算法设计第一章

合集下载

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。

1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。

1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。

知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。

如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。

算法设计与分析-王-第1章-算法设计基础

算法设计与分析-王-第1章-算法设计基础

2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:

算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012

计算机专业课《算法》_第一章算法概述

计算机专业课《算法》_第一章算法概述

几个复杂性参照函数
若干符号及其意义:O(f),(f),(f),o(f)
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。
(1)渐近上界记号O O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) }
(2)渐近下界记号 (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
有限的计算步后停止。
2.确定性:每一条规则都是明确、无二义的。 3. 可行性:每一计算步都是基本的、可实现的。
4. 输入: 算法开始执行执行之前指定初始值 (有零个或多个输入) 。 5. 输出:产生与输入相关的量(有至少一个)。 二、算法的又一描述方式
设:四元组(Q, I, , f ).
其中:Q:状态集合; I, :Q的子集,分别代表输入和输出 f: 定义在Q之上的一个映射,
1.2 算法复杂性分析(1) • • • • 计算机资源:时间、空间 复杂性:所需资源多少 算法复杂性:算法运行时所需资源的量 算法复杂性分析目的:分析问题复杂性、 选择最好算法 • 时间复杂性:所需时间资源的量T(n) • 空间复杂性:所需空间资源的量S(n)
• 其中n是问题的规模(输入大小)
算法复杂性分析(2) • 算法是否可行? • 可计算理论 • 时间复杂性细化 • 三种典型的复杂性: 最坏、最好、平均复杂性
且有:若q Q ,则:f(q) = q。
1. 计算序列描述:
若对于I 的每一个输入x,由f 定义一个计算序列: y0 , y1 , y2 , …… 。 其中:y0 = x; yk+1 = f( yk ) (k 0)。
若一个计算序列在第k步终止,且k是使yK 的最小整数,则称yk是由x产生的输出。 2. 算法描述: 一个算法是对于I 中所有输入x, 都能在有穷步 内终止的一个计算序列。

算法设计与分析(第2版) 郑宗汉 第1章-1

算法设计与分析(第2版) 郑宗汉 第1章-1

8
Байду номын сангаас
学习要求
深刻理解每一类算法的思想及其实现
能熟练运用所学知识解决实际问题
培养提高计算思维能力
9
考核方式
Homework and Reading: 20%
Final Exam (Written Test): 80%
10
第1章 算法的基本概念
1.1 引言
1.1.1 算法的定义和特性
c %3 0
(1.1.3)
16
1.1.2 算法的设计和复杂性分析
百鸡问题的穷举法
输入:所购买的3种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[],m[],s[]
1. void chicken_question(int n, int &k, int g[], int m[], int s[]) 2. { 3. int a,b,c; 分析发现:只能买到n/5 4. k = 0; 只公鸡,n/3只母鸡,将 5. for (a = 0; a <= n; a++) { 算法进行改进。 6. for ( b = 0; b <= n; b++) { 7. for (c = 0; c <= n; c++) { 8. if ((a + b + c == n) && (5 * a + 3 * b + c / 3 == n) && (c%3 == 0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. } 14. } 15. } 16. } 17. }

