4实验四 单片机定时器的使用
【报告】单片机定时器计数器实验报告
【关键字】报告单片机定时器计数器实验报告篇一:单片机计数器实验报告计数器实验报告㈠实验目的1. 学习单片机内部定时/计数器的使用和编程方法;2. 进一步掌握中断处理程序的编程方法。
㈡实验器材1. 2. 3. 4. 5.G6W仿真器一台MCS—51实验板一台PC机一台电源一台信号发生器一台㈢实验内容及要求8051内部定时计数器,按计数器模式和方式1工作,对P3.4(T0)引脚进行计数,使用8051的T1作定时器,50ms中断一次,看T0内每50ms来了多少脉冲,将计数值送显(通过LED发光二极管8421码来表示),1秒后再次测试。
㈣实验说明1. 本实验中内部计数器其计数器的作用,外部事件计数器脉冲由P3.4引入定时器T0。
单片机在每个机器周期采样一次输入波形,因此单片机至少需要两个机器周期才能检测到一次跳变,这就要求被采样电平至少维持一个完整的机器周期,以保证电平在变化之前即被采样,同时这就决定了输入波形的频率不能超过机器周期频率。
2. 计数脉冲由信号发生器输入(从T0端接入)。
3. 计数值通过发光二极管显示,要求:显示两位,十位用L4~L1的8421码表示,个位用L8~L5的8421码表示4. 将脉搏检查模块接入电路中,对脉搏进行计数,计算出每分钟脉搏跳动次数并显示㈤实验框图(见下页)程序源代码ORG 00000H LJMP MAINORG 001BH AJMP MAIN1 MAIN:MOV SP,#60HMOV TMOD,#15H MOV 20H,#14H MOV TL1,#0B0H MOV TH1,#3CHMOV TL0,#00H;T0的中断入口地址;设置T1做定时器,T0做计数器,都于方式1工作;装入中断次数;装入计数值低8位;装入计数值高8位MOV TH0,#00HSETB TR1 ;启动定时器T1 SETB TR0 ;启动计数器T0 SETB ET1 ;允许T1中断SETB EA ;允许CPU中断SJMP $;等待中断MAIN1: PUSH PSW PUSH ACC CLR TR0CLR TR1 MOV TL1,#0B0H MOV TH1,#3CHDJNZ 20H,RETUNT MOV 20H ,#14HSHOW: MOV R0,TH0 MOV R1,TL0MOV A,R1 MOV B,#0AH DIV ABMOV C,ACC.3MOV P1.0,C MOV C,ACC.2 MOV P1.1,C MOV C,ACC.1 MOV P1.2,C MOV C,ACC.0 MOV P1.3,CMOV A,B MOV C,ACC.3MOV P1.4,C MOV C,ACC.2 MOV P1.5,C MOV C,ACC.1 MOV P1.6,C MOV C,ACC.0MOV P1.7,C ;保护现场;装入计数值低8位;装入计数值高8位,50ms;允许T1中断;未到1s,继续计时;1s到重新开始;显示计数器T0的值;读计数器当前值;将计数值转为十进制;显示部分,将A中保存的十位赋给L0~L3 将B中保存的各位转移到A中;将个位的数字显示在L4~L7上;RETUNT:MOV TL0,#00H;将计数器T0清零MOV TH0,#00HSETB TR0SETB TR1POP ACCPOP PSWRETI ;中断返回在频率为1000HZ时,L0~L7显示为50;频率为300HZ时,L0~L7显示为15,结果正确,程序可以正确运行。
单片机定时器实验报告
一、实验目的1. 理解单片机定时器的工作原理和功能。
2. 掌握单片机定时器的编程方法,包括初始化、设置定时时间、启动定时器等。
3. 学会使用定时器实现定时功能,并通过实验验证其效果。
二、实验器材1. 单片机实验板2. 连接线3. 51单片机4. 计时器5. 示波器6. 电脑7. Keil软件三、实验原理定时器是单片机的一种重要外设,用于实现定时功能。
51单片机内部有两个定时器,分别为定时器0和定时器1。
定时器的工作原理是通过定时器计数器对机器周期进行计数,当计数器达到设定值时,定时器溢出,并产生中断请求。
定时器0和定时器1都具有四种工作模式,分别为:1. 模式0:13位定时器/计数器2. 模式1:16位定时器/计数器3. 模式2:8位自动重装模式4. 模式3:两个8位计数器本实验采用定时器0工作在模式1,实现50ms的定时功能。
四、实验步骤1. 将单片机实验板连接到电脑,并启动Keil软件。
2. 创建一个新的项目,并添加51单片机头文件(reg51.h)。
3. 编写定时器初始化函数,设置定时器0工作在模式1,并设置定时时间为50ms。
4. 编写定时器中断服务函数,用于处理定时器溢出事件。
5. 编写主函数,设置定时器中断,并启动定时器。
6. 编译并下载程序到单片机实验板。
7. 使用示波器观察定时器0的溢出信号。
