2014年辽宁省高考数学试卷(理科)(同名3322)
2014年辽宁理科数学高考试题及答案
----------------------------精品word 文档 值得下载 值得拥有----------------------------------------------2014年普通高等学校招生全国统一考试(辽宁卷)理 科 数 学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合U ()AB =ð( )。
A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( )。
A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( )。
A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0=a b ,0=b c ,则0=a c ; 命题q :若ab ,bc ,则a c ,则下列命题中真命题是( )。
A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝ 6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )。
A .144 B .120 C .72 D .24 7.某几何体三视图如图所示,则该几何体的体积 为( )。
A .82π-B .8π-C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )。
2014年辽宁省高考数学试卷(理科)答案与解析
2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}考点:交、并、补集的混合运算.专题:集合.分析:先求A∪B,再根据补集的定义求C U(A∪B).解答:解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.点评:本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则z可求.解答:解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.点评:本题考查了复数代数形式的除法运算,是基础的计算题.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数的运算性质.专题:计算题;综合题.分析:利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.解答:解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.解答:解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.点评:本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)考点:复合命题的真假;平行向量与共线向量.专题:简易逻辑.分析:根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.解答:解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.点评:本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p,q的真假是解决本题的关键.6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24考点:计数原理的应用.专题:应用题;排列组合.分析:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理可得结论.解答:解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.点评:本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.解答:解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:B.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0考点:数列的函数特性.专题:函数的性质及应用;等差数列与等比数列.分析:由于数列{2}为递减数列,可得=<1,解出即可.解答:解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.点评:本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.9.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF的斜率.解答:解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.点评:本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()C.[﹣6,﹣2]D.[﹣4,﹣3] A.[﹣5,﹣3]B.[﹣6,﹣]考点:函数恒成立问题;其他不等式的解法.专题:综合题;导数的综合应用;不等式的解法及应用.分析:分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.解答:解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.点评:本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C.D.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;函数的性质及应用.分析:依题意,构造函数f(x)=(0<k<),分x∈[0,],且y∈[0,];x∈[0,],且y∈[,1];x∈[0,],且y∈[,1];及当x∈[,1],且y∈[,1]时,四类情况讨论,可证得对所有x,y∈[0,1],|f(x)﹣f(y)|<恒成立,从而可得m≥,继而可得答案.解答:解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,依题意,k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+)﹣k|=<;当y∈[0,],且x∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,∴m≥,即m的最小值为.故选:B.点评:本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想与等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.二、填空题:本大题共4小题,每小题5分。
2014年辽宁省高考数学试卷理科
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。
2014年辽宁高考理科数学试题及答案(Word版)
2014 年一般高等学校招生全国一致考试(辽宁卷)理科数学第Ⅰ卷(共 60 分)一、选择题 :本大题共 12 个小题 ,每题 5 分 ,共 60 分 .在每题给出的四个选项中,只有一项是切合题目要求的 .1. 已知全集 U R, A { x | x 0}, B { x | x 1} ,则会合 C U ( A B) ()A . { x | x 0}B . { x | x 1}C . { x | 0 x 1}D . { x |0 x 1}2.设复数 z 知足 ( z 2i )(2i ) 5 ,则 z ( ) A . 2 3iB . 2 3iC . 3 2iD . 3 2i11, c1,则(3.已知 a2 3 , b log 2 log 1)323A . a b cB . a c bC . c a bD . c b a4.已知 m , n 表示两条不一样直线, 表示平面,以下说法正确的选项是( )A .若 m / / , n / / , 则 m / /nB .若 m , n ,则 m nC .若 m, m n ,则 n / /D .若 m / / , m n ,则 n5.设 a, b, c 是非零向量,学科 网已知命题 P :若 a b 0 , b c 0 ,则 a c 0 ;命题 q :若 a / /b, b / / c ,则 a / /c ,则以下命题中真命题是( )A . p qB . p qC . ( p) ( q)D . p ( q)6.6 把椅子摆成一排, 3 人随机就座,任何两人不相邻的做法种数为( )A . 144B . 120C . 72D . 24 7.某几何体三视图如下图,则该几何体的体积为( ) A .8 2B . 8C . 8D . 82 48.设等差数列 { a n } 的公差为 d ,若数列 {2 a 1 a n } 为递减数列,则( )A . d 0B . d 0C . a 1d 0D . a 1d 09.将函数 y3sin(2 x ) 的图象向右平移 个单位长度,所得图象对应的函数( ), 732A .在区间 [] 上单一递减12 12 B .在区间 [, 7] 上单一递加12 12 C .在区间 [, ] 上单一递减6 3D .在区间 [, ] 上单一递加6 310.已知点 A( 2,3) 在抛物线 C : y22 px 的准线上,学 科网过点 A 的直线与 C 在第一象限相 切于点 B ,记 C 的焦点为 F ,则直线 BF 的斜率为( )1B .2C .34A .D .2 3 4 311.当 x [ 2,1] 时,不等式 ax 3 x 24x 3 0 恒建立,则实数 a 的取值范围是()A .[ 5,3]B .[ 6,9] C .[ 6, 2]D .[ 4, 3]812.已知定义在 [0,1] 上的函数 f ( x) 知足: ① f (0) f (1) 0 ;②对全部 x, y[0,1] ,且 xy ,有 | f ( x)1 y |.f ( y) | | x2若对全部 x, y [0,1] , | f (x)f ( y) |k ,则 k 的最小值为()A .1B .1C .1D .12428第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.履行右边的程序框图,若输入x 9 ,则输出 y.14.正方形的四个极点A( 1, 1), B(1, 1),C (1,1),D ( 1,1)分别在抛物线 yx 2 和 yx 2 上,如下图,若将一个质点随机投入正方形 ABCD 中,则质点落在暗影地区的概率是.15.x 2 y 2 A ,已知椭圆 C :1 ,点 M 与 C 的焦点不重合, 若 M 对于 C 的焦点的对称点分别为94B ,线段 MN 的中点在C 上,则 | AN | | BN |.16. 对于 c0 ,当非零实数 a ,b 知足 4a 2 2ab 4b 2c 0 ,且使 | 2a b | 最大时, 3 4 5.a b c 的最小值为三、解答题 (本大题共 6 小题,共 70 分 .解答应写出文字说明、证明过程或演算步骤 .)。
2014年辽宁高考理科数学试题含答案(Word版)
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 5.设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙= ,0b c ∙= ,则0a c ∙= ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12B .14C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c -+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分) 圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分) 已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)x g x x x x x π=--+-. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.(1)求证:AB 为圆的直径;(2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.11。
2014年辽宁省高考数学试卷(理科)(同名3322)