(陈慧南 第3版)算法设计与分析——第1章课后习题答案

(陈慧南 第3版)算法设计与分析——第1章课后习题答案
此时i1即在本次循环中先执行swapa0a1将第二个元素与第一个元素互换下面执行perma1n根据假设可知该语句产生以a1为第一个元素余下k1个元素的全排列
第一章课后习题
姓名:赵文浩 学号:16111204082 班级:2016 级计算机科学与技术
1-4 证明等式 gcd(m,n)=gcd(n mod m, m) 对每对正整数 m 和 n,m>0 都成立。
1-13 写一个递归算法和一个迭代算法计算二项式系数:
#include<stdio.h> int Coef_recursive(int n,int m);//递归算法 int Coef_iteration(int n,int m);//迭代算法 int Factorial(int n);//计算 n 的阶乘 int main() { int n,m;
1-12 试用归纳法证明程序 1-7 的排列产生器算法的正确性。
证明:主函数中,程序调用 perm(a,0,n),实现排列产生器。 ① 当 n=1 时,即数组 a 中仅包含一个元素。函数内 k=0,与(n-1)=0 相等,因此函 数内仅执行 if(k==n-1)下的 for 语句块,且只执行一次。即将 a 数组中的一个元 素输出,实现了对一个元素的全排列。因此当 n=1 时,程序是显然正确的; ② 我们假设程序对于 n=k-1 仍能够满足条件, 将 k-1 个元素的全排列产生并输出; ③ 当 n=k 时,程序执行 else 下语句块的内容。首先执行 swap(a[0],a[0]),然后执 行 Perm(a,1,n),根据假设②可知,该语句能够产生以 a[0]为第一个元素,余下 (k-1)个元素的全排列; 然后再次执行 swap(a[0],a[0]), 并进行下一次循环。 此时 i=1, 即在本次循环中, 先执行 swap(a[0],a[1]), 将第二个元素与第一个元素互换, 下面执行 Perm(a,1,n), 根据假设②可知, 该语句产生以 a[1]为第一个元素, 余下(k-1)个元素的全排列; 以此类推,该循环每一次将各个元素调到首位,通过执行语句 Perm(a,1,n)以及 基于假设②,能够实现产生 k 个元素的全排列。 因此 n=k 时,程序仍满足条件。 ④ 综上所述,该排列器产生算法是正确的,证毕。

算法设计与分析王红梅第1章绪论

算法设计与分析王红梅第1章绪论

2021/6/12
}
15
清华大学出版社
算法设计与分析
⑷ 伪代码——算法语言
伪代码(Pseudocode):介于自然语言和 程序设计语言之间的方法,它采用某一程序 设计语言的基本语法,操作指令可以结合自 然语言来设计。
优点:表达能力强,抽象性强,容易理解
使用方法:7 ± 2
2021/6/12
16
清华大学出版社
欧几里德算法
1. r = m % n; 2. 循环直到 r 等于0
2.1 m = n; 2.2 n = r; 2.3 r = m % n; 3. 输出 n ;
2021/6/12
算法设计与分析
17
清华大学出版社
算法设计与分析
1.1.4 算法设计的一般过程
1.理解问题
2.预测所有可能的输入
3. 在精确解和近似解间做选择
算法设计与分析
1.1 算法的基本概念
1.1.1 为什么要学习算法 1.1.2 算法及其重要特性 1.1.3 算法的描述方法 1.1.4 算法设计的一般过程 1.1.5 重要的问题类型
2021/6/12
5
清华大学出版社
算法设计与分析
1.1.1 为什么要学习算法
理由1:算法——程序的灵魂
➢ 问题的求解过程:
14
清华大学出版社
算法设计与分析
#include <iostream.h>
int CommonFactor(int m, int n)

{ int r=m % n;

while (r!=0)

{ m=n;

n=r;

r=m % n; }

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

计算机算法设计与分析(第5版)第1章

计算机算法设计与分析(第5版)第1章
• 其中I是问题的规模为n的实例,p(I)是实 例I出现的概率。
算法渐近复杂性
• T(n) , as n ; • (T(n) - t(n) )/ T(n) 0 ,as n; • t(n)是T(n)的渐近性态,为算法的渐近复杂性。 • 在数学上, t(n)是T(n)的渐近表达式,是T(n)略去低阶
问题求解(Problem Solving)
理解问题 精确解或近似解
选择数据结构 算法设计策略
设计算法 证明正确性
分析算法 设计程序
算法复杂性分析
• 算法复杂性 = 算法所需要的计算机资源 • 算法的时间复杂性T(n); • 算法的空间复杂性S(n)。 • 其中n是问题的规模(输入大小)。
算法的时间复杂性
项留下的主项。它比T(n) 简单。
渐近分析的记号
• 在下面的讨论中,对所有n,f(n) 0,g(n) 0。 • (1)渐近上界记号O • O(g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
0 f(n) cg(n) } • (2)渐近下界记号 • (g(n)) = { f(n) | 存在正常数c和n0使得对所有n n0有:
• (1)最坏情况下的时间复杂性 • Tmax(n) = max{ T(I) | size(I)=n } • (2)最好情况下的时间复杂性 • Tmin(n) = min{ T(I) | size(I)=n } • (3)平均情况下的时间复杂性
• Tavg(n) = p(I )T (I ) size(I )n

