第4章信源编码与信道编码.ppt
数字通信中的信源编码和信道编码
数字通信中的信源编码和信道编码摘要:如今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。
而对于信息的传输,数字通信已经成为重要的手段。
本论文根据当今现代通信技术的发展,对信源编码和信道编码进行了概述性的介绍.关键词:数字通信;通信系统;信源编码;信道编码Abstract:Now it is an information society. In the all of information technologies, transmission and communication of information take an important effect. For the transmission of information, Digital communication has been an important means. In this thesis we will present an overview of source coding and channel coding depending on the development of today’s communication technologies.Key Words:digital communication; communication system; source coding; channel coding1.前言通常所谓的“编码”包括信源编码和信道编码。
编码是数字通信的必要手段。
使用数字信号进行传输有许多优点, 如不易受噪声干扰, 容易进行各种复杂处理, 便于存贮, 易集成化等。
编码的目的就是为了优化通信系统。
一般通信系统的性能指标主要是有效性和可靠性。
所谓优化,就是使这些指标达到最佳。
除了经济性外,这些指标正是信息论研究的对象。
按照不同的编码目的,编码可主要分为信源编码和信道编码。
在本文中对此做一个简单的介绍。
信源编码与信道编码
信源编码与信道编码⼀.信源编码和信道编码的发展历程信源编码:最原始的信院编码就是莫尔斯电码,另外还有ASCII码和电报码都是信源编码。
但现代通信应⽤中常见的信源编码⽅式有:Huffman编码、算术编码、L-Z编码,这三种都是⽆损编码,另外还有⼀些有损的编码⽅式。
信源编码的⽬标就是使信源减少冗余,更加有效、经济地传输,最常见的应⽤形式就是压缩。
相对地,信道编码是为了对抗信道中的噪⾳和衰减,通过增加冗余,如校验码等,来提⾼抗⼲扰能⼒以及纠错能⼒。
信道编码:1948年Shannon极限理论→1950年Hamming码→1955年Elias卷积码→1960年 BCH码、RS码、PGZ译码算法→1962年Gallager LDPC(Low Density Parity Check,低密度奇偶校验)码→1965年B-M译码算法→1967年RRNS码、Viterbi算法→1972年Chase⽒译码算法→1974年Bahl MAP算法→1977年IMaiBCM分组编码调制→1978年Wolf 格状分组码→1986年Padovani恒包络相位/频率编码调制→1987年Ungerboeck TCM格状编码调制、SiMonMTCM多重格状编码调制、WeiL.F.多维星座TCM→1989年Hagenauer SOVA算法→1990年Koch Max-Lg-MAP算法→1993年Berrou Turbo码→1994年Pyndiah 乘积码准最佳译码→1995年 Robertson Log-MAP算法→1996年 Hagenauer TurboBCH码→1996MACKay-Neal重新发掘出LDPC码→1997年 Nick Turbo Hamming码→1998年Tarokh 空-时卷格状码、AlaMouti空-时分组码→1999年删除型Turbo码虽然经过这些创新努⼒,已很接近Shannon极限,例如1997年Nickle的TurboHamming码对⾼斯信道传输时已与Shannon极限仅有0.27dB相差,但⼈们依然不会满意,因为时延、装备复杂性与可⾏性都是实际应⽤的严峻要求,⽽如果不考虑时延因素及复杂性本来就没有意义,因为50多年前的Shannon理论本⾝就已预⽰以接近⽆限的时延总容易找到⼀些⽅法逼近Shannon 极限。
信息论与编码2016(第4章)
§4.2 离散无记忆信道 对称DMC容量的计算
P的所有列都是第一列的一种置换,信 道是关于输出对称的
0 .8 0 .2 P 0 .5 0 .5 0 .2 0 .8