2014年辽宁省高考数学试卷〔理科〕一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项是符合题目要求的.1.〔5分〕〔2014•辽宁〕已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U〔A∪B〕=〔〕A.{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}2.〔5分〕〔2014•辽宁〕设复数z满足〔z﹣2i〕〔2﹣i〕=5,则z=〔〕A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.〔5分〕〔2014•辽宁〕已知a=,b=log2,c=log,则〔〕A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.〔5分〕〔2014•辽宁〕已知m,n表示两条不同直线,α表示平面,以下说法正确的选项是〔〕A.假设m∥α,n∥α,则m∥n B.假设m⊥α,n⊂α,则m⊥nC.假设m⊥α,m⊥n,则n∥αD.假设m∥α,m⊥n,则n⊥α5.〔5分〕〔2014•辽宁〕设,,是非零向量,已知命题p:假设•=0,•=0,则•=0;命题q:假设∥,∥,则∥,则以下命题中真命题是〔〕A.p∨q B.p∧q C.〔¬p〕∧〔¬q〕D.p∨〔¬q〕6.〔5分〕〔2014•辽宁〕6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为〔〕A.144 B.120 C.72 D.247.〔5分〕〔2014•辽宁〕某几何体三视图如下图,则该几何体的体积为〔〕A.8﹣2πB.8﹣πC.8﹣D.8﹣8.〔5分〕〔2014•辽宁〕设等差数列{a n}的公差为d,假设数列{}为递减数列,则〔〕A.d<0 B.d>0 C.a1d<0 D.a1d>09.〔5分〕〔2014•辽宁〕将函数y=3sin〔2x+〕的图象向右平移个单位长度,所得图象对应的函数〔〕A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.〔5分〕〔2014•辽宁〕已知点A〔﹣2,3〕在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为〔〕A.B.C.D.11.〔5分〕〔2014•辽宁〕当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是〔〕A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.〔5分〕〔2014•辽宁〕已知定义在[0,1]上的函数f〔x〕满足:①f〔0〕=f〔1〕=0;②对所有x,y∈[0,1],且x≠y,有|f〔x〕﹣f〔y〕|<|x﹣y|.假设对所有x,y∈[0,1],|f〔x〕﹣f〔y〕|<k恒成立,则k的最小值为〔〕A.B.C.D.二、填空题:本大题共4小题,每题5分。
2014年辽宁省高考数学试卷(理科)附送答案
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣] C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分。
2014年辽宁高考数学理科试卷(带详解)
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|U R A x x ==≤0},{|B x x =≥1},则集合()U A B = ð( ) A .{|x x ≥0} B .{|x x ≤1} C .{|0x ≤x ≤1} D .{|01}x x <<【测量目标】集合的基本运算. 【考查方式】集合的并集、补集. 【难易程度】容易 【参考答案】D【试题分析】由题意可知,A B ={|01}x x x ≤或≥,所以()U A B = ð{|01}x x <<.故选D. 2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 【测量目标】复数的基本性质和运算.【考查方式】复数的基本运算. 【难易程度】容易 【参考答案】A【试题分析】由(2i)(2i)5z --=,得52i 2iz -=-,故z =23i +.故选A. 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【测量目标】对数的基本运算.【考查方式】对数的大小比较. 【难易程度】容易 【参考答案】C【试题分析】因为13021a -<=<,21log 03b =<,121log 3c =>121log 2c ==1,所以c a b >>.故选C.4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥【测量目标】空间直线与直线,直线与平面的位置关系. 【考查方式】线线平行、垂直,线面平行、垂直的判定. 【难易程度】容易 【参考答案】B 【试题分析】由题可知,若//,//,m n αα则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错误.若//m α,m n ⊥,则//n α或n α⊥或n 与α相交,故D 错误.故选B.5.设,,a b c 是非零向量,已知命题P :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝⌝∧D .()p q ⌝∨【测量目标】向量的平行与垂直,真假命题的判定. 【考查方式】利用向量之间的位置关系对命题的真假进行判定. 【难易程度】容易 【参考答案】A【试题分析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0≠b 时,,a c 一定共线,故命题q 是真命题.故p q ∨为真命题.故选A.6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .24 【测量目标】排列组合.【考查方式】利用插空法进行排列组合. 【难易程度】容易 【参考答案】D【试题分析】这是一个元素不相邻问题,采用插空法,3334A C 24=.故选D.7.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .π82-D .π84-第7题图 【测量目标】几何体的体积、三视图.【考查方式】利用三视图对体积的考查. 【难易程度】容易 【参考答案】B【试题分析】根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分(占柱的14)后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.故选B.8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >【测量目标】等差数列的基本性质.【考查方式】利用等差数列的性质对首项和公差的正负进行判断. 【难易程度】容易 【参考答案】C 【试题分析】令12n n b a a =,因为数列{}12n a a 为递减数列,所以111111122()212n n n n n nb a a a a a a d b a a +++==-=<,所得10a d <.故选C.9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增 C .在区间ππ[,]63-上单调递减 D .在区间ππ[,]63-上单调递增 【测量目标】三角函数的平移及性质.【考查方式】求正弦型三角函数平移后的单调区间. 【难易程度】容易 【参考答案】B【试题分析】由题可知,将函数π3sin(2)3y x =+的图像向右平移π2个单位长度得到函数2π3sin(2)3y x =-的图像,令π2π2k -+≤2π23x -≤π2π2k +,k ∈Z ,即ππ12k +≤x ≤7ππ12k +,k ∈Z 时,函数单调递增,即函数2π3sin(2)3y x =-的单调递增区间为π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ,可知当0k =时,函数在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递增.故选B.10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .43【测量目标】抛物线的几何性质,直线与抛物线的位置关系.【考查方式】求过抛物线准线并与抛物线相切的直线的斜率. 【难易程度】中等 【参考答案】D【试题分析】因为抛物线C :22y px =的准线为2px =-,且点(2,3)A -在准线上,所以p =4.设直线AB 的方程为2(3)x m y +=-,与抛物线方程28y x =联立得到2824160y my m -++=,由题易知 =0,解得m =12- (舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率804823BF k -==-.故选D.11.当[2,1]x ∈-时,不等式3243ax x x -++≥0恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]--【测量目标】函数的导函数、单调区间、最值. 【考查方式】通过给定函数值的范围,利用导函数求函数的单调区间并找出未知量的范围. 【难易程度】中等 【参考答案】C【试题分析】当2-≤0x <时,不等式转化为a ≤2343x x x --,令2343()(2x x f x x--=-≤0)x <, 则24489(9)(1)'()x x x x f x x x -++--+==,故()f x 在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤14321+-=--.当0x =时,()g x 恒成立.当0x <≤1时,a ≥2343x x x --,令2343()(0x x g x x x --=<≤1),则24489(9)(1)'()x x x x g x x x-++--+==, 故()g x 在(0,1]上单调递增,此时有a ≥14361--=-. 综上,6-≤a ≤2-.故选C.12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18 【测量目标】函数概念的新定义,不等式的性质.【考查方式】给出新定义的函数,利用给定条件求解未知量的范围. 【难易程度】中等 【参考答案】B【试题分析】不妨设0≤y ≤x ≤1.当x y -≤12时,11|()()|||()22f x f y x y x y -<-=-≤14. 12x y ->时,|()()|()(1)(()(0))f x f y f x f f y f -=---≤1()(1)()(0)2f x f f y f -+-< 111110()2224x y x y -+-=--+<.故min 14k =.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .第13题图 【测量目标】程序框图的运算.【考查方式】利用程序框图进行基本运算. 【难易程度】容易 【参考答案】299【试题分析】当9x =时,5y =,则4y x -=;当5x =时,113y =,则43y x -=;当113x =时,299y =,则419y x -=<.故输出299y =.14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .第14题图 【测量目标】定积分的求解,随机事件的概率.【考查方式】利用定积分求出面积比,进而求出随机事件的概率. 【难易程度】容易 【参考答案】23【试题分析】正方形ABCD 的面积S =2×2=4,阴影部分的面积1231111182(1)d 2()33S x x x x --=-=-=⎰,故质点落在阴影区域的概率82343P ==.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【测量目标】椭圆的定义及几何性质.【考查方式】椭圆的焦点以及椭圆的几何性质求解相关弧长. 【难易程度】中等 【参考答案】12【试题分析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点1F 的对称点为A ,点M 关于C 的焦点2F 的对称点为B ,则有112G F A N =,212GF BN =,所以122()412AN BN GF GF a +=+==.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .【测量目标】基本不等式的基本应用.【考查方式】利用基本不等式求最值. 【难易程度】较难 【参考答案】-2【试题分析】由题知2222(2)3(43)c a b a b =-+++.221(43)(1)3a b ++≥222(2)43a b a b +⇔+≥23(2)4a b +,即2c ≥25(2)4a b +,当且仅当2243113a b =,即236a b λ==(同号)时, 2a b +取得最大值85c ,此时240c λ=. 223451111(4)288a b c λλλ-+=-=--≥2-, 当且仅当315,,422a b c ===时,345a b c-+取最小值2-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边,,a b c 且a c >,已知2BA BC ⋅= ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.【测量目标】两角差的余弦公式、向量的数量积.【考查方式】利用正弦定理和余弦定理解三角形中的边和角. 【难易程度】中等【试题分析】(1)由2BA BC ⋅= 得,cos 2c a B ⋅=,又1cos 3B =,所以6ac =.由余弦定理,得2222cos a c b ac B +=+.又3b =,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得2,33,2a c a c ====或. 因为a c >,3,2a c ∴==. (2)在△ABC 中,22122sin 1cos 1().33B B =-=-=由正弦定理,得22242sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=. 于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:第18题图将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .【测量目标】频率分布直方图,随机事件的概率随机变量的期望和方差. 【考查方式】以频率分布直方图为载体计算事件的概率、分布列、期望、方差. 