for x > -1,
x ln(1 x) x 1 x

for any a > 0,
Hale Waihona Puke log b nlim

算法与程序设计第一章如何用计算机解决问题课件

算法与程序设计第一章如何用计算机解决问题课件

水仙花数流程图描述
开始 N=100 N<=999 Y
N
N的个位数的三次方+N 的十位数的三次方+N的 Y 百位数的三次方=N N N=N+1 输出N值
结束
用伪代码描述水仙花数算法 For N=100 to 999 if N的个位数的三次方+N的十位数的三次方+N的百位数的三次方=N then 输出n end if next1
课堂练习: 分别用自然语言和流程图描述求解 1、所有水仙花数的问题。水仙花数是指一个三位数, 它的各位数的立方和正好等于该数本身。如 153=13+53+33。 2、设计统计前1000个自然数中的奇数的个数的流程图
3、设计算法:找出乘积为840的两个相邻偶数
水仙花数自然语言描述 1、将N的初始值赋为100 2、如果N的个位数的三次方加上N的十位数的三次 方再加上N的百位数的三次方等于N,输出N值,否则转 入第3步 3、如果N<=999,将N的值加1,转到第2步,否则转入 第4步 4、输出运算结果,结束程序
算法独立于任何具体的程序设计语言,一个算法 可以用多种程序设计语言来实现。
算法的特征
算法要有一个清晰的起始步,表示处理问题的起点, 且每一个步骤只能有一个确定的后继步骤(1算法的 确定性),从而组成一个步骤的有限序列(2算法的有 穷性);要有一个终止步(序列的终止)表示问题得到 解决或不能得到解决;每条规则必须是确定的、可 行的(3算法的可行性)、不能存在二义性。算法总是 对数据进行加工处理,因此,算法的执行过程中通 常要有数据4输入(0个或多个)和数据5输出(至少一 个)的步骤。
人解决问题的一般过程 观察问题→分析问题→脑中收集信息→根据已有的 知识、经验判断、推理→采用方法和步骤解决 简单地概括 ⑴明确问题 ⑵提出假设 ⑶验证假设

算法设计与分析 第1章

算法设计与分析 第1章

例1 f(n) = 2n + 3 = O(n) 当n≥3时,2n+3≤3n,所以,可选c = 3,n0 = 3。对于n≥n0,f(n) = 2n + 3≤3n,所以,f(n) = O(n),即2n + 3O(n)。这意味着,当n≥3 时,例1的程序步不会超过3n,2n + 3 = O(n)。
例2 f(n) = 10n2 + 4n + 2 = O(n2) 对于n≥2时,有10n2 + 4n + 2≤10n2 + 5n,并 且当n≥5时,5n≤n2,因此,可选c = 11, n0 = 5;对于n≥n0,f(n) = 10n2 + 4n + 2≤11n2,所 以f(n) = O(n2)。
算法设计与分析
湖南人文科技学院计算机系 授课:肖敏雷
邮箱:minlei_xiao@
关于本课程
课程目的:计算机算法设计与分析导引

不是一门试验或程序设计课程 也不是一门数学课程
教材:计算机算法设计与分析-王晓东 前导课:数据结构+程序设计 参考资料:

算法设计与分析—C++语言描述 陈慧南编 电子工业出版社 计算机算法基础(第三版) 余祥宣 华中科技大学
渐近时间复杂度 使用大O记号及下面定义的几种渐近表示法 表示的算法时间复杂度,称为算法的渐近时间复 杂度(asymptotic complexity)。 只要适当选择关键操作,算法的渐近时间复 杂度可以由关键操作的执行次数之和来计算。一 般地,关键操作的执行次数与问题的规模有关, 是n的函数。 关键操作通常是位于算法最内层循环的语句。
当 n≥n0 时 , 有 f(n)≥cg(n) , 则 记 做 f(n)=Ω

