(完整版)大一高数第一章函数、极限与连续
高等数学(上册)第一章函数、连续与极限课件
9
2.区间
第一章 函数、连续与极限
数集 x a x b 及x a x b 称为半开区间,分别记作 a,b 和 a,b (见图1-9
和图1-10).
[a,b)
(a,b]
a
图1-9
b
x
a
图1-10
b
x
以上这些区间都称为有限区间,数 b a 称为这些区间的长度. 从数轴上看,这些 区间是长度为有限的线段.
与 B 的并集(简称并),记作 A B ,即 A B {x | x A 或 x B};
A AB B
A AB B
图1-2
图1-3
5
1. 集合及其运算
第一章 函数、连续与极限
由包含于 A 但不包含于 B 的元素构成的集合(见图 1-4),称为 A 与
B 的差集(简称差),记作 A \ B ,即 A \ B {x | x A 且 x B} ;
2
课前导读
集合
具有某种确定性质的对象的全体称为集合(简称集),组成集合的个别 对象称为集合的元素. 习惯上,用大写英文字母 A, B,C, 表示集合,
用小写字母 a,b, c, 表示集合的元素. a A 表示 a 是集 A 的元素 (读作 a 属于 A ), a A 表示 a 不是集 A 的元素(读作 a 不属 于 A ). 集合按照元素的个数分为有限集和无限集 ,不含任何元素的
集合称为空集,记为 .
3
一、 集合的概念
第一章 函数、连续与极限
我们把自然数的全体组成的集合称为自然数集,记作 . 由整数的全体
构成的集合称为整数集,记为 . 用 Q 表示全体有理数构成的有理数集,R
表示全体实数构成的实数集. 显然有 Z Q R .
(完整版)高数公式大全(费了好大的劲),推荐文档
lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C
大学数学第1章:_函数、极限、连续
复合函数的复合过程 u=φ(x)
y=f (u)
y=f [φ(x)]
中间 变量
关于复合函数,需要说明一点: 不是任何两个函数都可以复合成一个函数的。
例如,y=arcsinu与u=x2+8就不能复合成一个函数。 因为由函数u=x2+8确定的u的值域是[8,+∞),不在 函数y=arcsinu的定义域内。
1.1.4 反函数
定义1-6 设函数y=f (x)的定义域为D,值域为Rf 。若对
每一个 y Rf ,都有惟一确定的 xD满足f (x)=y,
那么就可以把y作为自变量,而x是y的函数。 这个新的函数称为y=f (x)的反函数,记作
y=f -1(x) 这个函数的定义域为Rf ,值域为D。 相应地,函数y=f (x)称为直接函数。
如果在定义1-10中限制x只取正值或者只取负值, 即有
limf(x)A或 limf(x)A
称函数f (xx) 当x 趋向正无穷大(或x负无 穷大)时的极限为A。
W={y|y=f (x), x∈D}
为函数的值域,也可以记作 Rf 或 f (D)。
如果自变量在定义域内任取一个数值时,对应的 函数值总是只有一个,这种函数叫做单值函数,否则 叫多值函数. 函数的表示方法有解析法(也称公式法)、图像法、 表格法等等。
还需要指出,函数可以含有一个或多个自变量。 含有一个自变量的函数称为一元函数。 含有多个自变量的函数称为多元函数。
(3) p ex2
是由 p e s 和 s x 2 复合而成的
(4) ysin3(10t)
6
是由 y u 3、usina 和a 10t 复合而成的
6
1.1.5 初等函数
常值函数、幂函数、指数函数、对数函数、三角函数
高等数学第一章 函数、极限与连续第一节 函数
称为函数y f ( x )的图形 .
1. 几个特殊的函数举例
(1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
o
.
-1
x
x sgn x x
(2) 取整函数 y = [x]
[x] 表示不超过 x 的最大整数
y
-4 -3 -2 -1
则称函数 f ( x )在区间 I上是单调增加的 ;
y
y f ( x)
f ( x2 )
f ( x1 )
o
I
x
设函数 f ( x )的定义域为D, 区间 I D,
如果对于区间 I 上任意两点 x1及 x 2 , 当 x1 x 2时,
恒有 ( 2) f ( x1 ) f ( x2 ),
1 1 x ln . 2 1 x
y ar tanh x
D : ( 1,1)
奇函数,
在 ( 1,1) 内单调增加 .
作业 习题1--1:1(1,4),5 习题1--2:6(2,3),8
思考题1
1 2 设 x 0 ,函数值 f ( ) x 1 x , x 求函数 y f ( x ) ( x 0)的解析表达式.
例如, y 1 x 2 1 例如, y 1 x2
D : [1,1] D : ( 1,1)
如果自变量在定 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 数叫做单值函数,否 则叫做多值函数.
y W
y
( x, y)
x
例如,x y a .
2 2 2
o
x
D
定义: 平面点集 C {( x , y ) y f ( x ), x D}
经典-高数第1章:函数、极限与连续
重要结论:
基本初等函数在 其定义域上 都是连续的
函数的复合
复合函数的定义 y f x
y f u
是由u x
和 x
注意: 域内
复合而成的函数
的值域应落在f(x)的定义
理解:可以理解为换元法的过程
反三角函数 f(x)=arcsinx
初等函数
注意:高中阶段对反三角函数介绍较少,
等价无穷小(注意:不是等阶)
等价无穷小的转移定理
注意:表达 方法
无穷小量
等价无穷小转移定理的应用
经典题型
比较无穷小量的高低阶 证明无穷小(大) 求特殊的极限 计算极限中的系数值
应用
函数的连续
函数连续的定义
函数在x0连续的三个条件
函数在x0及其左右有定义 函数在x0的极限存在 函数在x0的极限值等于该点的函数值,即
经典题型:怎么判断一个表达式是不是函 数?
最主要的判断方法:一个x是对应了几个y值
定义域
自变量x的取值范围 经典题型:求定义域关注哪些要点?
