第四章 控制算法的模拟化设计方法1
13最少拍无差系统设计
1
2
Tz ( 2 z z ) C ( z ) ( z ) R( z ) 1 2 (1 z )
2
Tz 1 ( 2 z 1 z 2 ) C ( z ) ( z ) R( z ) 1 2 (1 z )
C ( z ) 2Tz 3Tz 4Tz
Φ (z)
R(z) r(t) + e*(t) u*(t) G(z) C(z) c(t)
D(z)
E(z) U(z)
H(s)
GC(s)
D( z )G( z ) C(z) ( z ) 系统的误差传递函数Фe(z) R( z ) 1 D( z )G( z )
为:
E ( z ) R( z ) C ( z ) C(z) e (z) 1 1 ( z ) R( z ) R( z ) R( z )
1 z 1
0
e( ) lim 1 z
z 1
1
1 ( z )R( z ) 0
典型输入Z变换的一般形式为:
A( z ) R( z ) (1 z 1 )q
A( z ) 1 ( z ) 0 e( ) lim1 z 1 q z 1 (1 z )
制时,很难满足要求。 此时,往往从被控对象的特性出发,
直接根据采样系统理论设计控制器,
这种方法称为直接设计法。
直接设计法
假定对象本身是离散化模型或者用 离散化模型表示的连续对象,以采 样理论为基础,以Z变换为工具,在 Z域中直接设计出数字调节器D(z)。
数学工具:差分方程、Z变换
由于D(z)是依照稳定性、准确性和快
E( z) e (z) 1 ( z ) R( z )
控制算法
1、自动控制技术及其应用
所谓自动控制,是指没有人直接参与的情况下,利 用外加的设备或装置(称控制装置或控制器),使机器、 设备或生产过程(统称被控量)的某个工作状态或参数 (即被控量)自动地按照预定的规律运行。 如:
飞机导航
2、反馈控制原理
反馈控制是这样的一种控制过程,它能构在存 在扰动的情况下,力图减小系统的输出量与参考输 入量(也称参据量)之间的偏差,而其工作正是基 于这一偏差基础之上的,这就是反馈控制的原理。 如人取桌上书的过程(见下图):
改写为:
u(k ) K p K I K D ek K p 2K D ek 1 K Dek 2
令三个动态参数为中间变量:
A K p K I K D B K p 2K D
则有: u(k )
C KD
Aek Bek 1 Cek 2
K
P
[ E (k ) E (k 1)] K I E (k )
(6-7)
K D [ E (k ) 2 E (k 1) E (k 2)]
式中 KP 、KD同式(6-6)。
式(7-7)差系数控制算法)
将增量型PID控制算法:
u(k ) K p (ek ek 1 ) K I ek K D (ek 2ek 1 ek 2 )
3. 比例微分调节器
微分调节器的微分方程 为:
de (t ) y TD dt
微分作用响应曲线如图所示。
PD调节器的阶跃响应曲线如图所示。
4. 比例积分微分调节器
为了进一步改善调节品质,往往把比例、积 分、微分三种作用组合起来,形成PID调节器。 理想的PID微分方程为:
计算机控制技术课后习题答案
|3.微型计算机控制系统的硬件由哪几部分组成各部分的作用是什么由四部分组成。
图微机控制系统组成框图(1)主机:这是微型计算机控制系统的核心,通过接口它可以向系统的各个部分发出各种命令,同时对被控对象的被控参数进行实时检测及处理。
主机的主要功能是控制整个生产过程,按控制规律进行各种控制运算(如调节规律运算、最优化计算等)和操作,根据运算结果作出控制决策;对生产过程进行监督,使之处于最优工作状态;对事故进行预测和报警;编制生产技术报告,打印制表等等。
(2)输入输出通道:这是微机和生产对象之间进行信息交换的桥梁和纽带。
过程输入通道把生产对象的被控参数转换成微机可以接收的数字代码。
过程输出通道把微机输出的控制命令和数据,转换成可以对生产对象进行控制的信号。
过程输入输出通道包括模拟量输入输出通道和数字量输入输出通道。
(3)外部设备:这是实现微机和外界进行信息交换的设备,简称外设,包括人机联系设备(操作台)、输入输出设备(磁盘驱动器、键盘、打印机、显示终端等)和外存贮器(磁盘)。
其中操作台应具备显示功能,即根据操作人员的要求,能立即显示所要求的内容;还应有按钮,完成系统的启、停等功能;操作台还要保证即使操作错误也不会造成恶劣后果,即应有保护功能。
—(4)检测与执行机构a.测量变送单元:在微机控制系统中,为了收集和测量各种参数,采用了各种检测元件及变送器,其主要功能是将被检测参数的非电量转换成电量,例如热电偶把温度转换成mV信号;压力变送器可以把压力转换变为电信号,这些信号经变送器转换成统一的计算机标准电平信号(0~5V或4~20mA)后,再送入微机。
b.执行机构:要控制生产过程,必须有执行机构,它是微机控制系统中的重要部件,其功能是根据微机输出的控制信号,改变输出的角位移或直线位移,并通过调节机构改变被调介质的流量或能量,使生产过程符合预定的要求。
例如,在温度控制系统中,微机根据温度的误差计算出相应的控制量,输出给执行机构(调节阀)来控制进入加热炉的煤气(或油)量以实现预期的温度值。
过程控制作业参考答案
作 业第二章:2-6某水槽如题图2-1所示。
其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。
图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i这里:21121212111111R R A T R R R R R R K +=+=+=;2Q112-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。