计算机算法设计与分析--第1章 算法概述

计算机算法设计与分析--第1章 算法概述
12
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。

算法设计与分析(第2版)-郑宗汉-第1章-1

算法设计与分析(第2版)-郑宗汉-第1章-1
参考书:算法导论(原书第3版) ,Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, lifford Stein, 殷建平 等译, 机械工业出版社, 第1版,2013年7月
2021/3/10
5
第1章 算法的基本概念
References
1973. 5. A. V. Aho, J. D. Ullman等. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974. 6. A. V. Aho, J. D. Ullman等. Data Structures and Algorithms. Addison-Wesley,
1983.4. 7. S. Baase. Computer Algorithms: Introduction to Design and Analysis.
Addison-Wesley, second edition, 1988. 8. E. Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms.
2021/3/10
12
第1章 算法的基本概念 1.1.1 算法的定义和特性
最大公约数问题:求两个正整数m和n的最大公约数
设计:
确可定行性性::
输入: 输出: 第一步: 第二步:
2021/3/10
8
第1章 算法的基本概念
学习要求
深刻理解每一类算法的思想及其实现 能熟练运用所学知识解决实际问题 培养提高计算思维能力
2021/3/10
9
第1章 算法的基本概念

算法程序设计知识点汇总

算法程序设计知识点汇总

算法程序设计知识点汇总算法与程序设计知识点汇总第一章计算机解决咨询题的基本过程一、开始分析咨询题设计算法编写程序调试、运行程序咨询题解决二、算法-----程序设计的“灵魂”1、定义:算是解决咨询题的办法和步骤 21、确定性:每一步都有确切的含义2、有穷性:执行的步骤和每一步执行的时刻基本上有限的3、输入:有零个或多个输入4、输出:至少产生一具输出5、可行性:原则上可精确运行3、算法的描述:1、自然语言 2、流程图(P11) 3、伪代码(p12)4、计算机语言三:程序设计语言的进展:须通过转换处理。

高级语言:更接近于自然语言(英语)和数学语言的编程语言,容易掌握和使用,也别能直截了当识不,必须通过转换才干被计算机执行。

第二章一、visiual basic 可视化程序开辟工具,要紧是让程序设计人员利用软件本身所提供的各种控件,像搭积木一样构造应用程序的各种界面,然后再编写少量的代码就能够构建应用程序,提供了程序设计,编辑,调试,运行于一体的集成开辟环境。

二、VB6.0的集成开辟环境三个工作栏:标题栏菜单栏工具栏六个基本窗口:主窗口(main) 窗体窗口(form) 工具箱窗口(toolbox)工程窗口(project) 属性窗口(properties) 窗体布局窗口(formlayout)三、属性---用来描述对象的外部特征四、常用控件熟悉常用控件(标签、文本框、命令按钮)的作用,图标及其属性五、数据的表示与处理 1、Vb 数据类型2、常量与变量的讲明:常量讲明:Const a=3.14 const a as single=3.14变量讲明: Dim a As integerDim b As integerDim a,b As integer3、运算符(1) 算术运算符(2)字符串运算符&、+字符串连接" 123 " + " 456 "结果 " 123456 "" 123 " & " 456 " 结果 " 123456 "区不: + 两边必须是字符串, & 别一定例如:"abcdef" & 12345 ' 结果为 "abcdef12345 ""abcdef " + 12345 ' 出错"123" & 456 ' 结果为" 123456 "“123” + 456 ' 结果为 579注意:"123 " + True'结果为 122True转换为数值-1,False转换为数值0(3)关系运算符a、将两个操作数举行大小比较,结果为逻辑量。

算法与程序设计第一章单选题,多选,答案

算法与程序设计第一章单选题,多选,答案

第一章多选答案:1.ACD 2.ABC 3.ABCD 4.BCD 5.ABC 6 .ABCD 7. ACD 8.ABD 9.ABC 10.ABCD 11.ACD单选题答案:第一章单选题1.流程图中表示“处理”的图形是( )。

∙A) 矩形∙B) 菱形∙C) 圆形∙D) 平行四边形2.以下不是程序设计语言的是( )。

∙A) BASIC∙B) C语言∙C) Word∙D) Pascal3.在调试程序过程中,下列哪一种错误是计算机检查不出来的?( ) ∙A) 编译错误∙C) 逻辑错误∙D) 任何错都能查出来4.Visual Basic 是一种面向( )程序设计语言。

∙A) 事件∙B) 过程∙C) 对象∙D) 属性5.计算机能够直接识别的语言是( )。

∙A) 伪代码∙B) 高级语言∙C) 机器语言∙D) 汇编语言6.程序设计语言的发展大致经历了几个阶段,以下说法正确的是( )。

∙A) 机器语言、高级语言、汇编语言∙B) 高级语言、汇编语言、机器语言∙C) 机器语言、汇编语言、高级语言∙D) 汇编语言、机器语言、高级语言7.以下说法正确的是( )。

