热稳定性分析方法
物质热稳定性的热分析试验方法
物质热稳定性的热分析试验方法Company number:【0089WT-8898YT-W8CCB-BUUT-202108】物质热稳定性的热分析试验方法1 主题内容与适用范围本标准规定了用差热分析仪和(或)差示扫描量热计评价物质热稳定性的热分析方法所用的试样和参比物、试验步骤和安全事项等一般要求。
本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变的固体、液体和浆状物质热稳定性的评价。
2 术语物质热稳定性在规定的环境下,物质受热(氧化)分解而引起的放热或着火的敏感程度。
焓变物质在受热情况下发生吸热或放热的任何变化。
焓变温度物质焓变过程中的温度。
3 方法原理本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度(包括起始温度、外推起始温度和峰温)并以此来评价物质的热稳定性。
4 仪器和材料仪器差热分析仪(DTA)或差示扫描量热计(DSC):程序升温速率在2~30℃/min 范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95% 的满刻度偏离。
样品容器坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应。
气源空气、氮气等,纯度应达到工业用气体纯度。
冷却装置冷却装置的冷却温度应能达到-50℃。
参比物在试验温度范围内不发生焓变。
典型的参比物有煅烧的氧化铝、玻璃珠、硅油或空容器等。
在干燥器中储存。
5 试样取样对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分法取样。
试样量试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温速率等因素来决定,一般为1~5mg,最大用量不超过50mg。
如果试样有突然释放大量潜能的可能性,应适当减少试样量。
6 试验步骤仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内。
将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的热接触(对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等)。
混凝土的热稳定性测试方法
混凝土的热稳定性测试方法混凝土是一种广泛使用的建筑材料,它在建筑结构中具有重要的作用。
然而,混凝土在高温下会发生变形和破坏,这对建筑结构的安全性和可靠性产生了极大的影响。
因此,研究混凝土的热稳定性对于保障建筑结构的安全至关重要。
本文将介绍混凝土的热稳定性测试方法。
一、热稳定性测试的原理混凝土的热稳定性测试是通过对混凝土在高温下的物理和化学性质进行测试,以研究混凝土在高温下的变化规律和热稳定性能。
混凝土在高温下的变化主要包括体积变化、重量损失、强度降低等。
因此,热稳定性测试需要考察混凝土在高温下的体积变化、重量损失和强度变化等指标,以评估混凝土的热稳定性。
二、热稳定性测试方法1. 热重分析法热重分析法是一种常用的混凝土热稳定性测试方法。
该方法通过在恒定温度下对混凝土进行加热,并测量混凝土的重量损失,以研究混凝土在高温下的重量变化规律。
具体的测试步骤如下:(1) 准备样品:从混凝土中取出一定量的样品,经过干燥后,将其放入热重分析器中。
(2) 加热:将样品在恒定温度下进行加热,一般温度范围为20℃~1000℃。
(3) 测量重量损失:在加热过程中,热重分析器会不断测量混凝土样品的重量。
通过比较加热前后混凝土样品的重量,计算出混凝土在高温下的重量损失率。
2. 热膨胀法热膨胀法是一种通过测量混凝土在高温下的体积变化,以研究混凝土的热稳定性的测试方法。
具体的测试步骤如下:(1) 准备样品:从混凝土中取出一定量的样品,经过干燥后,将其放入热膨胀仪中。
(2) 加热:在恒定温度下对样品进行加热,一般温度范围为20℃~1000℃。
(3) 测量膨胀量:在加热过程中,热膨胀仪会不断测量混凝土样品的膨胀量。
通过比较加热前后混凝土样品的体积变化,计算出混凝土在高温下的膨胀率。
3. 强度测试法强度测试法是通过测量混凝土在高温下的抗压强度、抗拉强度等指标,以研究混凝土的热稳定性的测试方法。
具体的测试步骤如下:(1) 准备样品:从混凝土中取出一定量的样品,并按照标准要求进行制备和养护。
高压电缆动热稳定校验
高压电缆动热稳定校验
高压电缆动热稳定校验主要基于电缆的最小允许热稳定截面积进行。
此步骤包括计算电缆的最小允许热稳定截面积,然后与电缆的实际截面积进行比较,以确定电缆是否满足热稳定要求。
具体来说,电缆的最小允许热稳定截面积可以通过以下公式得出:Smin=Id3Cti=2496.59800.25=15.6mm2,其中,Id为三相短路电流,C 为电缆的热稳定系数,t为断路器分断时间(一般取0.25s)。
在得出最小允许热稳定截面积后,将其与电缆的实际截面积进行比较。
如果实际截面积小于最小允许热稳定截面积,那么电缆的热稳定性就不符合要求。
对于交联聚乙烯绝缘电力电缆,短路允许温度为120℃时,热稳定系数取80。
同时,电缆的最小允许热稳定截面积应为50mm2。
因此,如果实际使用的电缆截面小于这个数值,那么电缆的热稳定性就不符合要求。
总的来说,高压电缆动热稳定校验是确保电缆在短路等极端情况下仍能保持稳定的重要步骤。
在进行校验时,需要充分考虑各种因素如电缆材质、截面大小、运行环境等,以确保校验结果的准确性和可靠性。
对电线电缆热稳定性试验方法的几点分析
对电线电缆热稳定性试验方法的几点分析作者:邵媛来源:《科学与技术》2018年第08期摘要:本文主要分析了电线电缆的热稳定性试验方法,对其的检测措施进行了重点探讨。
对电线电缆进行热稳定性试验,可以将电线电缆产品的质量进行有效的提升,保证电力产品可以正常的运行。
本文通过对电线电缆的热稳定性试验方法进行研究,以期推动电线电缆产业的安全运行,将其质量进行不断的提高。
关键词:电线电缆;质量;电力产品1对电线电缆热进行稳定性试验的措施1.1对电线电缆的外观、尺寸以及结构进行检测如果想要有效的实现对电线电缆的检测,那么第一步要做的就是全面性的检测电线电缆的额外观、尺寸以及结构,其中包括对结构的检测、外观检测以及尺寸检测。
全面的检测电线电缆的缆芯结构、店面、护层以及绝缘线芯就是对电线电缆进行结构检测,这种检测相对来说时比较全面的,结合了尺寸检测和外观检测,如图1:在对其进行检测的过程当中,不仅将电线电缆的外观进行了有效的保证,而且还检测了电线电缆的尺寸,将其尺寸和相关的标准作比较,保证电线电缆的尺寸符合相关的标准。
在检查电线电缆质量高低的检查判断当中,外观检测是最直观的一种检查方式,可以将电线电缆的外在表现作为检查的依据,对电线电缆进行综合的评判,对电线电缆的外观进行检查,就可以将很多有问题的电线电缆检查出来,这种方式非常简单又很直观,如果其中有电线电缆出现问题,那么就基本上可以判定该产品存在一定的质量问题。
在对电线电缆的外观进行检测的过程当中,还要检测电线电缆表面的光滑度以及整洁度,要检查电线电缆的表面是否存在油污或者斑点等现象,对其腐蚀程度进行检查,看其是否符合相关的规定标准。
在对电线电缆的尺寸进行检测的而过程当中,一般对日常生活当中使用的电线电缆要求并不是很高,但是针对一些高压交联电线电缆的要求就会相对比较高一些,会对其尺寸、密度以及外径等相关信息都进行检测,还要检测绝缘层的厚度以及线径直径等,相对来说比较严格。
三种测定蛋白质热稳定性方法的比较
Copyright©博看网 . All Rights Reserved.
第4期
253
周翠燕ꎬ等:三种测定蛋白质热稳定性方法的比较
蛋白质在加热过程中会发生热变性解折叠ꎬ蛋
化的趋势ꎬ所以圆二色谱法也是测定蛋白质 T m 值的
指在蛋白质解折叠 50%时对应的温度
类蛋白的 T m 值整体上较为一致ꎬ 但也存在一定差
异. 而结构更复杂的蛋白ꎬ并不一定有更多个 T m 值.
表 1 蛋白质样品信息汇总
Table 1 Summary of information of protein sample
分子量大小 / kDa
名称
PYL 2
PYL 10
植 物 ABA ( 脱 落
DSC) 、圆 二 色 光 谱 法 ( circular dichroismꎬ CD) 和 差
示扫 描 荧 光 法 ( differential scanning fluorimetryꎬ
DSF) 等.