解:如图为三个单链单容对像模型。
被控参考△h 3的动态方程: 3233Q Q dt h d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dt h d c ∆-∆=∆;11R hQ ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T 均为常数。
毕业设计-神经网络控制算法仿真设计
摘要目前,由于PID结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。
电厂主汽温被控对象是一个大惯性、大迟延、非线性且对象变化的系统,常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的围。
但当运行工况发生较大变化时,却很难保证控制品质。
因此本文研究基于BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。
本处用一个多层前向神经网络,采用反向传播算法,依据控制要时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。
对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。
关键词:主汽温,PID,BP神经网络,MATLAB仿真ABSTRACTAt present, because PID has a simple structure and can be adjusted proportional 、integral and differential to satisfactory control performance, it is widely used in power plants of various control process. The system of power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before. When the unit is stable, these methods will control the steam temperature in a certain range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlinear and don't rely on model realize PID parameters auto-tuning. It can make full use of the advantages of PID and neural network. Here, we use a multilayer feedforward neural network using back propagation algorithm. This net can real-time output Kp, Ki, Kd as the PID controller parameters , insteading of the traditional PID parameters determined by experience, so it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform. The simulation results show that the PID control based BP neural network has good adaptive ability and self-learning ability. For the system of large delay and free-model can obtain good control effect.KEY WORDS: main steam temperature ,PID ,BP neural network, MATLAB simulation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国外研究现状 (1)1.3 立论依据 (5)1.4 本文所做的主要工作 (6)第二章神经网络的基本原理 (8)2.1 人工神经元模型 (8)2.2 神经网络的学习方式和学习规则 (9)2.2.1 神经网络的学习方式 (9)2.2.2 神经网络的学习规则 (9)2.3 神经网络的特点及应用 (10)2.4 BP神经网络 (11)2.4.1 BP神经网络的结构 (11)2.4.2 BP神经网络的算法 (12)2.5 本章小结 (16)第三章基于BP神经网络的PID控制 (17)3.1 PID控制器的离散差分方程 (17)3.2 基于BP神经网络的PID整定原理 (18)3.3 基于BP神经网络的PID控制算法流程 (22)3.4 本章小结 (22)第四章基于BP神经网络的PID控制在主汽温控制系统中的应用 (23)4.1 主汽温的控制任务 (23)4.2 主汽温被控对象的动态特性 (23)4.3 主汽温控制策略 (24)4.3.1 主汽温控制信号的选择 (24)4.3.2 主汽温控制的两种策略 (26)4.4仿真分析 (27)4.5 本章总结 (34)结论与展望 (35)参考文献 (37)致 (39)第一章绪论1.1 选题背景和意义在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。