五、实验代码```c#include <reg51.h>#define TIMER0_MODE1 0x01// 定时器0初始化函数void Timer0_Init() {TMOD &= 0xF0; // 清除定时器0模式位TMOD |= TIMER0_MODE1; // 设置定时器0工作在模式1TH0 = 0xFC; // 设置定时器0高8位初值TL0 = 0x18; // 设置定时器0低8位初值ET0 = 1; // 开启定时器0中断EA = 1; // 开启总中断TR0 = 1; // 启动定时器0}// 定时器0中断服务函数void Timer0_ISR() interrupt 1 {TH0 = 0xFC; // 重新加载定时器0高8位初值TL0 = 0x18; // 重新加载定时器0低8位初值// ... (其他处理)}void main() {Timer0_Init(); // 初始化定时器0while(1) {// ... (其他处理)}}```六、实验结果与分析1. 编译并下载程序到单片机实验板,使用示波器观察定时器0的溢出信号,可以看到定时器0每隔50ms产生一个溢出信号。
单片机定时器的使用
由于TL0既能作定时器也能作计数器使用,而 TH0只能作定时器使用而不能作计数器使用,因此在 方式3模式下,定时/计数器0可以构成二个定时器或 者一个定时器和一个计数器。
如果定时/计数器0工作于工作方式3,那么定时/ 计数器1的工作方式就不可避免受到一定的限制,因 为自己的一些控制位已被定时/计数器借用,只能工 作在方式0、方式1或方式2下,如果设置T1工作在方 式3,则T1停止工作,相当于其他方式时令TR1=0。
在工业检测、控制中,很多场合都要用到计数或者定 时功能。例如对外部脉冲进行计数、产生精确的定时时间、 作串行口的波特率发声器等。MCS-51单片机内部有两个 可编程的定时器/计数器,以满足这方面的需要。它们具 有 两种工作模数(计数器模式、 定时器模式)和四种工 作方式( 方式0、方式1、方式2、方式3),其控制字均 在相应的特殊功能寄存器(SFR)中,通过对它的SFR的 编程,可以方便的选择工作模数和工作方式。
C/T位:计数器模式和定时器模式的选择位。
C/T=0,为定时器模式,内部计数器对晶振脉冲12分频 后的脉冲计数,该脉冲周期等于机器周期,所以可以理 解为对机器周期进行计数。从计数值可以求得计数的时 间,所以称为定时器模式。
C/T=1,为计数器模式,计数器对外部输入引脚T0 (P3.4)或T1(P3.5)的外部脉冲(负跳变)计数,允许 的最高计数频率为晶振频率的1/24。
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
TF0、TF1分别是定时器/计数器T0、 T1 的溢出标志位, 加法计数器计满溢出时置 1, 申请中断, 在中断响应后自动复 0。TF产生的中断申请是否被接受, 还需要由中断是否开放 来决定。
TR1、TR0 分别是定时器 /计数器T1、 T0 的运行控制位, 通过软件置 1 后, 定时器 /计数器才开始工作, 在系统复位时 被清 0。
单片机定时器实验原理
单片机定时器实验原理一、概述单片机定时器是单片机的重要组成部分,它能够实现定时控制、时间间隔生成等功能。
通过单片机定时器实验,可以更好地了解单片机的内部结构和工作原理,为进一步开发单片机应用系统打下坚实的基础。
二、实验目的1. 掌握单片机定时器的结构和原理。
2. 学会使用单片机定时器进行时间间隔控制。
3. 了解单片机定时器的应用范围和限制。
三、实验原理1. 单片机定时器的结构单片机定时器通常由一个计数器和一个控制逻辑组成。
计数器负责记录脉冲数,控制逻辑负责控制计数器的计数和复位。
单片机定时器通常采用可编程计数脉冲,可以实现任意时间间隔的生成。
2. 单片机定时器的原理单片机定时器的工作原理是基于计数器的计数。
当单片机接收到一个启动信号时,计数器开始计数,当计数达到预设的时间间隔时,单片机输出相应的信号或执行相应的操作。
通过改变计数器的预设值,可以改变时间间隔的长短。
3. 单片机定时器的应用单片机定时器在许多领域都有应用,如智能家居、工业控制、通信设备等。
在智能家居中,可以通过单片机定时器控制家电设备的开启和关闭;在工业控制中,可以通过单片机定时器实现生产线的自动化控制;在通信设备中,可以通过单片机定时器实现时间戳的生成和数据传输的时间控制。
四、实验步骤1. 准备实验器材和软件环境,包括单片机、定时器芯片、编程器、开发板等。
2. 连接实验设备,并调试确保连接正常。
3. 编写实验程序,并上传到单片机中。
4. 观察并记录实验结果,分析误差原因。
5. 根据实验结果,调整程序参数,进行多次实验,直到达到满意的效果。
五、实验注意事项1. 实验过程中要保持设备连接的稳定性,避免意外断开。
2. 编程和调试过程中要确保程序正确,避免误操作导致设备损坏。
3. 注意观察实验现象,及时记录实验数据,分析实验结果。
4. 实验结束后,要清理实验现场,确保设备复位。
六、实验结果分析通过实验,我们能够得到较为准确的时间间隔控制结果。
单片机定时器注意事项
单片机定时器注意事项
单片机定时器是一种非常常用的外设,用于产生精确的时间延迟或者周期性的中断。
在使用单片机定时器时,需要注意以下几点:
1. 定时器的时钟源和分频系数需要正确设置,以确保定时器能够按照预期的方式工作。
2. 定时器的溢出中断需要正确配置和使能,以便在定时器溢出时产生中断。