差示扫描量热法的应用始于 20 世纪 60 年代ꎬ
是在程序控温下ꎬ通过测量输给待测物和参比物的
功率差与温度的关系ꎬ 以获得吸放热量的技术
Stability of Protein
ZHOU Cui ̄yan
1ꎬ2ꎬ3ꎬ4
ꎬ YU Min ̄da 5 ꎬ LI Wen ̄qi 1ꎬ2ꎬ3ꎬ4
(1.School of Biomedicine in Tsinghua Universityꎬ Beijing 100084ꎬ Chinaꎻ
2. National Protein Science Facility( Beijing) ꎬ Tsinghua Universityꎬ Beijing 100084ꎬ Chinaꎻ
材料热稳定性分析
材料热稳定性分析材料热稳定性是指材料在高温条件下是否能够保持其性能和形状的能力。
高温会引起一系列材料的物理、化学、结构和力学变化,因此材料热稳定性分析对于高温应用领域的材料选型、设计优化和使用寿命的评估具有重要意义。
1.高温引起的材料变化高温可引起多种材料变化,主要包括以下几个方面:(1)化学变化:材料中的化学键可由于高温裂解或结合变得更加稳定,导致材料的化学成分发生变化。
(2)微观结构变化:材料中的晶体结构和晶粒尺寸会随着高温的作用而发生变化,包括晶格的缩放、错位、析出、再溶和再结晶等。
(3)物理变化:材料的物理性质会发生改变,例如电导率、热传导率、热膨胀系数、磁性能等。
(4)力学性能变化:氧化、腐蚀和生锈等对材料的力学性能产生极大的影响,材料在高温下还可能发生拉伸、弯曲、断裂等力学变化。
2.材料热稳定性分析方法材料热稳定性分析方法包括工程测量法、热分析法和微观分析法等。
(1)工程测量法:通过对材料在高温下的形状、尺寸、重量、材料伸长率等方面进行实验测量,来分析材料在高温下的稳定性。
(2)热分析法:热重分析、热膨胀分析和差热分析等专用仪器可以通过加热样品并记录样品重量、长度、热量等参数的变化,来评估材料在高温下的化学、物理、结构和力学性质变化,可以用来判断材料的高温稳定性。
(3)微观分析法:透射电子显微镜、扫描电子显微镜和X射线衍射等技术可以对热稳定性变化的微观结构进行分析和观察,包括晶粒、晶体结构、相变等。
3.材料的选择与设计对于要求高温稳定性的材料和构件来说,材料的选择及设计至关重要。
(1)材料要选择具有高温稳定性的材料,如高温合金、耐火材料等,还要考虑材料的成本、可加工性和配套性等。
(2)构件的设计应该尽可能地减少热应力的集中,材料内部的孔洞和缺陷应该进行修补,减少材料的缺陷和故障的发生。
(3)处理过程的优化,如熔炼和热处理等的加工工艺和调控方法,可以改善材料的高温稳定性。
4.结论材料热稳定性分析是对材料高温应用性能评估的重要手段,对于选择和设计高温应用材料和构件具有基础性和指导性的意义。
纳米材料的热稳定性能研究方法
纳米材料的热稳定性能研究方法一、引言纳米材料是具有独特性质和广泛应用潜力的材料,然而其热稳定性能一直是一个重要的研究课题。
准确评估纳米材料的热稳定性能对于科研和工程应用具有重要意义。
本文将介绍一些常用的纳米材料热稳定性能研究方法。
二、热重分析法(Thermogravimetric Analysis,TGA)热重分析法是一种常见的用于评估材料热稳定性能的方法。
该方法通过监测材料随温度变化时的质量变化来研究其热解降解性能。
在实验中,纳米材料样品被放置在热重分析仪中,升温速率逐渐增加,记录材料随温度的质量变化情况。
通过分析质量变化曲线,可以确定纳米材料的热分解特性和热稳定性能。
三、差示扫描量热法(Differential Scanning Calorimetry,DSC)差示扫描量热法是通过测量材料在升温或降温过程中吸热或放热的量来研究其热稳定性能。
在实验中,纳米材料样品被放置在差热分析仪中,以恒定的升温或降温速率进行实验。
通过测量样品吸热或放热的大小和温度变化的关系,可以确定纳米材料的热分解反应特性和热稳定性能。
四、差示扫描量热法联用质谱技术(DSC-MS)差示扫描量热法联用质谱技术(DSC-MS)是将差热分析仪与质谱仪结合起来,用于研究纳米材料的热稳定性能和分解产物。
通过联用质谱仪,可以实时监测热分解过程中释放的气体,并对其进行分析和鉴定。
这种方法可以帮助确定纳米材料的热分解反应路径和产物生成机理。
五、红外光谱法(Infrared Spectroscopy,IR)红外光谱法是一种常用的评估材料热稳定性能的方法之一。
该方法通过检测材料在不同温度下红外光谱的变化,来研究其热解降解反应和分子结构的变化。
通过分析红外光谱的吸收峰位置和强度变化,可以确定纳米材料的热稳定性能和降解机制。
六、X射线衍射法(X-ray Diffraction,XRD)X射线衍射法是一种广泛应用于纳米材料研究的方法,同时也可以用于研究纳米材料的热稳定性能。
【doc】物质热稳定性分析实验方法及仪器比较
物质热稳定性分析实验方法及仪器比较52分析仪器2008年第2期业业业业业业业业掌知识介绍I},,,,,,,I芥物质热稳定性分析实验方法及仪器比较焦爱红(1.中国人民武装警察部队学院研究生一队,廊坊,065000;傅智敏2.中国人民武装警察部队学院消防工程系,廊坊,065000)摘要物质热稳定性是危险化学品生产,储存,运输和使用中最为关心的问题之一,热稳定性实验方法和仪器是获得物质热稳定性特征参数的重要技术和手段.本文介绍了国际上分析物质热稳定性的几种主要实验方法的测量原理,所用量热仪的结构,工作原理,热探测灵敏度,测试条件,范围及所获得的典型数据.综合比较了各种量热仪的性能,应用条件及其适用范围和优缺点.关键词热稳定性差示扫描量热法差热分析法绝热量热分析法绝热量热仪l前言物质热稳定性是指在规定的环境下,物质受热.(氧化)分解而引起的放热或着火的敏感程度r1].物质的燃烧和爆炸与其热稳定性密切相关,因此热稳定性是化学工业中最关心的问题之一.物质热稳定性的分析方法主要包括理论方法和实验测试方法两个方面.理论方法主要是利用已有经验和分子结构(不稳定原子基团)来预测化学热力学性质(生成热,反应热,最大绝热温升和最大压力上升等)和动力学参数(如活化能等).应用理论方法通常可以说明物料反应性方面的热力学性质,但不能反映动力学能量释放速率的大小.动力学参数通常需要由实验来确定r2].国际上分析物质热稳定性的实验方法主要有差热分析法(DifferentialThermalAnalysis, DTA),差示扫描量热法(DifferentialScanningCal—orimetry,DSC)和近年来逐步发展起来的绝热量热分析法.2差热分析法差热分析法(DTA)是将样品和参比物置于同一环境中以一定速率加热或冷却,测量样品和参比物之间的温差变化,并将该温度差对时间或温度作记录的方法[3].样品在加热或冷却过程中因物理或化学变化产生热效应,从而引起试样的温度发生变化,以差示法对样品的温度变化进行测定,这就是DTA的基本原理.将样品和参比物之间的温差作为温度或时间的函数记录下来,得到的曲线就是DTA曲线.DTA测试的典型样品量为毫克级,获得的典型数据为样品和参比物之间的温差.使用温度上限高达1800℃.程序升温速率的范围为1~100℃/rain, 常用的为l~2O℃/min.DTA的优点是测温范围大,不足之处是只能作定性分析,且灵敏度不高.3差示扫描量热法差示扫描量热法(DSC)是指在程序温度控制下测量处于同一温度区域的样品和参比物之间单位时间的能量差(或功率差)随温度变化的一种技术l4].DSC有几种测量形式,包括热流式,热通量式和功率补偿式三种.热流式DSC属于热交换型量热仪,与环境的热量交换是通过热阻进行测量的,测量信号为温差,其值表示热交换的强度,并与热流速率(一dQ/dt)成正比.热通量式DSC是在试样支架和参比物支架附近的薄壁氧化铝管壁上安放几十对乃至几百对互相串联的热电偶,其一端紧贴着管壁,另一端则紧贴着银均热块,然后将试样侧多重热电偶与参比物侧多重热电偶反接串联,精确测量试样和参比物的温度.