最新新人教版初一数学上册期末考试试题及答案
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
最新部编人教版七年级数学上册期末考试卷(参考答案)
最新部编人教版七年级数学上册期末考试卷(参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 把多项式x2+ax+b分解因式, 得(x+1)(x-3), 则a、b的值分别是()A. a=2, b=3B. a=-2, b=-3C. a=-2, b=3D. a=2, b=-32.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种), 绘制成如图所示统计图.已知选择鲳鱼的有40人, 那么选择黄鱼的有()A. 20人B. 40人C. 60人D. 80人3.按如图所示的运算程序, 能使输出y值为1的是()A. B. C. D.4. 下列图形具有稳定性的是()A. B. C. D.5.已知是整数, 当取最小值时, 的值是( )A. 5B. 6C. 7D. 86.下列二次根式中, 最简二次根式的是()A. B. C. D.7.点在y轴上, 则点M的坐标为()A. B. C. D.8.如图是一张直角三角形的纸片, 两直角边AC=6 cm、BC=8 cm, 现将△ABC折叠, 使点B与点A重合, 折痕为DE, 则BE的长为()A. 4 cmB. 5 cmC. 6 cmD. 10 cm9. 估计+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间10.已知正多边形的一个外角为36°, 则该正多边形的边数为().A. 12B. 10C. 8D. 6二、填空题(本大题共6小题, 每小题3分, 共18分)1.有理数a、b、c在数轴上的位置如图所示, 化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2. 如图, 一条公路修到湖边时, 需拐弯绕湖而过, 在A, B, C三处经过三次拐弯, 此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD), 若∠A=120°, ∠B=150°,则∠C的度数是________.3. 如图, 五边形是正五边形, 若, 则__________.4. 分解因式: ________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 已知|x|=3, 则x的值是________.三、解答题(本大题共6小题, 共72分)1. 解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2. 先化简, 再求值: , 其中 ,3. 如图, 点E 、F 在BC 上, BE=CF, AB=DC, ∠B=∠C, AF 与DE 交于点G, 求证: GE=GF.4. 如图, 将两个全等的直角三角形△ABD.△ACE 拼在一起(图1). △ABD 不动,(1)若将△ACE 绕点A 逆时针旋转, 连接DE, M 是DE 的中点, 连接MB.MC (图2), 证明: MB =MC.(2)若将图1中的CE 向上平移, ∠CAE 不变, 连接DE, M 是DE 的中点, 连接MB.MC (图3), 判断并直接写出MB.MC 的数量关系.(3)在(2)中, 若∠CAE 的大小改变(图4), 其他条件不变, 则(2)中的MB 、MC 的数量关系还成立吗?说明理由.5. 某高校学生会发现同学们就餐时剩余饭菜较多, 浪费严重, 于是准备在校内倡导“光盘行动”, 让同学们珍惜粮食, 为了让同学们理解这次活动的重要性,校学生会在某天午餐后, 随机调查了部分同学这餐饭菜的剩余情况, 并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析, 估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐. 据此估算, 该校18000名学生一餐浪费的食物可供多少人食用一餐?6. 小林在某商店购买商品A.B共三次, 只有一次购买时, 商品A.B同时打折, 其余两次均按标价购买, 三次购买商品A.B的数量和费用如下表: 购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物9 8 1062(1)小林以折扣价购买商品A.B是第次购物;(2)求出商品A.B的标价;(3)若商品A、B的折扣相同, 问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、D3、D4、A5、A6、C7、D8、B9、B10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.-2a2.150°3、724、(3)m m5.40°6、±3三、解答题(本大题共6小题, 共72分)1、(1);(2).2、1 3 23、略4.(1)略;(2)MB=MC. 略;(3)MB=MC还成立, 略.5.(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)三;(2)商品A的标价为90元, 商品B的标价为120元;(3)6折.。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
最新人教版七年级数学(上册)期末试卷及答案(A4打印版)
最新人教版七年级数学(上册)期末试卷及答案(A4打印版)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 计算+ + + + +……+ 的值为()A. B. C. D.2.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 13. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.将一副三角板和一张对边平行的纸条按如图摆放, 两个三角板的一直角边重合, 含30°角的直角三角板的斜边与纸条一边重合, 含45°角的三角板的一个顶点在纸条的另一边上, 则∠1的度数是()A. 15°B. 22.5°C. 30°D. 45°5.如图所示, 点P到直线l的距离是()线段PA的长度 B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度6.如图, 下列条件:中能判断直线的有()A. 5个B. 4个C. 3个D. 2个7. 把根号外的因式移入根号内的结果是()A. B. C. D.8. 的计算结果的个位数字是()A. 8B. 6C. 2D. 09.如图是一个切去了一个角的正方体纸盒, 切面与棱的交点A, B, C均是棱的中点, 现将纸盒剪开展成平面, 则展开图不可能是()B. C. D.10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的平方根是 .2.如图, DA⊥CE于点A, CD∥AB, ∠1=30°, 则∠D=________.3. 若点P(2x, x-3)到两坐标轴的距离之和为5, 则x的值为____________.4. 方程的解是_________.5. 为了开展“阳光体育”活动, 某班计划购买甲、乙两种体育用品每种体育用品都购买, 其中甲种体育用品每件20元, 乙种体育用品每件30元, 共用去150元, 请你设计一下, 共有________种购买方案.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:(1)32137x yx y+=⎧⎨-=-⎩(2)()45113812x y yx y⎧+=+⎪⎨+=⎪⎩2. 已知2a﹣1的平方根为±3, 3a+b﹣1的算术平方根为4, 求a+2b的平方根.3. 如图, AD平分∠BAC交BC于点D, 点F在BA的延长线上, 点E在线段CD 上, EF 与AC相交于点G, ∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上, 且∠EDH=∠C, 则∠F与∠H相等吗, 请说明理由.4. 如图, 已知AB∥CD, CN是∠BCE的平分线.(1)若CM平分∠BCD, 求∠MCN的度数;(2)若CM在∠BCD的内部, 且CM⊥CN于C, 求证: CM平分∠BCD;(3)在(2)的条件下, 连结BM, BN, 且BM⊥BN, ∠MBN绕着B点旋转, ∠BMC+∠BNC是否发生变化?若不变, 求其值;若变化, 求其变化范围.5. 为了解某市市民“绿色出行”方式的情况, 某校数学兴趣小组以问卷调查的形式, 随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类), 并将调查结果绘制成如下不完整的统计图.种类A B C D E出行方式共享单车步行公交车的士私家车根据以上信息, 回答下列问题:(1)参与本次问卷调查的市民共有人, 其中选择B类的人数有人;(2)在扇形统计图中, 求A类对应扇形圆心角α的度数, 并补全条形统计图;(3)该市约有12万人出行, 若将A, B, C这三类出行方式均视为“绿色出行”方式, 请估计该市“绿色出行”方式的人数.6. 我校组织一批学生开展社会实践活动, 原计划租用45座客车若干辆, 但有15人没有座位;若租用同样数量的60座客车, 则多出一辆车, 且其余客车恰好坐满. 已知45座客车租金为每辆220元, 60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车, 要使每位学生都有座位, 应该怎样租用合算?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.B3.D4.A5.B6.B7、B8、D9、B10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、±2.2.60°3. 或4、.5.两6.2或-8三、解答题(本大题共6小题, 共72分)1.(1);(2)2.±33.略4.(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变, 理由略5、(1)800, 240;(2)补图见解析;(3)9.6万人.6、(1)240人, 原计划租用45座客车5辆;(2)租4辆60座客车划算.。
人教版七年级上册数学期末考试试卷带答案
人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.中国的领水面积约为370000km 2,将数370000用科学记数法表示为()A .37×104B .3.7×104C .0.37×106D .3.7×1053.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A .20﹣3+5﹣7B .﹣20﹣3+5+7C .﹣20+3+5﹣7D .﹣20﹣3+5﹣74.方程24x a +=的解是2x =-,则=a ()A .–8B .0C .2D .85.若40α∠=︒,则α∠的余角的度数是()A .40°B .50°C .60°D .140°6.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .7.下列运算正确的是()A .12xy -20xy =-8B .3x +4y =7xyC .3xy 2-4y 2x =-xy 2D .3x 2y -2xy 2=xy8.已知方程216x y -+=,则整式3610x y --的值为()A .5B .10C .12D .159.《九章算术》记载了这样一道题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?假设井深为x 尺,则符合题意的方程应为()A .114134x x -=-B .3x+4=4x+1C .114134x x +=+D .3(x+4)=4(x+1)10.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH 4,乙烷的化学式是C 2H 6,丙烷的化学式是C 3H 8,…,设碳原子的数目为n (n 为正整数),则它们的化学式都可以用下列哪个式子来表示()A .C n H 2n+2B .C n H 2n C .C n H 2n ﹣2D .C n H n+3二、填空题11.如果零上2℃记作+2℃,那么零下3℃记作____℃.12.若单项式3mxy 与nxy -是同类项,则m n -的值是__________.13.计算:3545'7219'︒+︒=__________.14.“垃圾分类”知识竞赛规定:答对的得10分,答错或不答扣5分,如果初一(2)班答对了a 道题,答错了b 道题,那么初一(2)班的得分可以表示为:______分.15.现定义一种新运算,对于任意有理数a ,b ,c ,d 满足a b ad bc cd=-,若对于未知数x的式子满足2331x x =+,则未知数x =__________.16.某货轮O 在航行过程中,发现灯塔A 在它的南偏东65°方向上,同时在它的北偏东40°方向发现了一座海岛B ,则∠AOB 的度数是__________.17.已知2a b -=,当1b =时,=a __________.三、解答题18.