《鄂尔多斯盆地》课件

合集下载

鄂尔多斯盆地

鄂尔多斯盆地
2 周边山系: 北部-阴山 南部:秦岭 东部:吕梁 山、中条山 西部:六盘山、贺兰山
盆地整体呈现近南北向的长 方形
3. 地貌
地形复杂, 以北 纬38º线为界分为南 北两部分,长城以 北属沙漠草原区, 地势平坦,气候干 旱;以南为黄土高 原区,侵蚀作用强 烈,沟壑纵横。
3 油气勘探:
1907年-我国大陆第一 口油井延1井-7081m或工业油流-长6 段(延长油田);50年 代 发现延长、永坪等 小规模的油田。
亿立方米
100
50
44.2
43.1
43.04
36.2
0 鄂尔多斯
塔里木
四川
松辽
柴达木 渤海湾 准葛尔
2002年全国各油气田石油产量
万吨
6000 5013
5000
4000
3000
2672
2000 1000
0
1351 438
394
444 1005 610
60 214
14 380 65
502 251
380 188 97 157 3 293
鄂尔多斯盆地石油资源分布图
推测
资源量 64.3%
探明储量 11.9%
控制储量 3.8% 预测储量 7.6%
潜在 资源量 12.4%
探明 控制 预测 鄂潜尔在多斯盆推地测石油资总资源源序量列直方图
10.185 902.7833 3.7209 6.2788 55.2353 85.88
85.88
80
储 70
量 、 80000
资 源
60000
量 (108m3)
40000
20000
天然气 石油
11831.44 3363.57 6042.62 5108.2

《鄂尔多斯》课件

《鄂尔多斯》课件
污染治理
加大大气、水、土壤等污染治理力度,严格控制污染物排放,改善 环境质量。
绿色城市建设
推广绿色建筑、绿色交通、绿色能源等理念,建设低碳、宜居的绿 色城市。
教育事业规划
教育资源优化
合理配置教育资源,提高教育公平和质量,促进教育均衡发展。
教师队伍建设
加强教师培训和引进,提高教师队伍素质和教育教学水平。
详细描述
鄂尔多斯地区的民族服饰具有独特的特点,如蒙古族的蒙古袍、回族的回民服等 。这些服饰通常采用传统的工艺和材料,如羊毛、丝绸等,既保暖又美观。此外 ,这些服饰还常常配以各种饰品,如银饰、玛瑙等,增添了其艺术价值。
民族音乐
总结词
鄂尔多斯地区的民族音乐风格独特,具有强烈的草原气息和民族特色。
详细描述
鄂尔多斯拥有丰富的自然景观, 如沙漠、草原、湖泊等,吸引大
量游客前来观光旅游。
文化资源
鄂尔多斯历史悠久,文化底蕴深 厚,如匈奴文化、西夏文化等,
对游客具有很大的吸引力。
旅游设施
不断完善旅游基础设施和服务体 系,提高旅游接待能力和服务质
量。
04
鄂尔多斯民俗文化
民族服饰
总结词
鄂尔多斯地区的民族服饰具有浓厚的地方特色,是当地民族文化的重要组成部分 。
VS
详细描述
鄂尔多斯地区的民族美食以羊肉、奶制品 等为主,如烤全羊、手抓肉、奶酪等。这 些美食采用传统的烹饪方法,如烤、炖、 煮等,既保持了食物的原汁原味,又增添 了其口感和营养价值。此外,当地的美食 还常常配以各种佐料和饮品,如草原白酒 、奶茶等,让人品尝到草原的醇厚和风味 。
05
鄂尔多斯未来展望
教育信息化
推动教育信息化进程,利用信息技术手段提高教育教学的效率和 效果。

鄂尔多斯盆地致密砂岩气勘探技术ppt

鄂尔多斯盆地致密砂岩气勘探技术ppt

鄂尔多斯盆地探明气田分布图
胜利井气田 刘家庄气田
苏里格气田
榆林气田
神木气田
米脂气田
乌审旗气田
靖边气田
子洲气田
(三)致密气分布层位
上古生界综合柱状图
致密气主要分布在上古生界, 石盒子组盒8、山西组山1为主力 含气层,盒6、山2、本溪组以及 下古生界奥陶系等是重要的兼探 层系,纵向上具有多层系复合含 气的特征。
鄂尔多斯盆地致密砂岩气藏天然气组分分析表
气田
层位
CH4 (%)
C2H6
C3H8
C4H10
CO2
(%)
(%)
(%)
(%)
N2 (%)
H2S (%)
苏里格
石盒子组 山西组
95.300
1.8400.4700.2700.860 1.200
0
乌审旗 石盒子组 95.100 1.000 0.200 0.200 0.900 2.790
西区
0.87-0.94 0.88
-2200 -2300
苏里格气田西区 苏里格气田中区 苏里格气田东区
实测压力结果表明,苏里格气田无统一压力系统,属低压气藏,压力系数一般
在0.83~0.96之间,平均0.87。
(2)地层温度
苏里格气田上古生界地层 (盒8气藏)实测温度一般在 90-120 ℃,气藏温度与埋深具 有明显的正关性性,相关系数 达到0.85,计算的地温梯度为 3.06℃/100m。
鄂尔多斯盆地行政区划图
吕 梁 山


4、地层及含油气层系

自下而上发育元古界、古生界、
新 生

中生界和新生界,沉积岩平均厚度
6000m。纵向上具有“上油下气”的

鄂尔多斯盆地沉积及构造

鄂尔多斯盆地沉积及构造

适用标准文案鄂尔多斯盆地堆积——结构演化及油气勘探新领域2002年 9月目录序言一.地背景与结构演化(一)地背景⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1(二)结构演化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2二.鄂多斯盆地古生代—中生代沉演化(一)奥陶系沉系统区分及岩相古地理演化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4(二)石炭—二叠沉系统区分及岩相古地理演化⋯⋯⋯⋯⋯⋯⋯10(三)中生界沉系统区分及岩相古地理演化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18三.鄂多斯盆地下古生界奥陶系生、、盖特色及天然气富集律(三)源岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25(四)集岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯33(五)盖特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44(六)天然气富集律⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯四.多斯盆地上古生界生、特色及天然气富集律(一)源岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55(二)集岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯56(三)天然气富集律⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69五.鄂多斯盆地中生界生、特色及石油源价(一)源岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(二)集岩特色⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(三)石油成藏律⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯前言本课题以新理论、新思路为指导,以采集、综合剖析和总结已有成就为主,要点野外检查和岩芯察看为辅,深入、综合、总结古人研究成就,研究盆地堆积演化历史,确立生储盖组合、联合研究和总结石油地质规律和油气勘探新领域。