在热通量式DSC测试中,样作者简介:焦爱红,女,1977年8月出生,在读研究生,主要从事物质热稳定性实验方法研究.E-mail:*******************2008年第2期分析仪器53品焓变的热通量损失极小,灵敏度和精确度高,可用于精密热量测定.功率补偿式DSC按试样相变(或反应)而形成的试样和参比物间温差的方向来提供电功率,以使温差低于额定值,通常是小于0.01℃.功率补偿式DSC属热补偿型量热仪,待测的热量几乎全部由电能来补偿.DSC测试的典型样品量为毫克级,能够得到反应热数据和部分反应速率数据,操作温度最低一200℃,最高1000℃.程序升温速率在2~30℃/min的范围内,常用的为10~30℃/min.DSC具有快速,无需特殊制样(固体,液体均可),温度范围宽,定量程度好等优点.但有如下不足之处:基线的倾斜与弯曲,使实际的灵敏度降低;欲提高灵敏度须快速升温,但这将降低分辨率;提高分辨率要求降低升温速度,但这会降低灵敏度;观测到的多种转变过程可能相互覆盖,结果是多个过程复合的表现,无法对这些过程做出明确的解释;无法在恒温或反应过程中测定热容;某些测量要求多次实验或改变体系的基本物理参量(如改变体系的热导率).4绝热量热分析法绝热量热分析法是一种利用能够进行量热测试并同时保持样品和环境间有最小热交换的量热仪对物质热稳定性进行测试分析的方法l_5j.所用的仪器主要有绝热真空杜瓦量热仪(AdiabaticDewarCal—orimeter,ADC),绝热加速量热仪(Accelerating RateCalorimeter,ARC),紧急排放测试仪(V ent SizingPackage,VSP),自动压力跟踪绝热加速量热仪(AutomaticPressureTrackingAdiabaticCalo—rimeter,APTAC)和绝热反应量热仪(PHI—TEC),其中ARC已经成为国际上评价物质热稳定性的常用测试手段之一,并逐步向成为标准测试方法方向发展.4.1绝热真空杜瓦量热仪绝热真空杜瓦量热仪(ADC)由一个1L的不锈钢制杜瓦瓶和一个由计算机程序控制的能跟踪杜瓦瓶内温度而实现系统绝热的炉子组成.杜瓦量热仪因所用的样品量大,能够实施机械搅拌,物质混合较均匀,所以其灵敏度较高.其典型的热惰性因子(Phi)不锈钢容器为1.1,玻璃容器为1.8.只有不锈钢容器的杜瓦瓶可以测量压力,但必须采取防护措施.其结果与VSP和PHI—TEC具有可比性,但其最大测量压力为3MPa,最大测量温度为350℃,最大温升跟踪速率为60℃/min.ADC系统主要由以下4 部分组成:杜瓦瓶及其配件,绝热外壳,安全外壳以及数据获取和控制系统.ADC系统见图1.图1绝热真空杜瓦量热仪4.2绝热加速量热仪由于很多文献已经对绝热加速量热仪(ARC)做了详细的介绍和说明口],本文只作简要的描述. ARC是一个按标准形式设计制造的系统,它由含有加热器,温度传感器的炉体(绝热炉)和实现绝热功能的控制系统两大部分组成.ARC的结构示意图如图2所示.隘力传撼器图2绝热加速量热仪结构示意图ARC是探测失控反应最常用的绝热仪器.样品置于样品球内,然后加热至初始失控温度,外部加热器跟踪样品温度,以保证绝热.ARC的Phi值较大,一般为2~6(范围为1.2~9).某些情况下,高Phi值有助于了解复杂的动力学.因热电偶在样品室外部,所以对于粘度大的溶液和非常快的反应,会引起数据外推有误.ARC探测灵敏度很高,测试得54分析仪器2008年第2期到的初始放热温度较低,斜率敏感度最低可达0.005℃/min,操作温度范围为0~500℃,压力范围为0~17MPa.其缺点是大多数实验Phi值较大,实验结果需要进行校正;不能跟踪速度非常快的反应;每次实验所需时间非常长(一般超过24h);不能量化吸热行为.4.3紧急排放测试仪紧急排放测试仪(VSP)主要由反应系统和温度,压力控制系统两部分组成,其结构如图3所示[8l9].图3vsP结构图A.加热器B.安全罩加热器接头c,D.样品室和安全罩测温装置E.样品室加热器接头F1,F2.安全罩加热器G.样品室加热器H.绝热介质该仪器能模拟工业上反应失控的温度,压力随时间的变化情况,并能自动跟踪泄放过程中压力和温度的变化,可以评估放热过程的危险性,确定放热反应过程的安全(温度,压力,泄压措施等)操作条件,确定自加速分解温度,以及分析各种放热反应引起的火灾爆炸事故的原因.VSP通过压力自动跟踪器(automaticpressuretracking,APT),使样品在密闭容器中进行绝热测试.样品室采用薄壁金属球(0.13mm)制作,使得仪器的Phi值较小,接近1.0(其典型Phi值为1.05),获得的数据可直接应用于工业尺寸.其缺点是需要压力补偿系统维持样品室内外的压差,以防样品室爆裂.VSP实验得到的热动力学数据有:绝热温升,反应热,最大压力,气体生成量,初始放热温度,温升速率,压力上升速率,最大温升速率时间,活化能等.VSP典型升温速率范围为50~100℃/min,一般测试温度低于350℃,压力低于2.41MPa时,其绝热效果较好.4.4自动压力跟踪绝热加速量热仪自动压力跟踪绝热加速量热仪(APTAC)是一种分析样品量最大至80g或130cm.且具有较低热惰性因子的绝热量热仪,其绝热原理与ARC类似[1,所不同的是其压力系统.在APTAC中,样品室内因反应而产生的内外压差通过样品室外部的氮气压力来平衡,因而可以用较大的薄壁样品室进行实验,所以热惰性因子较小.APTAC测得的数据对于评价物质的热危害如放热量,初始放热温度以及物质的安全生产,储存和运输具有重要作用,它和ARC一样是进行物质热稳定性分析的有用工具,但其应用远不如ARC广泛.APTAC主要由反应系统和温度,压力控制系统两部分组成[1¨,其结构如图4所示.图4APTAC结构示意图——热电偶①——压力传感器和管路?加热器APTAC有H—w—S,等温和梯度等几种工作模式,获得的典型数据为温度和压力随时间的变化关系,通过计算可以获得其他表征物质热稳定性的特征数据以及样品自加速放热反应的动力学参数如表观活化能,指前因子等.APTAC跟踪放热反应的温升速率范围为0.04℃/min~400℃/min,温度测量范围为0~450℃,压力范围为真空至13.79MPa,最大压力升高速率跟踪能力为68.95MPa/min.4.5绝热反应量热仪绝热反应量热仪(PHI—TEC)是一个由计算机控制的绝热量热仪[1,主要由反应系统和相应的控制系统组成(见图5),可用于模拟较大尺寸反应器的热行为,尤其是发生失控反应时的热行为.其最2008年第2期分析仪器55新型号PHI—TECⅡ在保留PHI—TECI的功能和优点的基础上,又增加了一个压力跟踪设备,从而能够采用低Phi值的样品室.这些样品室体积一般为100mL,壁薄,Phi值小(约为1.05),因而PHI—TEC1I能够模拟实际情况下的最不利场景,能够提供进行有关计算的重要信息.图5II1一TECⅡ结构示意图1.加样管接口2.底部加热器3.磁力搅拌器4.周围加热器5.样品室与VSP和APTAC类似,PHI—TEC也有H—w—S和梯度等工作模式,获得的典型数据也是温度和压力随时间的变化关系,通过计算可以获得其他表征物质热稳定性的特征数据,如温升速率,最大温升速率时间,不可逆温度等.PHI—TEC跟踪放热反应的温升速率范围为0.02℃/min~200℃/rain,温度测量范围为0~500℃,压力范围为0~15MPa. PHI—TEC的应用亦不是很广泛.5反应系统判别工具反应系统判别工具(ReactiveSystemScreening Tooi,RSST,其最新型号为ARSST)是由Fauske&Associates,LLC开发的用于获取进行紧急泄放设计所需数据的一种量热仪[1.,是化工厂中判别物质危害性的一个很有用的工具,它比上面提到的量热仪都小.使用该仪器进行的实验是非绝热的,但通过给样品提供一个恒定的小的热输入来补偿损失掉的热量并使样品升温.实验在一个10mL的带搅拌的低Phi(1.04)敞开样品室内进行,可以加料.