚、中棚及日光温室为我国主要的设施结构类型。

其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。

温室的性能指标:1.温室的透光性能温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。

透光率是指透进温室内的光照量与室外光照量的百分比。

温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。

温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。

一般,连栋塑料温室在50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。

2.温室的保温性能加温耗能是温室冬季运行的主要障碍。

提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。

温室的保温比是衡量温室保温性能的一项基本指标。

温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。

保温比越大,说明温室的保温性能越好。

3.温室的耐久性温室建设必须要考虑其耐久性。

温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。

透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。

一般钢结构温室使用寿命在15年以上。

要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。

由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。

钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。

对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。

第二章比例微积分控制原理3.1 比例积分调节器(PD比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。

c变化越快,pd越大,输出校正量也越大。

它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。

它的缺点是抗干扰能力变差。

3.2 PID调节器积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。

微分器能增加稳定性,加快响应速度。

比例器为基本环节。

三者合用,选择适当的参数,可实现稳定的控制。

图4—37为PID调节器的方块图。

第三章自动控制系统的设计自动控制系统的各个环节的特性一般是给定的,如机械、气动、电动、液压等设备。

在设计自动控制系统时,采用加入““个专门用来校正(补偿系统特性的环节(校正环节,来改变系统特性,使其符合给定的特性要求。

实现该环节的装置,称为校正装置或调节器。

设计自动控制系统主要招校正装置的设计。

由于开习;系统一船达不到控制的要求,因而自动控制系统均采用闭环(反馈控制方法。

在采用串联校正时。

自动控制系统的设计步骤①给出系统所要求的特性(期望特性。

②由控制目的、静态特性等要求来选择系统各元件(如电护、电动机等。

③对该系统进行系统特性分析,并与系统的期望特性进行比较,由比较的结果来求取校正装置的特性。

④检验由此设计出的系统所具有的特性,若不满足,则更新修改校正装置的特队直至校合要求为d:具体的设计方法有时域法、频率法和根轨迹法。

时域法即按前面介绍的方法对系统进行分析,选择适当的校正装2,定性、稳态误差、超调量、过渡时间等的要求。

频率法即分析系统的频率特性,选择适当的校正装置以改变其对数频率特性的形状,以满足对系统稳态误差、相位裕量和截止频率的要求。

所谓频率特性,是在正弦量输入下,系统的输出稳态分量与输入稳态分量的复数比,邱o(J。

表示。

只要将传递函数中的‘用加替代,就可得到系统的频率特性。

由于酸(JQ是以复致形式表示,故其幅值可表示为称为幅位频率特性。

其相角可表示为按系统的频率特性,可分析系统的稳定性、过渡特性和稳态误差。

根轨迹法即分析闭环传递函数的根的轨迹,然后选择适应的校正装置,以满足对系统稳定竹、稳态误差和动态响应等的要求。

由于难以求解高阶特征方程,故在分析特征方程的根与方程中参数的关系时,采用很的轨迹的方法。

即按特征方程式的根(它们为复致所必须满足的增益条件和相位条件并列用根轨迹的特性来作出根的轨迹。

第四章可控硅及其工作原理可控硅为大功率直流元件(SCR,硫氏4.1可控硅结构可控硅由P1H1PaN2四层半导体材料制成,可用P1N1P2和NlP2N2两个三极管等效。

阳极A、控制极o、阴极K达三个电极,其结构如图3—29所示。

除了一班的单向可控桂外,现在还有双向可控桂(YRIAC,它等价于两个单向可控桂并联,可双向导通。

4.2可控硅特性当照极电位高于阴极电乎,控制极电流18增大到一定值(触发电流时,可控硅由截止转为导通,一旦导通以后,Ig即使为o,可控桂仍保持导通,直至阳极电位小于等于阴极电位为止,即阳极电流小于维持电流时可控桂才由导通变为截止。

4.3单相可控硅整流电路图3—30是一个最简单的单相半波可控整流电趴在uAx>o且Ig大于触发电流时scR—导通,负载(电热丝上才有电流流过,输出波形为部分半波交流电第五章温度传感器温度传溉器将温度信号变换成电阻或电压信哥,它有多种类型,各种温度传感器变换特性和适用范用也不相同。

5.1铂电阻铂是一种贵金属,铂在氧化性介质中的物理化学性能稳定,尤其是耐氧化的能力6,此—外它容易提纯、工艺简单,可以制成极细的铂丝或极薄的铂箔,有较高的电阻牢,是一种理想的热电阻材料,铂电阻具有精度高、稳定性好、性能可靠等优点。

铂电阻的温度测量范围在—200℃一十850℃左右,在小于?oo℃时,非线性误差小于o.喇,它的电阻值月和温度f之间的关系可以近似地表示为:只=A6十BA,B为常数。