计算:()()220212101-+-+-19.解方程:1224x x+-=20.根据下列要求画图(1)连接线段OB;(2)画射线AO,射线AB;,过点O,点C画出直线OC.(3)用圆规在射线AB上彼取AC OB21.为了有效控制酒后驾驶,广州交警的汽车在一条东西方向的公路上巡逻,约定向东为正方向,从出发点A开始所走的路程为(单位:千米):+14.﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定交警最后所在地相对于A地的方位?(2)若汽车每千米耗油0.2升,如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?22.若代数式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与字母x的取值无关,求代数式5ab2-[a2b+2(a2b-3ab2)]的值.23.某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获利润2000元,该工厂的生产能力是:若制成酸奶,每天可加工3吨;制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂某领导提出了两种可行方案:方案1:尽可能多的制成奶片,其余直接销售鲜牛奶;方案2:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?24.数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休”.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来从而实现优化解题途径的目的.请你利用“数形结合”的思想解决以下的问题:(1)如图1:射线OC 是AOB ∠的平分线,这时有数量关系:AOB ∠=______.(2)如图2:AOB ∠被射线OP 分成了两部分,这时有数量关系:AOB ∠=______.(3)如图3:直线AB 上有一点M ,射线MN 从射线MA 开始绕着点M 顺时针旋转,直到与射线MB 重合才停止.①请直接回答AMN ∠与BMN ∠是如何变化的?②AMN ∠与BMN ∠之间有什么关系?请说明理由.25.某校七年级A 班有x 人,B 班比A 班人数的2倍少10人,如果从B 班调出8人到A 班.(1)用代数式表示两个班共有多少人?(2)用代数式表示调动后,B 班人数比A 班人数多几人?(3)x 等于多少时,调动后两班人数一样多?26.将一副三角板ABC 和三角板BDE (∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置摆放.(1)如图1,若边BD ,BA 在同一直线上,则∠EBC=;(2)如图2,若∠EBC=165°,那么∠ABD=;(3)如图3,若∠EBC=120°,求∠ABD 的度数.参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.D 【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:370000=3.7×105.故选D .【点睛】本题考查科学记数法—表示较大的数3.C 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.【点睛】此题主要考查有理数的加减,解题的关键是熟知有理数的运算法则.4.D 【分析】把2x =-代入方程求解即可;【详解】把2x =-代入方程可得:()224a ⨯-+=,解得:8a=.故答案选D .【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.5.B 【分析】根据余角的定义即可求解.【详解】解:∵∠α=40°,∴它的余角=90°-40°=50°.故选:B.【点睛】本题考查了余角的知识,熟记互为余角的两个角的和等于90°是解题的关键.6.B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l旋转一周,可得到圆锥,故选:B.【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.7.C【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】解:A、12xy-20xy=-8xy,故本选项不合题意;B、3x与4y不是同类项,所以不能合并,故本选项不合题意;C、3xy2-4y2x=-xy2,故本选项符合题意;D、3x2y与-2xy2不是同类项,所以不能合并,故本选项不合题意;故选:C.【点睛】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.8.A【分析】根据题意求出x-2y,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.9.D【分析】设井深为x尺,则根据①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺,即可列出方程.【详解】解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:D.【点睛】本题主要考查了列一元一次方程的应用,解题的关键在弄清题意,找到等量关系并用未知数表示.10.A 【详解】试题分析:设碳原子的数目为n (n 为正整数)时,氢原子的数目为a n ,观察可知:a 1=4=2×1+2,a 2=6=2×2+2,a 3=8=2×3+2,…,即可得a n =2n+2.所以碳原子的数目为n (n 为正整数)时,它的化学式为C n H 2n+2.故选:A .考点:数字规律探究题.11.-3【详解】以0℃作为数轴原点,则往左右两边每1个单位为1℃,当零上2℃记作+2℃时,则零下3℃为原点相反方向上记作-3℃.故答案为:-3.【点睛】本题难度较低,主要考查学生对数轴与实数的学习.作图最直观,要求考生学习数学时,应做到数形结合思想的应用.12.0【分析】先根据同类项的定义求得m 和n ,然后计算即可.【详解】.解:∵3xy m 与-x n y 是同类项,∴n=1,m=1∴m-n=1-1=0.故答案为:0.【点睛】本题考查了同类项的定义,根据同类项的定义求得m 和n 的值是解答本题的关键.13.1084︒'【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60则转化为度.【详解】解:35°45'+72°19'=108°4'故答案为:108°4'.【点睛】本题考查的知识点是角度的计算,注意度分秒之间的进率为60即可.14.()105a b -【分析】由答对的得10分,答对了a 道题求出所得10a 分,由答错或不答扣5分,答错了b 道题求出所扣5b ,从得分中去掉扣分是最后初一(2)班的得分可以表示为()10-5a b 分.【详解】解:答对的得10分,答对了a 道题得10a 分,答错或不答扣5分,答错了b 道题扣5b ,初一(2)班的得分可以表示为()10-5a b 分.故答案为:()10-5a b .【点睛】本题考查列代数式,用字母表示数,代数式书写规则知识,掌握列代数式的方法与要求是解题关键.15.-1【分析】根据题中计算方法,代入可得一元一次方程,然后求解即可得.【详解】解:∵a b ad bc cd=-,∴2331xx =+,∴()2133x x +-=,解得:1x =-,故答案为:1-.【点睛】题目主要考查一元一次方程的解法,理解题意新定义的运算方法是解题关键.16.75°【分析】首先根据方向角的定义,作出图形,根据图形即可求解.【详解】解:如图,180406575AOB ∠=︒-︒-︒=︒,故答案为:75︒.【点睛】本题考查了方向角的定义,正确理解方向角的定义,理解A 、B 、O 的相对位置是解题的关键.17.3或-1【分析】将b =1代入|a ﹣b|=2,再根据绝对值的意义解方程即可.【详解】解:当b =1时,|a ﹣b|=|a ﹣1|=2,可得a ﹣1=±2,解得a =3或﹣1,故答案为:3或﹣1.【点睛】本题主要考查了绝对值的方程,熟练掌握绝对值的意义和熟练解方程是解答此题的关键.18.13【详解】解:原式4101=+-141=-13=.【点睛】本题考查了有理数的混合运算,解题关键是熟练掌握有理数混合运算的顺序和方法.19.6x =【分析】先去分母,再去括号,移项、合并同类项、(化系数为1)即可解题.【详解】解:去分母:()218x x +-=去括号:228x x +-=移项:282x x -=-合并同类项:6x =.【点睛】本题考查解一元一次方程,是重要考点,难度较易,掌握相关知识是解题关键.20.(1)见解析(2)见解析(3)见解析【分析】(1)连接OB ,可得线段OB ;(2)连接AO 并延长即为射线AO ,连接AB 并延长可得射线AB ;(3)以点A 为圆心,OB 长为半径画弧,交AB 于点C ,可得AC OB =,然后连接OC 并双向延长即可得直线.(1)连接OB ,可得线段OB ,如图所示;(2)连接AO 并延长即为射线AO ,连接AB 并延长可得射线AB ,如图所示;(3)以点A 为圆心,OB 长为半径画弧,交AB 于点C ,可得AC OB =,然后连接OC 并双向延长即可得直线,如图所示.【点睛】题目主要考查线段、射线的作法,理解题意,熟练掌握线段、射线的作法是解题关键.21.(1)距离A地正东方向20千米处;(2)18.8升.【分析】(1)将巡逻记录相加求出结果,然后根据正负数的意义回答;(2)将巡逻记录的绝对值相加在加上返回的路程,求出总路程;用总路程乘以单位耗油量可得总耗油量.++-+++-+++-+++-=.【详解】(1)(14)(9)(8)(7)(13)(6)(12)(5)20答:交警最后所在地距离A地正东方向20千米处.++-+++-+++-+++-.(2)14987136125=74此次巡逻最后位置距离A地正东方向20千米处.∴总路程为742094+=千米⨯=(升).0.29418.8答:这次巡逻(含返回)共耗油18.8升.【点睛】本题考查了有理数加法的实际应用,正负数是实际应用,绝对值的意义,解题关键是理解”正“和“负”的相对性,确定一对具有相反意义的量.22.-60.【分析】先将代数式进行去括号合并,然后令含x的项系数为0,即可求出a与b的值,最后代入所求的式子即可求得答案.【详解】(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得到2-2b=0,a+3=0,解得a=-3,b=1,则5ab2-[a2b+2(a2b-3ab2)]=5ab2-a2b-2a2b+6ab2=11ab2-3a2b=-33-27=-60.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.第二种方案可以多得1500元的利润.【分析】方案一:根据制成奶片每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶片,(4-x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果.【详解】解:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则其利润为:4×2000+(9-4)×500=10500(元);方案二:设生产x天奶片,则生产(4-x)天酸奶,根据题意得:x+3(4-x )=9,解得:x=1.5,∴2.5天生产酸奶,加工的鲜奶3×2.5=7.5吨,则利润为:1.5×2000+3×2.5×1200=3000+9000=12000(元),∴12000-10500=1500.得到第二种方案可以多得1500元的利润.【点睛】此题考查了一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24.(1)2AOC ∠(答案不唯一);(2)AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒,见解析.【分析】(1)根据角平分线定义容易得出结论;(2)根据图形解答;(3)①由射线MN 从射线MA 开始绕着点M 顺时针旋转可知AMN ∠逐渐增大,BMN ∠逐渐减小;②由∠AMB 是平角即可得出结论.【详解】解:(1)∵射线OC 是AOB ∠的平分线,∴22AOB AOC COB ∠=∠=∠,故答案为:2AOC ∠(或2COB ∠);(2)由图可知,AOB AOP BOP ∠=∠+∠,故答案为:AOP BOP ∠+∠;(3)①AMN ∠逐渐增大,BMN ∠逐渐减小;②180AMN BMN ∠+∠=︒.证明:∵180AMB ∠=︒,AMN BMN AMB ∠+∠=∠,∴180AMN BMN ∠+∠=︒.【点睛】本题考查了角平分线定义,角的有关计算,注意利用数形结合的思想.25.(1)(3x-10)人;(2)(x-26)人;(3)x 等于26时,调动后两班人数一样多.【分析】(1)由A 班人数结合A 、B 两班人数间的关系可找出B 班人数,将两班人数相加即可得出结论;(2)根据调动方案找出调动后A 、B 两班的人数,二者做差即可得出结论;(3)根据调动后两班人数一样多,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:(1)∵七年级A 班有x 人,B 班比A 班人数的2倍少10人,∴B 班有(2x-10)人.x+2x-10=3x-10.答:两个班共有(3x-10)人(2)调动后A班人数:(x+8)人;调动后B班人数:2x-10-8=(2x-18)人,(2x-18)-(x+8)=x-26(人).答:调动后B班人数比A班人数多(x-26)人.(3)根据题意得:x+8=2x-18,解得:x=26.答:x等于26时,调动后两班人数一样多.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据A、B两班人数间的关系找出B班人数;(2)根据调动方案找出调动后A、B两班的人数;(3)找准等量关系,正确列出一元一次方程.26.(1)150°;(2)15°;(3)30°.【分析】(1)由∠EBC=∠DBE+∠ABC,可得结果;(2)由∠ABD=∠CBE-∠ABC-∠DBE,可得结果;(3)由∠ABD=∠ABC+∠DBE-∠EBC可得结果.【详解】解:根据题意可知,(1)∠EBC=∠DBE+∠ABC=90°+60°=150°;故答案为150°;(2)∠ABD=∠CBE-∠ABC-∠DBE=165°-90°-60°=15°;故答案为15°;(3)∠ABD=∠ABC+∠DBE-∠EBC=90°+60°-120°=30°.∴∠ABD的度数为:30°.。