其最新型号为改进的反应系统判别工具(Advanced ReactiveSystemScreeningTool,ARSST).AR—SST可以按照加热一等待一搜寻程序运行,然而其早期的设备只能工作于恒定的热输人模式(就像DSC 常用的那样).RSST的组成包括_g]:10mL敞开球形玻璃样品室,浸人式加热器(可选),外部加热器,绝热介质,热电偶,压力传感器,一个能提供安全防护和模拟压力的不锈钢控制容器(体积350mL),磁力搅拌装置和控制系统.RSST结构示意图见图6.f】阀图6RSST结构示意图RSST/ARSST可工作于H—w—S和等温等模式,获得的典型数据为温度一时间图,压力一时间图, 压力一温度图和Arrhenius曲线.RSST/ARSST可以获得系统泄放后的压力变化情况,用以判别系统的泄放类型.系统的探测灵敏度最低可达0.1℃/rain,温度测量范围为0~500℃,压力范围为0~20.6MPa.循环验证实验(RoundRobinTests)表明,RSST与VSP实验结果一致性很好[1.由于在RSST/AR—SST中很难实现绝热环境,而且很多因素都会影响释热速率和气体产生速率数据,因此其数据应用必须很小心,必要时需进行精确的绝热实验.6几种方法的比较DTA和DSC方法都属于程序升温控制方法,具有样品量小(1~5mg),测试速度快(一般为两个小时)的优点.缺点是不能测量压力数据;由于样品用量小,所以测试结果不能代表处于非均相状态的大量物品的热稳定性能;热探测敏感性相对较低(1—20Wkg-);程序升温的加热方式使得所测物质的热分解温度会因升温速率的不同而发生变化.DTA与DSC 的不同点在于前者用于定性分析,测温范围大;后者用于定量分析,测温范围一5O~1000℃.56分析仪器2008年第2期VSP,APTAC和PHI—TEC三种量热仪的原理类似,但APTAC和PHI—TEC的应用不如VSP广泛.三种量热仪都是通过将薄壁样品球置于一个较大的压力控制容器内来获得较低的Phi值.但缺点是必须维持容器内的压力等于样品球内的压力,以避免样品球爆裂.为此,需采用压力控制系统加入和泄放氮气.这些量热仪Phi值低,探测灵敏度高,且压力和温度范围大(温度高达500℃,压力高达20MPa).其特点具有是加热一等待一搜寻模式,相对混合较好,能够进行敞开和密闭实验以及进行少量的加料.这些装置能够给出精确而有用的数据来表征失控反应和用于设计反应器泄放系统.但仪器操作和数据输入需要专业人员来完成.操作者必须确保热补偿损失的不同传感器和炉子标定校准良好,同时应避免样品室爆炸.一般需要其它能提供压力信息的判别装置进行初始判别实验.RSST/ARSST是一种很有用的判别工具,但其数据应用应非常小心,必要时应进行绝热测试来验证实验结果.几种方法的详细比较如表l和表2所示.表1DTA,DSC与绝热量热仪的比较方法ADCARCVSP—APTAC—PHITECRSST/ARSST2008年第2期分析仪器577小结(1)由DTA或DSC测试得到的数据只能粗略判断物质的放热性能,要想对物质的热稳定性作进一步的分析,必须采用更为精确的测试手段.(2)绝热量热实验装置能提供精确的数据,但实验耗时且昂贵,因此它们主要作为一种补充实验,实验之前往往先通过DSC,DTA或RSST/ARSST进行判别.(3)几种绝热量热仪之中,ARC的探测灵敏度最高,也是目前应用最广泛的探测失控反应的绝热仪器. (4)VSP克服了ARC的主要缺点——Phi值高,但其代价是降低了灵敏度,同时需要较大的样品量和复杂的压力补偿系统.APTAC和PHI—TEC也存在同样的问题,只是APTAC保持了ARC的探测灵敏度.(5)VSP,APTAC和PHI—TEC三种量热仪很相似,但APTAC和PHI—TEC的应用不如VSP和ARC广泛.(6)RSST/ARSST作为一种新型的便宜,快速,低Phi值的判别工具,其应用前景广阔,可以作为DSC和DTA的有效替代工具,但其数据应用还需结合绝热量热测试结果.有效的方法是采用DTA,DSC或RSST/ARSST中的一种方法结合绝热量热仪之中的一种方法共同来判断或评价物质热稳定性.参考文献1GB/T13464—92.北京:中国标准出版社,1992:112傅智敏.绝热加速量热法在反应性物质热稳定性评价中的应用.北京:北京理工大学,20023热分析I-EB/OL]./ owthread.php?t一30781.2007,6,124量热分析[-EB/OL].. 2007.6.125Designation:E1981—98,20046NomenR,Frankfurt.D.2003,ISBN3—89746—037—87RoweSM.MiddleKV.The1stInternationa1Confer—ence,MethodologyofReactionHazardsInvestigationandV entSizing,SaintPetersburg,Russia,19998LeungJC,FauskeHK,FisherHG.ThermochimicaAeta,1986,104:13—299FauskeHK.ChemicalEngineeringProgress,2000,96 (2):17—29101wataY,MomotaM,KosekiH.Journa1ofTherma1 AnalysisandCalorimetry,2006,85(3):617—62211APTAC——AutomaticPressureTrackingAdiabaticCalo—_ rimeter[EB/OL]./~crow1/hazards.htm12PHITECU[-EB/OL].http://www.helgroup.CO.uk/home/reactor—systems/safety.html?subpage=413BurelbachJP,TheisAE.3rdInt,SymponRunaway ReactionsPressureReliefDesignandEffluentHan—dling,Ohio:DesignInstituteforEmergencyReliefSys—tems(DIERS)UsersGroup,2005:11914FauskeHK.1998ProcessSafetySymposium,Hous—ton,199815BurelbachJP.MaryKayOConnorProcessSafetyCen—terSymposium,Texas:CollegeStation,1999:1—15收稿日期:2007—07—23 Comparisionofmethodsandinstrumentsfortestingthermalstabilityofreactivematerials.Ji aoAihong,FuZhimin(1.FirstTeamofGraduateStudents.ChinesePeopleSArmedPoliceForce sAcademy,Langfang,065000;2.DepartmentofFireProtectionEngineering.ChinesePeople 'sArmedPoliceForcesAcademy,Langfang,065OOO) Thermalstabilityofreactivematerials(TSRM)iSoneofthemostimportantqualitiesofhazar douschemicalsintheirproduction,storage,transportationandapplication.Thispaperintroducest hepriniciplesfortestingTSRManddescribestheconstructions,workingprinciples,thermalse nsitivitiesand pressureandtemperaturerangesofthethermalanalysisinstrumentsandthetypicaldatathatca nbeobtained.Theperformances,operationalconditions,applicationfieldsandmeritsandshortc omingsofvariousthermalanalysisinstrumentsarecompared.。