3. 在编写定时器相关的代码时,需要注意避免死循环和过多的延时操作,以免影响系统的实时性和响应速度。
4. 如果需要使用多个定时器,需要注意它们之间的优先级和相互影响,以避免出现意外的错误。
5. 在使用外部信号控制定时器的启动和停止时,需要注意信号的稳定性和可靠性,以免出现误操作或故障。
在使用单片机定时器时,需要仔细阅读相关的文档和手册,并结合实际应用进行调试和优化,以确保定时器能够稳定可靠地工作。
定时器计数器实验
本实验所用DAIS系列MCS—51单片机仿真实验系统的设单片机的晶振为11.0592MZ。完成对接在P1、P3端口的发光二极管闪亮控制程序的设计和调试。具体要求:
1.选择定时器T0为工作方式1,定时溢出时间为50ms,使P1口的8个发光二极管循环闪亮。
2.选择定时器T0和T1为工作方式0,T0定时溢出时间为50ms,使P3.0口的发光二极管每隔0.1S交替闪亮。T1定时溢出时间为25ms,使P3.1口的发光二极管每隔0.05S交替闪亮。
3.将TO定时器设定为工作方式2,使P1.0口的1个发光二极管每隔50ms交替闪亮。
四、实验预习要求
1.根据硬件电路原理图,分析LED发光二极管点亮的条件,画出实际接线图。
2.阅读教材中有关定时/计数器的内容,熟悉定时/计数器的基本结构和工作过程;计算50ms定时/计数器时间常数;根据实验任务设计出相应的调试程序。
MOV A.P1 ; 将端口P1中值读入A中
RL A ; A中二进制数循环左移
MOV P1,A ; 控制P1端口小灯状态
AJMP LOOP ;转LOOP再循环等待50ms
END ; 结束
五、实验设备 ’
计算机(已安装MCS—51单片机仿真软件),MCS—51单片机仿真实验系统。
六、思考题
定时器工作于方式l、方式2时,其一次溢出的最大定时时间是多少(设单片机的晶振为11.0592MHz)?
七、实验报告要求
1.整理好实验任务1~3中经MCS—51单片机仿真实验系统正确运行的程序。
MOV TH0,#06H ; 赋250 s初值
MOV R0,#200 ;预置定时控制值(250 s×200=50ms)
单片机定时器的工作原理
单片机定时器的工作原理单片机定时器是单片机中非常重要的一个模块,它可以实现对时间的精准控制,广泛应用于各种领域。
那么,单片机定时器的工作原理是怎样的呢?接下来,我们将从定时器的基本原理、工作模式、应用场景等方面进行详细介绍。
首先,我们来了解一下单片机定时器的基本原理。
单片机定时器是通过内部的时钟源来产生一系列的定时脉冲,从而实现对时间的精准控制。
在单片机内部,通常会有一个晶体振荡器,它可以提供一个稳定的时钟信号,作为定时器的时钟源。
定时器会根据这个时钟信号来产生一定频率的定时脉冲,从而实现定时功能。
接下来,我们来看一下单片机定时器的工作模式。
单片机定时器通常有多种工作模式,比如定时模式、计数模式等。
在定时模式下,定时器会根据预设的定时值来产生定时中断,从而实现定时功能;而在计数模式下,定时器会根据外部的计数脉冲来进行计数,从而实现计数功能。
通过不同的工作模式,单片机定时器可以实现各种不同的定时和计数功能,满足不同的应用需求。
除了基本的定时和计数功能外,单片机定时器还可以应用于各种不同的场景。
比如,在嵌入式系统中,定时器可以用来实现定时任务的调度和处理;在通信系统中,定时器可以用来控制数据的传输和接收时间;在工业控制系统中,定时器可以用来控制各种设备的工作时间等。
可以说,单片机定时器在各个领域都有着重要的作用,是单片机中不可或缺的一个模块。
总的来说,单片机定时器是通过内部的时钟源来产生定时脉冲,实现对时间的精准控制。
它具有多种工作模式,可以实现各种不同的定时和计数功能,满足不同的应用需求。
在各种领域中都有着重要的作用,是单片机中非常重要的一个模块。
通过以上的介绍,相信大家对单片机定时器的工作原理有了更深入的了解。
希望本文能对大家有所帮助,谢谢大家的阅读!。
单片机定时器实验报告doc
单片机定时器实验报告篇一:单片机实验报告——定时器实验四定时器实验自动化121班 36 张礼一.实验目的掌握定时器的工作原理及四种工作方式,掌握定时器计数初始值的计算,掌握如何对定时器进行初始化,以及程序中如何使用定时器进行定时。
二.实验仪器单片机开发板一套,计算机一台。
三.实验任务编写程序,使用单片机开发板上8位共阴极数码管的其中一位来显示0~9这九个字符,先从“0”开始显示,数字依次递增,当显示完“9”这个字符后,又从“0”开始显示,循环往复,每1秒钟变换一个字符,1秒钟的定时时间必须由定时器T0(或T1)提供。
开发板上的8位共阴极数码管与单片机的输入输出端口P1的硬件接线如图4-1所示,单片机P1口的8条数据线通过J3端子同时连接到 2片74HC573D锁存器的输入端,数码管的各个同名端分别连接后再与锁存器U2的8个输出端相连,每一位数码管的位选端分别与锁存器U3的8个输出端相连。
两片锁存器的输出使能端OE都恒接地,使得锁存器的内部数据保持器输出端与锁存器的输出端保持接通。
而U2的锁存使能端LE由P2.1控制,所以P2.1是段锁存;U3的锁存使能端LE由P2.0控制,所以P2.0是位锁存。