【难易程度】中等 【试题分析】(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= , 2()0.003500.15P A =⨯=,()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=, 123(1)0.6(10.6)0.288P X C ==⋅-=, 223(2)0.6(10.6)0.432P X C ==⋅-=, 333(3)0.60.216P X C ==⋅=,分布列为X0 1 2 3P 0.064 0.288 0.432 0.216因为(3,0.6)X B ,所以期望为()30.6 1.8E X =⨯=,方差()30.6(10.6)0.72D X =⨯⨯-=. 19. (本小题满分12分)如图,△ABC 和BCD △所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E F 、分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.第19题图1【测量目标】线线垂直的判定,二面角的正弦值.【考查方式】通过找线、面之间的位置关系,证明线线垂直,求二面角的三角函数值. 【难易程度】中等 【试题分析】(1)证明: (方法一)过E 作EO BC ⊥,垂足为O ,连OF ,第19题图2由△ABC ≌△DBC 可证出△FOC ≌△EOC ,所以π2EOC FOC ∠=∠=,即FO BC ⊥, 又EO BC ⊥,因此BC ⊥平面EFO , 又EF ⊂平面EFO ,所以EF BC ⊥.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.第19题图3易得(0,0,0),(0,1,3)B A -,(3,1,0)D -,(0,2,0)C ,因而1331(0,,),(,,0)2222E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅= ,从而EF BC ⊥ ,所以EF BC ⊥.(2)(方法一)在图2中,过O 作OG BF ⊥,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG BF ⊥,由三垂线定理知EG 垂直BF . 因此EGO ∠为二面角E BF C --的平面角; 在△EOC 中,113cos30222EO EC BC ==⋅= ,由△BGO ∽△BFC 知,34BO OG FC BC =⋅=,因此tan 2EO EGO OG ∠==,从而sin EGO ∠=255,即二面角E BF C --的正弦值为255. (方法二)在图3中,平面BFC 的一个法向量为1(0,0,1)=n ,设平面BEF 的法向量2(,,)x y z =n ,又3113(,,0),(0,,)2222BF BE == ,由220BF BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得其中一个2(1,3,1)=-n ,设二面角E BF C --的大小为θ,且由题意知θ为锐角,则121212,1cos |cos ,|||||||5θ=<>==⋅n n n n n n ,因sin θ=25=255,即二面角E BF C --的正弦值为255.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.第20题图1【测量目标】直线与圆的位置关系,双曲线的标准方程及几何性质,椭圆的几何性质,直线与椭圆的位置关系.【考查方式】利用圆的切线的关系,双曲线的离心率求双曲线方程,通过椭圆与双曲线的的几何性质求解椭圆方程求出直线方程. 【难易程度】较难【试题分析】(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当002x y ==时00x y 有最大值,即S 有最小值,因此点P 得坐标为(2,2) ,由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (2)由(1)知2C 的焦点坐标为(3,0),(3,0)-,由此2C 的方程为22221113x y b b +=+,其中10b >. 由(2,2)P 在2C 上,得22112213b b +=+,解得213b =,因此2C 方程为22163x y +=. 显然,l 不是直线0y =.设l 的方程为3x my =+,点1122(,),(,)A x y B x y由223163x my x y ⎧=+⎪⎨+=⎪⎩ 得22(2)2330m y my ++-=,又12,y y 是方程的根,因此12212223232my y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由11223,3x my x my =+=+得1212222121212243()232663()32x x m y y m m x x m y y m y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④ 因1122(2,2),(2,2)AP x y BP x y =--=--由题意知0AP BP ⋅= ,所以121212122()2()40x x x x y y y y -++-++=⑤ ,将①,②,③,④代入⑤式整理得222646110m m -+-=,解得3612m =-或3612m =-+,因此直线l 的方程为 36(1)302x y ---=,或36(1)302x y +--=.21. (本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πx g x x x x =--+-. 证明:(1)存在唯一0π(0,)2x ∈,使0()0f x =;(2)存在唯一1π(,π)2x ∈,使1()0g x =,且对(1)中的0x 有01πx x +<. 【测量目标】函数的零点.【考查方式】利用函数导函数的性质求解三角函数中的零点问题. 【难易程度】较难【试题分析】(1)当π(0,)2x ∈时,2'()(1sin )(π2)2cos 03f x x x x x =-++--<,函数()f x 在π(0,)2上为减函数,又28π16(0)π0,()π0323f f =->=--<,所以存在唯一0π(0,)2x ∈,使0()0f x =. (2)考虑函数3(π)cos 2π()4ln(3),[,π]1sin π2x x h x x x x -=--∈+,令πt x =-,则π[,π]2x ∈时,π[0,]2t ∈,记3cos 2()(π)4ln(1)1sin πt t u t h t t t =-=-++,则3()'()(π2)(1sin )f t u t t t =++ ,由(1)得,当0(0,)t x ∈时,'()0u t >,当0π(,)2t x ∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0π(,)2x 上()u t 是减函数,由0π()0,()4ln 202u x u >=-<,存在唯一的10π(,)2t x ∈ ,使1()0u t =.所以存在唯一的10π(,)2t x ∈使1()0u t =.因此存在唯一的11ππ(,π)2x t =-∈,使111()()()h x h t u t π=-==. 因为当π(,π)2x ∈时,1sin 0x +>,故()(1s i n )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1π(,π)2x ∈,使1()0g x =.因1110π,x t t x =->,所以01πx x +<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于,D G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.第22题图1【测量目标】几何证明选讲.【考查方式】利用圆的性质证明相关结论. 【难易程度】中等 【试题分析】(1)因为PD PG =,所以PDG PGD ∠=∠.由于PD 为切线,故P D A D B A ∠=∠,又由于PGD EGA ∠=∠,故DBA EGA ∠=∠,所以D B A B A DE G A B A ∠+∠=∠+∠,从而BDA PFA ∠=∠. 由于AF 垂直EP ,所以90PFA ∠=,于是90BDA ∠=,故AB 是直径. (2)连接BC ,DC.第22题图2由于AB 是直径,故∠BDA =∠ACB =90°,在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,AB EP ⊥所以,DC EP DCE ⊥∠为直角,于是ED 是直径,由(1)得ED =AB .23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程. 【测量目标】坐标系与参数方程.【考查方式】参数方程与极坐标方程转化为普通方程进行求解. 【难易程度】中等【试题分析】(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t 为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得 2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()f x ≤1的解集为M ,()g x ≤4的解集为N .(1)求M ;(2)当x M N ∈ 时,证明:22()[()]x f x x f x +≤14. 【测量目标】不等式选讲,集合的简单运算.【考查方式】函数与集合结合证明不等式. 【难易程度】中等【试题分析】(1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当x ≥1时,由()33f x x =-≤1得x ≤43,故1≤x ≤43; 当1x <时,由()1f x x =-≤1得x ≥0,故0≤1x <; 所以()f x ≤1的解集为{|0M x =≤x ≤4}3.(2)由2()1681g x x x =-+≤4得2116()4x -≤4,解得14-≤x ≤34,因此1{|4N x =-≤x ≤3}4,故{|0M N x = ≤x ≤3}4.当x M N ∈ 时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+211()(1)()42x f x x x x =⋅=-=--≤14.。
2014年全国高考辽宁省数学理试卷及答案精校版
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,学科 网已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝**把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3] 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = . 14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中, 则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x 0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷)理科数学答案1. D2. A3. C4. B5. A6. D7. B8. C9. B 10. D 11. C 12. B 13.299C 14. 2315. 12 16. 2- 17.(Ⅰ)由2BA BC⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac =6.由余弦定理,得2222cos a c b ac B +=+.又b =3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a =2,c =3或a =3,c =2. 因为a >c ,∴ a =3,c =2. (Ⅱ)在ABC ∆中,22122sin 1cos 1().33B B =-=-=由正弦定理,得22242sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=. 于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 18.(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= . 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为X 0 1 2 3 P********因为X ~B (3,0.6),所以期望为E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72 19.(Ⅰ)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC .(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而1331(0,,),(,,0)2222E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF . 因此∠EGO 为二面角E -BF -C 的平面角; 在△EOC 中,EO =12EC =12BC ·cos 30°=32,由△BGO ∽△BFC 知,34BO OG FC BC =⋅=,因此tan ∠EGO =2EOOG=,从而sin ∠EGO =255,即二面角E -BF -C 的正弦值为255. (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又3113(,,0),(0,,)2222BF BE ==,由220n BF n BE ⎧⋅=⎪⎨⋅=⎪⎩ 得其中一个2(1,3,1)n =-,设二面角E -BF -C 的大小为θ,且由题意知θ为锐角,则1212121cos |cos ,|||||||5n n n n n n θ⋅=<>==⋅,因sin θ=25=255,即二面角E -BF -C 的正弦值为255. 