为了达成相关研究内容,课题构成员自合同判定以后进行了大批的资料收集,露头剖面观察,钻井岩芯察看等工作,达成了大批工作量,详细见表1。

表 1达成工作量一览表序号项目单位数目序号项目单位数目1古人研究报告资料采集本207蒲片判定片5002古人学术论文篇308粒度剖析片2003露头剖面采集条509物性剖析件1004钻井岩心剖面采集条20010报告插图幅5野外观察剖面条3011岩相古地理图幅6钻井岩芯观察井20012研究报告份1经过一年的工作获得了以下认识1.确立了奥陶系、石炭—二叠系、中生界三叠—侏罗系堆积系统种类,此中奥陶系主要为碳酸岩堆积,包含4大堆积系统,石炭—二叠系主要为陆源碎屑岩堆积,包含 6 大堆积系统,中生界侏罗系包含三大堆积系统。

鄂尔多斯盆地

鄂尔多斯盆地

1
³ á Ä ­ ¶ ð Ð ¿ Ð Ä
23
30
39
50
88
29
3
石油资源序列状况
截止2001年10月底,探明油田33个,探明地质储量10.185×108t,可采 储 量 2.1094×108t ; 控 制 地 质 储 量 3.2965×108t , 可 升 级 的 控 制 储 量 2.7833×108t ; 预 测 地 质 储 量 6.496×108t , 可 升 级 的 预 测 储 量 3.7209×108t ; 潜 在 资 源 量 10.6672×108t , 可 升 级 的 潜 在 资 源 量 6.2788×108t ;推测资源量 55.2353×108t ,总资源量 85.88×108t 。 2002 年 计 划 探 明 石 油 地 质 储 量 1×108t , 石 油 资 源 潜 力 比 为 1∶2.8∶3.7∶6.3∶55.2。盆地石油资源结构合理,勘探潜力大。
2009年中国七大盆地天然气产量图
250 208.1 200 150 100 50 0 鄂尔多斯 塔里木 四川 松辽 柴达木 渤海湾 准葛尔 44.2 43.1 43.04 36.2 194.4
180.3
亿立方米
2002Ä êÄÄ úÄ ÷ÄÄÄÄÄÄ úÄ
6000 5000 4000
50
13
Ö ò´ Í
26 43 50 0
72
39
38
1
38
4
8
7
21
25
18
60
14
65
97
15
Ê ¤ Ö Ð ½ û Ô ­
· Ó Á Ï
º ­ ·
º ­ Ë Õ

鄂尔多斯盆地解释图版

鄂尔多斯盆地解释图版

R>2 时 为非产水层 R≤2 时 为产水层
庄58井区
庄58井区长8声波时差与电阻率交会图
油层: Rt ≥ 45.0,AC >224,
LOGRT ≥ 6.74912-0.02215*AC, 224≤AC≤230; 水层: Rt ≤30 油水层与水层很难区分,要结合储层与围岩电阻率比值。
庄58井区长8储层电性、试油结果一览表
井号 西 13 西 16 西 17 西 113 西 23 西 143 西 35 西 40 西 44 西 28—31 西 29—37 井段 (m) 2123.0—2127.0 2132.8—2136.4 2156.0—2160.4 2061.6—2066.4 2142.0—2144.0 2145.0—2147.0 1921.0—1924.0 2087.0—2091.6 2040.0—2043.0 1992.0—1994.0 1995.0—1998.0 2170.0—2176.0 2177.0—2182.0 2088.4—2091.6 2092.2—2094.6 2102.0—2105.0 2151.0—2154.0 2160.0—2164.0 厚度 (m) 4.0 3.6 4.4 4.8 2.0 2.0 3.0 4.6 3.0 2.0 3.0 6.0 5.0 3.2 2.4 3.0 3.0 4.0 Rt (Ω .m) 46.7 48.8 33.1 27.5 38.0 36.3 40.0 44.6 35.8 24.5 26.9 21.0 19.0 23.5 22.3 25.0 39.0 27.5 20.0 12.6 13.3 19.0 11.5 13.0 长 7 底界 Rshmin 14.5 13.8 11.0 26.3 电阻率 比值 3.2 3.3 2.4 2.0 2.73 3.45 1.5 2.5 1.79 1.94 2.10 1.58 1.43 1.24 1.17 2.08 3.0 2.1 试油 结论 油 油 油 油水 油 油 油水 油 油水 油 油 油水 油水 油水 油水 油 油 油

鄂尔多斯盆地西南缘中新生代构造演化-PPT精品文档

鄂尔多斯盆地西南缘中新生代构造演化-PPT精品文档

-
K1m 8 0 1 灰 -
褐红 -

生 系
灰-
-
杂-
红-
K1L 1 2 9 9
-
杂灰
--
灰紫
-
-
褐红 -
K1h 8 3 6
-
紫红 -

K1s 1 8 8 灰 紫
J1a 1 1 7

-

J2Z 7 3 . 5 灰 -
-

-

J 2y 3 9 0 灰 -
--
三 叠
灰 --
| J 3 y 7 0 6
-
-
小松山地区中新世 晚期以来最大可达 19.8mm/100a.
贺兰山隆升速率图
银川地堑发育时限 从始新世以来发生强烈拉张沉降, 新生界总厚度可达8400m. 始新世-渐新世为10.8mm/100a, 中新世为10.0mm/100a, 上新世为51.8mm/100a, 第四纪为61.5mm/100a.
表明T3贺兰山地区处于拉 张伸展环境。
贺兰山隆升时限 据裂变径迹分析表明,贺兰山隆升时间主要集中在
3-4个阶段:
139-145Ma(J3); 120-76Ma (K1末-K2);3755Ma(E2)
贺兰山在始新世 以来的隆升速率大于 晚侏罗世-始新世早 期的隆升速率。
汝箕沟地区渐新世 晚期以来的隆升速率 可达7.92mm/100a,
贺兰山: 139-145Ma(J3); 120-76Ma (K1末-K2);37-
六盘山及邻区中新生代演化隆升时限
构造特征上,六盘山弧形冲断体 系主体构造走向自西向东由NW并 逐渐向NS向过渡,整体呈反“S”形, 向南收敛,以弧形束状展布为其鲜 明特点。

鄂尔多斯盆地构造演化与油气成藏(监督培训——08.6)

鄂尔多斯盆地构造演化与油气成藏(监督培训——08.6)
过神15井地震剖面 鄂尔多斯盆地石炭系顶断裂分布图
TC3
TC3
盆地西南部三叠系顶断裂分布图

盆地周缘构造活动性强,是构造油气藏重要勘探领域。

南北隆升
鄂尔多斯盆地南北向横剖面图

西冲东抬
鄂尔多斯盆地东西向横剖面图
2、奥陶系顶面演化与油气运聚

本溪期-早中三叠世,奥陶系顶面中部高,东、西低;此时油气未开始运聚
和上古生界含煤系碎屑岩含气层系

中部含油组合
主要为三叠系陆相碎屑岩含油层系和侏罗系陆相碎屑岩含油层系

上部含气组合
主要为第三系和第四系生物气

下部含气组合
古生界发育上、下古生界两套含气层系、十八个气层组
鄂尔多斯盆地上古生界气层综合柱状图
鄂尔多斯盆地下古生界气层综合柱状图
下古生界气藏主要分布在奥陶系 顶部碳酸盐岩风化壳中,已投入开发 的靖边气田为奥陶系马家沟组气层。
鄂尔多斯盆地奥陶系顶面今构造与油气运聚关系图
成熟-轻质油阶段
成熟-生油阶段
高成熟-湿气阶段
过成熟-干气阶段