人教版七年级上册数学期末考试试卷带答案
人教版七年级上册数学期末考试试题一、单选题1.1-的绝对值是()A .1-B .1C .12D .12-2.数据2920亿用科学记数法表示为()A .32.9210⨯B .120.29210⨯C .122.9210⨯D .112.9210⨯3.已知单项式32m a b 与23n a b -的是同类项,则m 与n 的值是()A .2m =,3n =B .3m =,2n =C .3m =,3n =D .2m =,2n =4.下列式子的变形中,正确的是()A .由6+x =10得x =10+6B .由3x +5=4x 得3x -4x =-5C .由8x =4-3x 得8x -3x =4D .由2(x -1)=3得2x -1=35.计算19(3)3÷-⨯的结果为()A .1-B .1C .9D .9-6.下列图形能折叠成圆锥的是()A .B .C .D .7.已知a 、b 、c 三个数在数轴上对应的点如图所示,下列结论错误的是()A .a +c <0B .b ﹣c >0C .c <﹣b <aD .﹣b <﹣c <a8.将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A .B .C .D .9.下列说法正确的是()A .3-是相反数B .一个数的绝对值越大,表示它的点在数轴上越靠右C .如果a 为有理数,那么20a >D .若a b =,则a b=10.如图,点M 在线段AN 的延长线上,且线段MN =20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;…连续这样操作10次,则M 10N 10=()A .2B .9202C .10202D .11202二、填空题11.当我们要将一个木条固定到墙上时,至少需要钉2颗钉子,这蕴含的数学道理是_________.12.已知∠1=71°,则∠1的补角等于__________度.13.若()2120x y ++-=,则x y -=___________.14.若2x =-是一元一次方程35mx -=-的解,则m =__________.15.在一张普通的月历中,相邻三行里同一列的三个日期数之和为48,则最小的日期数是__________.16.一种商品每件成本为a 元,现按成本增加20%出售,则这件商品的售价为__________元(用含有a 的式子表示).17.如图,由3个相同的长方形A 和1个正方形B 组成的图形,其中长方形A 的长是宽的2倍,则正方形B 的周长为__________.三、解答题18.计算:21131)(6)()6324-⨯-+-÷(.19.解方程:1342x x ++=.20.已知多项式2312A y xy =-+,22212B y xy x =-+-.(1)化简:2A B +;(2)当12x =,2y =-时,求2A B +的值.21.如图,已知线段AB =4,延长线段AB 到C ,使BC =2AB .(1)求线段AC 的长;(2)若点D 是AC 的中点,求线段BD 的长.22.某公司需要加工一批零件,甲每天可以加工16个零件,乙每天可以加工24个零件,甲单独加工这批零件比乙单独加工这批零件多用20天,甲每天的人工费为80元,乙每天的人工费为120元.(1)问这批零件共有多少个?(2)在加工零件过程中,公司要派一名质量监督员,并且每天支付他15元补助费,现有三种加工方案:①由甲单独加工这批零件;②由乙单独加工这批零件;③甲、乙合作同时加工这批零件,你认为哪种方案最省钱,为什么?23.如图,数轴上依次三点A ,B ,C 对应的数分别为a ,b ,c ,点O 为原点,其中14a =-,16AC BC ==,现有一条线段4MN =在数轴上,点M 与点A 重合,当线段MN 以每秒3个单位长度的速度向右运动,记MN 的中点为P 点,设线段MN 运动的时间为t 秒.(1)______b =,______=c ;(2)当6t =时,求PB PC -的值;(3)当t 为何值时,点P ,N ,C 中有一个点可成为另外两个点所连线段的中点.24.如图,在平面内有A ,B ,C 三点.(1)画直线AB ;画射线AC ;画线段BC ;(2)在线段BC 上任取一点D (不同于B ,C 两点),连接AD ,并延长AD 至点E ,使DE AD =;(3)数一数,此时图中共有多少条线段?多少条射线?25.某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.26.已知射线OB ,OC 在钝角AOD ∠的内部,且满足AOB COD ∠=∠,射线OE ,OF 分别平分AOC BOD ∠∠和.(1)如图1,当射线OC 在射线OB 的左侧时,70AOB ∠=︒,①若10BOC ∠=︒,______EOF ∠=︒则;②若20BOC ∠=︒,______EOF ∠=︒则;③若BOC β∠=,计算EOF ∠的度数.(2)当射线OC 在射线OB 的右侧时,设AOB COD α∠=∠=,请画出图形并计算EOF ∠的度数(用含α的式子表示).参考答案1.B2.D3.A4.B5.A6.B7.D8.C9.D10.C11.两点确定一条直线【分析】根据直线的性质,可得答案.【详解】解:要把一根细木条固定在墙上,至少需要钉两个钉子,其中蕴含的数学道理是两点确定一条直线,故答案为:两点确定一条直线.【点睛】本题考查了直线的性质,熟记直线的性质是解题关键.12.109【分析】两角互为补角,和为180°,那么计算180°-∠1可求补角.【详解】解:设所求角为∠α,∵∠α+∠1=180°,∠1=71,∴∠α=180°-71=109°.故答案为:109【点睛】此题考查的是角的性质,两角互余和为90°,互补和为180°.13.-3【分析】根据非负数的性质可得关于x 、y 的方程,求出x 、y 后再代入所求式子计算即可.【详解】根据题意,得:10x +=,20y -=,解得:1x =-,2y =,∴123x y -=--=-.故答案为:-3.【点睛】本题考查了非负数的性质以及解一元一次方程,熟练掌握非负数的性质是解题的关键.mx-=-,然后解关于m的方程即可.14.1【分析】把2x=-代入35mx-=-,得【详解】解:把2x=-代入35--=-,m235解得m=1,故答案为:1.【点睛】本题考查了一元一次方程解得定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.15.9【分析】设中间的数为x,其它两个为(x-7)与(x+7),根据三个日期数之和为48列方程求解.【详解】解:设中间的数为x,其它两个为(x-7)与(x+7),根据题意得:x-7+x+x+7=48,解得:x=16,∴x-7=9,x+7=23,∴最小的日期数是9,故答案为:9.【点睛】此题考查了一元一次方程的应用,关键是找出题目中的等量关系,列出方程,注意相邻三行里同一列的三个日期之间相差7.16.1.2a【分析】根据题意列出代数式即可.【详解】解:∵商品每件成本a元,现按成本增加20%出售,∴现在每件售价为:a×(1+20%)=1.2a(元),故答案为:1.2a.【点睛】本题考查了列代数式,正确理解题意是解题的关键.17.84【分析】设长方形的宽是x,列方程求出x的值,然后再求正方形的周长.【详解】解:设长方形的宽是x,则长是2x,由题意得x+7.5+2x=2x+16.5-x,解得x=4.5,∴正方形B的边长为4.5+7.5+2×4.5=21,∴正方形B的周长为4×21=84,故答案为:84.【点睛】本题考查了一元一次方程的应用,根据正方形的边长相等列出方程是解答本题的关键.18.10【详解】解:原式=19()(6)464-⨯-+19=+10=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.19.10x =【详解】解:1342x x ++=,去分母,得122(1)x x +=+,去括号,得1222x x +=+,移项,得2212x x -=-,合并同类项,得10x -=-,系数化为1,得10x =,【点睛】本题主要考查了解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.20.(1)2122y x -+;(2)0【分析】(1)把2312A y xy =-+,22212B y xy x =-+-代入2A B +化简即可;(2)把12x =,2y =-代入(1)中化简出的式子中计算即可.【详解】(1)22322(1)(2212)2A B y xy y xy x +=-++-+-223222212y xy y xy x=-+-+-2122y x =-+;(2)12x =当,2y =-时,21221222A B +=--⨯+(),462=-+,0=.【点睛】本题考查整式的化简求值,掌握整式的运算法则与运算顺序是解题的关键.21.(1)AC =12;(2)BD =2【分析】(1)由BC =2AB ,AB =4cm 得到BC =8cm ,然后利用AC =AB+BC 进行计算;(2)根据线段中点的定义即可得到结论.【详解】解:(1)∵BC =2AB ,AB =4,∴BC =8,∴AC =AB+BC =4+8=12;(2)∵点D 是AC 的中点,∴AD =12AC =6,∴BD =AD ﹣AB =6﹣4=2.【点睛】此题主要考查线段的和差关系,解题的关键是熟知中点的性质.22.(1)这批零件共有960个;(2)方案③最省钱,理由见解析.【分析】(1)设乙单独加工这批零件用x 天,则甲单独加工这批零件用(20)x +天,由题意得出等量关系:甲加工的总零件数=乙加工的总零件数,列出方程求解,继而算出共有多少个零件.(2)分三种情况讨论:①由甲单独加工这批零件;②由乙单独加工这批零件;③甲、乙合作同时加工这批零件,分别比较三种情况下所耗费用,找出最省钱的方案.【详解】(1)设乙单独加工这批零件用x 天,则甲单独加工这批零件用(20)x +天,依题意得:16(20)24x x+=解得:40x =16(20)16(4020)960x +=⨯+=答:这批零件共有960个.(2)方案③最省钱,理由如下:方案①所需费用:6080155700⨯+=()(元)方案②所需费用:40120155400⨯+=()(元)方案③所需工作天数为:960(1624)24÷+=天所需费用为:2480120155160⨯++=()元570054005160>> 所以选择方案③最省钱.【点睛】本题的关键在于理解题意,找出等量关系列出方程,对于选择最佳方案的问题,应将所有方案列出来,再找出符合题意的那一个即可.23.(1)b=18,c=2;(2)PB-PC=8(3)当t=103,t=133或t=163时,点P ,N ,C 中有一个点可成为另外两个点所连线段的中点.【分析】(1)根据14a =-,16AC BC ==可求出b 、c 的值;(2)先表示出6秒后点P 表示的数,然后可求PB PC -的值;(3)分三种情况求解即可;【详解】解:(1)∵14a =-,16AC BC ==,∴c=-14+16=2,b=2+16=18,故答案为:18,2;(2)∵线段MN 以每秒3个单位长度的速度运动,∴中点P 的运动速度也是每秒3个单位长度,∵4MN =,MN 的中点为P 点,∴MP=PN=2,∵点M 与点A 重合,∴M 表示的数是-14,P 表示的数是-14+2=-12,N 表示的数是-14+4=-10,∴t 秒后点P 所表示的数是-12+3t 当t=6秒时,点P 所表示的数是6,∴PB=18-6=12,PC=6-2=4,∴PB-PC=12-4=8;(3)由题意可知:点P ,点N 的运动速度是每秒3个单位长度,∴点P ,点N 所表示的数分别为-12+3t ,-10+3t ,当点N 是线段PC 的中点时,-10+3t=0,t=10 3;当点C是线段PN的中点时,-12+3t=1,t=13 3;当点P是线段CN的中点时,-12+3t=4,t=16 3;∴当t=103,t=133或t=163时,点P,N,C中有一个点可成为另外两个点所连线段的中点.【点睛】本题考查了数轴上两点间的距离,与线段的中点有关的计算,以及数形结合的数学思想,分三种情况讨论是解(3)的关键.24.