A为热敏系数(AR/℃。

铂电阻的阻值比较小,常用的有PLlo和Ptloo,它们在o℃的阻值分别为109和looQ,温医—阻值换算关系如表3—2所示。

铂电阻是一种高性能的金属热电阻,相应地价格较责,在被测温度较高精度也要求高的微机温度控制系统中,广泛地用铂电阻作热电阻传感器。

然而在精度要求不高测量温度较低的场合可以用另一种金属热电阻一一铜电阻作热传感器。

饲电阻可用来测量一50宅一十1io℃的温度,在该范围内铜电阻和温度基本呈线性关系:只。

=及。

(1十。

f,温度系数。

!4.2ixlo—”/e”4.28X10—”/℃。

铜电阻的缺点是电阻率小,一定阳值的钢电阻体积比铂电极大,温度超过loo℃时容易氧化。

5.2热敏电阻热敬电阻是一种半导体热电阻,按半导体电阻随温度变化的典型特性,热敏电阻有三种灸型;负温度系数热敏电阻(NTC、正温度系数热敏电阻(PTC和临界温度电阻器(CTR,5.3 热电偶两种不同的导体(或半导体A、B组成闭合回路(见图3—14时,当A、B相接的两个接点温度不同时,则在回路中产生一个热电动势,这种现象称作热电效应。

达两种不同导体(或半导体的组合称为热电娟。

每根单独的导体(或半导体称为热电权。

两个接点中一端称为工作端(亦称测量端或热端,如t端,另一瑞称为自由淌(亦称冷端如to缩。

5.4 半导体PN结温度传感器这种传感器是利用半导体二极管的PN结正向压降随温度升高而下降的特性制成的,传输特性为非线性,灵敏度约为一9ny/℃,测量温度范围为“40℃“们50℃,它的价格低,但需使用恒压源馈电。

第六章数摸转换原理6.1分辨率与量化误差A/D转换器的分辨率是指转换器所能感受到的模拟输入的最小变化值。

通常定义为满刻度电压值与2%之比值。

也可以用1L5D对应满量程的百分数来表示,或者用ppm来表示,1%=lo。

ppm。

例如ADC0809的位数为8位,则该转换器的输出数据可以用2‘个二进制数进行量化。

如用百分数来表示,其分辨率为:1/2“×loo%=1/2‘×loo%=o.39%又如5G14433双积分A/D转换器,输出是为3位半BCD码的转换器1999,用百分数表示其分辨率为:1/1999×l oo%=0.05%实际上,无论是A/D转换器还是D/A转换器,当其位数确定以后,分辨率就已确定,分辨率只是一个设计参数,它不能提供有关精度和线性度的任何信息。

依分辨率的高低,A/D转换器可分为三种类型:低分辨串为3—8位、中分辨率为9—12位、高分辨率为13位以上。

一般分辨率越高,其价格也就越高。

员化误差是由于A/D转换器的分辨率有限所引起的误差,其大小通常规定为土1/2LsB。

因此,系统设计者必须选择具有足够分辨串的转换器,才能将这种“数字化的噪声”降低到可接受的值6.2 梢度A/D的转换精度是反映实际A/D转换器在量化值上与一个理想A/D转换器的差值,可表示成绝对误差和相对误差。

绝对误差的大小由实际模拟量输入值与理论值之差来度量。

实际上对应于同一个数宁量输出,其模拟量输入并不是一个固定的值,而是有—个范围。

绝对误差包括增益误差、零点误差和非线性误差等。

相对误差是指绝对误差与满到度值之比,一般用百分数(%来表示。

对A/D转换器也常用ppm(百万分之一或最小有效位的当量LSB来表尔:1I‘SB=1/2“×满刻度值。

6.3 转投时间和转换速率A/D转换器完成一次转换所需的时间叫转换时间。

而转换速率是转换时间的倒数。

A/D转换器按转换速度可分为三类。

(1低速:以双积分转换方式多见,其转换时间较长,一般要大于40一50ms。

但由于双积分式A/D转换器外接器件少,使用十分方便,而且具有极高的性能价格比,因此在一些非快速的A/D转换通道中仍J‘泛使用,如用于智能仪器仪表等。

(2中速:转换方式多为逐次退近式等。

逐次逼近式A/D转换器是目前种类最多、数星最大、应用最广的A/D转换器件。

逐次逼近式A/D转换器又有单片集成与混合集成两种集成电路形式,后者的丰要性能指标均高于前者。

这类器件的转换时间在1—200冲之间,常用的多在几微秒到几十微秒之间,如ADC0808/D809为100Ps.AD E 74A为25Fs等。

相关文档
最新文档