化学技术中材料热稳定性的测定方法
化学技术中材料热稳定性的测定方法热稳定性是指材料在高温环境下能否维持其物理和化学性质的稳定性。
在化学工业以及其他领域中,对材料的热稳定性进行准确测定是十分重要的。
本文将介绍一些常见的材料热稳定性测定方法。
一、差示扫描量热法(DSC)差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于材料热稳定性测定的方法。
它通过测量样品和参比物在加热或冷却过程中吸热或放热的差值,来分析材料的热稳定性。
DSC实验可提供样品的热分解温度、相变温度、熔融温度等信息,进而评估材料的热稳定性。
二、热重分析法(TGA)热重分析法(Thermal Gravimetric Analysis,TGA)是另一种常见的热稳定性测定方法。
它通过测量样品在升温过程中的质量变化来评估材料的热稳定性。
材料在高温下的热分解、氧化、脱水等过程会导致质量的变化,通过TGA可以获得这些热分解过程发生的温度范围和质量损失情况。
三、热膨胀测量法(TMA)热膨胀测量法(Thermal Mechanical Analysis,TMA)是一种用于测定材料热稳定性的方法。
它通过测量材料在温度变化下的线膨胀或体膨胀来评估热稳定性。
TMA实验可提供材料的线膨胀系数、玻璃化转变温度等信息,以及材料在高温下的尺寸稳定性。
四、热导率测定法(TC)热导率测定法(Thermal Conductivity,TC)是一种重要的热稳定性测定方法。
它通过测量材料在不同温度下的热导率来评估材料的热稳定性。
热导率是材料导热能力的重要参数,高热导率通常意味着材料的热稳定性较好。
五、氧化安定性测定氧化安定性是一种重要的热稳定性指标,特别适用于高温工况下的材料。
常见的氧化安定性测定方法包括氧化失重、寿命测试等。
例如,在高温下,金属材料会迅速氧化,形成氧化膜,通过氧化失重实验可以评估其材料的氧化安定性。
综上所述,化学技术中材料热稳定性的测定方法有差示扫描量热法(DSC)、热重分析法(TGA)、热膨胀测量法(TMA)、热导率测定法(TC)以及氧化安定性测定等。
精细化工安全:物料热稳定性分析方法及常见问题解析
精细化工安全物料热稳定性分析方法及常见问题解析精细化工反应安全风险评估方法、流程和标准均基于对工艺本身风险的测试和分析,因此,通过测试设备和数据分析手段精准还原生产过程中的工艺实际风险成为整个评估的关键。
评估方法主要有物料热稳定性风险评估、目标反应安全风险发生可能性和导致的严重程度评估、目标反应工艺危险度评估3种。
这3种方法主要涉及到目标反应量热,以及反应原料、中间体、反应后料液热稳定性分析。
物料热稳定性分析物料热稳定性风险评估需获取的主要数据包括:物料热分解起始分解温度、分解热和TD24。
通常采取筛选与绝热表征结合的方式进行,以达到经济高效的目的。
通常采用差示扫描量热仪DSC、快速筛选量热仪、C80等量热工具对所需评估的物料进行热风险初步筛查。
此类筛选工具通常所用样品量不多,一般在毫克、克级别。
DSC是一款快捷方便且功能强大的筛选工具,如图1所示为DSC系列。
图1:DSC 3系列DSC一般采用理想热流原理,即产热完全散失到环境中,如公式1所示。
测试过程中需配备参比样,对于物料热稳定性筛选一般采用动态线性扫描模式。
测试过程中炉腔、参比、样品的温度变化曲线如图2。
图2:DSC动态升温过程中三个温度变化(Tc为DSC炉腔温度,Tr为参比温度,Ts为样品温度)。
精细化工企业选用DSC初衷是研究晶型、测比热容等物性数据。
采用DSC进行热稳定性筛选会遇到哪些问题?常见问题答疑1、热稳定性筛选测试可选用开口型坩埚(如:铝坩埚)吗?热稳定性筛选应选用耐压密闭坩埚。
因为物料高温分解会产生小分子,造成体系气相压力显著上升,因而必须选用密闭耐高压坩埚。
这类坩埚有以下优点:•避免由于挥发物挥发或形成气体而导致吸热效应,这类假象可能掩盖同温度段的放热行为,从而导致错误判断(图3);•避免物料测试过程中损失,以保证完整辨识物料热行为(测试温度区间内);•避免因压力效应导致坩埚破裂飞溅,造成设备损坏和人员受伤。
图3:同一样品选用开口铝坩埚和闭口高压坩埚DSC测试图谱2、DSC测试可选择哪些材质密闭坩埚?DSC一般采用体积为25ul或40ul坩埚,装样量在1-10mg 范围内。
热稳定性分析(DSC)
热稳定性分析(DSC)
热稳定性是指物质在较高的相对温度下抵抗其化学或物理结构的不可逆变化(通常是通过抵抗分解或聚合)的能力。
热稳定性也是某些蛋白质的特性。
对不能承受高温的蛋白质来说,当热量增加时,其三级和四级结构中的分子内键会被破坏,从而导致蛋白质展开并变得无活性。
因此,分析蛋白质类生物制品的热稳定性,是其质量控制中的主要内容之一。
差示扫描量热法(DSC)是一种常用于直接鉴定蛋白质或其他生物分子在自然状态下稳定性的技术。
差示扫描量热法,可高效、精准的对生物制品的热稳定性进行分析。
百泰派克生物科技BTP基于CNAS/ISO9001双重质量认证体系建立七大检测平台,BTP配备Malvern Panalytical公司的MicroCal VP-Capillary DSC系统。
该自动化、集成式高通量平台可以应用于:
• 鉴定和选择生物治疗药物开发过程中最稳定的蛋白质或潜在候选药物。
• 配体相互作用研究。
• 纯化和生产条件的快速优化。
• 简易、快速确定液体制剂的最佳条件。
• 对用于筛选的靶蛋白进行快速稳定性指示分析。
百泰派克生物科技生物制品表征服务内容。
中/英文项目报告。
在技术报告中,百泰派克生物科技会为您提供详细的中/英文双语版技术报告,报告包括:
1. 实验步骤(中英文)。
2. 相关仪器参数(中英文)。
3. 原始数据。
4. 热稳定性分析结果。
热稳定性分析一站式服务。
您只需下单-寄送样品。
百泰派克生物科技一站式服务完成:样品处理-上机分析-数据分析-项目报告。
抗体药物热稳定性分析
抗体药物热稳定性分析抗体药物是一类通过人工合成的抗体来治疗疾病的药物,通过与目标分子特异性结合从而达到治疗的目的。
常见的抗体类药物类型包括单克隆抗体、人工合成的抗体片段、免疫毒素、抗体药物共轭物等。
抗体类药物在治疗多种疾病方面表现出显著的疗效,如癌症、自身免疫性疾病、炎症性疾病、免疫调节及眼科疾病等。
抗体药物的热稳定性是指在高温条件下其结构和功能的稳定性。
抗体药物的热稳定性研究有助于加深我们对抗体药物结构和功能的了解。
此外,研究抗体药物的热稳定性对于确保其在制备、储存和运输过程中的稳定性也发挥着至关重要的作用。
目前,常见的抗体药物的热稳定性分析方法包括:差示扫描量热法(Differential Scanning Calorimetry,DSC)、差示扫描荧光法(DSF)、圆二色光谱(Circular Dichroism,CD)、荧光光谱及微量热法(Isothermal Titration Calorimetry,ITC)等。
其中,DSC是表征蛋白质热稳定性的金标准,用于测量蛋白质在加热过程中的热力学性质变化。
DSC实验可提供蛋白质的熔点(Tm)、热容(Cp)等信息,以评估蛋白质的热稳定性。
生物制品表征热稳定性分析示意图。
百泰派克生物科技(BTP)采用ISO9001认证质量控制体系管理实验室,获国家CNAS实验室认可,为客户提供符合全球药政法规的药物质量研究服务,包括一站式的抗体药物热稳定性分析服务。
我们配备Malvern Panalytical公司的MicroCal VP-Capillary DSC系统,该自动化、集成式的高通量平台在靶蛋白快速稳定性指示分析、生物治疗药物开发过程中蛋白质或潜在候选药物鉴定和选择领域具有广发的应用。
百泰派克生物科技抗体药物表征内容。
热稳定性评估
热稳定性评估简介热稳定性评估是一种用于判断材料在高温条件下的稳定性的方法。
该评估旨在确定材料在长时间高温暴露下的性能变化情况,以便制定适当的措施来防止材料失效或降低其性能。