①分母不能为零; ②偶次根号下非负; ③对数的真数大于零; ④正切符号下的式子不等于kπ +π /2;
值域
因变量y的值的集合
经典题型
与定义域或∞有关的极限计算
0/0型
解法:通常分子分母可以化简、消项
∞/ ∞型 解法:分子、分母同时除以最高项
极限
带有开方型 解法:有理化分子(注意:是有理化 分子)
换元法
无穷小量
无穷小量定义
注意:一定要讲函数 是在趋于某个值x0时 的无穷小,否则,趋 于另外一个值时,有 可能就不是无穷小了
(完整版)高等数学笔记
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。
第1章 函数、极限与连续
2019/9/21
20
如f(x)1/x在开区间(0,1)上是无界的,但 在闭区间[1,2]上却是有界函数,因为在此区间 上能找到M1,使当x[1,2]时|1/x|M成立。
2019/9/21
21
四、周期 性
设函数的定义域为D,如果存在一个非零常数 T,使得对于任意一点xD, f(xT)f(x)恒成立,则称 f(x)在D上为周期函数,T称为周期。通常所说的周 期是指最小正周期。
单调增加函数和单调减少函数统称为单 调函数。
2019/9/21
13
单调函数图像的特点是:
单调增加函数对应的曲线随自变量x的逐 渐增大而上升;单调减少函数对应的曲线随 自变量x逐渐增大而下降。
y y f(x)
f (x2)
f (x1)
o x1 x2
2019/9/21
y
xo
y f(x)
f (x1)
f (x2)
1
2019/9/21
30
余弦函数 y cos x , x(,)
y
1
5/2 2 3/2 /2 o /2 3/2 x
1
2019/9/21
31
正切函数 y ta x ,x n k/2 ,x R
y
3 1 o 1 3 x
C (x ,y )y f(x )x , D (D [a,b])
2019/9/21
4
理解:
函数的定义有两个要素: 一、自变量x必须有明确的定义域D; 二、在定义域范围内,变量x与y有确定的对应关系, 这两个要素决定值域R。 如果两个函数相等,则这两个要素必须完全相同。
思考:两个函数y2(x1)与y2(x21)/(x1)是否 相等?
高数函数,极限和连续总结
第一章 函数.极限和连续第一节 函数1. 决定函数的要素:对应法则和定义域2. 基本初等函数:(六类)(1) 常数函数(y=c );(2)幂函数(y=x a );(3)指数函数(y=a x ,a>0,a ≠1);(4)对数函数(y=log a x ,a>0,a ≠1)(5)三角函数;(6)反三角函数。
注:分段函数不是初等函数。
特例:y =√x 2是初等函数3.构成复合函数的条件:内层函数的值域位于外层函数的定义域之内。
4.复合函数的分解技巧:对照基本初等函数的形式。
5.函数的几种简单性质:有界性,单调性,奇偶性,周期性。
第二节 极限1.分析定义∀&>0(任意小) ∃∂>0当|x |>ð(或0<|x −x 0|<ð )时总有 |f (x )−A |<&称 lim x→∞f (x )=0 (或lim x→x0f (x )=A)2.极限存在的充要条件lim x→x0f (x )=A ↔lim x→x 0+f (x )=lim x→x 0−f (x )=A 3.极限存在的判定准则(1)夹逼定理f 1(x )≤f(x)≪f 2(x) ,且 lim x→x0f 1(x )=A = lim x→x0f 2(x ) 所以lim x→x0f (x )=A(2)单调有界准则单调有界数列一定有极限。
4.无穷小量与无穷大量,则称 时,f (x )为无穷小量 , 则称 时,f (x )为无穷大量 注:零是唯一的可作为无穷小的常数。
性质1 有限多个无穷小的代数和或乘积还是无穷小。
注:无限个无穷小量的代数和不一定是无穷小量性质2 有界变量或常数与无穷小的乘积还是无穷小。
5. 定义 设 是同一极限过程中的无穷小, 则若 则称 α 是β比高阶的无穷小,记作若 则称α是比β 低阶的无穷小∞=→)(lim 0x f x x )(或∞→→x x x 00)(lim 0=→x f x x )(或∞→→x x x 0)(,)(x x ββαα==,0)(≠x β且,0lim =βα);(βαo =,lim ∞=βα,0lim ≠=C βα若 则称 α 是β的同阶无穷小;特别地,当c=1 时,则称α 是β的等价无穷小,记作若 则称α是关于β 的 k 阶无穷小。
高等数学 第一部分 函数、极限与连续 课件ppt
a 1 时,y log a x 单调递增, y
y logax (a 1)
0 a 1时y, log a x 单调递减。 o
x
y logax (0 x 1)
1-1 函数
4. 三角函数
正弦函数:y sin x
定义域:(,).
值 域:[1,1] .
单调性:
在
2
2k , 2
2k
单调增加;2
1-1 函数
函数的表示法
1)以数学式子表示函数的方法叫公式法如: y x2, y cos x 公式法的优点是便于理论推导和计算.
2)以表格形式表示函数的方法叫表格法,它是 将自变量的值与对应的函数值列为表格,如三角函 数表、对数表等,表格法的优点是所求的函数值容 易查得.
3)以图形表示函数的方法叫图形法或图象法, 这种方法在工程技术上应用很普遍,其优点是直观 形象,可看到函数的变化趋势.
4
2
3
(2) y sin x cosx 的周期T 2
(3) y cos 2x tan x 的周期T 3 .
3 3 6
1-1 函数
4.有界性
定义 1.6 设函数 y f (x) 的定义域为 D,如果存在 一个正常数 M,使得对于任意的 x D ,都有| f (x) | M , 则称函数 y f (x) 在 D 上有界.如果不存在这样的正常 数 M,即对任意的正常数 M,都存在某个点 x0 D ,使 得| f (x0 ) | M , 则称函数 y f (x) 在 D 上无界.
2k ,
3
2
2k
单调减少.
奇偶性:奇函数.
周期性:周期函数.
有界性:有界函数.
余弦函数:y cosx
1-1 函数
(完整版)高数第一章例题及答案(终)理工类吴赣昌
第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
(完整版)高数一知识点
第一章~~第三章一、极限数列极限lim n n x ->∞函数极限lim ()x f x ->∞,lim ()x f x →+∞,lim ()x f x →-∞lim ()x x f x ->,0lim ()x x f x -->,0lim ()x x f x +->求极限(主要方法):(1)100sin 1lim1,lim(1),lim(1)x xx x x xe x e x x->->∞->=+=+=(2)等价无穷小替换(P76)。
当()0x ϕ→时,代换时要注意,只有乘积因子才可以代换。
(3)洛必达法则(000,,0,,0,1,0∞∞⋅∞∞-∞∞∞),只有0,0∞∞可以直接用罗比达法则。
幂指函数求极限:()lim ()ln ()lim ()v x v x u x u x e =;或,令()()v x y u x =,两边取对数ln ()ln ()y v x u x =,若lim ()ln ()v x u x a =,则()lim ()v x a u x e =。
结合变上限函数求极限。
二、连续 00lim ()()x x f x f x ->=左、右连续 000lim ()(),lim ()()x x x x f x f x f x f x -+->->==函数连续⇔函数既左连续又右连续闭区间上连续函数性质:最值,有界,零点(结合证明题),介值,推论。
三、导数 0000000()()()()'()limlim x x x f x f x f x x f x f x x x x->->-+-==-V V V 左导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x---->->-+-==-V V V右导数 0000000()()()()'()lim lim x x x f x f x f x x f x f x x x x+++->->-+-==-V V V 微分 ()'y A x z dy Adx y dx ο∆=⋅∆+==可导⇒连续 可导⇔可微 可导⇔既左可导又右可导求导数:(1) 复合函数链式法则[]()'[]'()dy dy du y f u u g x f u g x dx du dx====[()]''[()]'()'[()]([()])'y f g x y f g x g x f g x f g x ==≠(2) 隐函数求导法则两边对x 求导,注意y 、y '是x 的函数。
(完整版)专升本高数数学第一章_函数、极限与连续
例:求下列函数的定义域
[A](1) y
1
.