计算机控制系统常用的控制规律
第一节 第二节 第三节 第四节 第五节 第六节 PID控制 串级控制 前馈控制 史密斯(Smith)预估控制 比值控制 模糊控制
PID控制
4.1 PID调节器的控制作用 4.2 PID控制器的离散化 4.3 数字PID调节中的几个实际问题 4.4 数字PID控制算法的改进 4.5 数字PID控制器参数的整定
4.1 PID调节器的控制作用
1. PID调节器的优点: 为什么要用数字模拟PID
技术成熟 易被人们熟悉和掌握 不需要建立数学模型 控制效果好
4.1.1 比例(P)调节器 1. 比例(P)调节规律 比例(P)调节器的微分方程: y(t) = Kpe(t)
பைடு நூலகம்
(8-1)
其中: y——调节器输出 Kp——比例系数 e(t)——调节器输入,为偏差值,e(t)=r(t)-m(t)。其中,r(t)为给定值, m(t)为被测参数测量值。 2. 比例(P)调节的作用 调节器的输出与输入偏差成正比。因此,只要偏差出现,就能及时地产生 与之成比例的调节作用,具有调节及时的特点。
第一节 PID控制
PID控制方式:采用比例、积分、微分的控制方式。 P I D 1. 模拟PID控制算法:用于模拟控制系统 模拟系统过程控制:被测参数(模拟量:温度、压力、流量)由传感器 变换成统一的标准信号后输入调节器。在调节器中与给定值进行比较, 再把比较后的差值经PID运算后送到执行机构,改变进给量,以达到自动 调节的目的。 2. 数字PID控制算法:用于数字控制系统 数字系统过程控制:先把过程参数进行采样,并通过模拟量输入通道将 模拟量变成数字量,这些数字量通过计算机按一定控制算法进行运算处 理,运算结果经D/A转换成模拟量后,由模拟量输出通道输出,并通过 执行机构去控制生产,以达到给定值。
计算机控制系统复习题答案
计算机控制系统复习题答案《计算机控制系统》课程复习题答案⼀、知识点:计算机控制系统的基本概念。
具体为了解计算机控制系统与⽣产⾃动化的关系;掌握计算机控制系统的组成和计算机控制系统的主要特性;理解计算机控制系统的分类和发展趋势。
回答题:1.画出典型计算机控制系统的基本框图;答:典型计算机控制系统的基本框图如下:2.简述计算机控制系统的⼀般控制过程;答:(1) 数据采集及处理,即对被控对象的被控参数进⾏实时检测,并输给计算机进⾏处理;(2) 实时控制,即按已设计的控制规律计算出控制量,实时向执⾏器发出控制信号。
3.简述计算机控制系统的组成;答:计算机控制系统由计算机系统和被控对象组成,计算机系统⼜由硬件和软件组成。
4.简述计算机控制系统的特点;答:计算机控制系统与连续控制系统相⽐,具有以下特点:⑴计算机控制系统是模拟和数字的混合系统。
⑵计算机控制系统修改控制规律,只需修改程序,⼀般不对硬件电路进⾏改动,因此具有很⼤的灵活性和适应性。
⑶能够实现模拟电路不能实现的复杂控制规律。
⑷计算机控制系统并不是连续控制的,⽽是离散控制的。
⑸⼀个数字控制器经常可以采⽤分时控制的⽅式,同时控制多个回路。
⑹采⽤计算机控制,便于实现控制与管理⼀体化。
5.简述计算机控制系统的类型。
答:(1)操作指导控制系统;(2)直接数字控制系统;(3)监督计算机控制系统)分级计算机控制系统4(.⼆、知识点:计算机控制系统的硬件基础。
具体为了解计算机控制系统的过程通道与接⼝;掌握采样和保持电路的原理和典型芯⽚的应⽤,掌握输⼊/输出接⼝电路:并⾏接⼝、串⾏接⼝、A/D和D/A的使⽤⽅法,能根据控制系统的要求选择控制⽤计算机系统。
回答题:1.给出多通道复⽤⼀个A/D转换器的原理⽰意图。
2.给出多通道复⽤⼀个D/A转换器的原理⽰意图。
3.例举三种以上典型的三端输出电压固定式集成稳压器。
答:W78系列,如W7805、7812、7824等;W79系列,如W7805、7812、7824等4.使⽤光电隔离器件时,如何做到器件两侧的电⽓被彻底隔离?答:光电隔离器件两侧的供电电源必须完全隔离。
(完整版)PID控制算法与策略
第四章控制算法与策略按偏差的比例、积分和微分进行控制的控制器(简称为PID控制器、也称PID 调节器),是过程控制系统中技术成熟、应用最为广泛的一种控制器。
它的算法简单,参数少,易于调整,并已经派生出各种改进算法。
特别在工业过程控制中,有些控制对象的精确数学模型难以建立,系统的参数不容易确定,运用控制理论分析综合要耗费很大代价,却不能得到预期的效果。
所以人们往往采用PID控制器,根据经验进行在线整定,一般都可以达到控制要求。
随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现。
由于软件系统的灵活性,PID算法可以得到修正而更加完善[14]。
在本章中,将着重介绍基于数字PID控制算法的系统的控制策略。
4.1采用周期T的选择采样周期T在微机控制系统中是一个重要参数,它的选取应保证系统采样不失真的要求,而又受到系统硬件性能的限制。
采样定理给出了采样频率的下限,据此采样频率应满足,①'2①,其中①是原来信号的最高频率。
从控制性能Smm来考虑,采样频率应尽可能的高,但采样频率越高,对微机的运行速度要求越高,存储容量要求越大,微机的工作时间和工作量随之增加。
另外,当采样频率提高到一定程度后,对系统性能的改善已不明显[14]。
因此采样频率即采样周期的选择必须综合考虑下列诸因素:(1)作用于系统的扰动信号频率。
扰动频率越高,则采样频率也越高,即采样周期越小。
(2)对象的动态特性。
采样周期应比对象的时间参数小得多,否则采样信号无法反映瞬变过程。