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当002x y ==时00x y 有最大值,即S 有最小值,因此点P 得坐标为(2,2) , 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C 的焦点坐标为(3,0),(3,0)-,由此2C 的方程为22221113x y b b +=+,其中10b >.由(2,2)P 在2C 上,得22112213b b +=+, 解得b 12=3,因此C 2方程为22163x y +=显然,l 不是直线y =0.设l 的方程为x =my +3,点1122(,),(,)A x y B x y由223163x my x y ⎧=+⎪⎨+=⎪⎩ 得22(2)2330m y my ++-=,又12,y y 是方程的根,因此12212223232my y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由11223,3x my x my =+=+得1212222121212243()232663()32x x m y y m m x x m y y m y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2,2)AP x y BP x y =--=--由题意知0AP BP ⋅=,所以121212122()2()40x x x x y y y y -++-++=⑤ ,将①,②,③,④代入⑤式整理得222646110m m -+-=,解得3612m =-或3612m =-+,因此直线l 的方程为36(1)302x y ---=,或36(1)302x y +--=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =. (Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ , 由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF 垂直EP ,所以∠PF A =90°,于是∠BDA =90°,故AB 是直径. (Ⅱ)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°, 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED =AB .23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩== (t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-, 化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<; 所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。
2014辽宁高考数学(理)解析版
第 1 页 共 14 页2014·辽宁卷(理科数学)1.[2014·辽宁卷] 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=( )A .{x |x ≥0}B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1}1.D [解析] 由题意可知,A ∪B ={x |x ≤0或x ≥1},所以∁U (A ∪B )={x |0<x <1}. 2.[2014·辽宁卷] 设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i2.A [解析] 由(z -2i)(2-i)=5,得z -2i =52-i ,故z =2+3i.3.、[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a3.C [解析] 因为0<a =2-13<1,b =log 213<0,c =log 1213>log 1212=1,所以c >a >b .4.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.以下说法正确的选项是( )A .假设m ∥α,n ∥α,则m ∥nB .假设m ⊥α,n ⊂α,则m ⊥nC .假设m ⊥α,m ⊥n ,则n ∥αD .假设m ∥α,m ⊥n ,则n ⊥α4.B [解析] B [解析] 由题可知,假设m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;假设m ⊥α,n ⊂α,则m ⊥n ,故B 正确;假设m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误.假设m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误.5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :假设a ·b =0,b ·c =0,则a ·c =0,命题q :假设a ∥b ,b ∥c ,则a ∥c ,则以下命题中真命题是( )第 2 页 共 14 页A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )5.A [解析] 由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当b ≠0时,a ,c 一定共线,故命题q 是真命题.故p ∨q 为真命题.6.[2014·辽宁卷] 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .246.D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 34=24.7.、[2014·辽宁卷] 某几何体三视图如图1-1所示,则该几何体的体积为( ) A .8-2π B .8-π C .8-π2 D .8-π4图1-17.B [解析] 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分⎝⎛⎭⎫占圆柱的14后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.8.[2014·辽宁卷] 设等差数列{a n }的公差为d .假设数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >08.C [解析] 令b n =2a 1a n ,因为数列{2a 1a n }为递减数列,所以b n +1b n =2a 1a n +12a 1a n=2a 1(a n +1-a n )=2a 1d <1,所得a 1d <0.9.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )第 3 页 共 14 页A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增9.B [解析] 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图像,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.10.[2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.4310.D [解析] 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以pAB 的方程为x +2=m (y -3),与抛物线方程y 2=8x 联立得到y 2-8my +24m +16=0,由题易知Δ=0,解得m =-12(舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率k BF =8-08-2=43.11.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3]11.C [解析] 当-2≤x <0时,不等式转化为a ≤x 2-4x -3x 3,令f (x )=x 2-4x -3x 3(-2≤x <0),第 4 页 共 14 页则f ′(x )=-x 2+8x +9x 4=-〔x -9〕〔x +1〕x 4,故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤1+4-3-1x =0时,g (x )恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,令个g (x )=x 2-4x -3x 3(0<x ≤1),则g ′(x )=-x 2+8x +9x 4=-〔x -9〕〔x +1〕x 4,故g (x )在(0,1]上单调递增,此时有a ≥1-4-31=-6.综上,-6≤a ≤-2.12.、[2014·辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.假设对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.13.[2014·辽宁卷] 执行如图1-2所示的程序框图,假设输入x =9,则输出y =________.第 5 页 共 14 页图1-213.299 [解析] 当x =9时,y =5,则|y -x |=4;当x =5时,y =113,则|y -x |=43;当x =113时,y =299,则|y -x |=49<1.故输出y =299. 14.[2014·辽宁卷] 正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图1-3所示.假设将—个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是________.图1-314.23 [解析] 正方形ABCD 的面积S =2×2=4,阴影部分的面积S 1=2⎠⎛-11(1-x 2)d x =2⎝⎛⎭⎫x -13x 31-1=83,故质点落在阴影区域的概率P =834=23. 15.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.假设M 关于C的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=______.15.12 [解析] 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.16.、[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b 213,即2a =3b =6λ(同号)时,第 6 页 共 14 页|2a +b |取得最大值85c ,此时c =40λ2. 3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.17.、[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC→=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.17.解:(1)由BA →·BC →=2得c ·a ·cos B =2, 又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.解⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23·2 23= 4 29.因为a =b >c ,所以C 为锐角, 因此cos C =1-sin 2C =1-⎝⎛⎭⎫4 292=79. 所以cos(B -C )=cos B cos C +sin B sin C =13×79+2 23×4 29=2327.18.、、[2014·辽宁卷] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图1-4所示.图1-4将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).18.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2×50=0.15,P(B×××2=0.108.(2)X可能取的值为0,1,2,3,相应的概率分别为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·(1-0.6)2=0.288,P(X=2)=C23·2(1-0.6)=0.432,P(X=3)=C33·3=0.216.X的分布列为因为X~B(3,0.6)(1-0.6)=0.72.19.、[2014·辽宁卷] 如图1-5所示,△ABC和△BCD所在平面互相垂直,且AB=BC =BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.第7 页共14 页第 8 页 共 14 页(1)求证:EF ⊥BC ;(2)求二面角E -BF -C 的正弦值.图1-519.解:(1)证明:方法一,过点E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,所以BC ⊥平面EFO .又EF ⊂平面EFO ,所以EF ⊥BC.