(x 1)(x 4)
(2) y x 1 1 x 1
解:(1)要使函数有意义,必须有分母 (x 1)(x 4) 0
x 1 0
即 x 4 0
x 1
x
4
所以定义域为(-∞,-4) ∪(-4,1)∪(1,+ ∞)
(2)要使函数有意义,必须有 x 1 0
单调增加和单调减少的函数统称为单调函数。
y y x 2 当 x 0 时为减函数;
当 x 0 时为增函数;
o
x
(3) 函数的有界性:
若X D, M 0,x X ,有 f ( x) M 成立, 则称函数f ( x)在X上有界.否则称无界.
y
y 1 x
在(,0)及(0,)上无界; 在(,1]及[1,)上有界.
1 2
4 2 2
f[f
(x)]
f[ x 3] x2
x3 3 x2 x3 2
2x 9 (x 3x 1
1) 3
x2
2、函数的性质
(1) 函数的奇偶性:
设D关于原点对称, 对于x D,有
f ( x) f ( x) 称f ( x)为偶函数;
f (x) f (x)
y
称f ( x)为奇函数;
y
y x
y x3
o
x
偶函数
o
x
奇函数
(2) 函数的单调性:
设函数f(x)的定义域为D,区间I D,如果对于区间I上
任意两点 x1及 x2,当 x1 x2时,恒有:
(1) f (x1) f (x2 ),则称函数 f (x) 在区间I上是单调增加的; 或(2) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调递减的;
第1章 函数极限与连续 §1.8 连续函数的性质
提示: 令 ( x ) f ( x a ) f ( x ) ,
则 ( x ) C [0 , a ] , 易证
(0) (a ) 0
作业
P49 / 2 ; 3 ; 5
解 本题是求初等函数的极限, 因 x 1是定义区间内的点, 故
e 2 x ln(3 2 x ) e 21 ln(3 2 1) lim arcsin x arcsin1 x 1
2e
2
.
高等数学 第1章 函数极限与连续 函数 极限与连续
1.8 连续函数的性质
ln( e n x n ) ( x 0) 的连续性. 例1.8.4 讨论函数 f ( x ) lim n n
1.8 连续函数的性质
内容小结
设 f ( x ) C [a , b] , 则
1. f ( x ) 在 [a , b]上有界; 2. f ( x ) 在 [a , b]上达到最大值与最小值; 3. f ( x ) 在 [a , b]上可取最大与最小值之间的任何值;
4. 当 f (a ) f (b) 0 时, 必存在 (a , b) ,使 f ( ) 0.
高等数学 第1章 函数 极限与连续
1.8 连续函数的性质
思考与练习
1. 任给一张面积为 A 的纸片(如图), 证明必可将它
一刀剪为面积相等的两片.
提示: 建立坐标系如图.
y
S ( )
则面积函数 S ( ) C[ , ]
因 S ( ) 0 ,
S ( ) A
o
x
故由介值定理可知:
由此可知f ( x ) sin x 2在( ,)不是一致连续的.
(完整word版)大一高数笔记
导数与极限(一)极限 1. 概念(1)自变量趋向于有限值的函数极限定义(δε-定义) Ax f ax =→)(lim ⇔0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。
(2)单侧极限左极限: =-)0(a f Ax f a x =-→)(lim ⇔0>∀ε,0>∃δ,当δ<-<x a 0时,有ε<-|)(|A x f 。
右极限: =+)0(a f Ax f a x =+→)(lim ⇔0>∀ε,0>∃δ,当δ<-<a x 0时,有ε<-|)(|A x f 。
(3)自变量趋向于无穷大的函数极限定义1:0,0>∃>∀X ε,当X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的极限,记为()Ax f x =∞→lim 。
A y =为曲线()x f y =的水平渐近线。
定义2:00>∃>∀X ,ε,当X x >时,成立()ε<-A x f ,则有()Ax f x =+∞→lim 。
定义3:00>∃>∀X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。
运算法则:1) 1) 若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。
2) 2) 若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=•x g x f lim 。
3) 3) 若()∞=x f lim ,则()01lim=x f 。
注:上述记号lim 是指同一变化过程。
(4)无穷小的定义0>∀ε,0>∃δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0)(lim =→x f a x 。
第1章 函数、极限与连续
2019/10/31
7
例1.1.2 已知函数f(x)x21, 求f(2) , f[f(x)]。
解: f(2)2215
f[f(x) ]f(x)21
(x2 1 )2 1x4 2 x2 2
2019/10/31
8
例1.1.3 已知函数f(x1)x23x2, 求f(x)。 解: 令x1t, 则xt1, 将其代入原式, 得 f( t) ( t 1 )2 3 ( t 1 ) 2 t2 5 t 6 f(x)x25x6
1ex 1ex
ln1x 1x
ex ex
1ln1x 1 1x
f (x)
2019/10/31
18
三、有界性
设函数f(x)的定义域为D,如果存在一个正数 M,使得对于D中某一个子区间I内任意一点x,总有 |f(x)|M (即Mf(x)M),则称函数在I上是有界的, 否则是无界的。
2019/10/31
42
二、反函数
定义4 设函数f(x)的定义域为D,值域为R, 若对于任意一个yR,有唯一一个xD, 使f(x)y成立,则x与y的对应关系在R上定 义了一个新函数,称为函数yf(x)的反函数, 记为xf 1(y)。
若把函数yf(x)称为直接函数,则直接 函数的定义域(或值域)恰好是它的反函数 xf 1(y)的值域(或定义域)。
2
2
2
2
2019/10/31
32
(5) 反三角函数
反正弦函数 yarc x,x s i[ n 1 ,1 ]
y
yarcx,x s i[ n 1 ,1 ]
2
1
o1
x
2
2019/10/31
33
反余弦函数 yarcx,cx o[ s1,1]
(完整版)高数上册知识点
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
(完整版)大一高数第一章函数、极限与连续
(完整版)⼤⼀⾼数第⼀章函数、极限与连续第⼀章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为⾃然科学的中⼼问题.与之相适应,数学在经历了两千多年的发展之后进⼊了⼀个被称为“⾼等数学时期”的新时代,这⼀时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究⽐“形”更重要,以积极的态度开展对“⽆限”的研究,由常量数学发展为变量数学,微积分的创⽴更是这⼀时期最突出的成就之⼀.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的⼀种基本⽅法,⽽连续性则是函数的⼀种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍⾼等数学的⼀些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作⽤的⽆穷⼩量的概念和性质.此外,还给出了两个极其重要的极限.随后,运⽤极限的概念引⼊函数的连续性概念,它是客观世界中⼴泛存在的连续变化这⼀现象的数学描述.第⼀节变量与函数⼀、变量及其变化范围的常⽤表⽰法在⾃然现象或⼯程技术中,常常会遇到各种各样的量.有⼀种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这⼀类量叫做变量;另⼀类量在考察过程中保持不变,它取同样的数值,我们把这⼀类量叫做常量.变量的变化有跳跃性的,如⾃然数由⼩到⼤变化、数列的变化等,⽽更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何⼀个数.变量取值范围常⽤区间来表⽰.满⾜不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ,即 ,{|}a b x a x b =≤≤;满⾜不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满⾜不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即(,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有⽆限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤??,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞??,, (){|}a x a x +∞=<<+∞,,等等. 这⾥记号“-∞”与“+∞”分别表⽰“负⽆穷⼤”与“正⽆穷⼤”.邻域也是常⽤的⼀类区间.设0x 是⼀个给定的实数,δ是某⼀正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中⼼,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去⼼δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ?=<-<图1-1下⾯两个数集(){}000,|U x δx x δx x ?-=-<<,(){}000,|U x δx xx x δ?+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们⽤0()U x ,0()x oU 分别表⽰0x 的某邻域和0x 的某去⼼邻域,(),x δ-oU ,(),U x δ?+分别表⽰0x 的某左邻域和0x 的某右邻域.⼆、函数的概念在⾼等数学中除了考察变量的取值范围之外,我们还要研究在同⼀个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复⼒与它的形变,等等.我们关⼼的是变量与变量之间的相互依赖关系,最常见的⼀类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某⼀法则f ,使得对于每个数x A ∈,均有⼀个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为⾃变量,y 称为因变量,()f x 表⽰函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈?称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上⽤“() ,y f x x A =∈”表⽰函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定⼀个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表⽰使函数有意义的范围,即⾃变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取⾮负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的⾃变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表⽰两个变量之间的⼀种对应关系.例如,⽓温曲线给出了⽓温与时间的对应关系,三⾓函数表列出了⾓度与三⾓函数值的对应关系.因此,⽓温曲线和三⾓函数表表⽰的都是函数关系.这种⽤曲线和列表给出函数的⽅法,分别称为图⽰法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三⾓函数与反三⾓函数都是⽤公式法表⽰的函数.从⼏何上看,在平⾯直⾓坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所⽰).函数()y f x =的图像通常是⼀条曲线,()y f x =也称为这条曲线的⽅程.这样,函数的⼀些特性常常可借助于⼏何直观来发现;相反,⼀些⼏何问题,有时也可借助于函数来作理论探讨.现在我们举⼀个具体函数的例⼦.图1-2例1求函数y . 解要使数学式⼦有意义,x 必须满⾜> ,240,10x x ?-≥??-??即 >2,1.x x ?≤由此有 12x <≤,因此函数的定义域为(12??,.有时⼀个函数在其定义域的不同⼦集上要⽤不同的表达式来表⽰对应法则,称这种函数为分段函数.下⾯给出⼀些今后常⽤的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥?==?-? 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所⽰. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -??===的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所⽰.图1-3 图1-4例4 最⼤取整函数y x =,其中x 表⽰不超过x 的最⼤整数.例如,113??-=-,00=,12??=??,π3=等等.函数y x =的定义域()()D f =-∞+∞,,值域(){}R f =整数.⼀般地,y x n ==,1n x n ≤<+,120,,n =±±L ,,如图1-5所⽰.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯⼀的,这样定义的函数称为单值函数.若给定⼀个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯⼀的,我们称这种法则g 确定了⼀个多值函数.例如,设变量x 与y之间的对应法则由⽅程2225x y +=给出,显然,对每个55[,]x ∈-,由⽅程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =⼀个值;当55(,)x ∈-时,对应的y 有两个值.所以这个⽅程确定了⼀个多值函数.对于多值函数,往往只要附加⼀些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分⽀.例如,由⽅程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到⼀个单值分⽀()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则,就可以得到⼀个单值分⽀22()25y g x x ==--.关系的,如⾼度为⼀定值的圆柱体的体积与其底⾯圆半径r 的关系,就是通过另外⼀个变量其底⾯圆⾯积S 建⽴起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ?.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =?=,x D ∈,它的定义域为D ,变量u 称为中间变量.这⾥值得注意的是,D 不⼀定是函数()u g x =的定义域()D g ,但()D D g ?.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,⽽()(0,)D f =+∞.因此,11,D -=,⽽此时1()0,R f g =.两个函数的复合也可推⼴到多个函数复合的情形.例如, log a µxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u µx =复合⽽成.⼜形如()log ()()()a v x u x v x y u x a ==()0u x >()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合⽽成. ⽽y =可看成由y =sin u v =,2v x =复合⽽成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合⽽成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每⼀个y 值,都有只从关系式()y f x =中唯⼀确定的x 值与之对应,则得到⼀个定义在()R f 上的以y 为⾃变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从⼏何上看,函数()y f x =与其反函数()1x f y -=有同⼀图像.但⼈们习惯上⽤x 表⽰⾃变量,y 表⽰因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是⾃变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所⽰.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞??,对每⼀个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从⽽2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的⼀⼀映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解函数()1y f x =+可看成由()y f u =,1u x =+复合⽽成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合⽽成.因为()11x u f u x u-==+,0u ≠,即1u y u -=,从⽽,()11u y -=-, 11u y=-,所以 ()111y f u u-==-,因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的⼏种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任⼀x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的⼀个上界(或下界);否则,称()f x 在D 上⽆上界(或⽆下界).若函数()f x 在D 上既有上界⼜有下界,则称()f x 在D 上有界;否则,称()f x 在D 上⽆界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任⼀x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任⼀()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内⽆上界,但有下界. 从⼏何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所⽰.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从⼏何上看,若()y f x =是严格单调函数,则任意⼀条平⾏于x 轴的直线与它的图像最多交于⼀点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所⽰.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ??-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在⼀个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成⽴的常数T 称为()f x 的周期,通常,函数的周期是指它的最⼩正周期,即:使上式成⽴的最⼩正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最⼩正周期,例如,狄利克雷(Dirichlet )函数为数为⽆数10 ,) (,x D x x ?=??有理,理.任意正有理数都是它的周期,但此函数没有最⼩正周期.四、函数应⽤举例下⾯通过⼏个具体的问题,说明如何建⽴函数关系式.例8 ⽕车站收取⾏李费的规定如下:当⾏李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的⾏李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =?+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤?=?+->?这是⼀个分段函数,其图像如图1-9所⽰.图1-9例9 某⼈每天上午到培训基地A 学习,下午到超市B ⼯作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或⼯作的地⽅吃.A B C ,,位于⼀条平直的马路⼀侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打⼯者在这条马路的A 与B 之间何处找⼀宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所⽰,设所找宿舍D 距基地A 为x (km ),⽤f x ()表⽰每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(),当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤?=?+≤≤?这是⼀个分段函数,如图1-11所⽰,在30,上,()f x 是单调减少,在38,上,()f x 是单调增加.从图像可知,在3x =处,函数值最⼩.这说明,打⼯者在酒店C 处找宿舍,每天⾛的路程最短.图1-11五、基本初等函数初等数学⾥已详细介绍了幂函数、指数函数、对数函数、三⾓函数、反三⾓函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的⽅便,下⾯我们再对这⼏类函数作⼀简单介绍.1. 幂函数函数µy x = (µ是常数)称为幂函数.幂函数µy x =的定义域随µ的不同⽽异,但⽆论µ为何值,函数在()0+∞,内总是有定义的. 当0µ>时,µy x =在)0+∞??,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12µ=,1µ=,2µ=时幂函数在第⼀象限的图像. 