(1)见解析(2)见解析(3)有8条线段,6条射线【分析】(1)根据直线、射线、线段的定义,即可求解;(2)先画出线段AD,再延长AD至点E,使DE AD,即可求解;(3)根据射线、线段的定义,即可求解.(1)解:如图,直线AB,射线AC,线段BC即为所求;(2)解:如图,线段AD和DE即为所求;(3)解:图中的线段有AB、AC、AD、DE、AE、CD、DB、BC,共有8条,射线有AC、CH、AG、BG、BF、AF,共有6条.【点睛】本题主要考查了直线、射线、线段的定义,熟练掌握直线没有端点、长度无限,可以向两端无限延长;射线只有一个端点,长度无限,可以向一端无限延长;线段有两个端点,长度有限是解题的关键.25.小书包20元,大书包30元【分析】设每个小书包的进价为x 元,则每个大书包的进价为(x+10)元,根据利润=进价×盈利率结合两种书包的售后利润额相同,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设每个小书包的进价为x 元,则每个大书包的进价为(x+10)元,依题意得:30%x =20%(x+10),解得:x =20,则x+10=30.答:每个小书包的进价为20元,每个大书包的进价为30元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)①70;②70;③∠EOF=70°;(2)画图见解析,∠EOF==α.【分析】(1)①②③先说明∠AOE=∠COE=∠BOF=∠DOF ,然后根据∠EOF=∠COE+∠BOC+∠BOF 求出∠COE 即可;(2)先用∠AOB 和∠BOC 表示出∠COE ,用∠COD 和∠BOC 表示出∠BOF ,然后根据∠EOF=∠COE+∠BOF-∠BOC 整理即可.【详解】解:(1)①∵AOB COD ∠=∠,∴AOB BOC COD BOC ∠-∠=∠-∠,∴∠AOC=∠BOD ,∵射线OE ,OF 分别平分AOC BOD ∠∠和,∴∠AOE=∠COE=12∠AOC ,∠BOF=∠DOF=12∠BOD ,∴∠AOE=∠COE=∠BOF=∠DOF ,∵70AOB ∠=︒,10BOC ∠=︒,∴∠AOC=70°-10°=60°,∴∠COE=∠BOF =30°,∵∠EOF=∠COE+∠BOC+∠BOF ,∴∠EOF=30°+10°+30°=70°,故答案为:70°;②与①同样的方法可求∠AOC=70°-20°=50°,∴∠COE=∠BOF =25°,∵∠EOF=∠COE+∠BOC+∠BOF ,∴∠EOF=25°+20°+25°=70°,故答案为:70°;③与①同样的方法可求∠AOC=∠AOB-∠BOC=70°-β,∴∠COE=∠BOF =702β- ,∵∠EOF=∠COE+∠BOC+∠BOF ,∴∠EOF=702β- +β+702β- =70°;(2)依题意:画出图形∵OE 平分∠AOC ,∴∠COE=12∠AOC .∵∠AOC=∠AOB+∠BOC ,∴∠COE=2AOB BOC∠+∠,同理:∠BOF=2COD BOC∠+∠,∵∠EOF=∠COE+∠BOF-∠BOC ,∴∠EOF=2AOB BOC ∠+∠+2COD BOC ∠+∠-∠BOC ,∴∠EOF=2AOB COD ∠+∠.∵∠AOB=∠COD=α,∴∠EOF==α.。
新人教版七年级数学上册期末考试题及答案【精编】
新人教版七年级数学上册期末考试题及答案【精编】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若, 那么的值是( )A. 10B. 52C. 20D. 322.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3.若是一个完全平方式, 则常数k的值为A. 6B.C.D. 无法确定4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.如图所示, 点P到直线l的距离是()线段PA的长度 B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7. 下列各组线段不能组成三角形的是 ( )A. 4cm、4cm、5cmB. 4cm、6cm、11cmC. 4cm、5cm、6cmD. 5cm、12cm、13cm8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知关于x的代数式是完全平方式, 则_________.2.如图, 将三个同样的正方形的一个顶点重合放置, 那么的度数为__________.3. 如图, 点E是AD延长线上一点, 如果添加一个条件, 使BC∥AD, 则可添加的条件为__________. (任意添加一个符合题意的条件即可)4. 若, 则m+2n的值是________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 如果关于x, y的方程组的解中, x与y互为相反数, 求k的值.3. 已知: O是直线AB上的一点, 是直角, OE平分.(1)如图1. 若. 求的度数;(2)在图1中, , 直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置, 探究和的度数之间的关系.写出你的结论, 并说明理由.4. 如图, 在△ABC和△ADE中, AB=AC, AD=AE, 且∠BAC=∠DAE, 点E在BC上. 过点D作DF∥BC, 连接DB.求证: (1)△ABD≌△ACE;(2)DF=CE.5. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况, 在本校学生中随机抽取部分学生作调查, 把收集的数据分为以下4类情形: A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息, 解答下列问题:(1)在这次抽样调查中, 共调查了________名学生;(2)补全条形统计图, 并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果, 估计该校2000名学生中“家长和学生都未参与”的人数.6. 某市出租车的收费标准是: 行程不超过3千米起步价为10元, 超过3千米后每千米增收1.8元. 某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米, 应付费多少元?(3)如果该乘客付费26.2元, 他坐了多少千米?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、A3、C4、D5、B6、C7、B8、A9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或-72.20°.3.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15.40°6、5三、解答题(本大题共6小题, 共72分)1、21 xy=⎧⎨=⎩2.x=1, y=-1, k=9.3、(1);(2);(3), 理由略.4.(1)证明略;(2)证明略.5.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)当行程不超过3千米即x≤3时时, 收费10元;当行程超过3千米即x>3时, 收费为(8x+4.6)元.(2)乘客坐了8千米, 应付费19元;(3)他乘坐了12千米.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
人教版七年级上册数学期末考试试题及答案
人教版七年级上册数学期末考试试卷2021年9月一、选择题。
(每小题只有一个答案正确)1.2-的相反数是()A .2-B .12-C .12D .22.如图,若AC=BD ,则AB 与CD 的大小关系()A .AB>CDB .AB<CDC .AB=CDD .不能确定3.若一个数的立方等于它的倒数,则这个数一定是()A .0B .1C .-1D .±14.如图,直线AB 、CD 相交于点O ,且∠AOC+∠BOD=120°,则∠AOD 的度数为()A .130°B .120°C .110°D .100°5.若132m a b +-与3235n a b -可以合并成一项,则mn 的值是()A .-5B .5C .6D .-66.一个长方形的周长为30cm ,若这个长方形的长减少1cm ,宽增加2cm 就可成为一个正方形,设长方形的长为xcm ,可列方程为()A .x+1=(30﹣x )﹣2B .x+1=(15﹣x )﹣2C .x ﹣1=(30﹣x )+2D .x ﹣1=(15﹣x )+27.已知某种商品的原出售价为204元,即使促销降价20%仍有20%的利润,则该商品的进货价为()A .136元B .135元C .134元D .133元8.下列说法中,错误的个数为()①几个有理数相乘,当负因数有奇数个时,积一定为负;②0没有相反数;③若a b =,则a b =;④若x x =-,则0x <;⑤若22x y >,则x y >.A .1个B .2个C .3个D .4个9.超市出售的某种品牌的大米袋上,标有质量为(50±0.4)kg 的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A .0.5kgB .0.6kgC .0.8kgD .0.95kg10.下面四个代数式中,不能表示图中阴影部分面积的是()A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++二、填空题11.随着交通网络的不断完善.旅游业持续升温,据统计,在今年“十一”期间,某风景区接待游客4.03×105人.这个用科学记数法表示的数据的原数为_____________.12.比较大小:30°15′______30.15°(填“>”、“<”或“=”).13.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.14.已知关于x 的方程34x m -=的解是x m =,则m 的值是__________.15.点A 、B 、C 是同一直线上的三个点,若AB=8cm ,BC=3cm ,则AC=_____cm .16.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.三、解答题17.计算:13520()2463-++-+.18.解方程:152(1)824x x +⨯+=.19.已知线段AB .(1)作图:延长线段AB 到点C ,使得BC =2AB ;(保留作图痕迹,不写作法)(2)当AB 的长等于3cm 时,求线段AC 的长.20.如图所示,一块正方形纸板剪去四个相同的三角形后留下了阴影部分的图形.已知正方形的边长为a ,三角形的高为h .(1)用式子表示阴影部分的面积;(2)当a =2,h =12时,求阴影部分的面积.21.若23(24)0y x ++-=,化简并求2222223()233xy xy xy x y xy x y ⎡⎤---++⎢⎥⎣⎦的值.22.我们知道:“任何无限循环小数都可以写成分数的形式”.下面给你介绍利用一元一次方程的有关知识来解答这个问题.问题:利用一元一次方程将0.2∙化成分数.解:设•0.2x =,方程两边同时乘以10得:•100.210x ⨯=,由•0.20.222---=、,得:••100.2 2.222---20.2⨯==+,所以210x x +=,解得:29x =,即•20.29=.解答下列问题:(1)填空:将0.3∙写成分数形式为;(2)方法归纳:由示例可知:如果循环节为1位时,设方程后两边同时乘以10.那么如果循环节为2位时,设方程后两边同时应乘以;(3)请你仿照上述方法把••0.45化成分数,要求写出解答过程.23.如图,已知∠AOC=70°,∠BOD=100°,∠AOB 是∠DOC 的3倍,求∠AOB 的度数.24.某市水果批发部门欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时.其它主要参考数据如下:运输工具途中平均速度(千米/时)运费(元/千米)装卸费用(元)火车100152000汽车8020900如果知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,且汽车的总支出费用(含损耗)比火车多1870元.求本市与A 市之间的路程.25.阅读下列材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离;即0x x =-;这个结论可以推广为12||x x -表示在数轴上数1x ,2x 对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程||4x =.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x =±4;例2:解方程125x x ++-=.由绝对值的几何意义可知,该方程表示求在数轴上与-1和2的距离之和为5的点对应的x 的值.在数轴上,-1和2的距离为3,满足方程的x 对应的点在2的右边或在-1的左边.若x 对应的点在2的右边,如图可以看出3x =;同理,若x 对应点在-1的左边,可得2x =-.所以原方程的解是3x =或2x =-.例3:解不等式13x ->.