当锁存使能端为“1”时,则锁存器输入端的数据传送到输出端;当锁存使能端为“0”时,锁存器输入端的数据则不能传送到输出端;因此段码和位码通过锁存器分时输出。
汇编语言程序流程如图4-2:四.实验步骤:1.数码管的0~9的字型码表如下:2.参考图4-2所给的程序流程图编写实验程序。
(注:以下程序为两位60秒计数程序)#include sbit wei=P2^0; sbit duan=P2^1;char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};int i,j,k,num,shi,ge; void delay(int a) {for(i=0;i void display(int shi,int ge){wei=1;P1=0xfe;wei=0;duan=1;P1=table[shi];duan=0;wei=1; delay(5);P1=0xfd;wei=0; duan=1;P1=table[ge];duan=0; }void main() {TMOD=0x01;TH0=(65536-45872)/256; TL0=(65536-45872)%256; EA=1; ET0=1; TR0=1; num=0; while(1) {delay(5);display(shi,ge); } }void T0_time() interrupt 1 {TH0=(65536-45872)/256; TL0=(65536-45872)%256; k++; if(k==20) { k=0; num++;if(num==60)num=0; shi=num/10; ge=num%10; } }3.实验接线,如图4-1。
单片机定时器实验报告
单片机定时器实验报告篇一:单片机实验报告——定时器实验四定时器实验自动化121班 36 张礼一.实验目的掌握定时器的工作原理及四种工作方式,掌握定时器计数初始值的计算,掌握如何对定时器进行初始化,以及程序中如何使用定时器进行定时。
二.实验仪器单片机开发板一套,计算机一台。
三.实验任务编写程序,使用单片机开发板上8位共阴极数码管的其中一位来显示0~9这九个字符,先从“0”开始显示,数字依次递增,当显示完“9”这个字符后,又从“0”开始显示,循环往复,每1秒钟变换一个字符,1秒钟的定时时间必须由定时器T0(或T1)提供。
开发板上的8位共阴极数码管与单片机的输入输出端口P1的硬件接线如图4-1所示,单片机P1口的8条数据线通过J3端子同时连接到 2片74HC573D锁存器的输入端,数码管的各个同名端分别连接后再与锁存器U2的8个输出端相连,每一位数码管的位选端分别与锁存器U3的8个输出端相连。
两片锁存器的输出使能端OE都恒接地,使得锁存器的内部数据保持器输出端与锁存器的输出端保持接通。
而U2的锁存使能端LE由P2.1控制,所以P2.1是段锁存;U3的锁存使能端LE由P2.0控制,所以P2.0是位锁存。
当锁存使能端为“1”时,则锁存器输入端的数据传送到输出端;当锁存使能端为“0”时,锁存器输入端的数据则不能传送到输出端;因此段码和位码通过锁存器分时输出。
汇编语言程序流程如图4-2:四.实验步骤:1.数码管的0~9的字型码表如下:2.参考图4-2所给的程序流程图编写实验程序。
(注:以下程序为两位60秒计数程序)#include sbit wei=P2^0; sbit duan=P2^1;char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};int i,j,k,num,shi,ge; void delay(int a) {for(i=0;i void display(int shi,int ge){wei=1;P1=0xfe;wei=0;duan=1;P1=table[shi];duan=0;wei=1; delay(5);P1=0xfd;wei=0; duan=1;P1=table[ge];duan=0; }void main() {TMOD=0x01;TH0=(65536-45872)/256; TL0=(65536-45872)%256; EA=1; ET0=1; TR0=1; num=0; while(1) {delay(5);display(shi,ge); } }void T0_time() interrupt 1 {TH0=(65536-45872)/256; TL0=(65536-45872)%256; k++; if(k==20) { k=0; num++;if(num==60)num=0; shi=num/10; ge=num%10; } }3.实验接线,如图4-1。
单片机实验四-定时器和中断的应用实验(1)
实验四定时器和中断应用实验一、实验目的1. 学习定时器的编程和使用2.学习中断的使用方法二、实验说明P1口是准双向口,它作为输出口时与一般的双向口使用方法相同。
由准双向口结构可知当P1口用作输入口时,必须先对口的锁存器写“1”,若不先对它写“1”,读入的数据是不正确的。
三、实验内容及步骤1.使用单片机最小应用系统。
用八位数据线连接单片机P1口JD2F与八位逻辑电平显示模块JD3I,打开相关模块电源。