§4.2 离散无记忆信道
命题2 若DMC关于输出为对称的,则当输入分布等概时,输 出分布等概。 证明 此时{p(y|x),x=0~ K-1}与{p(0|x),x=0~ K-1}互为置换。 设q(x)=1/K,x∈{0, 1, …, K-1}。则
q( z ) p( y | z )
都取一个相同的值;对任何满足q(k)=0的k,I(X=k; Y)都 不大于此相同的值。 (2)此时此相同的值恰好就是信道容量C。
§4.2 离散无记忆信道
注解
如果对DMC信道没有任何简化,要计算最佳输 入分布并不容易。但是,通常使用的DMC是很简单 的(比如,以下的准对称信道和对称信道),最佳 输入分布很容易求出。
§4.2 ቤተ መጻሕፍቲ ባይዱ散无记忆信道
定理4.2.2(p91) (1)输入概率分布{x, q(x), x∈{0, 1, …, K-1}}是最佳输入分 布的充分必要条件为:对任何满足q(k)>0的k,
I ( X k ; Y ) p( y | k ) log K 1
y 0 z 0 J 1
p( y | k )
第四章:信道及其容量
§4.1 §4.2 §4.5 §4.6 §4.7 信道分类 离散无记忆信道 信道的组合 时间离散的无记忆连续信道 波形信道
5
§4.1 信道分类
所有信道都有一个输入集A,一个输出集B以及 两者之间的联系,如条件概率P(y│x),x∈A, y∈B。这些参量可用来规定一条信道。
精品课课件信息论与编码(全套讲义)
跨学科交叉融合
信息论将与更多学科进行交叉融合,如物理学、 化学、社会学等,共同推动信息科学的发展。
编码技术的发展趋势
高效编码算法
随着计算能力的提升,更高效的编码算法将不断涌现,以提高数据 传输和存储的效率。
智能化编码
借助人工智能和机器学习技术,编码将实现智能化,自适应地调整 编码参数以优化性能。
跨平台兼容性
未来的编码技术将更加注重跨平台兼容性,以适应不同设备和网络环 境的多样性。
信息论与编码的交叉融合
理论与应用相互促进
信息论为编码技术提供理论支持, 而编码技术的发展又反过来推动 信息论的深入研究。
共同应对挑战
精品课课件信息论与编码(全套 讲义)
目
CONTENCT
录
• 信息论基础 • 编码理论 • 信道编码 • 信源编码 • 信息论与编码的应用 • 信息论与编码的发展趋势
01
信息论基础
信息论概述
信息论的研究对象
研究信息的传输、存储、处理和变换规律的科学。
信息论的发展历程
从通信领域起源,逐渐渗透到计算机科学、控制论、 统计学等多个学科。
卷积编码器将输入的信息序列按位输入到一个移位寄存器中,同时根据生成函数将移位寄存 器中的信息与编码器中的冲激响应进行卷积运算,生成输出序列。
卷积码的译码方法
卷积码的译码方法主要有代数译码和概率译码两种。代数译码方法基于最大似然译码准则, 通过寻找与接收序列汉明距离最小的合法码字进行译码。概率译码方法则基于贝叶斯准则, 通过计算每个合法码字的后验概率进行译码。
04
第4章 信 道
n
m (t)cos[w0t + j i (t)] i
i= 1
邋m (t)cos j
i i= 1
n i
(t )cos w0t i= 1
mi (t )sin j i (t )sin w0t (4.4-2)
X s ( t ) s in w 0 t
缓慢随机变化振幅
R ( t ) = X c ( t ) co s w 0 t
18
第4章 信 道 章
f (t ) Û F ( w )
(4.4-8)
j wt 0
jw ( t 0 + t )
则有
Af (t - t 0 ) AF (w)eAf (t - t 0 - t ) AF (w)e-
Af (t - t 0 ) + Af (t - t 0 - t ) ? AF (w)e-
接收滤波器特性
Pn(f)
噪声等效 带宽
利用噪声等效带宽的概念, 在后面讨论通信系统的性能时, 图4-19 噪声功率谱特性 可以认为窄带噪声的功率谱密度在带宽Bn内是恒定的。
27
第4章 信 道 章
4.6 信道容量
信道容量 - 指信道无差错传输的最大平均信息速率。
4.6.1 离散信道容量
两种不同的度量单位: C - 每个符号能够传输的平均信息量最大值
- jωtd
例2:设恒参信道的等效模型如图所示,求信道的幅 频特性、相频特性及群迟延特性,并分析信号通过 该信道时有无失真。
13
第4章 信 道 章
随参信道的影响
变参信道:又称时变信道,信道参数随时间而变。 变参信道举例:天波、地波、视距传播、散射传播… 变参信道的特性:
衰减随时间变化 时延随时间变化 多径效应:信号经过几条路径到达接收端,而且每条路 径的长度(时延)和衰减都随时间而变,即存在多径 传播现象。
信源编码
a4
1000 0001
异前缀码(即时码):码集中任何一个码不是其他码的前缀。 即时码必定是唯一可译码, 唯一可译码不一定是即时码。 5°有实用价值的分组码 分组码:将信源符号集中的每个信源符号固定地映射成一个码字。
是非奇异码、唯一可译码、即时码 。
六、码树图 1°码树图: 用码树来描述给定码集中各码字的方法。
码字Y i 的码元个数 Ki 称为Y i的码长。 所有码字Y i 的码长 Ki 均相等称为码长为 K 定长码。 码字Y i 的码长 Ki 不全相等称为变长码。
西南石油大学理学院
三、 编码与译码
1°信源编码:将信源符号xi 或符号序列XLi 按一种规则映像成码字 Yi的过程。 2°无失真编码:信源符号到码字的映射必须一一对应。 3°译码:从码符号到信源符号的映射。
x2 x1 x3 x2 x1 x1
x1→1 x2→10 x3→11 则无法唯一分割。
4°按译码的即时性分类
非即时码:接收端收到一个完整的码字后,不能立即译码,还需 要等到下一个码字开始接收后才能判断是否可以译码。
即时码:接收端收到一个完整的码字后,就能立即译码,即时码 又称为非延长码或异前缀码。 即时码与唯一可译码
信源符号 xi 对应的码字为Yi (i = 1, 2, … , n),码字Yi 对应 的码长为 K i(i = 1, 2, …, n ) 。 所有的 K i 相等为定长码,记为 K, 不相等时为变长码。
3°按译码唯一性分类
唯一可译码:对于多个码字组成的有限长码流,只能唯一
地分割成一个个的码字。唯一可译码又称为单义码。
非唯一可译码:对有限长码流,不能唯一地分割成一个个
的码字。
西南石油大学理学院
【例】 码流 100111000 … 码1 码2
(信息论、编码及应用)第4章连续信源与连续信道
连续信源的编码定理是信息论中最重 要的定理之一,它为信源编码提供了 理论依据和指导,广泛应用于数据压 缩、图像处理等领域。
02
连续信道
定义与特性
定义
连续信道是一种能够传输连续信号的通信通道,例如音频、 视频信号等。
特性
连续信道具有带宽限制、噪声干扰、信号衰减等特性,这些 特性会影响信号传输的质量和可靠性。
利用统计学习方法,如自适应滤 波、神经网络等,对信源和信道 进行学习和优化,实现动态匹配。
编码技术
采用适当的编码技术,如差分编 码、增量编码等,对信源进行编 码,使其更适应信道的传输特性。
匹配的优化策略
01
02
03
能效优先
在保证信息传输质量的前 提下,优先考虑能效,通 过优化信源和信道的参数, 降低能耗。
例如,在移动通信网络中,语音信号通常采用码分多址(CDMA)或长期演进(LTE) 等技术进行传输。这些技术能够提供较高的数据传输速率和较低的误码率,从而保 证语音信号的清晰度和可懂度。
图像信号传
图像信号传输是连续信源与连续信道的另一个重要应用领域。在电视广播、视频会议和在线教育等应用中,图像信号需要通 过连续信道进行传输。由于图像信号的数据量较大,因此需要采用高效的压缩编码技术来减小传输数据量,同时还需要保证 图像质量。
输速率,同时保证信息的可靠传输。
03
匹配理论的发展历程
随着信息论的不断发展,匹配理论也在不断完善,从早期的经典匹配理
论到现代的统计匹配理论,为连续信源与连续信道的匹配提供了更精确
的指导。
匹配的实现方法
参数调整
根据信源和信道的特性,调整相 关参数,如信源的压缩比、信道 的调制方式等,以实现匹配。
《信息论与编码全部》课件
信息论与编码全部PPT课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 信息度量与熵
02 信息论与编码的基 本概念
04 信源编码
05 信道编码
06 加密与解密技术
07 信息安全与认证技 术
添加章节标题
信息论与编码的基本概 念
信息论的发展历程
1948年,香农提出信 息论,奠定了信息论
提高安全性
优点:安全性 高,速度快,
易于实现
应用:广泛应 用于电子商务、 网络通信等领
域
发展趋势:随 着技术的发展, 混合加密技术 将更加成熟和
完善
信息安全与认证技术
数字签名技术
数字签名:一种用于验证信息来源和完整性的技术 数字签名算法:RSA、DSA、ECDSA等 数字证书:用于存储数字签名和公钥的文件 数字签名的应用:电子邮件、电子商务、网络银行等
汇报人:PPT
熵越小,表示信息量越小,不确 定性越小
熵是概率分布的函数,与概率分 布有关
信源编码