图1方法二,由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线,并将其作为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线,并将其作为z 轴,建立如下图的空间直角坐标系,易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E (0,12,32),F (32,12,0),所以EF →=(32,0,-32),BC →=(0,2,0),因此EF →·BC→=0,从而EF →⊥BC →,所以EF ⊥BC.第 9 页 共 14 页图2(2)方法一,在图1中,过点O 作OG ⊥BF ,垂足为G ,连接EG .因为平面ABC ⊥平面BDC ,所以EO ⊥面BDC ,又OG ⊥BF ,所以由三垂线定理知EG ⊥BF ,因此∠EGO 为二面角E -BF -C 的平面角. 在△EOC 中,EO =12EC =12BC ·cos 30°=32.由△BGO ∽△BFC 知,OG =BO BC ·FC =34,因此tan ∠EGO =EOOG=2,从而得sin ∠EGO =255,即二面角E -BF -C 的正弦值为2 55.方法二,在图2中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量n 2=(x ,y ,z ), 又BF →=(32,12,0),BE →=(0,12,32),所以⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个n 2=(1,-3,1).设二面角E -BF -C 的大小为θ,且由题知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15, 因此sin θ=25=2 55,即所求二面角正弦值为2 55.20.、[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成—个三角形,当该三角形面积最小时,切点为P (如图1-6所示).双曲线C 1:x 2a 2-y 2b 2=1过点P 且离心率为3.图1-6第 10 页 共 14 页(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点.假设以线段AB 为直径的圆过点P ,求l 的方程.20.解:(1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时两个坐标轴的正半轴与切线的交点分别为⎝⎛⎭⎫4x 0,0,⎝⎛⎭⎫0,4y 0.故其围成的三角形的面积S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知,当且仅当x 0=y 0=2时x 0y 0有最大值2,此时S 有最小值4,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b 2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1. (2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此可设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1, 解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设直线l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+2 3my -3=0. 又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-2 3m m 2+2, ①y 1y 2=-3m 2+2,②第 11 页 共 14 页由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m 〔y 1+y 2〕+2 3=4 3m 2+2 , ③x 1x 2=m 2y 1y 2+3m 〔y 1+y 2〕+3=6-6m 2m 2+2. ④ 因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2),由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0,⑤将①②③④代入⑤式整理得2m 2-2 6m +4 6-11=0,解得m =3 62-1或m =-62+1. 因此直线l 的方程为x -(3 62-1)y -3=0或x +(62-1)y -3=0. 21.、[2014·辽宁卷] 已知函数f (x )=(cos x -x )(π+2x )-83(sin x +1),g (x )=3(x -π)cos x -4(1+sin x )ln ⎝⎛⎭⎫3-2x π.证明:(1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0; (2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1<π. 21.证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=-(1+sin x )·(π+2x )-2x -23cos x <0,函数f (x )在⎝⎛⎭⎫0,π2上为减函数.又f (0)=π-83>0,f ⎝⎛⎭⎫π2=-π2-163<0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)记函数h (x )=3〔x -π〕cos x 1+sin x-4ln ⎝⎛⎭⎫3-2πx ,x ∈⎣⎡⎦⎤π2,π. 令t =π-x ,则当x ∈⎣⎡⎦⎤π2,π时,t ∈⎣⎡⎦⎤0,π2. 记u (t )=h (π-t )=3t cos t 1+sin t -4 ln ⎝⎛⎭⎫1+2πt ,则u ′(t )=3f 〔t 〕〔π+2t 〕〔1+sin t 〕. 由(1)得,当t ∈(0,x 0)时,u ′(t )>0,第 12 页 共 14 页当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )<0. 故在(0,x 0)上u (t )是增函数,又u (0)=0,从而可知当t ∈(0,x 0]时,u (t )>0,所以u (t )在(0,x 0]上无零点.在⎝⎛⎭⎫x 0,π2上u (t )为减函数,由u (x 0)>0,u ⎝⎛⎭⎫π2=-4ln 2<0,知存在唯一t 1∈⎝⎛⎭⎫x 0,π2,使u (t 1)=0,故存在唯一的t 1∈⎝⎛⎭⎫0,π2,使u (t 1)=0. 因此存在唯一的x 1=π-t 1∈⎝⎛⎭⎫π2,π,使h (x 1)=h (π-t 1)=u (t 1)=0. 因为当x ∈⎝⎛⎭⎫π2,π时,1+sin x >0,故g (x )=(1+sin x )h (x )与h (x )有相同的零点,所以存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0. 因为x 1=π-t 1,t 1>x 0,所以x 0+x 1<π.22.[2014·辽宁卷] 选修4-1:几何证明选讲如图1-7所示,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)假设AC =BD ,求证:AB =ED.图1-722.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .第 13 页 共 14 页又AF ⊥EP ,所以∠PF A =90°,所以∠BDA =90°,故AB 为圆的直径.(2)连接BC ,DC.由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB , 于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为直径,又由(1)知AB 为圆的直径,所以ED =AB .23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t(t 为参数). (2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12, 化为极坐标方程,并整理得第 14 页 共 14 页2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ. 24.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8xf (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14. 24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞〕,1-x ,x ∈〔-∞,1〕.当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43; 当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43. (2)由g (x )=16x 2-8x +1≤4得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34, 因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34, 故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34. 当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.。
2014年高考理科数学辽宁卷(含详细答案)
数学试卷 第1页(共45页)数学试卷 第2页(共45页)数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()UA B = ( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2i)(2i)5z --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=;命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π-C .π82-D .π84-8.设等差数列{}n a 的公差为d .若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数 ( ) A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12B .23C .34D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y --<. 若对所有,[0,1]x y ∈,|()()|f x f y k -<恒成立,则k 的最小值为( )A .12B .14C .12πD .18第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.执行如图所示的程序框图,若输入9x =,则输出y =________.14.正方形的四个顶点(1,1)A --,(1,1)B -,(1,1)C ,(1,1)D -分别在抛物线2y x =-和2y x =上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=且使|2|a b +最大时,345a b c-+的最小值为________.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共45页)数学试卷 第5页(共45页)数学试卷 第6页(共45页)三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列、期望()E X 及方差()D X .19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F 分别为AC ,DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E BF C --的正弦值.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线1C :22221x y a b-=过点P 且离心率为3.(Ⅰ)求1C 的方程;(Ⅱ)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点.若以线段AB 为直径的圆过点P ,求l 的方程.21.(本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πxg x x x x =--+-.证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =;(Ⅱ)存在唯一1π(,π)2x ∈,使1()0g x =,且对(Ⅰ)中的0x ,有01πx x +<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N . (Ⅰ)求M ; (Ⅱ)当x MN ∈时,证明:221()[()]4x f x x f x +≤.3 / 152014年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】由题意可知,{|01}A B x x x =≤≥或,所以(){|01}UA B x x =<<.故选D.【提示】先求AB ,再根据补集的定义求()UAB .【提示】把给出的等式两边同时乘以12i-,然后利用复数代数形式的除法运算化简,则z 可求.【提示】利用指数式的运算性质得到01a <<,由对数的运算性质得到0b <,1c >,则答案可求. 【考点】对数的基本运算 4.【答案】B【解析】由题可知,若m α∥,n α∥则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则n α∥或n α⊂,故C 错误.