在数轴上找出13x -=的解,即到1的距离为3的点对应的数为-2,4,如图,在-2的左边或在4的右边的x 值就满足13x ->,所以13x ->的解为2x <-或4x >.参考阅读材料,解答下列问题:(1)方程35x +=的解为;(2)方程201712020x x -++=的解为;(3)若4311x x ++-≥,求x 的取值范围.参考答案1.A【详解】试题分析:∵|﹣2|=2,∴2的相反数是﹣2.故选A.2.C【解析】∵AC=BD,AC=AB+BC,BD=CD+CB,∴AB=CD,故选:C.3.D【解析】设这个数是x,则x3=1x,即x4=1,解得:x=±1.故选:D.4.B【解析】∵∠AOC+∠BOD=120°,∠AOC=∠BOD,∴∠AOC=60°,∴∠AOD=180°-∠AOC=120°,故选B.5.C【解析】根据题意得13233mn+=⎧⎨-=⎩,解得:23mn=⎧⎨=⎩,则mn=3×2=6.故选:C.6.D【分析】根据长方形的周长公式,表示出长方形的宽,再由正方形的四条边都相等得出等式即可.【详解】∵长方形的长为xcm ,长方形的周长为30cm ,∴长方形的宽为(15﹣x )cm ,∵这个长方形的长减少1cm ,宽增加2cm 就可成为一个正方形,∴x ﹣1=15﹣x+2,故选D .7.A 【详解】设商品进价为x 元,由题意得:204×(1-20%)-x=20%x ,解得:x=136,故选A.【点睛】此题考查一元一次方程的应用,只需要分析题意,找出合适的等量关系,即可利用方程解决问题.8.D 【解析】①几个不为0的有理数相乘,当负因数有奇数个时,积一定为负,故错误;②0的相反数是0,故错误;③若a b =,则a b =±,故错误;④若x x =-,则x 0≤,故错误;⑤若22x y >,则x y >正确.故选:D.点睛:此题考查了有理数的乘法以及倒数,熟练掌握运算法则是解本题的关键.9.C 【分析】根据正负数的定义,分别求出某种品牌的大米袋质量最多相差多少,再比较即可.【详解】根据题意可得:它们的质量相差最多的是标有(50±0.4)kg ;其质量最多相差了(50+0.4)-(50-0.4)=0.8kg ,故选C.【点睛】本题主要考查了正负数的定义,判断(50±0.4)kg 的意义是解答本题的关键.10.B 【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.11.403000【解析】由科学记数法可知:4.03×105=403000,故答案为403000.12.>【解析】【详解】∵30.15°=30°+0.15×60′=30°9′,∴30°15′>30°9′.故答案为>.13.67.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°,∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°,∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°.14.-2【解析】∵关于x 的方程x 3m 4-=的解是x m =,∴m 3m 4-=,解得:m=-2.故答案为:-2.15.11或5【解析】解:(1)点B 在点A 、C 之间时,AC=AB+BC=8+3=11cm ;(2)点C 在点A 、B 之间时,AC=AB-BC=8-3-5cm .∴AC 的长度为11cm 或5cm .16.(3n+1)【详解】试题分析:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第三个图形有3×4﹣3+1=10个三角形;…第n 个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为3n+1.考点:1.规律型:图形的变化类;2.规律型.17.112【解析】试题分析:去掉括号后,通分化为同分母分数,再相加减.试题解析:原式6910812121212=-+-+610981617112121212121212=--++=-+=.18.x=2【解析】试题分析:方程去括号、移项合并,将x 系数化为1,即可求出解.试题解析:去括号得:15x x 2822++=,移项合并同类项得:3x 6=,解得:x 2=.19.(1)图形见解析(2)9cm 【解析】试题分析:(1)延长AB ,截取BC =2AB 即可;(2)根据图形可知AC=AB+BC=3+6=9cm .试题解析:(1)如图所示:点C 为所求.(2)当AB=3时,BC=2AB=2⨯3=6,∴AC=AB+BC=3+6=9cm .20.(1)2a 2ah -(2)2【分析】(1)直接利用正方形面积-空白面积=阴影部分面积,进而得出答案;(2)利用(1)中所求,进而将a ,h 的值代入求出即可.【详解】(1)阴影部分的面积为:221a 4ah a 2ah 2-⨯=-;(2)当1a 2h 2,==时,原式2a 2ah =-=22-12222⨯⨯=.21.-24【解析】试题分析:本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x ,y 的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.试题解析:∵()2y 32x 40++-=,且y 30+≥,()22x 40-≥,∴y 30+=,2x 40-=,∴x 2=,y 3=-,∴原式()22222xy xy 3xy 2x y 2xy 3x y=--+++()2222 2xy2xy2x y2xy3x y =--+++22222xy2xy2x y2xy3x y=+--+2x y2xy=+()()22322324=⨯-+⨯⨯-=-.22.(1)13(2)100(3)511【解析】试题分析:(1)根据阅读材料设•0.3=x,方程两边都乘以10,转化为3+x=10x,求出其解即可;(2)由示例即可得出结论;(3)设••0.45=m,方程两边都乘以100,转化为45+m=100m,求出其解即可;试题解析:(1)解:设•0.3x=,方程两边同时乘以10得:•100.310x⨯=,由•0.30.333---=,得:••100.3 3.333---30.3⨯==+,所以3x10x+=,解得:1x3=,即•10.33=;(2)由示例知循环节为2位时,设方程后两边同时应乘以100.;(3)设••0.45x=,方程两边都乘以100得:••1000.45100x⨯=,∵••0.450.454545---=,∴••••1000.4545.454545---450.45⨯==+,∴45x100x+=,解得:5x11 =,即••5 0.4511=.23.127.5°【解析】试题分析:设∠COD=x,则∠AOD可表示为70°-x,于是∠AOB=100°+70°-x=170°-x,再根据∠AOB是∠DOC的3倍得到170°-x=3x,解得x=42.5°,然后计算3x即可.试题解析:设∠COD=x,∵∠AOC=70°,∠BOD=100°,∴∠AOD=70°−x,∴∠AOB=100°+70°−x=170°−x,∵∠AOB是∠DOC的3倍,∴170°−x=3x,解得x=42.5°,∴∠AOB=3×42.5°=127.5°.24.500千米【详解】试题分析:设本市与A市的路程为x千米,由等量关系“汽车的总支出费用比火车多1870元”列出方程解答.试题解析:设本市与A市的路程为x千米,依题意得:x x200215x2000200 3.120x9001870 10080⎛⎫⎛⎫⨯+++=⨯+++-⎪ ⎪⎝⎭⎝⎭,解得:x500=,答:本市与A市之间的路程是500千米.点睛:本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.25.(1)x=2或x=-8(2)x=-2或x=2018(3)x≥5或x≤-6【详解】试题分析:1)分类讨论:x<-3,x≥-3,可化简绝对值,根据解方程,可得答案;(2)分类讨论:x<-1,-1≤x<2017,x≥2017,根据绝对值的意义,可化简方程,根据解方程,可得答案;(3)x4x3++-表示的几何意义分情况讨论即可求解.试题解析:(1)当x<−3时,原方程等价于−x−3=5.解得x=−-8;当x⩾−3时,原方程等价于x+3=5,解得x=2,故答案为x=2或x=-8;(2)当x<−1时,原方程等价于−x+2017−x-1=2020,解得x=−2,当−1⩽x<2017时,原方程等价于−x+2017−+x+1=2020,不存在x 的值;当x ⩾2017时,原方程等价于x−2017+x+1=2020,解得x=2018,综上所述:x=-2或x=2018是方程的解;(3)∵x 4x 3++-表示的几何意义是在数轴上分别与-4和3的点的距离之和,而-4与3之间的距离为7,当x 在-4和3时之间,不存在x ,使x 4x 311++-≥成立,当x 在3的右边时,如图所示,易知当5x ≥时,满足x 4x 311++-≥,当x 在-4的左边时,如图所示,易知当x 6≤-时,满足x 4x 311++-≥,所以x 的取值范围是5x ≥或x 6≤-.点睛:本题主要考查了绝对值,通过阅读材料,理解绝对值的几何意义,结合数轴,通过数形结合对材料进行分析来解答题目..。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
人教版七年级上册数学期末考试试题含答案
人教版七年级上册数学期末考试试卷一、单选题1.下列各组数中,相等的是()A .()22-与22-B .22-与22-C .()32-与32-D .32-与32-2.若()1220a a x ---=是关于x 的一元一次方程,则a =()A .±2B .2C .0D .-23.下列各组单项式中,为同类项的是()A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a4.我国国土面积约为960万平方千米,用科学记数法可表示为()平方千米.A .59610⨯B .496010⨯C .79.610⨯D .69.610⨯5.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有()A .1个B .2个C .3个D .4个6.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有()A .一个B .两个C .三个D .四个7.下列各图中,可以是一个正方体的平面展开图的是()A .B .C .D .8.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b|+|a+b|的结果是()A .2aB .﹣2aC .0D .2b9.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,……,按此规律,图形⑦中星星的颗数是()A .43B .45C .41D .5310.A 、B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,2h 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发x 小时后追上甲车,根据题意可列方程为()A .60(x +2)=100xB .60x =100(x -2)C .60x +100(x -2)=600D .60(x +2)+100x =600二、填空题11.关于单项式3223a b π-,系数为_______.12.若x=2是方程8﹣2x=ax 的解,则a=.13.已知代数式2−3的值为−7,则代数式6−9+8的值为______.14.已知线段AB 10cm =,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC 2=cm ,则线段DC =______.15.钟表在3点30分时,它的时针与分针所夹的角是_____度.16.一种商品零售价为600元,为适应竞争,商店按零售价的八折销售,则销售价______元.17.按下面的程序计算:若输入x =100,则输出结果是501;若输入x =25,则输出结果是631;若开始输入的数x 为正整数,最后输出结果为781,则开始输入的数x 的所有可能的值为_____.三、解答题18.计算:32112(3)4⎡⎤--⨯--⎣⎦19.计算:()()2222533a b ab ab a b --+20.5121136x x +--=.21.一个角的补角比这个角的余角3倍还多10︒,求这个角的度数.22.先化简,后求值:已知()21302x y -++=求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值23.探索规律:观察下面算式,并解答问题:213=4=2+2135=9=3++21357=16=4+++213579=25=5++++(1)试猜想135791113151719+++++++++=_________;(2)试猜想()()()135********n n n ++++++-++++……=________;(3)请用上述规律计算:10011003100520152017+++++…….(请算出最后数值哦!并写出计算过程)24.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA+PN 的值不变,选择一个正确的结论,并求出其值.26.