∙A) 算法+数据结构=程序∙B) 算法就是程序∙C) 数据结构就是程序∙D) 算法包括数据结构8.求s=1+2+3+……+100的和。

编程时最适合使用的结构为( )。

∙A) 顺序结构∙B) 分支结构∙C) 循环结构∙D) 层次结构9.机场托运行李,每人免费20千克,超过20千克不到40千克,则超出部分按每千克10元收费,如果超过40千克,则超过部分按每千克20元收费。

这种计费程序最适合用到的程序结构是( )。

∙A) 循环结构∙B) 赋值结构∙D) 顺序结构10.结构化程序设计由三种基本结构组成,下面哪个不属于这三种基本结构( )。

∙A) 顺序结构∙B) 输入、输出结构∙C) 选择结构∙D) 循环结构11.任何算法都可以由三种基本结构完成,下列不属于基本结构的是( )。

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计

人教版高中必修3(B版)第一章算法初步教学设计教学背景本设计是为人教版高中必修3(B版)第一章——算法初步编写的,旨在让学生在学习计算机基本概念的同时,掌握算法的概念、基本算法及计算复杂度分析。

教学目标•了解算法的概念及其在计算机上的应用;•掌握算法的一些基本的思想方法和算法模板;•能够分析算法的时间、空间复杂度。

教学内容知识点1.算法基本概念2.时间、空间复杂度分析3.基本算法——贪心、分治和动态规划教学方式本课程主要采用授课法和案例演示法相结合的方式进行教学。

教学步骤第一步:算法基本概念1.讲解算法的定义、特性、应用等内容。

2.通过一些简单的例子,让学生理解什么是算法。

第二步:时间、空间复杂度分析1.介绍时间复杂度和空间复杂度的概念及分析方法。

2.通过一些实例演示,让学生能够对算法的复杂度进行分析。

第三步:基本算法——贪心1.介绍贪心算法的思想。

2.通过一些案例,让学生了解贪心算法的应用场景。

3.给学生一些练习题,巩固对贪心算法思路的掌握。

第四步:基本算法——分治1.介绍分治算法的思想。

2.通过一些案例,让学生了解分治算法的应用场景。

3.给学生一些练习题,巩固对分治算法思路的掌握。

第五步:基本算法——动态规划1.介绍动态规划算法的思想。

2.通过一些案例,让学生了解动态规划算法的应用场景。

3.给学生一些练习题,巩固对动态规划算法思路的掌握。

第六步:课堂小结1.小结本节课所学内容。

2.引导学生思考如何对不同场景下的问题选择合适的算法,扩展学生的算法思维。

教学评估1.每个章节结束后进行小测试,测试学生掌握的知识点。

2.每个章节最后留出时间给学生提问和互动交流。

3.在完成练习题后,对学生提交的答案进行点评和改进。

结束语本教学设计注重启发学生思考能力,通过案例演示和举例分析的方式,激发学生对算法和计算机的兴趣,提高对算法的理解和能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、算法实现
根据选用的算法设计语言,要解决下列 一些问题:有哪些变量,它们是什么类型? 需要多少数组,规模有多大?用什么结构来 组织数据?需要哪些子算法?等等。 算法的实现方式,对运算速度和所需内 存容量都有很大影响。
7、程序调试
算法测试的实质是对算法应完成任务的实验证实,同 时确定算法的使用范围。测试方法一般有两种:白盒测试对 算法的各个分支进行测试;黑盒测试检验对给定的输入是否 有指定输出。 如何选择算法测试中的输入,还没有一般答案。通常采 用的方法是,对输入数据做有代表性的采样,使之对被测试 算法的各个语句、分支和路径尽可能都被检查到。对输入集 中的边界点也要进行测试。经测试验证是否正确的算法,在 较大程度上是可以相信它的正确性。
4、算法分析
算法分析的目的,首先为了对算法的某 些特定输入,估算该算法所需的内存空间和 运行时间;其次是为了建立衡量算法优劣的 标准,用以比较同一类问题的不同算法。通 常将时间和空间的增长率作为衡量的标准。 另参见1.1.4算法及其设计的评价
5、算法表示 对于复杂的问题,确定算法后可以通过 图形准确表示算法。算法的表示方式很多如: 算法流程图、盒图、PAD图和伪码(类似于算 法设计语言)等。