评估方法热稳定性评估可以通过以下几种方法进行:1. 热重分析(Thermogravimetric Analysis,TGA):通过在高温下测量材料的重量变化,来评估其热稳定性。
TGA可以揭示材料在不同温度下的热分解、氧化、失重等情况,从而判断材料的稳定性。
2. 差示扫描量热法(Differential Scanning Calorimetry,DSC):通过测量材料在升温过程中的热力学性质变化来评估其热稳定性。
DSC可以揭示材料的熔融温度、熔化热、分解温度等参数,从而判断材料在高温条件下的稳定性。
3. 热氧化失重法(Thermal Oxidative Weight Loss,TOWL):通过在高温空气中暴露材料,并测量其重量变化来评估其热稳定性。
TOWL可以揭示材料在氧化环境中的耐热性能,特别适用于评估高分子材料的热稳定性。
4. 降解动力学模型分析法:根据材料的降解反应速率常数,建立降解动力学模型,并通过模型对比来评估材料的热稳定性。
该方法能够定量描述材料在高温条件下的降解行为。
应用领域热稳定性评估广泛应用于材料科学、化工、高分子材料、涂料等领域。
以下是一些常见的应用领域:1. 高温环境下的电子元件和电气设备的稳定性评估,如电子封装材料、电池材料等。
2. 高分子材料的热稳定性评估,如聚合物材料、橡胶材料等。
3. 涂料和涂层材料的热稳定性评估,以确定其在高温环境下的性能变化情况。
4. 药物和化妆品中的成分稳定性评估,以保证其在高温长时间储存条件下的质量和稳定性。
结论热稳定性评估是评估材料在高温条件下的稳定性的重要方法。
通过选择适当的评估方法,可以准确地判断材料的热稳定性,并采取相应的措施来保证材料在高温环境下的正常使用和性能稳定。
化学技术中材料热稳定性的测定方法
化学技术中材料热稳定性的测定方法引言:化学材料的热稳定性是指在高温环境下材料的稳定性能。
在化学工业和材料科学领域,了解材料的热稳定性对于设计和制备高温工艺中的材料至关重要。
本文将介绍化学技术中常用的几种材料热稳定性的测定方法。
一、热重分析法热重分析法是一种常用的材料热稳定性测定方法。
它通过在恒定的加热速率下测量材料的质量变化,来评估材料在高温下的稳定性。
热重仪会将样品加热到一定温度区间,并通过称重系统记录样品的质量变化。
通过分析质量变化曲线,可以确定材料的失重温度、热分解温度等参数,从而评估材料的热稳定性。
二、差示扫描量热法差示扫描量热法是一种通过测量样品在加热过程中吸放热的方法。
这种方法依赖于样品和参比物在同样条件下的热性质差异。
差示扫描量热仪同时对样品和参比物进行加热,通过比较它们之间的热量差异来确定样品的热性能。
该方法常用于研究材料的相变、热分解、燃烧等过程,并通过分析峰值温度、峰值面积等参数来评估材料的热稳定性。
三、热重-差示扫描量热法热重-差示扫描量热法(TG-DSC)是将热重分析法与差示扫描量热法结合起来的一种综合分析方法。
在该方法中,样品通过热重仪进行加热,同时使用差示扫描量热仪对样品和参比物进行热量的测量。
通过综合分析样品的质量变化和热量变化,可以更全面地评估材料的热稳定性。
TG-DSC方法常用于分析材料的热分解机理、热降解路径等,并能提供有关材料热稳定性的综合信息。
四、热氧化法热氧化法是一种通过将材料在高温空气中进行氧化反应来评估其热稳定性的方法。
该方法通常使用恒温炉或氧化炉对材料进行加热,并通过分析样品重量损失、氧化产物等来评估材料的抗氧化性。
热氧化法常用于材料的耐热性评估、氧化降解性研究等领域。
结论:材料热稳定性的测定是化学技术中的重要课题。
热重分析法、差示扫描量热法、热重-差示扫描量热法和热氧化法是常用的测定方法。
通过这些方法能够确定材料在高温环境下的稳定性能并提供相关的热稳定性参数。
热稳定性
(2)经过一定的次数的热冷变换后机械强度降低的程度来决定热稳定性;
(3)试样出现裂纹时经受的热冷最大温差来表示试样的热稳定性,温差愈大,热稳定性愈好。
本实验采用试样出现裂纹时,平均经受的热冷最大温差来表示试样的热稳定性。
1.将10个合格的试样放入样品筐内,并置于炉膛中。 2.连接好电源线、热电阻和接地线。 3.连接好进水管、 出水管及循环水管。 4.给恒温水槽中注入水。5.打开电源开关,指示灯亮,将炉温给定值及水温给定值调至需要 位置(在水温控制中,下限控制压缩机、上限控制加热器,上限设定温度≤下限设定温度)。 6.打开搅拌开关, 指示灯亮,搅拌机工作。 7.根据需要选择“单冷”,“单热”或“冷热”。(a:“单冷”即仪器只启动制冷设 备,超过给定温度时,自动制冷至给定温度后自动停止。 b:“单热”即仪器只启动加热设备,低于给定温度时 自动加热至给定温度后自动停止。 c:“冷热”即当水温超过给定温度,仪器自动制冷,当水温低于给定温度, 仪器自动加热,保证水温在所需温度处。)8.接好线路并检查一遍,接通电源以2℃/分的速度升温。9.当温度达 到测量温度时,保温15分钟(使试样内外温度一致)后,拨动手柄,使样品筐迅速坠入冰水中,冷却5分钟。如 没有冰水,试样坠入冷水中。每坠入一次试样,就要更换一次水,目的使水温保持不变。10.从水中取出试样,擦 干净,不上釉和上白釉试样放在品红酒精溶液中,检查裂纹。上棕色釉试样放在薄薄一层氧化铝细粉的盘内,来 回滚动几次或手拿着试样在氧化铝粉上擦几次,检查是否开裂(如开裂,表面有一条白色裂纹),并详细记录。 将没有开裂的试样放入炉内,加热到下次规定的温度(每次间隔20℃),重复试验至十个试样全部开裂为止。
测试
光学材料的光学热稳定性分析方法
光学材料的光学热稳定性分析方法引言:光学材料的光学热稳定性是指材料在高温和光照强度条件下保持光学性能的能力。
光学热稳定性分析方法的研究对于光学材料的应用和发展具有重要意义。
本文将介绍几种常用的光学热稳定性分析方法,包括热膨胀系数测量法、光学透射率变化研究、光学吸收分析以及材料内部粒子迁移等方面的分析方法。
热膨胀系数测量法:热膨胀系数是描述材料热胀冷缩性质的重要参数,也是分析光学材料热稳定性的关键指标之一。
测量光学材料的热膨胀系数可以通过热膨胀仪进行,该仪器能够在恒定温度下通过测量样品的长度变化计算出其热膨胀系数。
通过对光学材料的热膨胀系数进行测量,可以评估材料在热应力下的稳定性。
光学透射率变化研究:光学透射率的变化是光学材料热稳定性的一个重要指标。
可以通过光谱测量方法来研究光学材料在较高温度和光照强度下的透射率变化。
通常采用紫外-可见-近红外(UV-Vis-NIR)光谱仪进行实验,通过测量样品在不同温度下透射光的强度变化,从而分析光学材料的热稳定性。
光学吸收分析:光学吸收是光学材料光学性能的重要特征之一,也是研究光学材料热稳定性的指标之一。
通过利用紫外-可见-近红外光谱技术,可以分析光学材料在高温条件下吸收光谱的变化。
通过测量材料的吸收峰值位置、峰值强度等参数的变化,可以评估材料在高温下吸收性能的稳定性。
材料内部粒子迁移:光学材料内部粒子的迁移也是影响光学热稳定性的因素之一。
光学材料中的微小颗粒在高温和高光照强度条件下可能发生迁移和聚团现象,从而导致材料光学性能的变化。
通过显微镜观察、扫描电子显微镜以及透射电子显微镜等技术,可以研究光学材料内部粒子的迁移现象,为材料的热稳定性提供参考。
结论:光学材料的热稳定性是光学应用中重要的指标,本文介绍了几种常用的光学热稳定性分析方法,包括热膨胀系数测量法、光学透射率变化研究、光学吸收分析以及材料内部粒子迁移等。
通过对光学材料在高温和光照强度条件下的性能变化的研究,可以评估材料的热稳定性,为光学材料的应用和发展提供参考。
浅谈物质热稳定性的比较
浅谈物质热稳定性的比较摘要通过对几种典型物质的热稳定性分析,得出了比较物质热稳定性的一般思路和方法。
其中包括卤化氢、氨气、甲烷、卤化铵、碳酸钠、碳酸氢钠、硅酸钠、碳酸镁、碳酸钙等物质的热稳定性。
关键词热稳定性化学热力学硅酸钠碳酸镁碳酸钠卤化氢1 问题提出热稳定性是物质的重要性质之一。
在中学阶段,通过实验设计验证物质热稳定性的强弱,一般从2个方面考虑:一是控制相同的温度,通过实验现象比较物质发生热分解的难易或快慢;二是测量在相同时间内物质发生相同程度的热分解所需要的不同温度。