2.用串行数据通信线连接计算机与仿真器,把仿真器插到单片机最小系统的锁紧插座中,请注意仿真器的方向:缺口朝上。
打开单片机最小应用系统的电源开关。
3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,编制源程序,进行编译,直到编译无误。
4.进行软件设置,选择硬件仿真,选择串行口,设置波特率为38400。
5.打开模块电源和总电源,点击开始调试按钮,点击RUN按钮运行程序,观察发光二极管显示情况。
实验1用导线分别把单片机最小应用系统的 P1.1接拨断开关K0,P1.0接发光二极管L0。
采用定时中断处理方式,通过拨断开关K0控制二个不同占空比的脉冲信号输出,即当K0=0时,从P1.0输出周期为1秒占空比为50%的方波、当K0=1时,从P1.0输出周期为1秒占空比为20%的方波。
实验2用导线将实验箱上的单次脉冲源的负脉冲信号接到单片机最小应用系统的INT0( P3.2)输入引脚,模拟中断请求脉冲输入信号,P1.0接发光二极管L0。
程序响应中断请求执行中断服务程序使发光二极管L0闪烁3次,这样每输入一个中断请求脉冲(即按下单次脉冲源按钮),使发光二极管L0闪烁3次要求同学自己思考:修改实验2程序,每输入一个中断请求脉冲(即按下单次脉冲源按钮),使P1口连接的8个发光二极管从右到左(L0到L7)循环点亮一次(每个发光二极管闪烁3次)。
再按下单次脉冲源按钮,重复上述过程。
实验3用导线将拨断开关K0接到单片机最小应用系统的INT1( P3.3)输入引脚,并将开关K0拨在低电平位置K0=0。
定时计数器实验
实验四、定时/计数器实验一、实验目的1、学习51单片机内部定时计数器的使用和编程方法。
2、进一步掌握中断处理程序的编程方法。
二、实验内容1、定时器实验(1)基本部分:用CPU内部定时器中断方式计时,实现每一秒钟输出状态发生反转。
(2)扩展部分:利用P1口控制发光二极管LED按照下面方式工作:a)从左到右奇数LED灯依次点亮;b)从右到左偶数LED灯依次点亮;c)按照以上步骤重复运行,要求灯亮的时间为1s,由定时器T1实现。
2、计数器实验8501内部定时计数T0,按计数器模式和方式1工作,对P3.4(T0)引脚进行计数。
将其数值按二进制数在P1口驱动LED灯上显示出来。
三、实验连线1、基础部分:JP8(P1)和JP1(LED)用8PIN排线连接起来。
计数器实验还需用杜邦线连接P3.5(JP9)与独立键(JP5).2、扩展部分:实验1的扩展部分选用P2口,即JP11(P2)和JP1(LED)用8PIN排线连接起来。
四、实验步骤与说明1、定时器实验(1)基本部分a)编写程序:由于系统的晶振是12MHZ,即机器周期为1微秒,选择定时器工作在方式1,设定定时时间为50ms,则要循环20次,计算其初值为(65536—50000/1)。
接着编写程序如下:#include<reg51.h>unsigned char i;void main(){P1=0;TMOD=0x01;EA=1; ET0=1; TR0=1;i=20;TH0=(65536-50000)/256; TL0=(65536-50000)%256;while(1);}void timer() interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;i--;if(i==0){ P1=~P1;i=20;}}b)将程序烧入单片机内,观察现象。
(2)扩展部分按要求写出如下程序并烧入单片机,程序如下:#include<reg51.h>#include<intrins.h>unsigned char i=0;unsigned char sum;void main(){P2=0xfe;TMOD=0x01;TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;ET0=1;TR0=1;while(1);}void timer0() interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;sum++;if(sum==20){sum=0;i++;if(i<4){P2=_crol_(P2,2);}if(i==4){P2=0x7f;}if((i>4) && (i<8)){P2=_cror_(P2,2);}if(i==8){P2=0xfe;i=0;}}}编译生成hex文件烧入单片机观察现象。
单片机定时器的应用proteus仿真实验报告总结
单片机定时器的应用proteus仿真实验报告总结一、实验目的
本次实验旨在通过使用Proteus仿真软件,掌握单片机定时器的应用,了解定时器的工作原理和使用方法。
二、实验原理
单片机定时器是一种常用的计时和延时控制器,它可以在特定时间内
产生一个周期性的信号。
单片机定时器通常由一个计数器和一个比较
器组成。
计数器会不断计数,当计数值达到设定值后,比较器会发出
一个触发信号。
通过对比较器输出信号进行处理,可以实现各种延时
和周期性控制。
三、实验材料
1. Proteus仿真软件
2. 单片机模块
3. LED灯
4. 电阻
5. 电容
四、实验步骤
1. 打开Proteus软件,并新建一个电路图。