当0µ<时,µy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12µ=-,1µ=-,2µ=-时幂函数在第⼀象限的图像.图1-12 图1-132. 指数函数函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上⽅. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所⽰.以常数e 271828182.=L 为底的指数函数e x y =是科技中常⽤的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所⽰.科学技术中常⽤以e 为底的对数函数e log y x =,图1-15它被称为⾃然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常⽤的对数函数,简记作g l y x =.4. 三⾓函数常⽤的三⾓函数有正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =,余切函数 cot y x =,其中⾃变量x 以弧度作单位来表⽰.它们的图形如图1-16,图1-17,图1-18和图1-19所⽰,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ??=+ ??,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常⽤的三⾓函数还有正割函数sec y x =;余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三⾓函数常⽤的反三⾓函数有反正弦函数 arcsin y x = (如图1-20);反余弦函数 arccos y x = (如图1-21);反正切函数 arctan y x = (如图1-22);反余切函数arccot y x = (如图1-23).它们分别称为三⾓函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三⾓函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每⼀个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每⼀个单调增加(或减少)的⼦区间上存在反函数.例如,sin y x=在闭区间,22ππ??-上单调增加,从⽽存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-,值域为,22ππ??-.反正弦函数arcsin y x =在11,-上是单调增加的,它的图像如图1-20中实线部分所⽰. 类似地,可以定义其他三个反三⾓函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-,值域为π0,,在1,1-上是单调减少的,其图像如图1-21中实线部分所⽰.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22??-,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所⽰.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所⽰.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能⽤⼀个式⼦表⽰的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同⼦集⽤不同表达式来表⽰对应关系的,有些分段函数也可以不分段⽽表⽰出来,分段只是为了更加明确函数关系⽽已.例如,绝对值函数也可以表⽰成y x =1,,()0,x a f x x a ? 也可表⽰成1()12f x ? = ??.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是⼯程和物理问题中很有⽤的⼀类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx x+ ()x -∞<<+∞,其图像如图1-24和图1-25所⽰图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成⽴.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =,反双曲余弦函数 arch y x =,反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所⽰.利⽤求反函数的⽅法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞??,,在)1+∞??,上单调增加,如图1-27所⽰,利⽤求反函数的⽅法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所⽰.容易求得a rth 1ln 1xy x x+==-.第⼆节数列的极限⼀、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按⾃变量增⼤的次序依次排列出来,就称之为⼀个⽆穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为⼀项,⽽()n x f n =称为⼀般项.对于⼀个数列,我们感兴趣的是当n ⽆限增⼤时,n x 的变化趋势.我们看下列例⼦:数列 12,,,,231nn +L L (1-2-1) 的项随n 增⼤时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增⼤时,其值越来越⼤,且⽆限增⼤;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n ⽆限增⼤时,⽆穷数列{}n x 的⼀般项n x ⽆限地趋近于某⼀个常数a (即n x a -⽆限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们⽤观察法可以判断数列{}1n n -,1(1)n n -??-,{}2都有极限,其极限分别为1,20,.但什么叫做“n x ⽆限地接近a ”呢?在中学教材中没有进⾏理论上的说明.我们知道,两个数a 与b 之间的接近程度可以⽤这两个数之差的绝对值b a -来度量.在数轴上b a -表⽰点a 与点b 之间的距离,b a -越⼩,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=,我们知道,当n 越来越⼤时,1n 越来越⼩,从⽽n x 越来越接近1.因为只要n ⾜够⼤, 11n x n-=就可以⼩于任意给定的正数,如现在给出⼀个很⼩的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下⾯不等式1110000n x -<成⽴.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时⽆限接近于1的实质.⼀般地,对数列{}n x 有以下定义.定义2 设{}n x 为⼀数列,若存在常数a 对任意给定的正数ε(⽆论多么⼩),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,⼀般说来,N 将随ε减⼩⽽增⼤,这样的N 也不是唯⼀的.显然,如果已经证明了符合要求的N 存在,则⽐这个N ⼤的任何正整数均符合要求,在以后有关数列极限的叙述中,如⽆特殊声明,N 均表⽰正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”⼀个⼏何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上⽤它们的对应点表⽰出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所⽰图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,⽽只有有限个点(⾄多只有N 个点)在这区间以外.为了以后叙述的⽅便,我们这⾥介绍⼏个符号,符号“?”表⽰“对于任意的”、“对于所有的”或“对于每⼀个”;符号“?”表⽰“存在”;符号“{}ax m X ”表⽰数集X 中的最⼤数;符号“{}min X ”表⽰数集X 中的最⼩数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε??>,?正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε?>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε?>,取ln /ln21N ε= ???,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε?>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε?>,取1N ε??=,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. ⽤极限的定义来求极限是不太⽅便的,在本章的以后篇幅中,将逐步介绍其他求极限的⽅法.⼆、数列极限的性质定理1(惟⼀性)若数列收敛,则其极限惟⼀. 证设数列{}n x 收敛,反设极限不惟⼀:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ?>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ?>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成⽴,显然⽭盾.该⽭盾证明了收敛数列{}n x 的极限必惟⼀.定义3 设有数列{}n x ,若存在正数M ,使对⼀切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是⽆界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界⼜有下界. 例3 数列{}211n +有界;数列{}2n 有下界⽽⽆上界;数列{}2n -有上界⽽⽆下界;数列{}11nn --()既⽆上界⼜⽆下界.定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证设lim n n x a →∞=,由极限定义,0ε?>,且1ε<,0N ?>,当n N >时,1||n x a ε-<<,从⽽<1n x a +.取{}12m 1,,,,N M ax a x x x =+?,则有n x M ≤,对⼀切123,,,n =L ,成⽴,即{}n x 有界.定理2 的逆命题不成⽴,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ?>,当n N >时,0n x >(或0n x <).证由极限定义,对02aε=>,0N ?>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论设有数列{}n x ,0N ?> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),⽽不能由0n x > (或0n x <)推出其极限(若存在)也⼤于0(或⼩于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下⾯我们给出数列的⼦列的概念.定义4 在数列{}n x 中保持原有的次序⾃左向右任意选取⽆穷多个项构成⼀个新的数列,称它为{}n x 的⼀个⼦列.在选出的⼦列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的⼦列可记为{}k n x .k 表⽰k n x 在⼦列{}k n x 中是第k 项,k n 表⽰k n x 在原数列{}n x 中是第k n 项.显然,对每⼀个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在⼦列{}k n x 中的下标是k ⽽不是k n ,因此{}k n x 收敛于a 的定义是:0ε?>,0K ?>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何⼦列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本⾝也可看成是它的⼀个⼦列,故由条件得证. 下⾯证明必要性.由lim n k x a →∞=,0ε?>,0N ?>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4⽤来判别数列{}n x 发散有时是很⽅便的.如果在数列{}n x 中有⼀个⼦列发散,或者有两个⼦列不收敛于同⼀极限值,则可断⾔{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个⼦列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ; ()*164πsin ,8k k N +??∈,即()ππ16420sin ,sin ,88k ??+??. 显然,第⼀个⼦列收敛于0,⽽第⼆个⼦列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满⾜121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满⾜121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成⽴时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ??+?? ??收敛.证根据收敛准则,只需证明11nn ??+?? ??单调增加且有上界(或单调减少且有下界).由⼆项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L ,逐项⽐较n x 与1n x +的每⼀项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,⼜111112!3!!n x n <+++++L 211111222n <+++++L。
高等数学第1章 函数 极限 连续
吴新民
-9-
第一节 映射与函数
4 映射
定义3 设 A, B 是两个非空集合, 若对每个 x A,
第 一
按照某个确定的法则 f , 有唯一确定的 y B 与它对应,
章
则称 f 是 A 到 B 的一个映射,记作
函 数
f : A B, 或 f : x y f ( x), x A.
值域
y
C {( x, y) y f ( x), x D}
(x, y)
称为函数 y f ( x) 的图形. o
x
x
定义域
吴新民
- 18 -
第一节 映射与函数
3 函数的表示法
函数常用的表示法有公式法,图示法,表格法.
第
一 章
几种常用的函数
函
数
(1) 符号函数
极
限 连 续
1 当x 0
第 一 章
解 当 t [0, ] 时,
2
U
E t
2
2E t;
函 数
当t ( , ]时,
2
极
U
E 0 (t )
2
2E (t )
限 当 t ( ,) 时, U 0. 由于U U (t) 是分段函数,所
连 续
以 U(t)
函 则称函数f ( x)为偶函数.
数
极
y
限
y f (x)
连 续
f (x)
吴新民
-x o x
x
偶函数
- 25 -
第一节 映射与函数
设D关于原点对称 , 对于x D, 有
f (x) f (x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述.第一节 变量与函数一、变量及其变化范围的常用表示法在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ⎡⎤⎣⎦,即 ,{|}a b x a x b =≤≤⎡⎤⎣⎦;满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ⎤⎦ (或),a b ⎡⎣),即(,{|}a b x a x b =<≤⎤⎦ (或),{|}a b x a x b =≤<⎡⎣),左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有无限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤⎤⎦,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞⎡⎣,, (){|}a x a x +∞=<<+∞,,等等. 这里记号“-∞”与“+∞”分别表示“负无穷大”与“正无穷大”.邻域也是常用的一类区间.设0x 是一个给定的实数,δ是某一正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中心,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去心δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ︒=<-<图1-1下面两个数集(){}000,|U x δx x δx x ︒-=-<<,(){}000,|U x δx xx x δ︒+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们用0()U x ,0()x oU 分别表示0x 的某邻域和0x 的某去心邻域,(),x δ-oU ,(),U x δ︒+分别表示0x 的某左邻域和0x 的某右邻域.二、函数的概念在高等数学中除了考察变量的取值范围之外,我们还要研究在同一个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复力与它的形变,等等.我们关心的是变量与变量之间的相互依赖关系,最常见的一类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某一法则f ,使得对于每个数x A ∈,均有一个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为自变量,y 称为因变量,()f x 表示函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈⊆称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上用“() ,y f x x A =∈”表示函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定一个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表示使函数有意义的范围,即自变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取非负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的自变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表示两个变量之间的一种对应关系.例如,气温曲线给出了气温与时间的对应关系,三角函数表列出了角度与三角函数值的对应关系.因此,气温曲线和三角函数表表示的都是函数关系.这种用曲线和列表给出函数的方法,分别称为图示法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三角函数与反三角函数都是用公式法表示的函数.从几何上看,在平面直角坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所示).函数()y f x =的图像通常是一条曲线,()y f x =也称为这条曲线的方程.这样,函数的一些特性常常可借助于几何直观来发现;相反,一些几何问题,有时也可借助于函数来作理论探讨.现在我们举一个具体函数的例子.图1-2例1求函数y . 解 要使数学式子有意义,x 必须满足> ,240,10x x ⎧-≥⎪⎨-⎪⎩即 >2,1.x x ⎧≤⎪⎨⎪⎩由此有 12x <≤,因此函数的定义域为(12⎤⎦,.有时一个函数在其定义域的不同子集上要用不同的表达式来表示对应法则,称这种函数为分段函数.下面给出一些今后常用的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥⎧==⎨-⎩ 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所示. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -⎧⎪===⎨⎪⎩的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所示.图1-3 图1-4例4 最大取整函数y x =⎡⎤⎣⎦,其中x ⎡⎤⎣⎦表示不超过x 的最大整数.例如,113⎡⎤-=-⎢⎥⎣⎦,00=⎡⎤⎣⎦,12⎡⎤=⎣⎦,π3=⎡⎤⎣⎦等等.函数y x =⎡⎤⎣⎦的定义域()()D f =-∞+∞,,值域(){}R f =整数.一般地,y x n ==⎡⎤⎣⎦,1n x n ≤<+,120,,n =±±L ,,如图1-5所示.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯一的,这样定义的函数称为单值函数.若给定一个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯一的,我们称这种法则g 确定了一个多值函数.例如,设变量x 与y 之间的对应法则由方程2225x y +=给出,显然,对每个55[,]x ∈-, 由方程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =一个值;当55(,)x ∈-时,对应的y 有两个值.所以这个方程确定了一个多值函数.对于多值函数,往往只要附加一些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分支.例如,由方程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到一个单值分支()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则, 就可以得到一个单值分支22()25y g x x ==--.