2种方法相比较,第一种方法比较容易操作。
中学阶段,对物质热稳定性强弱的解释或推测,有2种常见的思路:一种是通过比较元素金属性或非金属性的强弱来得出结论;另一种是通过比较反应物在发生热分解反应时所断裂的化学键的强弱来得出结论。
这2种思路虽然都能够解释一些现象和问题,也能够用来推测一些物质热稳定性的强弱,但都忽视了生成物的结构和性质对物质热稳定性的影响,论证不够严密充分,有时甚至会推出一些与事实不符的结论。
本文拟从中学阶段常见物质热稳定性强弱的比较入手,综合考虑热力学和动力学因素,探讨比较物质热稳定性强弱的一般规律和方法。
2 分析讨论决定物质热稳定性强弱的本质因素是物质及其分解产物的结构。
因为物质结构决定了物质的性质。
从热力学的角度分析,反应物和生成物的结构决定了反应的吉布斯自由能变(ΔrG m =ΔrH m-T×ΔrS m)的大小。
所示反应的ΔrG m越小,反应的热力学趋势就越大;从动力学的角度分析,反应物和生成物的结构决定了反应历程,而不同的反应历程具有不同的活化能,从而导致了热分解反应的难易程度有所不同。
由于本文基本没有涉及不同温度下物质的热分解产物可能不同的问题,所举例子基本属于反应物和分解产物相似(即反应历程相似)的情况,故本文论证时主要考虑热力学因素,通过热力学有关理论基本可以推测中学阶段常见物质热稳定性的强弱。
利用热重分析仪测定物质热稳定性的方法
利用热重分析仪测定物质热稳定性的方法热重分析仪是一种常用的实验仪器,可以用于测定物质的热稳定性。
通过对样品在不同温度下的质量变化进行监测和分析,可以得到物质的热分解温度、热分解速率等重要参数,为研究物质的热稳定性提供了有效的手段。
一、热重分析仪的原理热重分析仪的原理基于样品在不同温度下的质量变化。
在实验中,样品被放置在一个称量瓶中,通过加热样品并测量样品质量的变化,可以得到样品的热分解曲线。
当样品发生热分解时,其质量会发生变化,通过监测质量的变化可以确定样品的热分解温度和热分解速率。
二、热重分析仪的操作步骤1. 样品准备:将待测样品粉末放置在称量瓶中,并记录样品的质量。
2. 实验条件设置:根据实验需要,设置加热速率、起始温度和终止温度等实验条件。
3. 实验开始:将称量瓶放入热重分析仪中,并开始实验。
4. 数据记录:实验过程中,热重分析仪会自动记录样品的质量变化情况。
可以通过计算机软件实时监测和记录数据。
5. 数据分析:实验结束后,可以通过热重分析仪的软件对数据进行分析。
常见的分析方法包括热分解温度的计算、热分解速率的确定等。
三、热重分析仪的应用领域1. 材料科学:热重分析仪可以用于研究材料的热稳定性和热分解特性。
通过测定材料的热分解温度和热分解速率,可以评估材料的热稳定性,为材料的设计和应用提供依据。
2. 化学反应研究:热重分析仪可以用于研究化学反应的热动力学性质。
通过测定反应物或产物在不同温度下的质量变化,可以确定反应的热分解温度和反应速率常数等重要参数。
3. 环境监测:热重分析仪可以用于环境监测中有机物的热稳定性研究。
通过测定有机物的热分解温度和热分解速率,可以评估有机物的稳定性,为环境保护和污染治理提供参考。
四、热重分析仪的优势和局限性热重分析仪具有以下优势:1. 高灵敏度:热重分析仪可以监测样品质量的微小变化,具有高灵敏度。
2. 快速测定:热重分析仪可以在较短的时间内完成实验,提高实验效率。
热重曲线的特点
可以评估材料的热稳定性:通过分析热重曲线的一些特定参数,如失重速率和失重温度,可以评估材料的热稳定性,进而判断其在高温下的应用情况。
4.
可以探究材料的热分解机理:通过分析热重曲线的斜率变化、失重速率和失重量等特点,可以探究材料的热分解机理,从而为材料的设计和改进提供依据。
5.
可以比较不同材料的热稳定性:热重曲线可以同时测试不同材料的热稳性,从而可以比较它们的热分解特性,进而指导材料选择和应用。
热重曲线是一种反映材料热稳定性的测试方法,通常通过加热样品,测量样品重量随温度变化的曲线来描述样品在升温过程中的热分解行为。其特点如下:
1.
可以分析材料的热稳定性:热重曲线可以反映材料在升温过程中的热分解行为,从而确定其热稳定性和热分解特性。
2.
提供材料的热分解信息:热重曲线可以显示出样品的失重程度和失重速率,从而提供材料的热分解信息。
物质热稳定性的热分析试验方法
物质热稳定性的热分析试验方法1 主题内容与适用范围本标准规定了用差热分析仪和或差示扫描量热计评价物质热稳定性的热分析方法所用的试样和参比物、试验步骤和安全事项等一般要求;本标准适用于在惰性或反应性气氛中、在-50~1000℃的温度范围内有焓变的固体、液体和浆状物质热稳定性的评价;2 术语物质热稳定性在规定的环境下,物质受热氧化分解而引起的放热或着火的敏感程度;焓变物质在受热情况下发生吸热或放热的任何变化;焓变温度物质焓变过程中的温度;3 方法原理本方法是用差热分析仪或差示扫描量热计测量物质的焓变温度包括起始温度、外推起始温度和峰温并以此来评价物质的热稳定性;4 仪器和材料仪器差热分析仪DTA或差示扫描量热计DSC:程序升温速率在2~30℃/min范围内,控温精度为±2℃,温差或功率差的大小在记录仪上能达到40%~95%的满刻度偏离;样品容器坩埚:铝坩埚、铜坩埚、铂坩埚、石墨坩埚等,应不与试样和参比物起反应; 气源空气、氮气等,纯度应达到工业用气体纯度;冷却装置冷却装置的冷却温度应能达到-50℃;参比物在试验温度范围内不发生焓变;典型的参比物有煅烧的氧化铝、玻璃珠、硅油或空容器等;在干燥器中储存;5 试样取样对于液体或浆状试样,混匀后取样即可;对于固体试样,粉碎后用圆锥四分法取样;试样量试样量由被测试样的数量、需要稀释的程度、Y 轴量程、焓变大小以及升温速率等因素来决定,一般为1~5mg,最大用量不超过50mg;如果试样有突然释放大量潜能的可能性,应适当减少试样量;6 试验步骤仪器温度校准按附录A 进行,校准温度精度应在±2℃范围内;将试样和参比物分别放入各自的样品容器中,并使之与样品容器有良好的热接触对于液体试样,最好加入试样重量20%的惰性材料,如氧化铝等;将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触;接通气源,并将气体流量控制在10~50mL/min 的范围内如果在静止状态下进行测量,则不需要通气;根据所用试样的性质来确定试验温度范围;按条的要求调整Y 轴量程;启动升温控制器,控制升温速率在10~30℃/min 的范围内,记录温差△T或功率差d H/d t与温度T 的关系曲线,即DTA 曲线或DSC 曲线如图1a、1b;如果以10~30℃/min 的升温速率进行测量而不能将峰分辨开时如图2a、2b,可以采用低于10℃/min 的升温速率;a. 典型的DTA 放热曲线b. 典型的DSC 放热曲线图1a.熔融吸热后紧跟分解b.