加里东运动使盆地抬升,形成长达1亿四千万年左右的沉积间断,不整合
面分布广泛的古风化壳,为碳酸盐岩古地貌圈闭的天然气运移聚集创造了 条件。

天然气聚集在不整合面下的岩溶古地貌
圈闭中,储层为白云岩岩溶储层。
208 235 241 250 260 290 300 468 510 523 536 570
TSB2 TSB1
TS4-1 TS3-3
三 叠 系
中统 纸坊组 下统 刘家 沟组
石千峰组 上统 上 石 河子组
TSB2 TS3-2 TSB2 TS3 上升下降

鄂尔多斯盆地地质特征概述

鄂尔多斯盆地地质特征概述

在地理上,鄂尔多斯盆地是指河套以南,长城以北的内蒙古自治区伊可昭盟地区。

而地质学中的鄂尔多斯盆地范围则广阔,它东起吕梁山,西抵桌子山~贺兰山~六盘山一线,南起秦岭山坡,北达阴山南麓。

包括宁夏东部,甘肃陇东,内蒙古伊可昭盟、巴彦单尔盟南部、阿拉善盟东部,陕北地区,山西河东地区。

面积约37万K㎡。

(长庆油田勘探开发的鄂尔多斯盆地总面积约25万K㎡。

)黄土高原是盆地主要地貌特征,著名的毛乌素沙漠位于盆地北部,周边山系海拔1500~3800m,平均2500m左右。

盆地内部西北高,东南低,海拔800~1800m左右;西北部的银川平原、北部的河套平原、南缘的关中平原,地势相对较低(前二者海拔高度1600m左右,关中平原仅300~600m)。

中华民族的摇篮——黄河沿盆地周缘流过。

盆地内部发育有十几条河流,多数集中在中南部,在东南角汇入黄河,属黄河中游水系;像著名的无定河、延河、洛河、泾河、渭河流域都是我们中华民族的发祥地之一。

盆地内油气勘探始于上世纪初,1907年在地面油苗出露的陕北地区,用日本技术钻了我国大陆第一口油井。

大规模油气勘探、开发始于1970年。

到目前,不但在石油、天然气开采上取得了辉煌成果,而且在地质理论研究、钻采工艺技术等方面取得了重大突破,为世界特低渗透油田开发提供了成功经验。

第一讲盆地构造特征一、区域构造单元划分地质学上讲的鄂尔多斯盆地是一个周边隆起,中部下陷,内部西低东高,不对称的地史时期的沉积盆地;并非现今的地貌盆地。

按地层的分布形态划分为:(盆地一级构造单元)1 、(北部)伊盟隆起2 、(南部)渭北隆起3 、(西部)西缘断褶带、天环坳陷(天环向斜)4 、(东部)晋西挠褶带5 、(中部)陕北斜坡(西倾单斜构造)陕北斜坡是目前我们研究时间最长、认识比较清楚的一个一级构造单元。