2. 在电路图中添加单片机模块、LED灯、电阻和电容等元件。
3. 连接电路图中各元件之间的线路。
4. 设置单片机定时器参数,并编写程序代码。
5. 进行仿真测试,并记录测试结果。
五、实验结果分析
在本次实验中,我们成功地使用了Proteus仿真软件进行了单片机定
时器的应用测试。
通过设置单片机定时器参数和编写程序代码,我们
成功地实现了对LED灯的周期性控制,达到了预期的效果。
六、实验总结
通过本次实验,我们深入了解了单片机定时器的工作原理和应用方法,并掌握了使用Proteus仿真软件进行单片机定时器测试的技能。
这对
于我们今后的学习和工作都具有很大的帮助。
单片机定时器实训报告
一、实训背景随着电子技术的不断发展,单片机作为嵌入式系统中的核心部件,得到了广泛应用。
定时器作为单片机的重要功能模块,能够实现定时、计数等功能,是单片机应用系统设计的关键技术之一。
为了提高学生的单片机应用能力,本次实训选取了基于51单片机的定时器应用作为实训内容。
二、实训目的1. 掌握51单片机定时器的基本原理和工作方式;2. 学会使用定时器实现定时、计数等功能;3. 培养学生动手实践能力和解决实际问题的能力;4. 提高学生对单片机应用系统的设计水平。
三、实训内容本次实训主要涉及以下内容:1. 51单片机定时器原理及工作方式;2. 定时器初始化编程;3. 定时器中断编程;4. 定时器应用实例:LED流水灯控制。
四、实训步骤1. 学习51单片机定时器原理及工作方式,掌握定时器的工作模式、定时器计数范围等参数;2. 编写定时器初始化程序,包括定时器模式选择、计数初值设置等;3. 编写定时器中断服务程序,实现定时功能;4. 编写LED流水灯控制程序,实现定时器中断触发LED流水灯效果;5. 将程序烧录到单片机中,进行实验验证。
五、实训结果与分析1. 定时器初始化编程:根据实训要求,设置了定时器模式、计数初值等参数,实现了定时器定时功能;2. 定时器中断编程:编写了定时器中断服务程序,实现了定时器中断触发功能;3. LED流水灯控制:通过定时器中断触发,实现了LED流水灯效果,验证了定时器应用实例的正确性。
在实训过程中,遇到以下问题及解决方法:1. 定时器计数初值设置错误:通过查阅资料,了解了定时器计数初值的计算方法,正确设置了计数初值;2. 定时器中断服务程序编写错误:通过分析程序,发现中断服务程序中存在逻辑错误,修改后程序运行正常。
六、实训心得通过本次实训,我深刻认识到以下内容:1. 定时器在单片机应用系统中的重要作用,掌握了定时器的基本原理和工作方式;2. 编程过程中,要注重代码的可读性和可维护性,提高编程效率;3. 在遇到问题时,要善于查阅资料,分析问题原因,并采取有效措施解决问题;4. 实训过程中,要注重理论与实践相结合,提高动手实践能力。
实验四 定时器实验
上海电力大学单片机原理应用
实验名称:实验四定时器实验(中断实验)专业班级
学生姓名:学号:
实验四 定时器实验(中断控制)
一、实验目的
1. 掌握单片机定时器的使用方法
2. 掌握中断的使用方法
二、实验内容
采用中断方式控制定时器。
使得单片机P0.0口产生周期为1S 的方波,控制发光二极管D1以1S 为周期闪烁(即亮、灭的时间各为0.5S )。
单片机P0.1口产生周期为20S 的方波,控制发光二极管D2以20S 为周期闪烁(即亮、灭的时间各为10S )
三、
实验说明
中断定时时间可设置为50ms ,计时50ms 时间到即进入中断子程序。
同时,程序设置两个计数器,进入中断子程序则计数器10减1,计数器10减为0则定时时间为0.5s ,此时可将P0.0口的值取反,产生周期为1s 的方波;而当0.5s 时间到,计数器20可减1,当减为0则定时时间为10s ,此时可将P0.1口的值取反,产生周期为20s 的方波。
四、 实验程序框图
图(4-1)
中断子程序: 主程序:
五、实验步骤
1. 调试、运行程序。
2.观察D1以及D2的闪烁情况。
实验4:定时与中断系统实验
实验四:定时与中断系统实验一、实训目的1.利用单片机的定时与中断方式,实现对信号灯的复杂控制。
2.通过定时器程序调试,学会定时器方式1的使用。
3.通过中断程序调试,熟悉中断的基本概念。
二、实验仪器、材料1.微型计算机(PⅣ以上)2.编程、汇编与模拟平台软件Keil uVision33.电子技术专业仿真软件protues运行平台4.单片机实训开发电路板三、实验内容和步骤1.定时器查询方式1)要求:信号灯循环显示,时间间隔为1秒。
2)方法:用定时器方式1编制1秒的延时程序,实现信号灯的控制。
系统采用12M晶振,采用定时器T1方式1定时50ms,用R3做50ms计数单元,其源程序可设计如下:ORG 0000HCONT:MOV R2,#07HMOV A,#0FEHNEXT:MOV P2,AACALL DELAYRL ADJNZ R2,NEXTMOV R2,#07HNEXT1:MOV P2,ARR AACALL DELAYDJNZ R2,NEXT1SJMP CONTDELAY:MOV R3,#14H ;置50ms计数循环初值MOV TMOD,#10H ;设定时器1为方式1MOV TH1,#3CH ;置定时器初值MOV TL1,#0B0HSETB TR1 ;启动T1LP1:JBC TF1,LP2 ;查询计数溢出SJMP LP1 ;未到50ms继续计数LP2:MOV TH1,#3CH ;重新置定时器初值MOV TL1,#0B0HDJNZ R3,LP1 ;未到1s继续循环RET ;返回主程序END2.定时器中断方式1)要求:信号灯循环显示,时间间隔为1秒。