(3)执行器的响应速度。
如果执行器的响应速度比较缓慢,那么过短的采样周期和控制周期将失去意义。
(4)对象的精度要求。
在计算机速度允许的情况下,采样周期越短,系统调节的品质越好。
(5)测量控制回路数。
如果控制回路数多,计算量大,则采样周期T越长,否则越小。
(6)控制算法的类型。
当采用PID算式时,积分作用和微分作用与采样周期T的选择有关。
选择采样周期T太小,将使微分积分作用不明显。
连续传递函数离散化的方法与原理
连续传递函数离散化的方法与原理(总44页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March目录第一章模拟化设计基础 1 第一节步骤 1 第二节在MATLAB中离散化 3 第三节延时e-Ts环节的处理 5 第四节控制函数分类 6 第二章离散化算法10 摘要10 比较11 第一节冲击响应不变法(imp,无保持器直接z变换法) 11 第二节阶跃响应不变法(zoh,零阶保持器z变换法) 11 第三节斜坡响应不变法(foh,一阶保持器z变换法) 11 第四节后向差分近似法12 第五节前向差分近似法14 第六节双线性近似法(tustin) 15 第七节预畸双线性法(prevarp) 17 第八节零极点匹配法(matched) 18 第三章时域化算法19 第一节直接算法1—双中间变量向后递推19 第二节直接算法2—双中间变量向前递推20 第三节直接算法3—单中间变量向后递推21 第四节直接算法4—单中间变量向前递推(简约快速算法) 21 第五节串联算法22 第六节并联算法23 第四章数字PID控制算法24 第一节微分方程和差分方程25第二节不完全微分25 第三节参数选择26 第四节 c51框架27 第五章保持器33 第一节零阶保持器33 第二节一阶保持器30 附录两种一阶离散化方法的结果的比较31第一章 模拟化设计基础数字控制系统的设计有两条道路,一是模拟化设计,一是直接数字设计。
如果已经有成熟的模拟控制器,可以节省很多时间和部分试验费用,只要将模拟控制器离散化即可投入应用。
如果模拟控制器还不存在,可以利用已有的模拟系统的设计经验,先设计出模拟控制器,再进行离散化。
将模拟控制器离散化,如果用手工进行,计算量比较大。
借助数学软件MATLAB 控制工具箱,可以轻松地完成所需要的全部计算步骤。
如果需要的话,还可以使用MATLAB 的SIMULINK 工具箱,进行模拟仿真。
ZXQ第四章调节器.ppt
实现手动向自动的无扰切换
硬手动操作:
K1置向3,构成反相比例放大器,UH为变 化缓慢的直流信号,RF与Cm并联后,可以 忽略Cm的影响.
由于 RH=RF
有V03=-Vh 当电路切换到硬手动状态, 如果调节V03=-Vh,仍可 做到无扰切换,但需要预 调平衡
③频率特性:观察输入信号在频率变化时, 控制规律的响应规律。
④差分方程:微分方程或传递函数的离散 化算法,用于计算机软件编程。
调节器性能指标
静差 控制精度 比例度:表征调节器放大倍数的可
控参数
1、比例调节器(P)
微分方程:u=kpe 传递函数:W(s)=Kp 频率特性:W(jw)=Kp
例:简单的水位控制系统
较差,需要采用其它控制算法。
4.2 PID控制规律及实现方法
一、常规PID控制规律
e X X max X min
u Y Ymax Ymin
e 0,u 0,正作用调节器 e 0,u 0,反作用调节器
控制规律的表示方法:
①时间特性:观察输入信号变化,控制规 律的瞬时响应过程。
②微分方程与传递函数:控制规律的精确 数学表达
第四章 调节器
第四章 调节器
教学目的要求:掌握基本控制规律及其对控制过程 的影响;掌握DDZ-III型控制器的结构、电路及工 作原理分析;理解数字调节器和可编程序调节器的 功能和原理,了解它们的使用方法;理解PID参数 自整定调节器的功能与结构,了解其使用方法。
教学重点:PID控制规律,数字调节器和可编程序 调节器的原理DDZ-III型控制器的结构、电路及工 作原理分析
SVPWM控制算法MATLAB仿真
摘要随着全控型快速半导体自开关器件和智能型高速微控制芯片的发展,使得数字化PWM成为PWM控制技术发展的趋势。
但是传统的SPWM法比较适合模拟电路实现,不适应于现代电力电子技术数字化的发展趋势。
电压空间矢量脉宽调制(Space Vector Pulse Width Modulation,简称SVPWM)控制技术是一种优化了的PWM控制技术,和传统的PWM法相比,不但具有直流利用率高(比传统的SPWM 法提高了约15%),输出谐波少,控制方法简单等优点,而且易于实现数字化。
本文首先对脉宽调制技术的发展现状进行了综述,在此基础上分析了电压空间矢量脉宽调制技术的发展现状,接着对空间电压矢量脉宽调制技术(SVPWM)的基本原理进行了详细的分析和推导。
最后介绍了SVPWM的基本原理及其传统的实现算法,并通过SVPWM的算法构建了Matlab/Simulink仿真模型,仿真结果验证了该算法的正确性和可行性。