由于它的存在,盆地内同一个时期的地层(同一套储层),在西部埋藏深度大,东部埋藏浅。

例如:马岭油田主力含油层延10在庆阳埋深1400m左右,在延安出露地表,西峰油田的长8油层在陇东埋深2200多米,在陕北延河入黄河口处则高悬在山崖上。

鄂尔多斯盆地

鄂尔多斯盆地

AUTHO RSYongtai Yang $Department of Geology,University of Toronto,Toronto,Ontario,M5S 3B1,Canada;yongtaiy@geology.utoronto.ca Yongtai Yang is a Ph.D.candidate at the Uni-versity of Toronto,studying sequence stratig-raphy and basin analysis.He received a B.Sc.degree in geophysics from the Daqing Petro-leum Institute in 1993and an M.Sc.degree in geology from the China Research Institute of Petroleum Exploration and Development (RIPED)in 1996.He worked as a petroleum geologist at RIPED from July 1996to July 2003.Wei Li $Research Institute of Petroleum Exploration and Development (RIPED),Beijing 100083,China;lwe@ Wei Li is pursuing a Ph.D.in geology in the Chengdu University of Technology.He has worked for RIPED since receiving a B.Sc.degree in geology from the Jianghan Petro-leum Institute in 1987and is currently a senior petroleum geologist at RIPED.Long Ma $Department of Geosciences,University of Houston,4800Calhoun,Houston,Texas 77204;lacusdolo@ Long Ma is a Ph.D.candidate at the University of Houston,studying carbonate sedimentol-ogy.He received his B.Sc.and M.Sc.degrees in geology from the Chengdu University of Tech-nology in 1997and RIPED in 2001,respectively.ACKNOWLEDGEMENTSYongtai Yang is grateful to his supervisor,Andrew Miall,for his course ‘‘Seminars in basin Analysis’’and his careful review.We thank Tianguang Xu,Carmala Garzione,Paul Kapp,and Bradley Ritts and journal editors John Lorenz and Carol Christopher for their helpful comments and suggestions.Tectonic and stratigraphiccontrols of hydrocarbon systems in the Ordos basin:Amulticycle cratonic basin in central ChinaYongtai Yang,Wei Li,and Long MaABSTRACTThe Ordos basin is the oldest and still an important hydrocarbon province in central China.It is a typical cratonic basin developed on the Archean granulites and lower Proterozoic greenschists of the North China block.The development of the Ordos basin during the Paleozoic–Mesozoic can be divided into three evolutionary stages:Cambrian–Early Ordovician cratonic basin with divergent margins;Middle Ordovician–Middle Triassic cratonic basin with convergent margins;and Late Triassic–Early Cretaceous intraplate remnant cra-tonic basin.Two hydrocarbon systems are present in the basin:the Paleozoic gas and Mesozoic oil systems.In the Paleozoic gas system,the Lower Ordovician marine carbonates and Pennsylvanian–Lower Permian coal measures serve as source rocks.The Lower Ordovician karst-modified dolomites and Pennsylvanian bauxitic mudstones form a significant reservoir-seal association,and the Pennsylvanian–Lower Permian deltaic sandstones and Upper Permian lacustrine mudstones form another effective reservoir-seal association.In the Mesozoic oil system,the Upper Triassic lacustrine mudstones are mature source rocks.The Upper Triassic deltaic sandstones and over-lying shallow-lacustrine and swamp mudstones form a reservoir-seal association,and the Lower Jurassic fluvial sandstones and overlying shallow-lacustrine and swamp mudstones form another reservoir-seal association.In both hydrocarbon systems,the stratigraphic varia-tions provide the principal traps.The Ordos basin is characterized by a stable tectonic setting that controlled the distribution of depo-sitional systems and the development of erosional surfaces and ulti-mately governed the distribution of oil and gas fields and trap types.AAPG Bulletin,v.89,no.2(February 2005),pp.255–269255Copyright #2005.The American Association of Petroleum Geologists.All rights reserved.Manuscript received February 27,2004;provisional acceptance June 30,2004;revised manuscript received September 23,2004;final acceptance October 7,2004.DOI:10.1360/10070404027INTRODUCTIONThe Ordos basin,with an area of320,000km2(about 124,000mi2),is situated in the western part of the North China block and is bordered to the north,east, south,and west by the Yin,Luliang,Qinling,Liupan, and Helan mountains,respectively(Figure1).The ear-liest oil discovery in China was made in1907in the Ordos basin,but significant hydrocarbon discoveries were not made until the past two to three decades.At present,the increase in proven in-place hydrocarbon re-serves in the basin has become one of the highest among the Chinese petroliferous basins.It is anticipated that before2010,proven in-place gas and oil reserves in the basin will reach50–70tcf and14–18billion bbl, respectively(Hu and He,2001).Sun et al.(1989)provided a review of the evolution of the Ordos basin,which has become a base for later studies in the basin.However,some nonplate tectonic terminologies in this paper,such as‘‘early Paleozoic marine carbonate platform stage with a geosyncline-platform tectonic regime,’’‘‘late Paleozoic to early Me-sozoic intermediate stage characterized by the change from marine facies to inland basinal facies,’’and‘‘Me-sozoic polycyclic inland basin,’’hinder our understanding of the unique geology of the basin in depth.Recently, some studies have been carried out both on the regional tectonics of China and the surrounding areas of the Ordos basin(e.g.,Yin and Nie,1996;Yue et al.,2001) and on the petroleum geology in the basin(e.g.,Zhao et al.,1996;Wang and Al-Aasm,2002).However,no detailed hydrocarbon system study has been published so far.On the basis of recent valuable knowledge on re-gional geology,petroleum geology,and important hy-drocarbon discoveries in the Ordos basin,this paper attempts to review the tectonic and sedimentary evo-lution of the basin,describe the main characteristics of the Paleozoic gas and Mesozoic oil systems,and analyze tectonic and stratigraphic controls of these hydrocar-bon systems.BASIN EVOLUTIONThe North China block consists of a double-layered base-ment:the lower layer of the Archean igneous and meta-morphic rocks,including granulites,migmatitic gran-ites,and gneissic granites,with isotopic ages older than 2500Ma and the upper layer of the lower Proterozoic metamorphic rocks,including greenschists,phyllites, marbles,and metamorphosed volcanic rocks,with iso-topic ages older than1700Ma(Zhang et al.,1980).As a polycyclic basin,the Ordos basin experienced a long geological history from the middle Proterozoic to the Tertiary.As a result,thick sediments were deposited, with an average thickness of4–5km(about2.5–3.0mi) and a maximum thickness of greater than10km(about 6mi)at its western margin(Figure2).This paper mainly concentrates on the basin evolution during the deposi-tion of the Paleozoic and Mesozoic strata,in which all hydrocarbons of the basin were generated and accu-mulated(Figure3).Cambrian–Early Ordovician Cratonic basin with Divergent MarginsTectonicsFrom the Cambrian to the Early Ordovician,divergent continental margins were developed around the North China block,with the paleo-Asian sea at the northern side and the paleo-Qinling sea at the southern side (Sun et al.,1989;Yue et al.,2001)(Figure4).StratigraphyFrom the Cambrian to the early period of the Early Or-dovician,shallow-marine and tidal-flat sediments were extensively deposited on the North China block,includ-ing dolomites,oomicrites,and minor clastic rocks with a thickness of about300–600m(about1000–2000ft) in the main part of the Ordos basin(Sun et al.,1989).During the late Early Ordovician,the North China block experienced a large-scale marine transgression, leading to the deposition of the Majiagou Formation, which consists of dolomites,limestones,and evaporites, and has a thickness of1000–2000m(about3200–6500ft)in the Helan aulacogen and100–900m(about 320–3000ft)in the interior of the Ordos basin(Zhai et al.,2002)(Figures3A,4).The lower part of the Majiagou Formation consists of open platform lime-stones deposited during maximum transgression.During the deposition of the upper Majiagou Formation,marine regression resulted in extensive platform evaporative facies in the basin(Feng et al.,1998;Wang and Al-Aasm, 2002).In the central part of the basin,gypsiferous do-lomite microfacies were developed,extending from south to north,with an east-west width of60–70km (about37–43mi),a north-south length of210km(about 130mi),and an area of15,000km2(about5800mi2).A sequence of mud-sized to silt-sized crystalline dolo-mites interbedded with muddy dolomites was also256Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos BasinF i g u r e 1.(A )S i m p l i f i e d t e c t o n i c m a p o f C h i n a ,s h o w i n g m a j o r f e a t u r e s d i s c u s s e d i n t h e t e x t a n d l o c a t i o n o f t h e O r d o s b a s i n (m o d i f i e d f r o m Z h o u a n dG r a h a m ,1996).