若m α∥,m n ⊥,则n α∥或n α⊥或n 与α相交,故D 错误.故选B.【提示】A.运用线面平行的性质,结合线线的位置关系,即可判断; B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断. 【考点】空间直线与直线,直线与平面的位置关系 5.【答案】A【解析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0b ≠时,a ,c 一定共线,故命数学试卷 第10页(共45页) 数学试卷 第11页(共45页)数学试卷 第12页(共45页)题q 是真命题.故p q ∨为真命题.故选A.【提示】根据向量的有关概念和性质分别判断p ,q 的真假,利用复合命题之间的关系即可得到结论. 【考点】向量的平行与垂直,真假命题的判定 6.【答案】D【解析】这是一个元素不相邻问题,采用插空法,333424A C =.故选D.【提示】使用“插空法”根据分步计数原理可得结论.【提示】几何体是正方体切去两个14圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.【提示】由于数列1{2}n a a 为递减数列,可得11112212n na a a d a a +=<,解出即可.5 / 15【提示】由题意先求出准线方程2px =-,再求出p ,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB 的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF 的斜率.数学试卷 第16页(共45页) 数学试卷 第17页(共45页)数学试卷 第18页(共45页)【提示】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论. 【提示】画出图形,利用中点坐标以及椭圆的定义,即可求出||||AN BN +的值.7 / 15【提示】首先把:224240a ab b c +-=-,转化为222343(2)4a b a b +≥+,再由柯西不等式得到|2|a b +,分别用b 表示a ,c ,在代入到345a b c-+得到关于b 的二次函数,求出最小值即可. (Ⅰ)由2BA BC =得,cos 2c a B =2222cos a c b B +=+. 29213c +=+⨯.解2ac a =⎧⎨+⎩,2c =2224339=22799⎫=⎪⎪⎭. 17224223sin 393927B C =+=数学试卷 第22页(共45页) 数学试卷 第23页(共45页)数学试卷 第24页(共45页)【提示】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.033(10.6)-=130.6(10.6)-2230.6(10.6)-3330.60.216=0 0.064因为~(3,0.6)X B ,所以期望为()30.6 1.8E X =⨯=,方差()30.6(10.6)0.72D X =⨯⨯-=.【提示】(Ⅰ)由频率分布直方图求出事件1A ,2A 的概率,利用相互独立事件的概率公式求出事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”的概率;(Ⅱ)写出X 可取得值,利用相互独立事件的概率公式求出X 取每一个值的概率;列出分布列.根据服从二项分布的随机变量的期望与方差公式求出期望()E X 及方差()D X . 【考点】频率分布直方图,随机事件的概率随机变量的期望和方差19.【答案】(Ⅰ)证明:方法一,过点E 作EO BC ⊥,垂足为O ,连接OF 。
2014辽宁高考数学理科带解析
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .247.某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π- D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A .12B .23C .34D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( )A .12B .14C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P . (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分) 已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-. 证明:(1)存在唯一0(0,)2x π∈,使0()0f x =; (2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F.(1)求证:AB 为圆的直径;(2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.。
[历年真题]2014年辽宁省高考数学试卷(理科)
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}2.(5分)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.247.(5分)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.二、填空题:本大题共4小题,每小题5分.考生根据要求作答.13.(5分)执行如图的程序框图,若输入x=9,则输出y=.14.(5分)正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是.15.(5分)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=.16.(5分)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.18.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).19.(12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.20.(12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:﹣=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.21.(12分)已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.选修4-1:几何证明选讲.22.(10分)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.选修4-4:坐标系与参数方程23.将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.不等式选讲24.设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【分析】先求A∪B,再根据补集的定义求C U(A∪B).【解答】解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A.2+3i B.2﹣3i C.3+2i D.3﹣2i【分析】把给出的等式两边同时乘以,然后利用复数代数形式的除法运算化简,则z可求.【解答】解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.【点评】本题考查了复数代数形式的除法运算,是基础的计算题.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A.p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)【分析】根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.【解答】解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p,q的真假是解决本题的关键.6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24【分析】使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理可得结论.【解答】解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.【点评】本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8﹣D.8﹣【分析】几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.【解答】解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:B.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A.d<0 B.d>0 C.a1d<0 D.a1d>0【分析】由于数列{2}为递减数列,可得=<1,解出即可.【解答】解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.【点评】本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.9.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增【分析】直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.【解答】解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).当函数递增时,由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.【分析】由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF的斜率.【解答】解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.【点评】本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A.[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]【分析】分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.【解答】解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增,f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选:C.【点评】本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为()A.B.C. D.【分析】依题意,构造函数f(x)=(0<k<),分x∈[0,],且y∈[0,];x∈[0,],且y∈[,1];x∈[0,],且y∈[,1];及当x∈[,1],且y∈[,1]时,四类情况讨论,可证得对所有x,y∈[0,1],|f(x)﹣f(y)|<恒成立,从而可得m≥,继而可得答案.【解答】解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,依题意可设k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k (1+)﹣k|=<;当y∈[0,],且x∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,∴m≥,即m的最小值为.故选:B.【点评】本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想与等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.二、填空题:本大题共4小题,每小题5分.考生根据要求作答.13.(5分)(2014•辽宁)执行如图的程序框图,若输入x=9,则输出y=.【分析】根据框图的流程模拟运行程序,直到满足条件|y﹣x|<1,计算输出y的值.【解答】解:由程序框图知:第一次循环x=9,y=+2=5,|5﹣9|=4>1;第二次循环x=5,y=+2=,|﹣5|=>1;第三次循环x=,y=+2.|+2﹣|=<1,满足条件|y﹣x|<1,跳出循环,输出y=.故答案为:.【点评】本题考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.14.(5分)(2014•辽宁)正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D (﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是.【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论.【解答】解:∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),∴正方体的ABCD的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:.【点评】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键.15.