熔融吸热后紧跟分解放热的DTA 曲线放热的DSC 曲线图27 结果取三次焓变温度测定结果的平均值作为试验结果,三次测得结果之间的差值应在±5℃范围内;试验报告见附录B;8 安全事项用本标准规定的试验方法进行测量时,若不了解被测物质的潜在危险性,在取样和测量时一定要小心谨慎;如果需要用研磨的方法粉碎试样,应将被测物质视为危险品,并按化学危险品安全操作规程进行操作;附录 A差示扫描量热计和差热分析仪的温度校准方法补充件A1 仪器校准用表A1 所列物质纯度大于%的相转变温度进行仪器校准; 表A1 校准物质的相转变温度相转变温校准物质度℃ K汞水二苯醚苯甲酸铟锡铋铅锌锑铝银-A2 试验步骤两点校准法在表A1 中选取两种校准物质;其中,一种物质的相转变温度比被测试样的起始放热温度低,另一种物质的相转变温度比被测试样的终止放热温度高,而且要尽可能接近这两个温度;测量各校准物质的表观相转变温度;将重量为5~15mg 的校准物质和参比物分别放入样品容器中;把样品容器放入仪器的加热装置内,用流量为10~50mL/min 的氮气或其他惰性气体冲洗测量装置,直到测量结束;按条的要求,调整Y 轴量程;以10℃/min 的升温速率加热校准物质和参比物,使校准物质通过相转变温度,直至基线重新确立;也可以用其他升温速率,但必须与测量试样时的条件相同;由得到的DTA 曲线或DSC 曲线测量出表观相转变温度T e、T p如图A1、A2;图A1 校准物质相转变的DTA 曲线图A2 校准物质相转变的DSC 曲线差示扫描量热计或试样与温感元件分开的差热分析仪用T e 作为表观相转变温度;试样与温感元件紧密接触的某些差热分析仪,用T p 作为表观相转变温度; 按计算实际相转变温度;一点校准法如果已按测出了表观相转变温度,并按计算出斜率值S,若S 值与的差值在±的范围内试验温度与校正温度相差100℃时,则用一点校准法;从表A1 中选取一种校准物质,使其相转变温度尽量处在被测试样的放热峰内;按至的步骤测出校准物质的表观相转变温度;按计算实际相转变温度;A3 计算假设表观相转变温度TO与实际相转变温度T之间存在线性关系,那么它们之间存在下面的关系:T=TO×S+I A1式中:S-斜率标准值为;I-截距;这两个参数均由计算得出;两点校准法用表A1 中的校准物质相转变温度和实际测量的表观相转变温度,通过式A2和式A3计算S 和I;S=TS1-TS2/TO1-TO2A2I=TO1×TS2-TS1×TO2/TO1-TO2A3式中:TS1-取自表A1 中的1 号校准物质的相转变温度;TS2-取自表A1 中的2 号校准物质的相转变温度;TO1-A2 步骤中测出的1 号校准物质的表观相转变温度;TO2-A2 步骤中测出的2 号校准物质的表观相转变温度;S 要计算到四位有效数字,I 要精确到℃;一点校准法如果用两点校准法测出的斜率值S与标准值之差在±的范围内,那么就用一点校准法,只测出截距;I=TS1-TO1 A4利用测出的斜率值S和截距I,通过式A1计算出被测试样的实际焓变温度;附录 B物质热稳定性的热分析试验报告参考件B1 试验委托单位名称;B2 试验单位名称和试验负责人;B3 送样日期和试验日期B4 试样和参比物的名称、组成、分子式、重量、状态和纯度等;B5 仪器型号和样品容器;B6 气氛的组成和压力、静态或动态、密封程度及动态情况,应注明气体流量; B7 程序升温速率和试验温度范围;B8 Y 轴灵敏度和Y 轴量程;B9 记录DTA 曲线或DSC 曲线的所有过程,注明起始温度、外推起始温度和峰温;B10 把测定的焓变温度换算成实际的焓变温度;B11 用实际的焓变温度来评价物质的热稳定性;附加说明:本标准由中华人民共和国公安部提出,由全国消防标准化技术委员会归口;本标准由公安部天津消防科学研究所负责起草;本标准主要负责人李子葆、张桂芳、姚萍;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
版 本 号:0.1 页 码:1/3 发布日期:2009-12-09
实验室程序
编 写: 批 准: 签 发:
文件编号:SHLX\LAB\L2-008 题
目:热稳定性测量方法
1.0 目的
提供了产品热稳定性的测量方法。
2.0 概述
(1)原理
Na 2SO 3 方 法 : 用 1N 的 Na 2SO 3 溶 液 吸 收 样 品 粒 子 中 释 放 的 甲 醛 , 生 成HOCH 2SO 3Na 和 NaOH 。
CH 2O +Na 2SO 3+H 2O →HOCH 2SO 3Na +NaOH
(2)本测量方法是利用聚甲醛树脂在高温熔融,产生甲醛气体,随氮气带出,被亚
硫酸钠溶液吸收,由滴定反应生成的氢氧化钠,得出甲醛含量。
3.0 仪器和试剂
【仪器】
(1) 油浴(容量约为 130L ,并配有样品熔融管) (2) 加热器
(3) 过热保护装置 (4) 搅拌器
(5) 自动滴定装置 (6) 数据处理计算机 【试剂】
(1) 0.005mol/l 硫酸
(2) 福尔马林(36.0~38.0%) (3) 亚硫酸钠(Na 2SO 3) (4) 缓冲液(pH 6.86) (5) 缓冲液(pH 9.18) (6) 0.1mol/l NaOH
4.0 定义
甲醛含量通过以下方式表示:
(1)K 0
:表示从 2 分钟到 10 分钟之间,聚合物中溶解的甲醛,不稳定端基和聚合
物主链分解出来的甲醛量。
转化为每分钟的甲醛含量。
(2)K 1
:表示从 10 分钟到 30 分钟之间,聚合物中剩余的溶解甲醛,不稳定端基
文件编号:SHLX\LAB\L2-008
和聚合物主链分解出来的甲醛量。
转化为每分钟的甲醛含量。
(3)K2:表示从50 分钟到90 分钟之间,聚合物不稳定端基和聚合物主链分解出来的甲醛量。
转化为每分钟的甲醛含量。
5.0安全注意事项
(1)搁置和取出样品过程中,要穿戴安全手套,以防被烫伤。
(2)电极容易损坏,使用时防止碰撞。
(3)作业时,穿戴安全眼镜和防护手套。
(4)实验过程中使用氮气作为载气,所以要控制好氮气流量,并确保良好的通风。
6.0步骤
6.1准备
(1) 确认油浴温度223±2℃,硫酸溶液的量。
(2) 打开参比液添加孔,检查电极内饱和KCL 的量,确保液位超过甘汞位置。
(3) 打开自动电位滴定仪、打印机及电脑电源。
(4) 打开电脑桌面上AT-WIN,输入密码并确认与自动电位滴定仪联机。
(5) 调整氮气流量到60 l/h。
(6) 分别用pH 为6.86(25℃)、9.18(25℃)的缓冲液,对电极进行校正(根据
电脑提示进行),若显示“OK”,则校正通过,否则进行检查并重复校正步
骤。
(7) 对自动电位滴定仪进行排气,确保滴定管路中无气泡。
(8) 用250ml 的烧杯,取150ml 吸收液(1mol/L 亚硫酸钠溶液,它的配制方法:
将250g 的Na
2SO3溶于2000ml 的水中,充分搅拌。
),放入磁性搅拌子、加
盖、并将电极、N2管、喷嘴插入溶液中,启动搅拌按钮。
(9) 用硫酸溶液(0.1N)将溶液pH 调节至9.10,待稳定后,用0.1mol/l 甲醛溶
液(配制方法:将81g 的福尔马林放入1L 的容量瓶中,然后加水到刻度线,
配成约0.1mol/l 福尔马林),调节pH 至9.21~9.22,并稳定10 分钟以上。
(10) 电极浸泡液的配制方法:PH=4 的缓冲试剂250ml 一包溶于250ml 水中,
再加入56gKCL,适当加热,搅拌至完全溶解。
6.2步骤
(1) 用铝皿取3.000±0.003g,将其放到小金属底部,然后用钩子,将准备好的
样品放入油浴的熔融管中。
(2) 盖紧硅胶塞,快速按下START,开始试验,试验过程控制pH 值为9.20。
(3) 当实验进行到设定的时间后,自动结束。
(按“RESET”键,可手动停止实
验。
)测定结束,打印机自动打印结果。
(4) 取出金属筒冷却,取出电极,并将电极放入浸泡液中。
文件编号:SHLX\LAB\L2-008
6.3整理
(1)测试完成后,及时从油浴中取出样品,防止POM 分解,形成M 垢,造成管线堵塞。
(2)彻底用水清洗自动滴定装置上的pH 电极,将电极浸泡在浸泡液中。
(3)关闭计算机和滴定装置。
(4)用水清洗使用过的仪器。
(5)必要时,降低油浴温度,切断电源。
7.0计算
(1)计算式
K0(ppm/min)=[(B-A)]/8×100
K1(ppm/min)=[(C-B)]/20×100
K2(ppm/min)=[(E-D)]/40×100
A:第2 分钟时H2SO4消耗量(ml)
B:第10 分钟时H2SO4消耗量(ml)
C:第30 分钟时H2SO4消耗量(ml)
D:第50 分钟时H2SO4 消耗量(ml)
E:第90 分钟时H2SO4消耗量(ml)
S:样品重量(3g)
8.0日常维护和检查
(1)油浴
①定期更换油槽中的油。
②每周检查油位,用纸检查液位高度(从上往下55mm)
(2)滴定装置pH 和温度检定
①每周一次更换pH 缓冲液。
②更换缓冲液,进行pH 和温度检定。
(3)自动滴定装置的检查
每次更换溶液时应测试硫酸的消耗量
①向吸收瓶中加入1ml 的0.1mol/l NaOH。
②硫酸消耗规定为9.5~10.5ml。
如果超出范围,更换试剂,检查滴定装置。