(B )I n d e x m a p o f t h e O r d o s b a s i n i n c l u d i n g d i s c o v e r e d o i l a n d g a s f i e l d s a n d s t r u c t u r e c o n t o u r s o f t h e T r i a s s i c t o p (c o m p i l e d f r o m Z h a i ,1990;Q i u a n d G o n g 1999;L i a n d L u ,2002;H e e t a l.,2003).Yang et al.257deposited.These dolomites generally contain readily soluble minerals,i.e.,nodular gypsum,gypsum detri-tus,and crystalline halite,which are favorable for the later formation of secondary dissolution pores (Feng et al.,1998).Middle Ordovician–Middle Triassic Cratonic basin with Convergent MarginsTectonicsFrom the Middle Ordovician to the Mississippian,sedi-mentation was interrupted in the North China block except along its marginal areas,forming a regionally extensive unconformity (Figure 2).The regional un-conformity can be attributed to the synchronicity of two active margins of the North China block,the subduc-tions of the Qaidam block to the south and the paleo-Asian ocean plate to the north,during the Middle Ordovician–Silurian (Yin and Nie,1996)(Figure 1A).During the Pennsylvanian–Early Permian,the North Tarim–North China block began colliding with the Siberia microcontinent and Mongolian arcs (Yin and Nie,1996)(Figure 1A).The Yin Mountains were grad-ually folded and uplifted in the northern part of the block,becoming the main sediment source for the Ordos area.Simultaneously,the South China block be-gan subducting underneath the North China block (Watson et al.,1987;Yin and Nie,1996).It was sug-gested that the collision between the North and South China blocks was a diachronous event,which initiated from the east during the Late Permian and progres-sively migrated to the west during the Triassic (Yang et al.,1991;Li et al.,1993;Yin and Nie,1993).From the Late Permian to the Middle Triassic,the South China block was also subducting underneath the Qiangtang block (Yin and Nie,1996).A remnant ocean basin de-veloped in the Songpan–Ganzi region between the North China block,the South China block,and the Qiangtang block (Ingersoll et al.,1995;Zhou and Gra-ham,1996)(Figure 1A).StratigraphyDuring the hiatus from the Middle Ordovician to the Mississippian,intense meteoric leaching and karstifica-tion of the Ordovician dolomites resulted in the formation of a karst slope inclined to the east in the central part of the basin,in which the reservoir rocks of the Ordo-vician gas field developed (Figure 4).During the Pennsylvanian,the North China block experienced a relatively large-scale transgression,andF i g u r e 2.G e o l o g i c a l c r o s s s e c t i o n i n t h e O r d o s b a s i n (m o d i f i e d f r o m L i a n d L u ,2002).L o c a t i o n o f t h e s e c t i o n i s s h o w n i n F i g u r e 1B .T h e s t r a t i g r a p h y w a s i n t e r p r e t e d f r o m t h e s e i s m i c p r o f i l e s a n d w e l l d a t a .I t i s i n d i c a t e d t h a t t h e P a l e o z o i c –M e s o z o i c s t r a t a i n t h e p r i n c i p a l p a r t o f t h e b a s i n d i p g e n t l y t o t h e w e s t w i t h a n a n g l e o f l e s s t h a n 1j ,a n d m o s t o f o i l a n d g a s p o o l s a r e s t r a t i g r a p h i c t r a p s .258Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos BasinF i g u r e 3.S t r a t i g r a p h i c c o l -u m n s ,d e p o s i t i o n a l e n v i r o n -m e n t s ,a n d s o u r c e -r e s e r v o i r -s e a l a s s o c i a t i o n s i n t h e O r d o s b a s i n (A )f o r t h e L o w e r O r d o -v i c i a n –U p p e r P e r m i a n (c o m -p i l e d f r o m Z h a i ,1990;F e n g e t a l.,1998;H o n g e t a l.,1998;H e e t a l.,2003);(B )f o r t h e U p p e r T r i a s s i c –L o w e r J u r a s s i c (c o m p i l e d f r o m Z h a i ,1990;W a n g 1998).Yang et al.259deposition resumed.During the deposition of the Penn-sylvanian Benxi formation,an extensive tidal-flat en-vironment developed in the central and eastern parts of the Ordos basin,and basal bauxitic mudstones,serving as seal rocks of the Ordovician gas field,and shales interbedded with thin limestones were depos-ited (Figures 3A,5A).The depositional environments of the Pennsylvanian Taiyuan Formation were char-acterized by extensive tidal-flat and shallow-marine facies with limited deltaic sand bodies in the northern part of the basin (Figure 5B)(Fu et al.,2003).This forma-tion consists of black shales interbedded with quartzose sandstones,carbonates,and coals,and has a total thick-ness of 22–276m (about 72–900ft)(Figure 3A).During the Early Permian,extensive delta and shallow-lacustrine environments were developed in the basin (Fu et al.,2003)(Figure 5C).The Lower Permian suc-cession includes two formations,the Shanxi (37–125m [121–410ft]thick)and Xiashihezi (100–200m [328–656ft]thick)(Figure 3A).Both of them consist of fluviodeltaic sandstones interbedded with mudstones in the northern part of the basin,forming the main reservoir rocks of the upper Paleozoic gas fields,and swamp and shallow-lacustrine mudstones interbedded with coals in the central and southern parts of the basin,forming the major gas source rocks of the Paleozoic gas fields (Figures 3A,5C).Minor marine carbonates and fossils were identified in the Lower Permian succes-sion in the southern part of the basin (Tian and Zhang,1997),suggesting small-scale marine transgressions.The Upper Permian–Middle Triassic strata mainly consist of red fluvial,deltaic,and shallow-lacustrine clastic rocks deposited in an arid climate (Zhai,1990).The extensively distributed shore-shallow-lacustrine mudstones of the Xiashihezi Formation serve as seals for the upper Paleozoic gas fields (Figure 3A).During the Early–Middle Triassic,the southwestern part of the Ordos basin experienced marine transgression of the Songpan–Ganzi remnant ocean basin,represented by thin beds of littoral sandstones,mudstones,and carbonates containing marine fossil fragments (Zhang,1997).Triassic–Cretaceous Intraplate Remnant Cratonic basin TectonicsDuring the Late Triassic,the collision and convergence of the North and South China blocks and the collision of the Qiangtang block with the Eurasian plate built the Ordos basin into a complete intraplate basin.Sub-sequently,a series of orogenic movements around the Ordos basin led to a new evolutionary stage of the in-traplate remnant cratonic basin (Figure 1).During the Late Triassic,the Liupan Mountains thrust onto the southwestern Ordos area resulted in the formation of the southwestern Ordos foreland depression (Liu and Yang,2000).At the end of the Late Triassic,the cessa-tion of thrusting and subsequent erosion of the Liupan Mountains led to isostatic rebound of the Ordos basin,which produced a regional unconformity between the Triassic and the Jurassic in the basin (Liu,1998).The subduction of the Kula–Pacific plate beneath the Eur-asian plate since the Early Jurassic (Klimetz,1983)resulted in the uplift of the eastern part of theNorthFigure 4.Map of interpreted sedimentary facies during Majiagou deposition,Early Ordovician,in the Ordos basin,including (1)shallow marine;(2)dolomite flat;(3)gypsiferous dolomite flat;and (4)saline lake (modified from Zhang,1997;Qiu and Gong 1999;Zhai et al.,2002).Divergent continental margins were developed at the southern and northern sides of the North China block.The gas is mainly trapped in the karst-modified gypsiferous dolomites in the karst slope formed during the Middle Ordovician–Mississippian hiatus.260Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos BasinChina block,and at the end of the Jurassic,the Luliang Mountains were formed to the east of the Ordos basin (Sun et al.,1989).During the Late Jurassic,the Lhasa block collided with the Eurasian plate(Yin and Nie, 1996),and the consequent intraplate stresses(Cloe-tingh,1988)caused the contractional deformation and led to the formation of the Helan fold-thrust belt(Liu and Yang,2000)(Figures1B,2).At the end of the Early Cretaceous,the Ordos basin,together with the peri-Pacific areas in eastern China,was uplifted(Li and Lu, 2002),resulting in the termination of sedimentation on the remnant craton(Figure2).StratigraphyDuring the Late Triassic,the southwestern fan deltas and northern deltas developed in the Ordos basin (Figures3B,5D).Clastic wedges,with a thickness more than3000m(about10,000ft),were deposited in the southwestern foreland depression,tapering to the east to less than1000m(about3200ft)in the Ordos basin(Li et al.,1995).Deltaic sand bodies in the north formed the main reservoir rocks of the Triassic oil fields.Extensive semideep and deep lacustrine facies developed in the central and southern parts of the basin, and dark-gray mudstones were deposited,forming the main Mesozoic source rocks.During the deposition of the upper part of the Yanchang Formation,exten-sive swamp and shallow-lacustrine environments de-veloped,resulting in the deposition of mudstones about 100m(about320ft)thick that serve as a regional seal of the Triassic oil pools(Figure3B).The Lower Jurassic Fuxian Formation was depos-ited in local sags formed on the pre-Jurassic erosional surface and is mainly composed of sandstones and con-glomerates of incised braided-channel systems(Wu and Xue,1992)(Figure3B).During the deposition of the lower section of the Yanan Formation,lag gravels and channel-bar sandstones filled the incised valleys, and subsequently,meandering river point-bar sand-stones were deposited directly on erosional terraces(Wu and Xue,1992),forming the main reservoir rocks of the Jurassic oil pools(Figures3B,6).During the depo-sition of the upper section of the Yanan Formation, extensive shallow-lacustrine and swamp environments resulted in the deposition of mudstones about40–90m (130–300ft)thick,which serve as a regional seal of the Jurassic oil pools(Figure3B).The Middle Jurassic strata,with a thickness of300–500m(1000–1600ft), consist of fluvial coarse-grained arkoses in the lower and middle sections and lacustrine mudstones in the upper section(Guo et al.,1994).Less Upper Jurassic sediments were deposited in