关键字:空间矢量脉宽调制;仿真;建模;算法;Matlab/SimulinkAbstractTogether with the continual development of all-controlled fast semiconductor self-turn-off devices and intelligent high speed micro-control chip, the digitized PWM is becoming the trend of PWM control technique development .However, the traditional SPWM method is more suitable for analog circuits, and the traditional SPWM can not adapt to the development trend of the digitization of the modem power and electric.Space-vector pulse width modulation (SVPWM)is a kind of superiorized PWM control technique: achieving the effective utilization of the DC supply voltage(compared with the traditional SPWM, reduced by 15.47%), having little harmonic output and the easy control method, furthermore easy to realize the digitization.The article presents the developing condition of PWM and SVPWM firstly.The theory of SVPWM is discussed in detail.Finally, the basic principle of SVPWM and the traditional algorithm are introduced, and constructing Matlab/Simulink simulation model by SVPWM algorithm .In the end, the simulation on results verifies the correctness and feasibility of the algorithm.Keywords:svpwm;simulation;modeling;algorithm;Matlab/Simulink目录摘 要 (1)Abstract (2)目录 (3)第一章 概述 (4)1.1 MA TLAB 动态仿真工具SIMULINK 简介 (4)1.2 SVPWM 的控制算法 (5)1.3 参考电压矢量ref U 所处扇区N 的判断 (7)第二章 SVPWM 控制算法分析 (10)2.1 常规SVPWM 模式下,计算Y X T T , (10)2.2计算A ,B ,C 三相相应的开关时间321,,cm cm cm T T T (12)第三章 SVPWM 的SIMULINK 实现 (13)3.1SVPWM 控制算法原理图 (13)第四章 SVPWM 的SIMULINK 仿真结果 (18)4.1 波形图 (18)总 结 (20)参考文献 (21)第一章概述1.1 MATLAB动态仿真工具SIMULINK简介随着控制理论和控制系统的迅速发展,对控制效果的要求越来越高,控制算法也越来越复杂,因而控制器的设计也越来越困难。
模煳控制第四章 模糊控制器设计
4. 模糊PID控制器 PID控制器对不同的控制对象要用不同的PID参
数,而且调整不方便,抗干扰能力差,超调量 差。 模糊控制器是一种语言控制,不依赖被控对象 的数学模型,设计方法简单、易于实现。能够 直接从操作者的经验归纳、优化得到,且适应 能力强、鲁棒性好。
整理ppt
模糊控制也有其局限性和不足,就是它的 控制作用只能按档处理,是一种非线性控 制,控制精度不高,存在静态余差,一般 在语言变量偏差趋于零时有振荡。
整理ppt
2. 模糊自调整控制器 模糊控制器性能的好坏直接影响到模糊控
制系统的控制特性,而模糊控制器的性能 又取决于控制规则的完善与否。 如果在简单模糊控制器的输入输出关系中 加入修正因子,便能对控制规则进行自动 调整,从而可对不同的被控对象获得相对 满意的控制效果。
整理ppt
在简单模糊控制器中,如果将误差e、误 差变化率Δe及控制量u的关系描述为:
整理ppt
在模糊推理机中,模糊推理决策逻辑是核 心,它能模仿人的模糊概念和运用模糊蕴 涵运算以及模糊逻辑推理规则对模糊控制 作用的推理进行决策。
整理ppt
(3) 解模糊接口(Defuzzification) 通过模糊推理得出的模糊输出量不能直接
去控制执行机构,在这确定的输出范围中, 还必须要确定一个最具有代表性的值作为 真正的输出控制量,这就是所谓解模糊判 决。 完成这部分功能的模块就称作解模糊接口, 它的主要功能包括:
整理ppt
4.1 模糊控制器的基本结构及主要类 型
4.1.1 模糊控制器的基本结构
模糊控制的基础是模糊集合理论和模糊逻 辑,是用模糊逻辑来模仿人的思维对那些 非线性、时变的复杂系统以及无法建立数 学模型的系统实现控制的。
数字控制器的连续化设计方法
第四章数字控制器的连续化设计方法模拟控制系统的控制过程是通过传感器把被测的各个模拟参量,比如温度、流量、压力、液位、成份等,变换成电信号(电流、电压),再送给模拟调节器。
在调节器中,被测模拟参量转换成的电信号与设定值进行比较后,经过PID控制器送到执行机构,改变进给量,达到自动调节的目的。
系统的控制器是连续模拟环节,也称为模拟调节器。
而在数字控制系统中,用数字控制器来代替模拟调节器。
传感器输出的电信号通过A/D转换器转换成数字信号,送给数字控制器。
控制器按照一定的控制算法进行运算处理后,输出控制量,再经过D/A转换成模拟量,通过执行机构去控制生产过程,使控制参数达到给定值。