2)方法:用定时器中断方式编制1秒的延时程序,实现信号灯的控制。
采用定时器T1中断定时50ms,用R3做50ms计数单元,在此基础上再用08H位作1s 计数溢出标志,主程序从0100H开始,中断服务程序名为CONT。
可设计源程序如下:ORG 0000H ;程序入口AJMP 0100H ;指向主程序ORG 001BH ;定时器T1中断入口AJMP CONT ;指向中断服务程序ORG 0100HMAIN:MOV TMOD,#10H ;置T1为工作方式1MOV TH1,#3CH ;置50ms定时初值MOV TL1,#0B0HSETB EA ;CPU开中断SETB ET1 ;定时器T1开中断SETB TR1 ;启动T1CLR 08H ;清1s计满标志位MOV R3,#14H ;置50ms循环初值DISP:MOV R2,#07HMOV A,#0FEHNEXT:MOV P2,AJNB 08H,$ ;查询1s时间到否CLR 08H ;清标志位RL ADJNZ R2,NEXTMOV R2,#07HNEXT1:MOV P2,AJNB 08H,$CLR 08HRR ADJNZ R2,NEXT1SJMP DISPCONT:MOV TH1,#3CH ;重置50ms定时初值MOV TL1,#0B0HDJNZ R3,EXIT ;判1s定时到否MOV R3,#14H ;重置50ms循环初值SETB 08H ;标志位置1EXIT:RETIEND四、实训总结与分析1.定时器查询方式和前面的实验相比,硬件电路一致,效果一样,但二者软件的编制方法不同。
单片机 定时器连续模式 应用场景
单片机定时器连续模式应用场景
1. 实时时钟:在需要精确时间的系统中,可以使用单片机定时器连续模式来产生实时时钟。
定时器可以每秒产生一个中断,用于更新时间信息。
2. 定时唤醒:在某些需要周期性工作的系统中,可以使用单片机定时器连续模式来实现定时唤醒功能。
例如,在物联网设备中,可以使用定时器每隔一段时间唤醒系统,进行数据采集或传输。
3. 信号发生器:在需要产生周期性信号的系统中,可以使用单片机定时器连续模式来产生方波、三角波等信号。
4. 电机控制:在电机控制系统中,可以使用单片机定时器连续模式来实现速度闭环控制。
定时器可以测量电机的转速,并根据设定的转速进行调节。
5. 游戏开发:在游戏开发中,可以使用单片机定时器连续模式来实现游戏角色的运动控制、背景音乐的播放等功能。
总之,单片机定时器连续模式在许多领域都有广泛的应用,可以根据具体需求选择合适的应用场景。
单片机中的定时器和计数器
单片机中的定时器和计数器单片机作为一种嵌入式系统的核心部件,在各个领域都发挥着重要的作用。
其中,定时器和计数器作为单片机中常用的功能模块,被广泛应用于各种实际场景中。
本文将介绍单片机中的定时器和计数器的原理、使用方法以及在实际应用中的一些典型案例。
一、定时器的原理和使用方法定时器是单片机中常见的一个功能模块,它可以用来产生一定时间间隔的中断信号,以实现对时间的计量和控制。
定时器一般由一个计数器和一组控制寄存器组成。
具体来说,定时器根据计数器的累加值来判断时间是否到达设定的阈值,并在时间到达时产生中断信号。
在单片机中,定时器的使用方法如下:1. 设置定时器的工作模式:包括工作在定时模式还是计数模式,以及选择时钟源等。
2. 设置定时器的阈值:即需要计时的时间间隔。
3. 启动定时器:通过控制寄存器来启动定时器的运行。
4. 等待定时器中断:当定时器计数器的累加值达到设定的阈值时,会产生中断信号,可以通过中断服务函数来进行相应的处理。
二、计数器的原理和使用方法计数器是单片机中另一个常见的功能模块,它主要用于记录一个事件的发生次数。
计数器一般由一个计数寄存器和一组控制寄存器组成。
计数器可以通过外部信号的输入来触发计数,并且可以根据需要进行计数器的清零、暂停和启动操作。
在单片机中,计数器的使用方法如下:1. 设置计数器的工作模式:包括工作在计数上升沿触发模式还是计数下降沿触发模式,以及选择计数方向等。
2. 设置计数器的初始值:即计数器开始计数的初始值。
3. 启动计数器:通过控制寄存器来启动计数器的运行。
4. 根据需要进行清零、暂停和启动操作:可以通过控制寄存器来实现计数器的清零、暂停和启动操作。
三、定时器和计数器的应用案例1. 蜂鸣器定时器控制:通过定时器模块产生一定频率的方波信号,控制蜂鸣器的鸣叫时间和静默时间,实现声音的产生和控制。
2. LED呼吸灯控制:通过定时器模块和计数器模块配合使用,控制LED的亮度实现呼吸灯效果。
微机原理 单片机 实验4 定时计数器应用