the main part of the Ordos basin(Zhai,1990).The Lower Cretaceous succession consists of fluvial and lacustrine sediments that have a thickness of200–1000m(650–3200ft)(Sun et al., 1989)(Figure2).PALEOZOIC GAS SYSTEMGas OccurrenceGas exploration in the Ordos basin began in1980,and several small gas fields were discovered in the Ordovician and Permian strata before1989(Zhai,1990).In1989, the CNPC Shaancan-1well flowed gas of10mmcf/day from the karst-modified Ordovician dolomites at the central part of the basin,leading to the discovery of the Changqing gas field(Figures1B,3A).By2001,the proven in-place gas reserves had reached13.4tcf, with a total closure of5727km2(about2210mi2) (Qiu and Gong,1999;Li and Lu,2002).In2000,the PetroChina Su-6well flowed gas of42.5mmcf/day in the Lower Permian Shanxi and Xiashihezi sandstones, resulting in the discovery of the Sulige gas field,which has proven in-place reserves of11.3tcf and proven and probable in-place reserves of30.4tcf(Li and Lu,2002; He et al.,2003)(Figures1B,3A).Source RocksTwo sequences of gas source rocks are present in the Paleozoic,marine carbonates of the Lower Ordovician Majiagou Formation and coal measures of the Penn-sylvanian Taiyuan Formation and the Lower Permian Shanxi Formation(Figure3A).The Majiagou Formation carbonates are exten-sively distributed in the basin,with thickness ranging from tens to hundreds of meters(Figure3A).These carbonates are believed to be poor source rocks,with total organic carbon content values of0.12–0.33%, and have entered late mature and postmature stages with an R o(vitrinite reflectance value)of1.5–5.0%(Lei et al.,2000).The source rocks of the Taiyuan and Shanxi For-mations are mainly composed of shallow-lacustrine and swamp mudstones41–238m(135–780ft)thick, averaging126m(413ft),and coals2–22m(7–72ft) thick,averaging9m(30ft)(Hong et al.,1998;Zhang and Li,2001)(Figure3A).The gray mudstones and coals are good gas source rocks,with total organicYang et al.261262Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basincarbon values of2.0–3.0and75%,respectively(He et al.,2003).These source rocks have generally entered late mature and postmature stages,with R o values of 1.0–3.0%(Zhao et al.,1996).Interpretations of the source rock of the Ordovi-cian gas field are controversial.Based on the gas com-position and carbon isotope,the Majiagou Formation carbonates were evaluated as source rocks of the Or-dovician gas field by Huang et al.(1996).However, other researchers(e.g.,Dai and Xia,1999)suggested that the Pennsylvanian–Permian coal measures are the source rocks.Xu and Shen(1996)and Lei et al. (2000)proposed that the gas of the Ordovician gas field came from both the lower and upper Paleozoic source rocks.Their paper suggested that the upper Paleozoic coal measures are more important as source rocks for the Ordovician gas field than the Ordovi-cian source rocks that have low total organic carbon values.Many studies(e.g.,Fu et al,2001;He et al.,2003) recognized the Pennsylvanian–Permian coal measures as source rocks of the upper Paleozoic gas fields.The unimodal peak values of the d13C1of the upper Pa-leozoic gas are betweenÀ32.5andÀ34.5x,suggest-ing that the gas was derived from only one source.The carbon isotope values of the gas,with d13C1À31to À35x,d13C2À24.3toÀ27.0x,and d13C3À20.5to toÀ26.6x,indicate that they are coal-formed gas from the Pennsylvanian–Permian coal measures(Lei et al.,2000).The pod of effective Ordovician source rocks, which has a total area of25,000km2(10,000mi2),is located in the Jinbian–Yuling–Yanan area(Figure7). Geochemical modeling indicated that the gas generation strength of these source rocks is1.5–2.5Â109m3/km2 (140–230Â109ft3/mi2)(Hong et al.,1998;Zhang and Li,2001).The pod of effective upper Paleozoic source rocks,which has a total area of50,000km2(20,000mi2), is located in the Etuokeqi–Fuxian–Lingxian area and has a gas generation strength of25–45Â108m3/km2 (230–420Â109ft3/mi2)(Hong et al.,1998;Zhang and Li,2001)(Figure7).The Ordovician gas fields were charged by the two source kitchens,and the upper Paleozoic gas fields were only charged by the upper Paleozoic source kitchen.Reservoir RocksTwo sets of reservoir rocks are present in this system: the dolomites of the Lower Ordovician Majiagou For-mation and sandstones of the Pennsylvanian Taiyuan Formation and Lower Permian Shanxi and Xiashihezi Formations(Figure3A).Majiagou FormationThe karst-modified dolomites of the Majiagou For-mation are reservoir rocks of the Changqing gas field (Figure3A).In the karst slope,the karst-modified crust thickens increasingly from40m(130ft)in the west to103.5m(about340ft)in the east(Ma et al.,1998) (Figure4).The main pore types of the Ordovician gas field are intercrystalline pores and vugs(Feng et al., 1998;Wang and Al-Aasm,2002).The karst-modified dolomites have relatively good reservoir properties, with an average porosity of5%and a maximum po-rosity of19.5%,and an average permeability of3md and a maximum permeability of100md(Ma et al., 1998;Yang et al.,2000).The gas field is located almost entirely within the karst slope(Figure4).Taiyuan,Shanxi,and Xiashihezi FormationsAlthough a small quantity of gas has been discovered in the deltas and sand shoals of the Taiyuan Formation (Zhai,1990),the Taiyuan Formation is still believed unfavorable for storing gas because of the lack of sand bodies(Figures3A,5B).During the Early Permian,four large fluviodeltaic sand bodies were developed in the northern part of the basin:the Shizhuishan,Huangjinqi,Jingbian,and Mizhi,from west to east(Fu et al.,2001;He et al., 2003)(Figure5C).Exploration has proven that almost all the upper Paleozoic gas fields were discovered in these four sand bodies,especially in the latter three, which underwent less structural deformation duringFigure5.Maps of interpreted sedimentary facies in the Ordos basin(A)during the deposition of the Pennsylvanian Benxi Formation(modified from Fu et al.,2003);(B)during the deposition of the Pennsylvanian Taiyuan Formation(modified from Fu et al., 2003);(C)during the deposition of the Lower Permian Shanxi and Xiashihezi Formations(modified from Fu et al.2001;Fu et al.,2003; He et al.,2003);four large fluviodeltaic complexes were developed in the northern basin,including(1)Shizhuishan,(2)Huangjinqi, (3)Jingbian,and(4)Mizhi,and gas pools are mainly distributed in them especially in the latter three complexes;and(D)during the deposition of the Upper Triassic Yanchang Formation(modified from Zhai,1990;Qiu and Gong,1999).Oil fields are mainly distributed in delta-front sand bodies in the northern and central parts of the basin.Yang et al.263later tectonic movements than the one in the west.Deltaic distributary channel sandstones of the Shan-xi and Xiashihezi Formations are the main reservoir rocks of the upper Paleozoic gas fields (Figures 3A,5C).A net channel sand bed is generally 5–20m (15–70ft)thick and 100–300m (330–1000ft)wide.The inter-section and superposition of channels resulted in the formation of some large reservoir complexes,with a width of 3–10km (2–6mi)and a length of 200km (120mi).The Xiashihezi reservoirs are mainly composed of medium-to coarse-grained sublitharenites,with 80–90%quartz grains,8–12%rock fragments,and less than 1%feldspar grains,whereas the Shanxi reservoirs are fine-to coarse-grained sublitharenites and lithic arenites,with 65–90%quartz,8–30%rock fragments,and less than 1%feldspar grains (He et al.,2003).The rock frag-ments consist of metamorphic grains and volcanic grains that came from volcanic eruptions almost simulta-neously with the sedimentation (Chen et al.,2002).Because of intense compaction,most primary pores have been lost,and thus,the residual primary pore space accounts for only 0.3–2%and locally 5–8%(Zhang et al.,2002).In the course of diagenesis,organic acid released by the surrounding mudstone and coal en-tered into the Xiashihezi and Shanxi sandstones,leading to the dissolution of volcanic grains.As a result,inter-granular and intragranular dissolution pores,account-ing for 5–7%at the maximum,were developed,pro-viding the principal pore types for storing gas (Zhang et al.,2002).Reservoir quality of the Shanxi Forma-tion sandstones is relatively poor,with porosity of 4–8%and permeability of 0.2–1.5md,whereas the Xiashihezhi formation reservoirs have better reservoir properties,with porosity of 8–12%and permeability of 0.5–2md (Fu et al.,2001).In 2000,a gas reser-voir with porosity of 21.8%and permeability of 561mdFigure 6.Map of interpreted sedimentary facies during the deposition of the lower section of the Lower Jurassic Yanan Formation in the southern Ordos basin (modified from Zhang,1999;Guo et al.2001).The channel-fill deposits mainly consist of coarse-grained sandstones of the channel lag and channel bar of braided river.The meandering river point-bar sand-stones deposited on the channel terraces trap most of the Jurassicoil.Figure 7.Gas generation strength of the Ordovician and Upper Paleozoic source rocks in the Ordos basin (compiled from Hong et al.,1998;Fu et al.2001;Li and Lu,2002;He et al.,2003).The pods of effective Ordovician source rocks and the Upper Paleozoic source rocks are located in the Jinbian–Yuling–Yanan area and the Etuokeqi–Fuxian–Lingxian area,respectively.264Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin。