定义:无损信源编码是指在编码过 程中不丢失任何信息,保持原始信 息的完整性。
无损信源编码
应用:无损信源编码广泛应用于音 频、视频、图像等媒体数据的压缩 和传输。
添加标题
添加标题
添加标题
添加标题
特点:无损信源编码可以保证解码 后的信息与原始信息完全一致,但 编码和解码过程通常比较复杂。
古典密码学:公元前400年,古希腊人使用替换密码 近代密码学:19世纪,维吉尼亚密码和Playfair密码出现 现代密码学:20世纪,公钥密码体制和数字签名技术出现 当代密码学:21世纪,量子密码学和后量子密码学成为研究热点
信道编码
两者冗余度的区别:
信源编码是压缩随机的冗余度; 而信道编码是增加有规律的冗余度。
采用差错控制技术,减小误码率与制造高质量设备, 提高误码性能相比,往往起到事半功倍的效果。
9.1.1 差错控制方式
方式一:前向纠错法FEC
所发码具有纠错能力,收端接收后自动纠错。 无需反向信道。实时性好,所发码具有纠错能力, 译码自动纠IF
收端接收到信息后,将所收到的信息原封不动 地发回给发端。发端对比所收到的信息与之前发 送的信息是否一致,决定重发信息或发送新信息。 方法和设备简单,无需纠检错编译系统。但需 要双向信道,传输效率↓、实时性差 。
无纠/检错
9.1.2 信道编码的分类
按码的用途分:检错码 ,纠错码,纠删码 按监督码元与信息码元的关系分:线性码,非线性码
第9章
1 2
信道编码
信道编码概述 信道编码的基本概念 线性分组码 汉明码 循环码 m序列
3
4 5 6
9.1 信道编码概述
信源编码:为提高信号传输的有效性而采取的措施。减小量化误差, 信道编码: 为提高信号传输的可靠性而采取的措施,亦称差错控制
编码。 增加冗余度,具有纠检错能力,提高通信的可靠性。
尽可能压缩冗余度,降低数码率,压缩传输频带,提高通 信的有效性。
9.2.3 几种简单实用的纠/检错编码
1、奇偶监督码: k=n-1,r=1的线性码。 特点:码组中的1个数是偶数(偶监督码) 或奇数(奇监督码)。
an 1 an 2 a0 0
偶监督时,要满足:
奇监督时,要满足:
如 1011001 an 1 an 2 a0 1
按对信息码元处理方式分:分组码,卷积码
按信息码元在编码前后是否相同分:系统码,非系统码 按纠检错类型分:纠/检随机错、纠/检突发错
信源编码与信道编码
信源编码与信道编码
1.信源编码的作⽤与内含:
信源编码是⼀种以提⾼通信有效性⽽对信源符号进⾏的变换,或者说为了减少或者消除信源剩余度⽽进⾏的信源符号变换。
具体⽽⾔就是针对信源输出符号序列的统计特性来寻找某种⽅法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所荷载的平均信息量最⼤,同时⼜能保证⽆失真的恢复原来的符号序列。
2.信道编码的作⽤与内含:
信道编码:由于信道有噪声和⼲扰或信道有某种约束会使接受的消息发⽣差错,因此要通过信道编码来提⾼传输可靠性。
因为信道编码是通过冗余符号来实现的,所以会使传输有效性降低。
(ps:⾹农第⼆定理:只要信息传输速率不⼤于信道容量,就存在⾼可靠性传输。
)。
信息论--第四章第五节 变长码 第六节 变长信源编码定理
4.5 变长码
即时码
唯一可译码成为即时码的充要条件:
一个唯一可译码成为即时码的充要条件是其中任何一个
码字都不是其他码字的前缀。
所有的码 非奇异码 唯一可译码 即时码
4.5 变长码
即时码的构造方法
用树图法可以方便地构造即时码。树中每个中间节
点都伸出1至r个树枝,将所有的码字都安排在终端
节点上就可以得到即时码。
H H (S )
从而
LN H lim N N log r
4.6变长信源编码定理
对一般离散信源,无失真信源编码定理证 明
S S1S2 S N
H (S) H (S) LN 1 log r log r
H (S) LN H (S) 1 N log r N N log r N
H (S ) L logr 0
p(si ) log p( si ) p( si )li log r
i 1 i 1 q q
p( si ) log p( si ) p( si ) log r
i 1 i 1
q
q
li
4.6变长信源编码定理
紧致码平均码长界限定理证明
4.5 变长码
2. 变长唯一可译码判别方法(续)
例5.4 : C a c ad F1 d bb F2 eb cde F3 de F4 b F5 ad bcde
abb
bad deb bbcde 结论:F5中包含了C中的元素,因此该变长码不是唯一可译码。 问题: 判断 C={1,10,100,1000}是否是唯一可译码?