在计算机控制系统中,用计算机来控制和调节被控对象,实现数字控制器的功能。
计算机控制系统的设计,是指在给定系统性能指标的条件下,设计出控制器的控制规律和相应的控制算法,并通过控制程序加以实现,对硬件电路、外围设备、执行机构等进行控制,实现控制功能。
为什么要用计算机实现数字控制器的功能?主要是因为它有以下优点:(1)可以分时控制,实现多回路控制计算机的运行速度比较快,而被控对象变化一般都比较缓慢,因此用一台计算机可以控制多个外围设备。
计算机采用分时控制,轮流为每个外围设备服务,既提高了控制系统的速度,又大大节省了硬件开销。
(2)控制算法灵活,功能强大,能实现复杂的控制规律使用计算机,通过控制程序实现控制算法,可根据实际需要调节控制参数,不需要修改硬件就可改变控制方案,因此非常灵活。
此外计算机不仅可以实现数字PID控制,而且还可以应用直接数字控制、模糊控制、自适应控制等各种控制方法。
计算机控制系统中,计算机不仅要完成控制任务,还可实现监控、数据采集、显示、报警等各种功能,因此控制系统的功能非常强大,可以节约人力、物力。
(3)系统的可靠性高,稳定性好用应用软件实现数字控制器的功能,比用硬件组成的调节器具有更高的可靠性和稳定性,而且容易调试,维修方便。
计算机控制系统的模拟化设计方法
§10-5 计算机控制系统的模拟化设计方法所谓模拟化的设计方法,就是首先设计出符合技术要求的连续控制系统,再用相应的离散控制器去实现。
例如图10-19(a)的连续控制系统可用经典的方法(如频率特性法、根轨迹法等)求出校正环节)(s D 的传递函数,然后用如图10-19(b)的离散系统去代替它,并要求数字校正环节)(z D 在一定条件下和)(s D 等价(例如要求它们具有相同的脉冲响应或频率响应)。
(a)(b)图10-19 连续系统和其相应的离散系统)(z D 逼近)(s D 的程度取决于采样速率和离散化方法。
对单输入单输出系统已有许多种近似方法,例如冲激不变法、通过零阶保持器而离散化的方法、数值积分法、双线性变换法,以及零极点变换法等等。
这些方法各有不同的优缺点。
在连续控制系统中广泛采用的PID 调节器也有一些相应的数字形式的PID 调节器。
本节还将介绍一些数字PID 调节器算法和调整方法。
一、离散控制系统设计的技术要求本节主要介绍在经典控制系统设计中所提出的技术要求,它们比较直观。
但是有时按这些技术要求设计的控制方案会相互矛盾,这就要求设计者根据经验做一些折衷的安排。
现代控制理论中提出了比较严格的要求,但这些要求不够直观。
1.稳态误差如果考虑图10-19(b)所表示的单位反馈控制系统,则误差为)()()(11)(0z U z G G z D z E c +=(10.94)如果特征方程0)()(10=+z G G z D的根全部位于z 平面内以原点为圆心的单位圆内,则此闭环系统是稳定的。
这时,利用z 变换的终值定理就可以分析系统在各种输入条件下的稳态误差。
单位阶跃输入时,1)(-=z zz U c ,则 pz k K z zz G G z D z k e 1ˆ1)()(11)1(lim )(lim 01=-⋅+⋅-=→∞→ (10.95)式中)]()(1[lim 01z G G z D K z p +=→称为静态位置误差系数。
第四章 控制系统的软件和常用控制程序设计
4、良好的界面 软件应当有友好的界面,以利于参数的调整和操作人员的 操作。 第一节 控制系统的软件分类 计算机控制系统的软件分为系统软件和应用软件两大类。 一、系统软件 系统软件包括操作系统,编辑、编译软件,各类工具软件 及诊断系统等;其核心是操作系统。 操作系统是一组程序的集合,它控制计算机系统中用户程 序的执行次序,为用户程序与系统硬件之间提供软件接口,并 允许程序之间的信息交换。 根据计算机控制系统的结构、控制功能情况选用不同的操 作系统。
第二节 常用控制程序设计 生产对象种类繁多,要求各异,常用控制程序的类型和内 容也十分丰富。本节仅选择一些最基本和常用的程序进行简单 的介绍: (1)查表法实现数值计算 (2)数字滤波程序
(3)标度变换程序
(4)非线性参数补偿方法 (5)报警程序 用软件实现常用控制功能的优点是:灵活性好,精度高, 稳定可靠,不受外界干扰。
l 程序设计步骤如下:
(1)设R2 中存放元素表中下限元素的序号(R2=0),R3 存放 上限元素的序号(R3=n)
(2) 计算中点元素序号
R4 = ( R3 + R2 ) / 2 (3) 计算中点元素的地址 (MIADR)= 表首地址+字节数* R4 (4)要查找的元素与中点元素比较,若X<[MIADR],R2
(1)表的起始位置送PC和DPTR
(2)表格的长度存放在某个寄存器中 (3)要查找的关键字放在某一内存单元 (4)用CJNE A,direct, rel指令进行查找 把A当中的值和直接地址中的值比较, 若相同则继续执行。
例6-1 以DATA为首地址的存储单元中,存放一长度为100个字节的无序表 格,要寻找的关键字存放在HWORD单元。编程进行查找,若找到,则将 关键字所在内存单元地址存到R2、R3中,若未找到,将R2、R3清零。 解: 顺序查表 (CHE) 关键字 (R4) 表长度
4.1 数字控制器的设计方法
• 4.1 数字控制器的设计方法 • 4.2 常用的计算机控制算法
4.1 数字控制器设计方法
数字控制器的两种设计方法:
• 数字控制器的模拟化设计方法 • 数字控制器的直接设计法
一、 模拟化设计方法
• 1.数字控制器的连续化设计步骤 (1)求出模拟调节器的传递函数 D(s)。
z
D z 则数字控制器的脉冲传递函数为:
G z 1 z
数字控制器的直接设计步骤如下:
(1)求出广义对象的脉冲传递函数G(z); (2)根据控制系统的性能要求和其他约束条件,确定闭环系统的脉冲传递 函数Φ(z); (3)求数字控制器的脉冲传递函数D(z); (4)根据D(z)求数字控制器的输出u(k)的递推计算公式,并编写控制算法 程序; 设数字控制器D(z)的一般形式为: m
(2)选择合适的采样周期 T。
(3)把D(s)离散化,求出数字控制器的脉冲传递函数 D(z) 。 (4)检验系统的闭环特性是否满足设计要求。 (5)把D(z)变换成差分方程的形式,并编程实现 。 (6)现场调试
二、数字控制器的直接设计方法
1、什么是数字控制器的直接设计方法?
从被控对象的特性出发,在离散z域里根据离散控制理
D( z ) U ( z ) b0 +b1 z + E ( z ) 1 a1 z 1 +
1
+bm z +an z 1
i
1 ai z i
m i i 0
,
(n m )
n
U ( z ) bi z 则数字控制器D(z)的输出U(z)为:
论来对离散系统进行分析和综合,直接设计出数字控制器。 这种设计方法称为数字控制器的直接设计方法(也称为离 散化设计方法) 2、设计思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Computer Controlled Systems
因此,s平面的稳定区域映射到z平面一个以(0,0)为圆心,以1 为半径的单位圆,即稳定的D(s)变换后仍为稳定的D(z)。
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
3、零阶保持器法
也叫阶跃响应不变法,即离散化后的数字控制器响应序列与模2 z2 bm zm ]
u(k) a1u(k 1) anu(k n)
b0e(k) b1e(k 1) bme(k m)
Computer Controlled Systems
u(k) b0e(k) b1e(k 1) bme(k m) [a1u(k 1) anu(k n)]
第四章 控制算法的模拟化设计方法
本章主要内容
第一节 模拟化设计方法的基本原理 第二节 数字PID控制算法 第三节 Smith预估补偿控制算法 第四节 串级控制算法 第五节 前馈-反馈控制算法
Computer Controlled Systems
Computer Controlled Systems
T
Tz
T为正数,对上式成立与否无影响。令 z jw
Re( jw 1) Re[ ( jw 1)( jw)]
jw
( jw)( jw)
2 w2 0 2 w2
( 1)2 w2 (1)2
2
2
因此,s平面的稳定区域映射到z平面一个以(1/2,0)为圆心,以1/2 为半径的单位圆内的一个小圆,即稳定的D(s)变换后仍为稳定的D(z)。
前提:采样周期足够小 2、离散化设计方法:按照离散控制系统设计控制器,推导出控制 器输出的差分方程。
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
一、模拟化设计思想
以经典的连续控制器设计方法为基础,整个系统完全用连续系统 的设计方法来设计,待确定了连续控制器之后,再用合适的离散化方 法将连续的模拟量控制器“离散”处理为数字控制器,以便于计算机 的实现。
dt
T
T是采样周期,k=0,1,2…k,为采样序号
Computer Controlled Systems
2.1 标准数字PID控制算法
Computer Controlled Systems
u(k
)
K
p
e(k
)
T Ti
k e( j) Td
j0
T
[e(k) e(k 1)]
k
K pe(k) Ki e( j) Kd [e(k) e(k 1)] j0 微分系数
的关系,可以求出: 0.5, n 1
(s)
s2
1 s
1
D(s) 10s 3 s 1
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
解:(2)采样周期的选择
由 0.5, n 1 可求得阻尼振荡频率为 d n 1 2
则振荡周期为: Td
2
d
7.25s
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
例题1:已知某模拟控制器的传递函数为 D(s)
2
(s 2)(s 3)
试分别用后向差分法、双线性变换法、阶跃响应不变法求出相
应的数字控制D(z)及其差分方程(采样周期T=0.1s)。
解:(1)后向差分法
D(z) u(z)
k
u(k) K pe(k) Ki e( j) Kd [e(k) e(k 1)] j0 k 1
u(k 1) K pe(k 1) Ki e( j) Kd [e(k 1) e(k 2)] j0
u(k) K p[e(k) e(k 1)] Kie(k) Kd [e(k) 2e(k 1) e(k 2)] q0e(k ) q1e(k 1) q2e(k 2)
解:(3)阶跃响应不变法
D(z)
u(z) e(z)
Z
1
e s
Ts
•
2 (s 2)(s
3)
0.00848z1 0.0072z2 11.5595z1 0.6065z2
整理得差分方程为:
u(k) 1.5595u(k 1) 0.6065u(k 2) 0.008484e(k 1) 0.0072e(k 2)
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
三、模拟控制器离散化方法
1、差分变换法
根据z变换的定义,z esT,利用泰勒级数将其展开,有
z1 esT 1 Ts (Ts)2 2!