鄂尔多斯盆地中生界含油气系统特征PPT课件

鄂尔多斯盆地中生界含油气系统特征PPT课件
长6渗透率平均(0.5-1.5)×10-3μm2,长8平均渗透率(0.5-1.2)×10-3μm2。 低渗透探明储量占总探明储量的82%。
100
80 频 率 60 (
% 40 )
20
0.2
0.3
0
长石石英砂岩 岩屑石英砂岩
59.1
长石砂岩
32.6 7.2
岩屑长石砂岩 长石岩屑砂岩
0.6
岩屑砂岩
鄂尔多斯盆地延长组储层砂岩类型直方图
二 延长组三角洲砂体是油气聚集的场所
在整个陕北斜坡上,目前已在直罗组、延安组(含富县组)及延长组 发现了含油层系,但发现工业油气藏的主要是延长组。延长组的长2、 长3、长4+5、长6及长8各个时期发育的三角洲沉积体伸人湖盆中心, 其中的分流河道砂体及河口坝砂体成为有利的储油岩体。
三 低幅鼻褶是油气富集的关键因素
❖ 一、成藏基本条件 ❖ 二、成藏特征 ❖ 三、油气分布规律 ❖ 四、资源潜力 ❖ 五、勘探方向
一、成藏的基本条件
1、丰富的油源是形成大型岩性油藏的基础
鄂尔多斯盆地延长组石油运聚模式图
鄂尔多斯盆地延长组长7烃源岩等厚图
油气运移方向
过剩压力剖面
三叠系延长组长7为最大湖侵期,发育一套深湖相泥岩,主要分布在定边-吴旗 -庆阳-富县一带,范围约 8×104km2,目前已发现的油藏绝大多数位于生烃坳陷 边缘的斜坡地带以及生烃坳陷之内。
岩性油藏,岩性油藏探明地质储 量 10.6637×108t , 占 总 探 明 地 质储量的80.8%
姬塬地区延长组长4+5成藏因素图
6、三叠系延长组油藏主要受控于 湖泊三角洲沉积体系 东北沉积体系成藏模式
沉积底形平缓,砂体形态呈席状、朵状 储层孔隙类型以粒间孔和溶孔为主 油藏分布在曲流河三角洲前缘主砂带 湖岸线摆动幅度大,主要形成长6-长4+5储盖组合

鄂尔多斯盆地概况

鄂尔多斯盆地概况

主要地壳运动
海西运动 加里东运动
怀远运动
蓟县运动 吕梁运动 五台运动
第 15 页
录井公司地质技术研究所
(2)盆地晚古生代沉积-构造特 征:早古生代末期的加里东运动使盆地
整体抬升,遭受志留、泥盆纪、早中石炭 纪约一亿年的剥蚀后,进入晚古生代的海 西构造阶段,盆地在本溪期接受一套海 相—海陆交互相的砂岩、页岩、石灰岩、 铝土岩及煤层沉积;太原期盆地接受一套 海陆交互为主的暗色砂泥岩夹石灰岩和煤 层沉积。
录井公司地质技术研究所
鄂尔多斯盆地概况
录井公司地质技术研究所
第1页
录井公司地质技术研究所
目录 盆地基本特征 盆地构造概况及发展简史 盆地油气层概况 盆地油气地质条件
第2页
录井公司地质技术研究所
一 鄂尔多斯盆地基本特征 (Ordos Basin)
鄂尔多斯盆地以不整合面为重 要界限,为多构造体制、多演化阶 段、多沉积体系、古生代地台及台 缘坳陷与中新生代台内坳陷叠合的 克拉通盆地。
吕 梁 山