关系的,如高度为一定值的圆柱体的体积与其底面圆半径r 的关系,就是通过另外一个变量其底面圆面积S 建立起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ⊆.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =︒=,x D ∈,它的定义域为D ,变量u 称为中间变量.这里值得注意的是,D 不一定是函数()u g x =的定义域()D g ,但()D D g ⊆.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,而()(0,)D f =+∞.因此,11,D -⎡⎤⎣⎦=,而此时1()0,R f g ︒=⎡⎤⎣⎦.两个函数的复合也可推广到多个函数复合的情形.例如, log a μxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u μx =复合而成.又形如()log ()()()a v x u x v x y u x a ==()0u x ⎡⎤⎣⎦>()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合而成. 而y =可看成由y =sin u v =,2v x =复合而成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解 令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合而成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每一个y 值,都有只从关系式()y f x =中唯一确定的x 值与之对应,则得到一个定义在()R f 上的以y 为自变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从几何上看,函数()y f x =与其反函数()1x f y -=有同一图像.但人们习惯上用x 表示自变量,y 表示因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是自变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所示.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞⎡⎣,对每一个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从而2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的一一映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解 函数()1y f x =+可看成由()y f u =,1u x =+复合而成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合而成.因为()11x u f u x u-==+,0u ≠, 即1u y u -=,从而,()11u y -=-, 11u y=-,所以 ()111y f u u-==-, 因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的几种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任一x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的一个上界(或下界);否则,称()f x 在D 上无上界(或无下界).若函数()f x 在D 上既有上界又有下界,则称()f x 在D 上有界;否则,称()f x 在D 上无界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任一x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任一()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内无上界,但有下界. 从几何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所示.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从几何上看,若()y f x =是严格单调函数,则任意一条平行于x 轴的直线与它的图像最多交于一点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所示.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解 函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ⎛⎫-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在一个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成立的常数T 称为()f x 的周期,通常,函数的周期是指它的最小正周期,即:使上式成立的最小正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最小正周期,例如,狄利克雷(Dirichlet )函数为数为无数10 ,) (,x D x x ⎧=⎨⎩有理,理.任意正有理数都是它的周期,但此函数没有最小正周期.四、函数应用举例下面通过几个具体的问题,说明如何建立函数关系式.例8 火车站收取行李费的规定如下:当行李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的行李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解 当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =⨯+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤⎧=⎨+->⎩这是一个分段函数,其图像如图1-9所示.图1-9例9 某人每天上午到培训基地A 学习,下午到超市B 工作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或工作的地方吃.A B C ,,位于一条平直的马路一侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打工者在这条马路的A 与B 之间何处找一宿舍(设随处可找到),才能使每天往返的路程最短. 解 如图1-10所示,设所找宿舍D 距基地A 为x (km ),用f x ()表示每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(), 当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤⎧=⎨+≤≤⎩这是一个分段函数,如图1-11所示,在30,⎡⎤⎣⎦上,()f x 是单调减少,在38,⎡⎤⎣⎦上,()f x 是单调增加.从图像可知,在3x =处,函数值最小.这说明,打工者在酒店C 处找宿舍,每天走的路程最短.图1-11五、基本初等函数初等数学里已详细介绍了幂函数、指数函数、对数函数、三角函数、反三角函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的方便,下面我们再对这几类函数作一简单介绍.1. 幂函数 函数μy x = (μ是常数)称为幂函数.幂函数μy x =的定义域随μ的不同而异,但无论μ为何值,函数在()0+∞,内总是有定义的. 当0μ>时,μy x =在)0+∞⎡⎣,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12μ=,1μ=,2μ=时幂函数在第一象限的图像. 当0μ<时,μy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12μ=-,1μ=-,2μ=-时幂函数在第一象限的图像.图1-12 图1-132. 指数函数 函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上方. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所示.以常数e 271828182.=L 为底的指数函数e x y =是科技中常用的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所示.科学技术中常用以e 为底的对数函数e log y x =,图1-15它被称为自然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常用的对数函数,简记作g l y x =.4. 三角函数 常用的三角函数有正弦函数sin y x =, 余弦函数cos y x =, 正切函数tan y x =, 余切函数 cot y x =,其中自变量x 以弧度作单位来表示.它们的图形如图1-16,图1-17,图1-18和图1-19所示,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-⎡⎤⎣⎦.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ⎛⎫=+ ⎪⎝⎭,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常用的三角函数还有正割函数sec y x =; 余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三角函数常用的反三角函数有反正弦函数 arcsin y x = (如图1-20); 反余弦函数 arccos y x = (如图1-21); 反正切函数 arctan y x = (如图1-22); 反余切函数 arccot y x = (如图1-23).它们分别称为三角函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三角函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每一个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每一个单调增加(或减少)的子区间上存在反函数.例如,sin y x=在闭区间,22ππ⎡⎤-⎢⎥⎣⎦上单调增加,从而存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-⎡⎤⎣⎦,值域为,22ππ⎡⎤-⎢⎥⎣⎦.反正弦函数arcsin y x =在11,-⎡⎤⎣⎦上是单调增加的,它的图像如图1-20中实线部分所示. 类似地,可以定义其他三个反三角函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-⎡⎤⎣⎦,值域为π0,⎡⎤⎣⎦,在1,1-⎡⎤⎣⎦上是单调减少的,其图像如图1-21中实线部分所示.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22⎛⎫- ⎪⎝⎭,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所示.