(5分)(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=12.【分析】画出图形,利用中点坐标以及椭圆的定义,即可求出|AN|+|BN|的值.【解答】解:如图:MN的中点为Q,易得,,∵Q在椭圆C上,∴|QF1|+|QF2|=2a=6,∴|AN|+|BN|=12.故答案为:12.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,是对基本知识的考查.16.(5分)(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为﹣2.【分析】首先把:4a2﹣2ab+4b2﹣c=0,转化为=,再由柯西不等式得到|2a+b|2,分别用b表示a,c,在代入到﹣+得到关于b的二次函数,求出最小值即可.【解答】解:∵4a2﹣2ab+4b2﹣c=0,∴=由柯西不等式得,[][]=|2a+b|2故当|2a+b|最大时,有∴∴﹣+===,当b=时,取得最小值为﹣2.故答案为:﹣2【点评】本题考查了柯西不等式,以及二次函数的最值问题,属于难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•辽宁)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.【分析】(Ⅰ)利用平面向量的数量积运算法则化简•=2,将cosB的值代入求出ac=6,再利用余弦定理列出关系式,将b,cosB以及ac的值代入得到a2+c2=13,联立即可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函数间基本关系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,进而求出cosC的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值.【解答】解:(Ⅰ)∵•=2,cosB=,∴c•acosB=2,即ac=6①,∵b=3,∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,∴a2+c2=13②,联立①②得:a=3,c=2;(Ⅱ)在△ABC中,sinB===,由正弦定理=得:sinC=sinB=×=,∵a=b>c,∴C为锐角,∴cosC===,则cos(B﹣C)=cosBcosC+sinBsinC=×+×=.【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.18.(12分)(2014•辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).【分析】(Ⅰ)由频率分布直方图求出事件A1,A2的概率,利用相互独立事件的概率公式求出事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”的概率;(Ⅱ)写出X可取得值,利用相互独立事件的概率公式求出X取每一个值的概率;列出分布列.根据服从二项分布的随机变量的期望与方差公式求出期望E(X)及方差D(X).【解答】解:(Ⅰ)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108,(Ⅱ)X可能取的值为0,1,2,3,相应的概率为:,,,随机变量X的分布列为X0123P0.0640.2880.4320.216因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1﹣0.6)=0.72.【点评】在n次独立重复试验中,事件A发生的次数服从二项分布、服从二项分布的随机变量的期望与方差公式,考查分布列的求法.19.(12分)(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.【分析】(Ⅰ)以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC 所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,得到E、F、B、C点的坐标,易求得此•=0,所以EF⊥BC;(Ⅱ)设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),依题意,可求得一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,可求得sinθ的值.【解答】(Ⅰ)证明:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系,易得B(0,0,0),A(0,﹣1,),D(,﹣1,0),C(0,2,0),因而E(0,,),F(,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF⊥BC.(Ⅱ)解:在图中,设平面BFC的一个法向量=(0,0,1),平面BEF的法向量=(x,y,z),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E﹣BF﹣C的大小为θ,由题意知θ为锐角,则cosθ=|cos<,>|=||=,因此sinθ==,即所求二面角正弦值为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.20.(12分)(2014•辽宁)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:﹣=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.【分析】(Ⅰ)设切点P(x0,y0),(x0>0,y0>0),利用相互垂直的直线斜率之间的关系可得切线的斜率和切线的方程,即可得出三角形的面积,利用基本不等式的性质可得点P的坐标,再利用双曲线的标准方程及其性质即可得出;(Ⅱ)由(Ⅰ)可得椭圆C2的焦点.可设椭圆C2的方程为(b1>0).把P的坐标代入即可得出方程.由题意可设直线l的方程为x=my+,A(x1,y1),B(x2,y2),与椭圆的方程联立即可得出根与系数的关系,再利用向量垂直与数量积的关系即可得出.【解答】解:(Ⅰ)设切点P(x0,y0),(x0>0,y0>0),则切线的斜率为,可得切线的方程为,化为x0x+y0y=4.令x=0,可得;令y=0,可得.∴切线与x轴正半轴,y轴正半轴围成一个三角形的面积S==.∵4=,当且仅当时取等号.∴.此时P.由题意可得,,解得a2=1,b2=2.故双曲线C1的方程为.(Ⅱ)由(Ⅰ)可知双曲线C1的焦点(±,0),即为椭圆C2的焦点.可设椭圆C2的方程为(b1>0).把P代入可得,解得=3,因此椭圆C2的方程为.由题意可设直线l的方程为x=my+,A(x1,y1),B(x2,y2),联立,化为,∴,.∴x 1+x2==,x1x2==.,,∵,∴,∴+,∴,解得m=或m=,因此直线l的方程为:或.【点评】本题综合考查了圆锥曲线的标准方程及其性质、相互垂直的直线斜率之间的关系、向量垂直与数量积的关系、切线的斜率和切线的方程、三角形的面积计算公式、基本不等式的性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系等基础知识与基本技能方法,考查了推理能力和计算能力,考查了转化和化归能力,考查了解决问题的能力,属于难题.21.(12分)(2014•辽宁)已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.【分析】(Ⅰ)根据x∈(0,)时,f′(x)<0,得出f(x)是单调减函数,再根据f(0)>0,f()<0,得出此结论;(Ⅱ)构造函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,得u(t)=h(π﹣t),求出u(t)存在唯一零点t1∈(0,),即证g(x)存在唯一的零点x1∈(,π),满足x0+x1<π.【解答】证明:(Ⅰ)∵当x∈(0,)时,f′(x)=﹣(1+sinx)(π+2x)﹣2x﹣cosx <0,∴函数f(x)在(0,)上为减函数,又f(0)=π﹣>0,f()=﹣π2﹣<0;∴存在唯一的x0∈(0,),使f(x0)=0;(Ⅱ)考虑函数h(x)=﹣4ln(3﹣x),x∈[,π],令t=π﹣x,则x∈[,π]时,t∈[0,],记函数u(t)=h(π﹣t)=﹣4ln(1+t),则u′(t)=﹣•=﹣=﹣==,由(Ⅰ)得,当t∈(0,x0)时,u′(t)>0;在(0,x0)上u(x)是增函数,又u(0)=0,∴当t∈(0,x0]时,u(t)>0,∴u(t)在(0,x0]上无零点;在(x0,)上u(t)是减函数,且u(x0)>0,u()=﹣4ln2<0,∴存在唯一的t1∈(x0,),使u(t1)=0;∴存在唯一的t1∈(0,),使u(t1)=0;∴存在唯一的x1=π﹣t1∈(,π),使h(x1)=h(π﹣t1)=u(t1)=0;∵当x∈(,π)时,1+sinx>0,∴g(x)=(1+sinx)h(x)与h(x)有相同的零点,∴存在唯一的x1∈(,π),使g(x1)=0,∵x1=π﹣t1,t1>x0,∴x0+x1<π.【点评】本题考查了导数的综合应用问题,解题时应根据导数来研究函数的单调性与最值问题,利用函数的单调性研究函数的零点问题,是较难的题目.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.选修4-1:几何证明选讲.22.(10分)(2014•辽宁)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.【分析】(Ⅰ)证明AB为圆的直径,只需证明∠BDA=90°;(Ⅱ)证明Rt△BDA≌Rt△ACB,再证明∠DCE为直角,即可证明AB=ED.【解答】证明:(Ⅰ)∵PG=PD,∴∠PDG=∠PGD,∵PD为切线,∴∠PDA=∠DBA,∵∠PGD=∠EGA,∴∠DBA=∠EGA,∴∠DBA+∠BAD=∠EGA+∠BAD,∴∠BDA=∠PFA,∵AF⊥EP,∴∠PFA=90°.∴∠BDA=90°,∴AB为圆的直径;(Ⅱ)连接BC,DC,则∵AB为圆的直径,∴∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,∴Rt△BDA≌Rt△ACB,∴∠DAB=∠CBA,∵∠DCB=∠DAB,∴∠DCB=∠CBA,∴DC∥AB,∵AB⊥EP,∴DC⊥EP,∴∠DCE为直角,∴ED为圆的直径,∵AB为圆的直径,∴AB=ED.【点评】本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题.选修4-4:坐标系与参数方程23.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.【分析】(Ⅰ)在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程.(Ⅱ)解方程组求得P1、P2的坐标,可得线段P1P2的中点坐标.再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程.【解答】解:(Ⅰ)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(Ⅱ)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x ﹣2y+=0.再根据x=ρcosα、y=ρsinα 可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.【点评】本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题.不等式选讲24.(2014•辽宁)设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.【分析】(Ⅰ)由所给的不等式可得①,或②,分别求得①、②的解集,再取并集,即得所求.(Ⅱ)由g(x)≤4,求得N,可得M∩N=[0,].当x∈M∩N时,f(x)=1﹣x,不等式的左边化为﹣,显然它小于或等于,要证的不等式得证.【解答】解:(Ⅰ)由f(x)=2|x﹣1|+x﹣1≤1 可得①,或②.解①求得1≤x≤,解②求得0≤x<1.综上,原不等式的解集为[0,].(Ⅱ)证明:由g(x)=16x2﹣8x+1≤4,求得﹣≤x≤,∴N=[﹣,],∴M∩N=[0,].∵当x∈M∩N时,f(x)=1﹣x,∴x2f(x)+x[f(x)]2 =xf(x)[x+f(x)]=﹣≤,故要证的不等式成立.【点评】本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.参与本试卷答题和审题的老师有:清风慕竹;sxs123;双曲线;maths;刘长柏;沂蒙松;minqi5;wyz123;wfy814;qiss;whgcn;sllwyn;wdnah;742048;caoqz (排名不分先后)菁优网2017年3月24日。
2014年普通高等学校招生全国统一考试(辽宁卷)数学试题(理科)解析版
【答案】C
【解析】
a
=
-1
23
∈
(
1 2
,1),
b
=
log
2
1 3
∈
(-2,-1),
c
=
log
1 2
1 3
∈
(1,2).∴
c > a > b.选C.
4.已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是( )
A.若 m / / , n / / , 则 m / /n
B.若 m , n ,则 m n
2014 年普通高等学校招生全国统一考试(辽宁卷)
理科数学
第Ⅰ卷(共 60 分)
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,
只有一项
是符合题目要求的.