如图,射线OC 、OD 在∠AOB 内部,∠AOB =α,∠COD =β,分别作∠AOC 和∠BOD 的平分线OM 、ON ,(1)当α=130°,β=40°时,请你填空:∠1+∠3=______°,∠MON =______°;(2)聪明的小芳通过探究发现,当射线OC 、OD 的位置在∠AOB 内变化时,∠MON 与α、β之间总满足∠MON =+2αβ,你是否认同她的这一结论?请说明理由;参考答案1.C【分析】根据有理数乘方的意义逐一计算并判断即可.【详解】解:A .()224-=,22-=-4,所以()22-≠22-,故本选项不符合题意;B .224-=,22-=-4,所以22-≠22-,故本选项不符合题意;C .()328-=-,328-=-,所以()32-=32-,故本选项符合题意;D .382-=,328-=-,所以32-≠32-,故本选项不符合题意.故选C .【点睛】此题考查的是有理数乘方的运算,掌握有理数乘方的意义是解决此题的关键.2.D【分析】根据一元一次方程的定义即可求出结论.【详解】解:∵()1220a a x ---=是关于x 的一元一次方程,∴1120a a ⎧-=⎨-≠⎩解得:a =-2故选D .【点睛】此题考查的是根据一元一次方程的定义求参数的值,掌握一元一次方程的定义是解决此题的关键.3.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.4.D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:960万平方千米=9600000平方千米=69.610 平方千米故选D .【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.5.D【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D6.C【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A 、B 两点间的距离是指A 、B 两点间的线段的长度,原来的说法是错误的.故选C .【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.7.C【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图,故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.8.B【详解】解:由数轴可知a <0<b ,|a |>|b |,所以a -b <0,a +b <0,所以|a ﹣b |=b -a ,|a +b |=-(a +b ),所以|a ﹣b |+|a +b |=(b -a )-(a +b )=b -a -a -b=-2a .故选B .9.C【分析】设图形n 中星星的颗数是a n (n 为正整数),列出各图形中星星的个数,根据数据的变化找出变化规律“215122n n +-”,依此规律即可得出结论.【详解】解:设图形n 中星星的颗数是a n (n 为正整数),∵a 1=2=1+1,a 2=6=(1+2)+3,a 3=11=(1+2+3)+5,a 4=17=(1+2+3+4)+7,∴a n =1+2+…+n+(2n-1)=(1)2n n ++(2n-1)=215122n n +-,∴a 7=21577122⨯+⨯-=41.故选:C .【点睛】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.10.A【详解】设乙车出发x 小时后追上甲车,根据等量关系“乙车x 小时走的路程=甲车(x+2)小时走的路程”,据此列方程100x=60(x+2).故选A .11.23π-【分析】根据单项式系数的定义:单项式中的数字因数叫做单项式的系数,即可得出结论.【详解】解:单项式3223a b π-的系数为:23π-故答案为:23π-.【点睛】此题考查的是单项式系数,掌握单项式系数的定义是解决此题的关键,需注意π是数字.12.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.13.-13【解析】【分析】观察题中两个代数式,利用整体求值即可.【详解】解:6−9+8=3(2−3)+8=-13.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.14.7cm或3cm【分析】分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.【详解】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB-BC=5-2=3cm.则线段DC=7cm或3cm.15.75【分析】根据时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,每一格之间的夹角为30 ,可得出结果.【详解】解: 钟表上从1到12一共有12格,每个大格30 ,∴时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,∴分针与时针的夹角是2.53075⨯= .故答案为75 .【点睛】本题考查了钟面角的有关知识,解题关键是得出钟表上从1到12一共有12格,每个大格30 .16.480【分析】用600乘折扣数即可得出结论.【详解】解:销售价为600×80%=480元故答案为:480.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中各个量之间的关系是解决此题的关键.17.1或6或31或156【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为1或6或31或156.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.18.3.4【解析】【分析】先算乘方,再算括号里面的减法,再算乘法,最后算减法.【详解】原式()1129,4=--⨯-()1129,4=--⨯-()117,4=--⨯-71,4=-+3.4=【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.19.22126a b ab -【分析】先去括号,再合并同类项即可.【详解】()()2222533a b ab ab a b --+22221553a b ab ab a b=---22126a b ab =-.【点睛】本题考查了整式的加减运算,熟练掌握去括号的法则是解题的关键.20.38x =【分析】去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:5121136x x+--=去分母,得()()251216x x +--=去括号,得102216x x +-+=移项,得102612x x -=--合并同类项,得83x =系数化1,得38 x=【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.21.这个角的度数为50︒【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】解:设这个角的度数是x︒,则()18039010x x-=-+50x=答:这个角的度数为50︒【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.22.14【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.【详解】由题意得,x-3=0,y+12=0,解得,x=3,y=-1 2,则2xy2-[6x-4(2x-1)-2xy2]+9 =2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9=4xy2+2x+5=4×3×(-12)2+2×3+5=14.【点睛】本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.23.(1)100;(2)()22n +;(3)768081,过程见解析【分析】(1)根据已知等式,找出运算规律即可得出结论;(2)根据(1)所找规律即可得出结论;(3)根据(1)所找规律求出135999……++++的值,再求出135999100110032017…………++++++++,然后两式相减即可求出结论.【详解】解:(1)221313=4=22+⎛⎫+= ⎪⎝⎭2215135=9=32+⎛⎫++= ⎪⎝⎭22171357=16=42+⎛⎫+++= ⎪⎝⎭221913579=25=52+⎛⎫++++= ⎪⎝⎭∴135791113151719+++++++++=21192+⎛⎫= ⎪⎝⎭100故答案为:100;(2)()()()135********n n n ++++++-++++……=()21232n ++⎡⎤⎢⎥⎣⎦=()22n +故答案为:()22n +;(3)135999……++++=219992500002+⎛⎫= ⎪⎝⎭135999100110032017…………++++++++=21201710180812+⎛⎫= ⎝⎭∴10011003100520152017+++++……=()135999100110032017…………++++++++-()135999……++++=1018081250000-=768081【点睛】此题考查的是有理数运算的探索规律题,找出运算规律是解决此题的关键.24.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件由题意可得:22x +30(12x +15)=6000解得:x=150∴购进乙商品12×150+15=90件∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.25.(1)3秒;(2)当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①.【分析】(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24-x,PB=24-2x,表示出2BM-BP后,化简即可得出结论.(3)PA=2x,AM=PM=x,PB=2x-12,PN=12PB=x-6,分别表示出MN,MA+PN的长度即可作出判断.【详解】解:(1)设出发x秒后PB=2AM,当点P在点B左边时,AM=x,PA=2x,PB=12−2x 由题意得,12−2x=2x,解得:x=3;当点P在点B右边时,PA=2x,PB=2x−12,AM=x,由题意得:2x−12=2x,方程无解;综上可得:出发3秒后PB=2AM.(2)∵AM=x,BM=12−x,PB=12−2x,∴2BM−BP=2(12−x)−(12−2x)=12;(3)选①;∵PA=2x,AM=PM=x,PB=2x−12,PN=12PB=x−6,∴①MN=PM−PN=x−(x−6)=6(定值);②MA+PN=x+x−6=2x−6(变化).点睛:本题考查了两点间的距离,解答本题的关键是用含有时间的式子表示出各线段的长度. 26.(1)45°;85°;(2)是,理由见解析【分析】(1)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠3=∠4=12∠BOD,∠1=∠2=12∠AOC,从而求出∠1+∠3和∠2+∠4,即可求出∠MON;(2)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠4=12∠BOD,∠2=12∠AOC,从而求出∠2+∠4,即可求出∠MON;【详解】解:(1)∵∠AOB =α=130°,∠COD =β=40°∴∠BOD +∠AOC=∠AOB -∠COD=90°∵ON 、OM 分别平分∠BOD 和∠AOC∴∠3=∠4=12∠BOD ,∠1=∠2=12∠AOC∴∠1+∠3=∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=12×90°=45°∴∠MON =∠2+∠4+∠COD=45°+40°=85°故答案为:45°;85°;(2)是,理由如下:∵∠AOB =α,∠COD =β∴∠BOD +∠AOC=∠AOB -∠COD=α-β∵ON 、OM 分别平分∠BOD 和∠AOC∴∠4=12∠BOD ,∠2=12∠AOC∴∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD )=2αβ-∴∠MON =∠2+∠4+∠COD =2αβ-+β=2αβ+【点睛】此题考查的是角的和与差,掌握各个角之间的关系是解决此题的关键.。