当T很小时,上式可近似为
z1 1 Ts s 1 z 1 ,则有 T
2.1 标准数字PID控制算法
2、模拟PID控制器的离散
化 从微分方程-差分方程(后向差分):
u(t
)
K
p
[e(t
)
1 Ti
t
e(t)dt
0
Td
de(t ) ] dt
u(t) u(k)
e(t) e(k)
t
k
k
e(t)dt e( j)T T e( j)
0
j0
j0
de(t) e(k) e(k 1)
说明:上面各种离散化方法在实际中都得到了应用,对于同 一模拟控制器采用不同的离散化方法得到的数字控制器也不 同,从性能上比较,一般认为双线性变换法更接近于模拟控 制器。
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
例题2:已知某系统被控对象的传递函数为 G(s) 1
s(10s 3)
希望满足的性能指标为:(1)阶跃响应的超调量小于20%;(2)
过渡过程时间小于6秒。设计计算机控制系统的数字控制器D(z)。
解:(1)模拟控制器D(s)的设计
设闭环传递函数为典型二节系统
(s)
D(s)G(s) 1 D(s)G(s)
s2
n2 2n
n2
根据超调量、过渡过程时间与阻尼系数 和无阻尼振荡频率 n
经验规则:在闭环系统的响应中,每个振荡周期至少采样6-10次。
因此,取采样周期T=1s。
(3)求数字控制器D(z)
采用双线性变换法对D(s)进行离散化,得到数字控制器D(z)为
D(z)
7.667 5.667z1 1 0.3333z1
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
即:s平面的稳定区域映射到z平面的哪里?
Re(s) Re(1 z1 ) Re( z 1) 0
T
Tz
根据上式,求出z的范围,即可判断对应D(z)的稳定性。
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
Re(s) Re(1 z1 ) Re( z 1) 0
1 1
z z
1 1
第一节 模拟化设计方法的基本原理
稳定性分析:稳定的D(s)是否对应稳定的D(z)?
s 2 1 z1 T 1 z1
2 1 z1
2 z 1
Re(s) Re(
) Re(
)0
T 1 z1
T z 1
z jw
Re(s) Re( jw 1) 0 jw1
2 w2 1
Computer Controlled Systems
2、双线性变换法
也叫图斯汀(Tustin)变换,是一种精度较高的D(s)转换成D(z)的方
法。
sT
z esT
e2
sT
e2
1 sT
1
2 sT
2
取前两项,则得到了s与z的关系:
s
2 T
1 1
z 1 z 1
,
(梯形法)
D( z)
D(s)
s
2 T
s和z一种近似的映射关系
上式称为前向差分法(欧拉法)。就是在选择一个合适的采样周期 T后,将微分方程中的导数用差分替换,用得到的差分方程近似微分方 程。
第一节 模拟化设计方法的基本原理
映射关系: z Ts 1
Computer Controlled Systems
第一节 模拟化设计方法的基本原理
(4)写出控制器编程实现的差分方程
u(k) 0.33u(k 1) 7e(k) 6.33e(k 1)
(5)仿真校验
设计完成后,需要对整个闭环控制系统进行仿真,以校验系统 的性能是否达到要求。
校验结果:超调量将近50%,过渡过程时间约12秒。 再设计:采样周期T取0.3秒,系统性能满足要求。
1、通过上例也可以看出,只有T很小时,才能通过近似模拟控制器得到数 字控制器。 2、本例matlab演示:(1)c2d指令的用法;(2)计算机控制系统的仿真 方法;(3)仿真说明T对控制性能的影响。
D(z) u(z)
2
e(z)
T
2
1 1
z 1 z 1
2
T
2
1 1
z 1 z 1
3
0.004 11.5573z1 0.6047z2
整理得差分方程为:
u(k) 1.5573u(k 1) 0.6047u(k 2) 0.004e(k)
第一节 模拟化设计方法的基本原理
Computer Controlled Systems
第二节 数字PID控制算法
一、标准数字PID控制算法
标准模拟PID控制器如何描述? 标准数字PID控制算法如何实现? 标准数字PID参数如何整定?
Computer Controlled Systems
2.1 标准数字PID控制算法
1、标准模拟PID控制器