第6页
录井公司地质技术研究所
2.盆地面积大小 盆地面积37×104km2,本部面积
25×104km2。
第7页
录井公司地质技术研究所
行政区划:
内蒙古15×104km2 (中部), 陕西11×104km2 (中北部) 宁夏5×104km2 (全境) 甘肃4×104km2 (东部) 山西2×104km2 (西部)
第 12 页
录井公司地质技术研究所
1 鄂尔多斯盆地构造单元划分 六个二级构造单元: 伊盟隆起;西缘掩冲带;天环坳陷;伊陕斜 坡;渭北隆起;晋西挠褶带
第 13 页
录井公司地质技术研究所
第 14 页
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 周边山系: 北部-阴山 南部:秦岭 东部:吕梁 山、中条山 西部:六盘山、贺兰山
盆地整体呈现近南北向的长 方形
3. 地貌
地形复杂, 以北 纬38º线为界分为南 北两部分,长城以 北属沙漠草原区, 地势平坦,气候干 旱;以南为黄土高 原区,侵蚀作用强 烈,沟壑纵横。
3 油气勘探:
1907年-我国大陆第一 口油井延1井-7081m或工业油流-长6 段(延长油田);50年 代 发现延长、永坪等 小规模的油田。
371 764Βιβλιοθήκη 0 1970 1974 1978 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
年度
陕甘宁含油气盆地 (鄂尔多斯盆地)
《鄂尔多斯盆地》
一、概况 二、地质发展史和地层 三、区域构造特征及构造分区 四、含油气层系及其特征 五、典型油气田 六、油气聚集与分布的地质因素 七、中部大气田的地质特征
《鄂尔多斯盆地》
一、概况
1 范围:横跨陕、甘、宁、 蒙、晋五个省,面积25 万km2.广义盆地面积达 37万km2。为我国第二 大盆地。
量 60
、 资
50
源 40
量 30 (10 8 t) 20
10
10.185
2.7833 3.7209
55.2353 6.2788
0 探明
控制
预测
潜在
推测 总资源量
天然气资源序列状况
截 止 2001 年 10 月 底 , 长 庆 油 田 公 司 探 明 气 田 7 个 , 探 明 天 然 气 地 质 储 量 1.1831×1012m3,可采储量8274.58×108m3,控制地质储量3363.57×108m3,可 升级控制储量3363.57×108m3,预测地质储量6042.62×108m3,可升级预测储量 6042.62×108m3 , 潜 在 资 源 量 8082.5×108m3 , 可 升 级 潜 在 资 源 量 5108.21×108m3 , 推 测 资 源 量 7.7705×1012m3 , 天 然 气 总 资 源 量 10.7025×1012m3。2002年计划探明天然气地质储量100×108m3,资源潜力比为 1∶33.6∶60.4∶51.1∶777。勘探潜力很大。
鄂尔多斯盆地石油资源分布图
推测
资源量 64.3%
探明储量 11.9%
控制储量 3.8% 预测储量 7.6%
潜在 资源量 12.4%
探明 控制 预测 鄂潜尔在多斯盆推地测石油资总资源源序量列直方图
10.185 902.7833 3.7209 6.2788 55.2353 85.88
85.88
80
储 70
60年代,进行了大规模 的地质、地球物理勘探 -马岭油田.
70年代,大规模的油气 发现。目前,油气前景 良好
80年代,发展迅速,晚 期—中部大气田。
鄂尔多斯盆地构造区划及勘探成果图
鄂尔多斯盆地具有 满盆气、半盆油,上油、 下气的油气分布格局。 其中陕北斜坡是盆地勘 探开发的主要地区,目 前发现的油气储量90% 以上都分布在该构造单 元。
石油资源序列状况
截止2001年10月底,探明油田33个,探明地质储量10.185×108t,可 采储量2.1094×108t;控制地质储量3.2965×108t,可升级的控制储量 2.7833×108t ; 预 测 地 质 储 量 6.496×108t , 可 升 级 的 预 测 储 量 3.7209×108t ; 潜 在 资 源 量 10.6672×108t , 可 升 级 的 潜 在 资 源 量 6.2788×108t ; 推 测 资 源 量 55.2353×108t , 总 资 源 量 85.88×108t 。 2002 年 计 划 探 明 石 油 地 质 储 量 1×108t , 石 油 资 源 潜 力 比 为 1∶2.8∶3.7∶6.3∶55.2。盆地石油资源结构合理,勘探潜力大。
《鄂尔多斯盆地》
❖ 2005年,长庆油田生产原油940万吨,老油田的 贡献达到800万吨。天然气产量76亿立方米。成 为中石油第二大天然气生产基地,为“西气东 输”的补充气源。
❖ 2005年,延长油田股份有限公司生产原油 838.24万吨,创历史最高纪录 。延长油田股份 有限公司已拥有3个100万吨级油田,4个50万 吨级油田。
量 、 80000
资 源
60000
量 (108m3)
40000
20000
天然气 石油
11831.44 3363.57 6042.62 5108.2
77705
107025
0 探明 控制 预测 潜在 推测 总资源量
探明储量上千亿立方米的气田:苏里格、榆林、乌审旗(上古)、靖边(下古) 四个气田的探明储量占盆地探明储量96.5%。
鄂尔多斯盆地天然气资源分布图
推测
资源量 72.6%
探明储量 11.1% 控制储量 3.1% 预测储量 5.6%
潜在 资源量
7.6%
探明 控制 预鄂测尔多斯潜在盆地天推然测气资源总序资源列量直方图
11831.44 3363.57 6042.62 5108.2 77705 107025 120000
储 100000
油气勘探成果
储量(104t)
140000 120000 100000 80000 60000
长庆油田公司历年累积石油探明储量直方图
131972
119274 107986 100450
88187 81408 74407 64210 54863
40000 20000
40124
24826 26236 27014 27330 28179 28568 28870 29323 30094 22268 14194 9171 9636 9747 10301 10878
“十五”期间,鄂尔多斯盆地成为西部乃至中国的 希望之星。长庆油田不断采取进攻性措施,挑战低渗 透极限,先后在陇东(西峰油田)、姬塬、志靖—安塞 地区的勘探取得重大突破和重要进展,年均增储保持 1亿吨以上水平,成为中国石油增储上产最快的地区。
2006年9月6日,长庆油田原油日产突破3万吨大关, 达到30005吨。
相关文档
最新文档