MOV TH0,# H MOV TL0,# H SETB ET0 SETB EA SETB ET1 MOV TH1,# H MOV TL1,# H SETB TR0 SETB TR1 SJMP $ DVT0 :MOV TH0,# H MOV TL0,# H CPL P1.7 RETI DVT1: MOV TH1,# H MOV TL1,# H CPL P1.6 RETI END
mov mov mov setb ajmp int_timer0: mov mov djnz mov djnz mov cpl l1: reti end
ie,#82h 30h,#10 31h,#6 tr0 $
;设置中断允许寄存器
;30H和31H是两个软件计数器。 ;启动定时 ;原地踏步 ;定时器0中断服务程序。 th0,#high (65536-50000) tl0,#low(65536-50000) ;重设50MS定时。 30h,l1 30h,#10 31h,l1 31h,#6 ;软件计数 p1.1 ;10*6*50MS=3000MS时间到,P1.1取反 ;中断返回
实验四 定时计数器应用
一、实验目的:
1、单片机系统中,可以用软件或硬件定时,当定时时 间较长,定时准确率要求较高时,应采用硬件定时。 MCS—51系列单片机中有2个16位的可编程定时/计 数器T0和T1,通过本实验要求掌握T0、T1的初始化 编程和应用。 2、熟悉XLISP系列 单片机综合仿真试验仪的组成和 使用方法。学会应用XLISP仿真试验和keil-uvision2集 成调试软件进行仿真实验。掌握仿真实验的步骤并能 得到正确的实验结果。
Байду номын сангаас
4、思考题: P1口接8个LED灯循环点亮(间隔1s),P3.2接键盘, 按下后实现中断,使全部LED灯闪烁(间隔0.5s)5次 后继续循环点亮。 间隔时间(1s和0.5s)用定时计数器定时实现。
单片机定时器的工作原理
单片机定时器的工作原理
单片机定时器是一种用于控制和测量时间的重要功能模块。
它通过计数定时器来实现定时的功能。
单片机定时器一般由一个计数器和相关的控制寄存器组成。
计数器用于储存和维护计时的数值,而控制寄存器则用于配置定时器的工作方式和触发条件。
定时器的工作原理如下:
1. 初始化计数器:在使用定时器前,需要对计数器进行初始化,将其清零或者设定为初始值。
2. 定时器开始计数:经过初始化后,定时器开始从初始值开始计数。
计数器可以按照一定的时钟频率进行增加。
3. 计数器达到设定值:当计数器的数值达到设定的目标值时,定时器会触发一个中断请求或者产生一个输出信号,用于通知外部系统。
4. 可选择的处理中断或输出信号:根据实际需求,可以选择在定时器触发中断请求后进行相应的中断处理,或者对输出信号进行相应的操作。
5. 定时器复位或重新计数:在完成一定的操作后,可以选择将定时器重新设定为初始值,或者清零计数器,以重新开始计时。
总之,单片机定时器通过计数器实现定时功能,当计数器达到设定值时触发中断请求或输出信号,从而控制和测量时间。
它在很多应用中都发挥着重要的作用,比如定时测量、脉冲计数、PWM输出等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓名:学号:日期:
实验四单片机定时器的使用
一、实验名称:单片机定时器的使用
二、实验目的
1.掌握在Keil环境下建立项目、添加、保存源文件文件、编译源程序的方法;
2.掌握运行、步进、步越、运行到光标处等几种调试程序的方法;
3.掌握在Proteus环境下建立文件原理图的方法;
4.实现Proteus与Keil联调软件仿真。
三、使用仪器设备编号、部件及备件
1.实验室电脑;
2.单片机实验箱。
四、实验过程及数据、现象记录
1.在Proteus环境下建立如下仿真原理图,并保存为文件;
原理图中常用库元件的名称:
无极性电容:CAP 极性电容:CAP-ELEC 单片机:AT89C51
晶体振荡器:CRYSTAL 电阻:RES 按键:BUTTON
发光二极管:红色LED-RED 绿色LED-GREEN 蓝色LED-BLUE 黄色LED-YELLOW
2.在Keil环境下建立源程序并保存为.ASM文件,生成.HEX文件;
参考程序如下:
ORG 0000H
LJMP MAIN
ORG H ;定时器T0的入口地址
LJMP TIMER0
MAIN: MOV TMOD,#01H
MOV R0,#05H
MOV TH0,# H ;定时器的初值
MOV TL0,# H
SETB ;开定时器T0的中断
SETB ;开CPU的中断
SETB ;启动定时器T0
MOV A,#01H
LOOP: MOV P1,A
RL A
CJNE R0,#0,$
MOV R0,#05H
SJMP LOOP
TIMER0: DEC R0
MOV TH0,# H ;重装初值
MOV TL0,# H ;重装初值
RETI
END
将以上程序补充完整,流水时间间隔为250ms。
3.将.HEX文件导入仿真图,运行并观察结果;
4.利用Keil软件将程序下载至实验箱,进行硬件仿真,观察实验结果。
五、实验数据分析、误差分析、现象分析
现象:实现流水灯,时间间隔250ms,由定时器实现定时250ms。
六、回答思考题
1.定时器由几种工作模式,各种模式的最大定时时间是多少?
2.各种模式下初值怎么计算?。