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.12022的相反数是()A .2022B .-2022C .12022D .12022-2.单项式325x y π-的系数与次数分别是()A .15-,5B .5π-,4C .15-,6D .5π-,53.据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10104.若A 和B 都是4次多项式,则A+B 一定是()A .8次多项式B .4次多项式C .次数不高于4次的整式D .次数不低于4次的整式5.下列说法正确的是()A .互为相反数的两个数的绝对值相等B .有理数的绝对值一定比0大C .若两个数的绝对值相等,则这两个数相等D .有理数的相反数一定比0小6.下列式子计算正确的个数有()①224a a a +=;②22321xy xy -=;③32ab ab ab -=;④322()17(3)---=-.A .1个B .2个C .3个D .0个7.实数a ,b ,c 在数轴上的对应点的位置如图所示,若a 与c 互为相反数,则a ,b ,c 中绝对值最大的数是()A .aB .bC .cD .无法确定8.若2x 9=,y 2=,且x y <,则x y -的值为()A .5±B .±1C .5-或1-D . 5或19.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为()A .8374x x +=-B .8374x x -=+C .3487x x -+=D .3487x x +-=10.有一列数123,,,,n a a a a ⋅⋅⋅⋅⋅⋅满足1211113,1132a a a ====---,之后每一个数都是前一个数的差倒数,即111n na a +=-,20202018a a -=()A .72-B .73C .76-D .72二、填空题11.小薇的体重是45.85kg ,用四舍五入法将45.85精确到0.1的近似值为______.12.如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.13.一个角的余角比它的补角的13还少20°,则这个角是_____________.14.若a 是最大的负整数,2000200120022003a a a a +++的值=______.15.若多项式()28158(xm xy y xy m ++-+-是常数)中不含xy 项,则m 的值为_______.16.若1312m a b -与312na b -是同类项,则mn=________.17.比较大小:-47_________-57(选填“<”“=”或“>”).18.已知一组数为:92-,166,2512-,3620...按此规律则第7个数为__________.三、解答题19.计算题:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭;20.解方程:(1)4x +1=3x ﹣5(2)x +12x -=2﹣213x +21.先化简,再求值:,xy xy y x xy xy y x -+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---2222323223其中.313-==y x ,22.已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求2+-+--b amn x m n的值.23.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-3,+14,-11,+10,-12.(1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车耗油共多少升?24.现用190张铁皮做盒子,每张铁皮能做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个盒子,那么需要多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?25.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用;(2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?26.已知点C 是线段AB 上一点,13AC AB =.(1)若60AB =,求BC 的长;(2)若AB a =,D 是AC 的中点,E 是BC 的中点,请用含a 的代数式表示DE 的长,并说明理由.27.在某次作业中有这样的一道题:“如果代数式53a b +的值为4-,那么代数式2()4(2)a b a b +++的值是多少?”小明是这样来解的:原式2284106a b a b a b =+++=+,把式子534a b +=-两边同乘以2,得1068a b +=-,仿照小明的解题方法,完成下面的问题:(1)如果20a a +=,则22018a a ++=;(2)已知2a b -=-,求3()556a b a b --++的值;(3)已知223a ab +=,24ab b -=-,求223122a ab b ++的值.28.如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数;(2)∠AOB=α,∠BOC=β,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的大小.参考答案1.D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:12022的相反数是12022-故选D【点睛】本题考查了相反数,掌握相反数的定义是解题的关键.2.D【分析】根据系数与次数的定义解答即可.【详解】单项式325x yπ-的系数与次数分别是5π-,5.故选D.【点睛】本题考查了单项式的概念,不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式;单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.3.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【分析】两个式子均为四次多项式,两个四次多项式相加,最高次项必不超过4,据此可解此题.【详解】A,B分别代表四次多项式,则A+B是次数不高于四次的整式.故选:C.5.A【分析】根据绝对值和相反数的定义逐项判断即可.【详解】解:A、互为相反数的两个数的绝对值相等,正确,符合题意;B 、因为有理数0的绝对值等于0,所以有理数的绝对值一定比0大错误,不符合题意;C 、若两个数的绝对值相等,则这两个数相等或互为相反数,所以此选项说法错误,不符合题意;D 、因为小于0的有理数的相反数大于0,所以此选项说法错误,不符合题意,故选:A .【点睛】本题考查相反数和绝对值,属于基础题型,注意对基础概念的理解是解此类题的关键.6.B【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【详解】解:①2222a a a +=,故①错误;②22232xy xy xy -=,故②错误;③32ab ab ab -=,故③正确;④322()17(3)---=-,故④正确,计算正确的有2个,故选:B .【点睛】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.7.B【分析】直接利用相反数的定义得出原点位置,进而结合绝对值的几何意义得出答案.【详解】解:∵a 与c 互为相反数,∴原点在a ,c 的中间,∴b 距离原点最远,∴a ,b ,c 三个数中绝对值最大的数是b .故选:B .【点睛】此题主要考查了数轴,绝对值,相反数,正确得出原点位置是解题关键.8.C【分析】首先根据绝对值和乘方的定义确定出x 、y 的值,再找出x <y 的情况,然后代入计算即可.【详解】解:∵x 2=9,|y|=2,∴x=±3,y=±2,∵x <y ,∴x=-3,y=±2,∴x-y=-5或-1,故选C .【点睛】此题主要考查了乘方、绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x 、y 的值.9.D【分析】设这个物品的价格是x 元,根据人数不变列方程即可.【详解】解:设这个物品的价格是x 元,由题意得3487x x +-=,故选D .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.10.D【详解】解:∵a 1=3,∴211111132a a ===---,a 3=111()2--=23,a 4=1213-=3,a 5=113-=−12,…,所以这列数每3个为一个循环组依次循环,∵2020÷3=673…1,2018÷3=672…2,∴a 2020=3,a 2018=−12,∴a 2020−a 2018=3−(−12)=72.故选:D .【点睛】本题考查了数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.11.45.9【分析】把百分位上的数字5进行四舍五入即可.【详解】解:45.85精确到0.1的近似值为45.9.故答案为45.9.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.12.65︒【分析】如图,由题意得∠1+2∠2=180°,根据∠1=50°,即可解决问题.【详解】解:由题意知:∠1+2∠2=180°,而∠1=50°,180502652︒-︒∴∠==︒故答案为:65︒.【点睛】该题考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,准确找出图形中隐含的等量关系,灵活运用有关定理来解答.13.75°【详解】设这个角为x,则这个角的余角是90x ︒-,这个角的补角是180,x ︒-根据题意可得:9020x ︒+︒-=()11803x ︒-,解得x=75°,故答案为:75°.14.0【分析】先判断出a 的值,再根据有理数的乘方的定义代入求值.【详解】解:∵a 是最大的负整数,∴a=-1把a=-1代入2000200120022003a a a a +++得,原式()()()()()()2000200120022003111111110=-+-+-+-=+-++-=故答案为:0.【点睛】此题考查了正数和负数,有理数的概念及正负数的相关计算.15.-2【分析】先合并同类项,再使含xy 项的系数为0求解即可.【详解】解:()28158x m xy y xy ++-+-()28258x m xy y =++--,∵该多项式中不含xy 项,∴m+2=0,解得:m=-2,故答案为:-2.【点睛】本题考查整式加减中的无关型问题、解一元一次方程,能正确得出关于m 的方程是解答的关键.16.12【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m 和n 的值,再求mn 的值.【详解】解:由1312m a b -与312na b -是同类项可知:133m n -=⎧⎨=⎩解之得:43m n =⎧⎨=⎩,故12mn =,故答案为:12【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.17.>【分析】根据两个负数比较大小的方法:绝对值大的反而小解答即可.【详解】解:4577<4577∴->-,故答案为:>.【点睛】本题考查了有理数的大小比较,属于基本题目,熟练掌握比较两个负数大小的方法是解本题的关键.18.8156-【分析】观察数据,根据分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...得出第n个数的分母为()1n n +,分子是从3开始的连续自然数的平方,而各数的符号为奇负偶正,结合以上信息进一步求解即可.【详解】观察可得,各数分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...∴第n 个数的分母为()1n n +,而其分子是由从3开始的连续自然数的平方,∴第n 个数的分子为()22n +,而各数的符号为奇负偶正,∴第7个数为:()()2728177156+-=-⨯+,故答案为:8156-.【点睛】本题主要考查了数字的规律探索,准确找出相关的规律是解题关键.19.(1)-1;(2)415.【分析】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭=1532321147⎛⎫-+- ⎝⎭×(﹣42)=﹣14+10+(﹣9)+12=﹣1;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭=1÷(﹣25)×(﹣53)+15=1×125×53+15=115+15=115+315=415.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(1)x =﹣6(2)x =1【分析】(1)直接移项、合并同类项,即可求出答案;.(2)先去分母,然后移项合并,系数化为1,即可求出答案(1)解:4x +1=3x ﹣5,移项合并得:x =﹣6;(2)解:x +12x -=2﹣213x +,去分母得:6x+3x ﹣3=12﹣4x ﹣2,移项合并得:13x =13,解得:x =1.【点睛】本题考查了解一元一次方程,解题的关键是掌握解方程的步骤进行解题.21.2xy +xy ;23-.【分析】根据整式的加减,先去小括号、再去中括号,再合并同类项进行化简.【详解】原式=222232233x y xy xy x y xy xy ⎡⎤--++-⎣⎦=222232233x y xy xy x y xy xy-+-+-=2xy +xy 把133x y ==-,代入,原式=313⨯-(2+133⨯-()=12133-=-.【点睛】此题主要考察整式的加减运算.22.原式的值为0或-4.