算法分析: 狱吏开关锁的主要操作是a[i]=1- a[i];共执行了 n*(1+1/2+1/3+……+1/n)次,时间近似为复杂度为O(n log n)。使用了n个空间的一维数组。 算法2没有使用辅助空间,但由于求一个编号的因子个数 也很复杂,其主要操作是判断i mod j是否为0,共执行 了n*(1+2+3+……+n)次,时间复杂度为O(n2)。 算法2复杂度还能降低吗?
转动门锁的规则是这样的,第一次通过牢房,要转动每 一把门锁,即把全部锁打开;第二次通过牢房时,从第二间 开始转动,每隔一间转动一次;第k次通过牢房,从第k间开 始转动,每隔k-1 间转动一次;问通过n次后,那些牢房的 锁仍然是打开的?
算法设计1: 1)用n个元素的一维数组a[n],每个元素记录一个锁的状 态,1为被锁上,0为被打开。 2)用数学运算方便模拟开关锁的技巧,对i号锁的一次开 关锁可以转化为算术运算:a[i]=1-a[i]。 3)第一次转动的是1,2,3,……,n号牢房; 第二次转动的是2,4,6,……号牢房; 第三次转动的是3,6,9,……号牢房; ……第i次转动的是 i,2i ,3i,4i,……号牢房,是起点 为i,公差为i的等差数列。 4)不做其它的优化,用蛮力法通过循环模拟狱吏的开关 锁过程,最后当第i号牢房对应的数组元素a[i]为0时, 该牢房的囚犯得到大赦。 算法1如下:
表4-3
n 1 2 2 3 2 4 3 d(n) 1
编号与因数个数的关系
5 2 6 4 7 2 8 4 9 3 10 4 11 2 12 6 13 2 14 4 15 4 16 5 … …
数学模型1:上表中的d(n)有的为奇数,有的为偶数,由于牢房的 门开始是关着的,这样编号为i的牢房,所含1——i之间的不重复 因子个数为奇数时,牢房最后是打开的,反之,牢房最后是关闭 的。
3、算法设计与选择 算法设计是指设计求解某一特定类型问题 的一系列步骤,并且这些步骤是可以通过计 算机的基本操作来实现的。算法设计要同时 结合数据结构的设计,简单说数据结构的设 计就是选取存储方式。算法的设计与模型的 选择更是密切相关的,但同一模型仍然可以 有不同的算法,而且它们的有效性可能有相 当大的差距。
main1( ) {int *a,i,j,n; input(n); a=calloc(n+1,sizeof(int)); for (i=1; i<=n;i++) a[i]=1; for (i=1; i<=n;i++) for (j=i; j<=n;j=j+i) a[i]=1-a[i]; for (i=1; i<=n;i++) if (a[i]=0) print(i,”is }
用计算机解决一个现实中的问题步骤
1. 2. 3. 4.
5.
6. 7. 8.
问题分析 数学模型建立 算法设计与选择 算法表示 算法分析 算法实现 程序调试 结果整理文档编制
1. 问题分析
准确、完整地理解和描述问题是解决问 题的第一步。要做到这一点,必须注意以下 一些问题:在未经加工的原始表达中,所用 的术语是否都明白其准确定义?题目提供了 哪些信息?这些信息有什么用?题目要求得 到什么结果?题目中作了哪些假定?是否有 潜在的信息?判定求解结果所需要的中间结 果有哪些?等等。必须认真审查表达问题的 有关描述,深入分析,以加深对问题的了解。
算法设计2: 1)算法应该是求出每个牢房编号的不重复的因子个数,当它 为奇数时,这里边的囚犯得到大赦。 2 )一个数的因子是没有规律的,只能从 1——n 枚举尝试。算 法2如下: main2( ) {int s,i,j,n; input(n); for (i=1; i<=n;i++) { s=1; for (j=2; j<=i;j=j++) if (i mod j=0) s=s+1; if (s mod 2 =1) print(i,”is free.”); } }




前言 引入篇 第一章 第二章 基础篇 第三章 核心篇 第四章 第五章 应用篇 第六章
算法概述 算法分析基础 算法基本工具与优化技巧
基本的算法策略 图的搜索算法 算法设计实践
关于本课程