1.已知全集U R, A {x | x 0}, B {x | x 1} ,则集合 CU (A B) (
若 a / /b,b / /c ,则 a / /c ,则下列命题中真命题是( )
A. p q B. p q C. (p) (q) D. p (q)
【答案】A 【解析】命题 p 为假,命题 q 为真,所以 A 正确。选 A
6 把椅子摆成一排,3 人随机就座,任何两人不相邻的做法种数为( )
8.设等差数列{an} 的公差为 d,若数列{2a1an } 为递减数列,则( )
A. d 0 B. d 0 C. a1d 0 D. a1d 0
【答案】C 【解析】
由同增异减知,a1an递减,即a1an+1 < a1an.分情况解得 : a1 > 0且d < 0;或a1 < 0且d > 0. ∴ a1d < 0.选C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年辽宁省高考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A .{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A .2+3i B.2﹣3i C.3+2i D.3﹣2i3.(5分)(2014•辽宁)已知a=,b=log 2,c=log,则()A .a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A .若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A .p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A .144 B.120 C.72 D.247.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A .8﹣2πB.8﹣πC.8﹣D.8﹣8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A .d<0 B.d>0 C.a1d<0 D.a1d>09.(5分)(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C .在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C :y2=2px 的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A .B.C.D.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A .[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f (x)﹣f (y)|<k恒成立,则k的最小值为()A .B.C.D.二、填空题:本大题共4小题,每小题5分。
考生根据要求作答.13.(5分)(2014•辽宁)执行如图的程序框图,若输入x=9,则输出y=_________.14.(5分)(2014•辽宁)正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是_________.15.(5分)(2014•辽宁)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|=_________.16.(5分)(2014•辽宁)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为_________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2014•辽宁)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知•=2,cosB=,b=3,求:(Ⅰ)a和c的值;(Ⅱ)cos(B﹣C)的值.18.(12分)(2014•辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).19.(12分)(2014•辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E﹣BF﹣C的正弦值.20.(12分)(2014•辽宁)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1:﹣=1过点P且离心率为.(Ⅰ)求C1的方程;(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.21.(12分)(2014•辽宁)已知函数f(x)=(cosx﹣x)(π+2x)﹣(sinx+1)g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣)证明:(Ⅰ)存在唯一x0∈(0,),使f(x0)=0;(Ⅱ)存在唯一x1∈(,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.选修4-1:几何证明选讲.22.(10分)(2014•辽宁)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.选修4-4:坐标系与参数方程23.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅱ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.不等式选讲24.(2014•辽宁)设函数f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(Ⅰ)求M;(Ⅱ)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤.2014年辽宁省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A .{x|x≥0} B.{x|x≤1} C.{x|0≤x≤1} D.{x|0<x<1}考点:交、并、补集的混合运算.专题:计算题;集合.分析:先求A∪B,再根据补集的定义求C U(A∪B).解答:解:A∪B={x|x≥1或x≤0},∴C U(A∪B)={x|0<x<1},故选:D.点评:本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法.2.(5分)(2014•辽宁)设复数z满足(z﹣2i)(2﹣i)=5,则z=()A .2+3i B.2﹣3i C.3+2i D.3﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把给出的等式两边同时乘以,的除法运算化简,则z可求.解答:解:由(z﹣2i)(2﹣i)=5,得:,∴z=2+3i.故选:A.点评:本题考查了复数代数形式的除法运算,是基础的计算题.3.(5分)(2014•辽宁)已知a=,b=log2,c=log,则()A .a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数的运算性质.专题:计算题;综合题.分析:利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.解答:解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>故选:C.点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)(2014•辽宁)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A .若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.解答:解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.点评:本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.(5分)(2014•辽宁)设,,是非零向量,已知命题p:若•=0,•=0,则•=0;命题q:若∥,∥,则∥,则下列命题中真命题是()A .p∨q B.p∧q C.(¬p)∧(¬q)D.p∨(¬q)考点:复合命题的真假.专题:简易逻辑.分析:根据向量的有关概念和性质分别判断p,q的真假,利用复合命题之间的关系即可得到结论.解答:解:若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:A.点评:本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p,q的真假是解决本题的关键.6.(5分)(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A .144 B.120 C.72 D.24考点:计数原理的应用.专题:应用题;排列组合.分析:先排人,再插入椅子,根据乘法原理可得结论.解答:解:3人全排,有=6种方法,形成4个空,在前3个或后3个或中间两个空中插入椅子,有4种方法,根据乘法原理可得所求坐法种数为6×4=24种.故选:D.点评:本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.7.(5分)(2014•辽宁)某几何体三视图如图所示,则该几何体的体积为()A .8﹣2πB.8﹣πC.8﹣D.8﹣考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入正方体与圆柱的体积公式计算.解答:解:由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2××π×12×2=8﹣π.故选:B.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)(2014•辽宁)设等差数列{a n}的公差为d,若数列{}为递减数列,则()A .d<0 B.d>0 C.a1d<0 D.a1d>0考点:数列的函数特性.专题:函数的性质及应用;等差数列与等比数列.分析:由于数列{2}为递减数列,可得=<1,解出即可.解答:解:∵等差数列{a n}的公差为d,∴a n+1﹣a n=d,又数列{2}为递减数列,∴=<1,∴a1d<0.故选:C.点评:本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.9.(5分)(2014•辽宁)将函数y=3sin (2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C在区间[﹣D在区间[﹣.,]上单调递减.,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x ﹣)+].即y=3sin(2x ﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.10.(5分)(2014•辽宁)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A .B.C.D.考点:直线与圆锥曲线的关系.专题:计算题;圆锥曲线的定义、性质与方程.分析:由题意先求出准线方程x=﹣2,再求出p,从而得到抛物线方程,写出第一象限的抛物线方程,设出切点,并求导,得到切线AB的斜率,再由两点的斜率公式得到方程,解出方程求出切点,再由两点的斜率公式求出BF的斜率.解答:解:∵点A(﹣2,3)在抛物线C:y2=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线C:y2=8x,在第一象限的方程为y=2,设切点B(m,n),则n=2,又导数y′=2,则在切点处的斜率为,∴即m=2m,解得=2(舍去),∴切点B(8,8),又F(2,0),∴直线BF的斜率为,故选D.点评:本题主要考查抛物线的方程和性质,同时考查直线与抛物线相切,运用导数求切线的斜率等,是一道基础题.11.(5分)(2014•辽宁)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是()A .[﹣5,﹣3]B.[﹣6,﹣]C.[﹣6,﹣2]D.[﹣4,﹣3]考点:函数恒成立问题;其他不等式的解法.专题:综合题;导数的综合应用;不等式的解法及应用.分析:分x=0,0<x≤1,﹣2≤x<0三种情况进行讨论,分离出参数a后转化为函数求最值即可,利用导数即可求得函数最值,注意最后要对a取交集.解答:解:当x=0时,不等式ax3﹣x2+4x+3≥0对任意a∈R恒成立;当0<x≤1时,ax3﹣x2+4x+3≥0可化为a≥,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f (x)在(0,1]上单调递增,f(x)max=f (1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax3﹣x2+4x+3≥0可化为a≤,由(*)式可知,当﹣2≤x <﹣1时,f′(x)<0,f (x)单调递减,当﹣1<x <0时,f′(x)>0,f(x)单调递增,f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].故选C.点评:本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.12.(5分)(2014•辽宁)已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.若对所有x,y∈[0,1],|f(x)﹣f(y)|<k恒成立,则k的最小值为()A .B.C.D.考点:函数恒成立问题;绝对值不等式的解法.专题:综合题;函数的性质及应用.分析:依题意,构造函数f(x)=(0<k<),分x∈[0,],且y∈[0,];x∈[0,],且y∈[,1];y∈[0,],且y∈[,1];及当x∈[,1],且y∈[,1]时,四类情况讨论,可证得对所有x,y∈[0,1],|f(x)﹣f(y)|<恒成立,从而可得k≥,继而可得答案.解答:解:依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<,不妨令k>0,构造函数f(x)=(0<k<),满足f(0)=f(1)=0,|f(x)﹣f(y)|<|x﹣y|.当x∈[0,],且y∈[0,]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|﹣0|=k×<;当x∈[0,],且y∈[,1],|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+)﹣k|=<;当y∈[0,],且y∈[,1]时,同理可得,|f(x)﹣f(y)|<;当x∈[,1],且y∈[,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣)=<;综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|<,∵对所有x,y∈[0,1],|f(x)﹣f(y)|<k恒成立,∴k≥,即k的最小值为.故选:B.点评:本题考查函数恒成立问题,着重考查构造函数思想、分类讨论思想、函数方程思想与等价转化思想的综合运用,考查分析、推理及运算能力,属于难题.二、填空题:本大题共4小题,每小题5分。