【分析】根据相反数的性质、互为倒数的性质、绝对值的性质可知a+b=0,mn=1,x=±2,分两种情形代入计算即可.【详解】解:根据题意知a+b=0、mn=1,x=2或x=-2,当x=2时,原式=-2+0-2=-4;当x=-2时,原式=-2+0+2=0.综上,原式的值为0或-4.【点睛】本题考查了求代数式的值,相反数的性质、绝对值的性质、互为倒数的性质等知识,属于基础题.23.(1)13千米;(2)65a升【分析】(1)将小石这天下午所有行车里程相加,再根据正负数的实际意义解答;(2)将小石这天下午所有行车里程的绝对值相加,所得结果再乘以a即可.【详解】解:(1)+15+(﹣3)+14+(﹣11)+10+(﹣12)=13(千米);答:将最后一名乘客送达目的地时,小石距下午出发地点的距离是13千米.(2)(15+3+14+11+10+12)×a=65a(升).答:这天下午汽车耗油共65a升.【点睛】本题考查了有理数加法和正负数在实际中的应用以及列出实际问题中的代数式,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键.24.需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.【详解】分析:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据每张铁皮做8个盒身或做22个盒底且一个盒身与两个盒底配成一个盒子即可得出关于x的一元一次方程,解方程即可.详解:设需要x张铁皮做盒身,(190-x)张铁皮做盒底.根据题意,得8x×2=22(190-x).解这个方程,得x=110.所以190-x=80.答:需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.点睛:本题考查了一元一次方程的应用,解题的关键是根据数量关系列出关于x的一元一次方程.25.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.26.(1)40;(2)12a ,见解析【分析】(1)根据题目中的已知求出AC 的长,再求BC 的长即可.(2)根据中点的定义可得CD=12AC ,CE=12BC ,利用线段的加减可得DE 与AB 的关系,即可求解.【详解】(1)∵60AB =,13AC AB =,∴1203AC AB ==∴602040BC AB AC =-=-=(2)∵D 是AC 的中点,E 是BC 的中点,∴12DC AC =,12CE BC =,∴()1111122222DE DC CE AC BC AC BC AB a =+=+=+==【点睛】本题考查的是线段的加减,掌握线段中点的定义并能根据图形找到数量关系是关键.27.(1)2018;(2)10;(3)5.【分析】(1)将a 2+a =0整体代入原式即可求出答案.(2)将(a ﹣b )作为一个整体进行化简即可求出答案(3)将原式进行适当的变形后将a 2+2ab =3,ab ﹣b 2=﹣4分别代入即可求出答案【详解】解:(1)∵a 2+a =0,∴原式=0+2018=2018(2)∵a ﹣b =﹣2,∴原式=3(a ﹣b )﹣5(a ﹣b )+6=﹣2(a ﹣b )+6=4+6=10(3)∵a 2+2ab =3,ab ﹣b 2=﹣4,∴原式=(a 2+2ab )﹣12(ab ﹣b 2)=3+2=5【点睛】本题考查学生的阅读能力,解题的关键是熟练运用整体思想,本题属于中等题型.28.(1)45°;(2)12α【详解】试题分析:(1)先求得∠AOC 的度数,然后再依据角平分线的定义求得∠COM 和∠NOC 的度数,最后,再依据∠MON=∠MOC ﹣∠CON 求解即可;(2)按照(1)中的方法和思路求解即可.试题解析:解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°.∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°,∴∠MON=∠MOC ﹣∠CON=60°﹣15°=45°.(2)同理可得,∠MOC=12(α+β),∠CON=12β.则∠MON=∠MOC﹣∠CON=12(α+β)﹣12β=12α.点睛:本题主要考查的是角平分线的定义、角的和差,熟练掌握相关知识是解题的关键.。
2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)
20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上数学期末试卷一、选择题(共15个小题,每小题2分,共30分)1.如果向东走80m 记为80m ,那么向西走60m 记为 ( ) A .60m - B .|60|m - C .(60)m -- D .60m +2.某市2021年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃ 3.-6的绝对值等于 ( ) A .6 B .16 C .16- D .6 4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .40.8510⨯亿元 B .38.510⨯亿元 C .48.510⨯亿元 D .28510⨯亿元 5.当2x =-时,代数式1x +的值是 ( )A .1-B .3-C .1D .3 6.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a += D .2222a b a b a b -+=7.将线段AB 延长至C ,再将线段AB 反向延长至D ,则图中共有线段 ( ) A .8条 B .7条 C .6条 D .5条 8.下列语句正确的是 ( ) A .在所有联结两点的线中,直线最短 B .线段A 曰是点A 与点B 的距离 C .三条直线两两相交,必定有三个交点D .在同一平面内,两条不重合的直线,不平行必相交9.已知线段AB 和点P ,如果PA PB AB +=,那么 ( ) A .点P 为AB 中点 B .点P 在线段AB 上C .点P 在线段AB AB 外D .点P 在线段AB 的延长线上 10.一个多项式减去222x y -等于222x y -,则这个多项式是 A .222x y -+ B .222x y - C .222x y - D .222x y -+ 11.若x y >,则下列式子错误的是A .33x y ->-B .33x y ->-C .32x y +>+D .33x y> 12.下列哪个不等式组的解集在数轴上的表示如图所示 A .21x x ≥⎧⎨<-⎩ B .21x x <⎧⎨≥-⎩C .21x x >⎧⎨≤-⎩D .21x x ≤⎧⎨>-⎩13.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=55︒ A .35︒ B .55︒ C .70︒ D .110︒14.把方程0.10.20.710.30.4x x---=的分母化为整数的方程是( )A .0.10.20.7134x x---= B .12710134x x---= C .127134x x---= D .127101034x x---=二、填空题(共10个小题,每小题2分,共20分) 16.比较大小:6-_________8-(填“<”、“=”或“>”) 17.计算:|3|2--=_________18.如果a 与5互为相反数,那么a=_________19.甲数x 的23与乙数y 的14差可以表示为_________20.定义a ※b =2a b -,则(1※2)※3=_________21.如图,要使输出值Y 大于100,则输入的最小正整数x 是___________22.如图,将一副三角板叠放在一起,使直角顶点重合于0点,则∠AOC+∠DOB=___________ 度.23.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=140︒,则∠EOD=___________度. 24.已知2|312|102n m ⎛⎫-++=⎪⎝⎭,则2m n -=___________. 25.观察下面的一列单项式:2342,4,8,16x x x x --,…根据你发现的规律,第7个单项式为___________;第n 个单项式为___________.三、计算或化简(共4个小题,每小题4分,共16分) 26.计算:1241123723⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭27.计算:2( 6.5)(2)(5)5⎛⎫-+-÷-÷- ⎪⎝⎭28.计算:1820`32``3015`22``︒+︒29.化简:22(521)4(382)a a a a +---+四、解方程或不等式(共2个小题,每小题5分。
共10分) 30.解方程:16 3.5 6.57x x x --=五、列方程解应用题(共2个小题,每小题8分,共16分)32.张欣和李明相约到图书城去买书.请你根据他们的对话内容,求出李明上次所买书籍的原价.33.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?七、选做题(本大题共2个小题,第35题2分,第36题3分,共5分,得分记入总分,但总分不得超过100分)35.已知:关于x 的方程323a x bx --=的解是2x =,其中0a ≠且0b ≠,求代数式a bb a-的值.参考答案及评分标准一、选择题(共15个小题,每小题2分,共30分)1.A 2.D 3.A 4.B 5.A 6.D 7.C 8.D 9.B 10.C 11.B 12.D 13.C 14.B 15.A二、填空题(共10个小题,每小题2分,共20分) 16.> 17.1 18.-5 19.2134x y - 20.-2 21.21 22.180 23.70 24.10 25.128x 7;(-1)n+1·2n ·x n三、计算或化简(共4个小题,每小题4分,共16分) 26.计算:1241123723⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解:原式=1121422337⎡⎤⎛⎫⎛⎫⎛⎫+-+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=-1+47=37-. …………………………………………………………………………4分27.计算:(-6.5)+(-2)÷25⎛⎫- ⎪⎝⎭÷(-5).解:原式=-6.5+(-2)×52⎛⎫- ⎪⎝⎭×15⎛⎫- ⎪⎝⎭=-6.5+(-1)=-7.5.…………………………………………………………………………4分 28.计算:18°20′32″+30°15′22″.解:原式=48°35′54″.………………………………………………………4分 29.化简:(5a 2+2a -1)-4(3-8a+2a 2).解:原式=5a 2+2a -1-12+32a -8a 2=-3a 2+34a -13.……………………………………………………………4分 四、解方程或不等式(共2个小题,每小题5分,共10分) 30.解方程:16x -3.5x -6.5x=7. 解: 6x=7,x=76…………………………………………………5分31.解不等式:13x ->5-x ,并把解集表示在数轴上.解:x -1>15-3x,4x >16,x >4. …………………………………………………………………………3分 在数轴上表示其解集:…………………………………5分五、列方程解应用题(共2个小题,每小题8分,共16分) 32.解:设李明上次所买书籍的原价为x 元,根据题意列方程得:x -(0.8x+20)=12.………………………………………………………………5分 解方程得:x=160.答:李明上次所买书籍的原价为160元.…………………………………………8分 33.解:设这两支蜡烛已点燃了x 小时,根据题意列方程得:12154x x ⎛⎫-=- ⎪⎝⎭.……………………………………………………………………5分 解方程得:x=103答:这两支蜡烛已点燃了103小时.…………………………………………………8分六、解答题(共1个小题,共8分)34.解:由有理数的除法法则“两数相除,异号得负”,有(1)510230.x x +>⎧⎨-<⎩,或(2)510230.x x +<⎧⎨->⎩, ……………………………………………………2分解不等式组(1),得:1352x -<<,解不等式组(2),无解.………………………………………………………………6分 故分式不等式5133x x +-<0的解集为1352x -<<…………………………………8分七、选做题(本大题共2个小题,第35题2分,第36题3分,共5分,得分记入总分,但总分不得超过100分)35.解:∵关于x 的方程与323a x bx --=的解是x=2,∴22323a b --=,∴3a=4b .∵a ≠0且b ≠0,∴43437,,343412a b a b baba==∴-=-=.……………………………………………2分36.解:∵BC=AC -AB ,AC=7,AB=5, ∴BC=2.∴BD=4BC=8,AD=BD -AB=3. ∵CD=BD+BC . ∴CD=10(cm). ∴E 为CD 的中点, ∴DE=12CD=5. ∴AE=DE -AD=2(cm). ∴AE 是CD 的15.…………………………………………………………………3分。