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所示.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能用一个式子表示的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同子集用不同表达式来表示对应关系的,有些分段函数也可以不分段而表示出来,分段只是为了更加明确函数关系而已.例如,绝对值函数也可以表示成y x =1,,()0,x a f x x a <⎧=⎨>⎩ 也可表示成1()12f x ⎛ = ⎝⎭.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是工程和物理问题中很有用的一类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx xx x x ---==+ ()x -∞<<+∞, 其图像如图1-24和图1-25所示图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成立.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =, 反双曲余弦函数 arch y x =, 反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所示.利用求反函数的方法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞⎡⎣,,在)1+∞⎡⎣,上单调增加,如图1-27所示,利用求反函数的方法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所示.容易求得a rth 1ln 1xy x x+==-.图1-28第二节 数列的极限一、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按自变量增大的次序依次排列出来,就称之为一个无穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为一项,而()n x f n =称为一般项.对于一个数列,我们感兴趣的是当n 无限增大时,n x 的变化趋势.我们看下列例子:数列 12,,,,231nn +L L (1-2-1) 的项随n 增大时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增大时,其值越来越大,且无限增大;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n 无限增大时,无穷数列{}n x 的一般项n x 无限地趋近于某一个常数a (即n x a -无限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们用观察法可以判断数列{}1n n -,1(1)n n -⎧⎫-⎨⎬⎩⎭,{}2都有极限,其极限分别为1,20,.但什么叫做“n x 无限地接近a ”呢?在中学教材中没有进行理论上的说明.我们知道,两个数a 与b 之间的接近程度可以用这两个数之差的绝对值b a -来度量.在数轴上b a -表示点a 与点b 之间的距离,b a -越小,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=, 我们知道,当n 越来越大时,1n 越来越小,从而n x 越来越接近1.因为只要n 足够大, 11n x n-=就可以小于任意给定的正数,如现在给出一个很小的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下面不等式1110000n x -<成立.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时无限接近于1的实质.一般地,对数列{}n x 有以下定义.定义2 设{}n x 为一数列,若存在常数a 对任意给定的正数ε(无论多么小),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,一般说来,N 将随ε减小而增大,这样的N 也不是唯一的.显然,如果已经证明了符合要求的N 存在,则比这个N 大的任何正整数均符合要求,在以后有关数列极限的叙述中,如无特殊声明,N 均表示正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”一个几何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所示图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,而只有有限个点(至多只有N 个点)在这区间以外.为了以后叙述的方便,我们这里介绍几个符号,符号“∀”表示“对于任意的”、“对于所有的”或“对于每一个”;符号“∃”表示“存在”;符号“{}ax m X ”表示数集X 中的最大数;符号“{}min X ”表示数集X 中的最小数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε⇔∀>,∃正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε∀>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε∀>,取ln /ln21N ε⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明 π1lim cos04n n n →∞=. 证 由于ππ111cos 0cos 44n n n n n -=≤,故0ε∀>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有π1cos 04n εn -<.由极限定义可知 π1lim cos 04n n n →∞=. 用极限的定义来求极限是不太方便的,在本章的以后篇幅中,将逐步介绍其他求极限的方法.二、数列极限的性质定理1(惟一性) 若数列收敛,则其极限惟一. 证 设数列{}n x 收敛,反设极限不惟一:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ∃>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<, (1-2-6) 20N ∃>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成立,显然矛盾.该矛盾证明了收敛数列{}n x 的极限必惟一.定义3 设有数列{}n x ,若存在正数M ,使对一切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是无界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界又有下界. 例3 数列{}211n +有界;数列{}2n 有下界而无上界;数列{}2n -有上界而无下界;数列{}11nn --()既无上界又无下界.定理2(有界性) 若数列{}n x 收敛,则数列{}n x 有界.证 设lim n n x a →∞=,由极限定义,0ε∀>,且1ε<,0N ∃>,当n N >时,1||n x a ε-<<,从而<1n x a +.取{}12m 1,,,,N M ax a x x x =+⋯,则有n x M ≤,对一切123,,,n =L ,成立,即{}n x 有界.定理2 的逆命题不成立,例如数列{}1()n -有界,但它不收敛.定理3(保号性) 若lim n n x a →∞=,0a >(或0a <),则0N ∃>,当n N >时,0n x >(或0n x <).证 由极限定义 ,对02aε=>,0N ∃>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论 设有数列{}n x ,0N ∃> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),而不能由0n x > (或0n x <)推出其极限(若存在)也大于0(或小于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下面我们给出数列的子列的概念.定义4 在数列{}n x 中保持原有的次序自左向右任意选取无穷多个项构成一个新的数列,称它为{}n x 的一个子列.在选出的子列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的子列可记为{}k n x .k 表示k n x 在子列{}k n x 中是第k 项,k n 表示k n x 在原数列{}n x 中是第k n 项.显然,对每一个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在子列{}k n x 中的下标是k 而不是k n ,因此{}k n x 收敛于a 的定义是:0ε∀>,0K ∃>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何子列{k n x }都收敛,且都以a 为极限. 证 先证充分性.由于{}n x 本身也可看成是它的一个子列,故由条件得证. 下面证明必要性.由lim n k x a →∞=,0ε∀>,0N ∃>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4用来判别数列{}n x 发散有时是很方便的.如果在数列{}n x 中有一个子列发散,或者有两个子列不收敛于同一极限值,则可断言{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解 在{}n x 中选取两个子列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ⋅⋅⋅⋅⋅⋅; ()*164πsin ,8k k N +⎧⎫∈⎨⎬⎩⎭,即()ππ16420sin ,sin ,88k ⎧⎫+⎪⎪⋅⋅⋅⋅⋅⋅⎨⎬⎪⎪⎩⎭. 显然,第一个子列收敛于0,而第二个子列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满足121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满足121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则 单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 根据收敛准则,只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界(或单调减少且有下界).由二项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L , 逐项比较n x 与1n x +的每一项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,又111112!3!!n x n <+++++L 211111222n <+++++L。