算法是计算机学科中最具有方法论性质的核心概 念,被誉为计算机学科的灵魂。 课程目的:计算机算法设计与分析导引 以算法设计为主,介绍算法设计的主要方法和 基本思想;并简要介绍算法分析概念 不是程序设计课,也不是数学课
与其他课程的关系
数据结构
算法设计与分析
高级程序设计语言(C, C++)
与数据结构的区别:
考虑问题的角度:数据结构关心不同的数据结构在解题中 的作用和效率;算法关心解题方法思路及不同设计技术的适 用性和效率。
考虑问题的高度:数据结构关心的是解具体问题,算法不 仅如此,它提操图解是广播操的算法; 菜谱是做菜的算法; 歌谱是一首歌曲的算法; 空调说明书是空调使用的算法等.
5
例1:给出求1+2+3+4+5的一个算法。
算法1 按照逐一相加的程序进行。
第一步
第二步 第三步 第四步
计算1+2,得到3;
将第一步中的运算结果3与3相加,得到6; 将第二步中的运算结果6与4相加,得到10;
free.”);
算法分析:以一次开关锁计算,算法的时间复杂度为 n*(1+1/2+1/3+……+1/n)=O(nlogn)。
可不可以换个角度思考呢? 如果不考虑详细过程, 从每扇门的锁角度考虑呢? 问题分析:转动门锁的规则可以有另一种理解,第一次转动的是编 号为1的倍数的牢房;第二次转动的是编号为2的倍数的牢房;第 三次转动的是编号为3的倍数的牢房;……则狱吏问题是一个关于 因子个数的问题。令d(n)为自然数n的因子个数,这里不计重复 的因子,如4的因子为1,2,4共三个因子,而非1,2,2,4。则 d(n)有的为奇数,有的为偶数,见下表:
就本课程而言,算法就是计算机解题的过 程。在这个过程中,无论是形成解题思路还 是编写算法,都是在实施某种算法。前者是 推理实现的算法,后者是操作实现的算法。
2.算法的要素 算法由操作、控制结构、数据结构三要 素组成。 操作 算术运算:加、减、乘、除 关系比较:大于、小于、等于、不等于 逻辑运算:与、或、非 数据传送:输入、输出, 赋值
将第三步中的运算结果10与5相加,得到15。
6
算法2
可以运用公式
n(n 1) 直接计算; 1 2 3 n 2
第一步 第二步 第三步 取n=5; 计算
n(n 1) 2
输出运算结果。
7
例2:三个牧师和三个野人过河,只有一条能装下两 人的船,在河的任一边或者船上,若野人人数大于牧 师人数,那么牧师就会有被吃掉的危险。你能不能找 出一种安全的渡河算法呢?
数据结构 算法操作的对象是数据,数据间的逻辑 关系、数据的存储方式及处理方式就是数据 的数据结构。它与算法设计是紧密相关的。
8、结果整理文档编制 编制文档的目的是让人了解你编写的算 法。首先要把代码编写清楚。代码本身就是 文档。同时还要采用注释的方式,另外还包 括算法的流程图,自顶向下各研制阶段的有 关记录,算法的正确性证明(或论述),算 法测试结果,对输入/输出的要求及格式的详 细描述等。
在这些步骤中,算法设计是解决问题 的核心。
1.1.2 算法及其要素和特性
1、算法的定义
算法是指在解决问题时,按照某种机械 算法步骤一定可以得到问题结果的处理过程。 当面临某个问题时,需要找到用计算机解决 这个问题的方法和步骤,算法就是对解决这 个问题的方法和步骤的描述。
机械算法步骤是指,算法中有待执行的运 算和操作,必须是相当基本的。换言之,它 们都是能够精确地运行的算法,执行者甚至 不需要掌握算法的含义,即可根据该算法的 每一步骤要求,进行操作并最终得出正确的 结果。
2




授课形式: 上课(5%)+作业(10%)+实验(15%)+期末考试70% 教材 算法设计与分析 吕国英主编 清华大学出版社 参考书 算法设计与分析 王晓东编 电子工业出版社 算法设计与分析基础 (美)莱维丁(Levitin,A.) 著, 潘彦 译,清华大学出版社 T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein (2001), Introduction to Algorithms (the second edition). The MIT Press,中文名《算法导论(第二版)》(影 印版),高等教育出版社 学时:39(理教)+6(实验)学时
相关文档
最新文档