信道传信率
H (S ) H (S ) log r R H (S ) L log r
信源编码和信道编码的原理
信源编码和信道编码的原理English:Source encoding, also known as source coding, is the process of compressing or encoding the original information from the source in order to reduce redundancy and minimize the amount of data that needs to be transmitted. This is typically done through techniques such as Huffman coding, which assigns shorter codes to more frequent symbols, or run-length encoding, which replaces repeated sequences of symbols with a single symbol and a count. The goal of source encoding is to efficiently represent the information in a way that can be easily transmitted and reconstructed at the destination.Channel encoding, on the other hand, is the process of adding redundancy to the transmitted data in order to make it more resilient to noise and interference during transmission. This is often achieved using error-correcting codes such as Reed-Solomon codes or convolutional codes, which add extra bits to the data that can be used to detect and correct errors at the receiver. By introducing redundancy, channel encoding helps to improve the reliability of thetransmitted information, making it more likely to be received correctly despite the presence of noise and other impairments in the communication channel.中文翻译:信源编码,也被称为源编码,是将原始来源的信息进行压缩或编码的过程,以减少冗余并最小化需要传输的数据量。
信源编码和信道编码
信源编码:主要是利用信源的统计特性,解决信源的相关性,去掉信源冗余信息,从而达到压缩信源输出的信息率,提高系统有效性的目的。
第三代移动通信中的信源编码包括语音压缩编码、各类图像压缩编码及多媒体数据压缩编码。
信道编码:为了保证通信系统的传输可靠性,克服信道中的噪声和干扰的。
它根据一定的(监督)规律在待发送的信息码元中(人为的)加入一些必要的(监督)码元,在接受端利用这些监督码元与信息码元之间的监督规律,发现和纠正差错,以提高信息码元传输的可靠性。
信道编码的目的是试图以最少的监督码元为代价,以换取最大程度的可靠性的提高。
信道编码从功能上可分为3类:仅具有发现差错功能的检错码,如循环冗余校验码、自动请求重传ARQ等具有自动纠正差错功能的纠错码,如循环码中的BCH码、RS码及卷积码、级联码、Turbo 码等既能检错又能纠错功能的信道编码,最典型的是混合ARQ信道编码从结构和规律上分两大类线性码:监督关系方程是线性方程的信道编码非线性码:监督关系方程是非线性的FEC是前向就错码,在不同系统中,不同信道采用的FEC都不一样,有卷积码,Turbo码等信源编码&信道编码区别(通院的必杀技):官方课本如是介绍:信源编码:表示信源和降低信源的信息速率。
信道编码:消除或减轻信道错误的影响。
通过适当的调制方式来运载信息,以适应信道特征。
本人总结:一.信源编码信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩。
码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。
作用之二是,当信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。
模拟信号数字化传输的两种方式:脉冲编码调制(PCM)和增量调制(ΔM)。
信源译码是信源编码的逆过程。
1.脉冲编码调制(PCM)简称脉码调制:一种用一组二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。
由于这种通信方式抗干扰能力强,它在光纤通信、数字微波通信、卫星通信中均获得了极为广泛的应用。
《通信原理》樊昌信曹丽娜编著第六版课件第4章信道
水蒸气
氧 气
大气层对于传播的影响
散射 吸收
频率(GHz) (a) 氧气和水蒸气(浓度7.5 g/m3)的衰减
衰
减
降雨率
(dB/km)
频率(GHz)
(b) 降雨的衰减
图4-6 大气衰减
5
第4章 信 道
电磁波的分类:
地波
频率 < 2 MHz 有绕射能力 距离:数百或数千千米
2
按照上式画出的模与角频率关系曲线:
图4-18 多径效应
曲线的最大和最小值位置决定于两条路径的相对
时延差。而 是随时间变化的,所以对于给定频率的
信号,信号的强度随时间而变,这种现象称为衰落现象。 由于这种衰落和频率有关,故常称其为频率选择性衰落。
28
第4章 信 道
定义:相关带宽=1/
实际情况:有多条路径。
结论:发射信号为单频恒幅正弦波时,接收信号因多径效 应变成包络起伏的窄带信号。 这种包络起伏称为快衰落 - 衰落周期和码元周期可 以相比。 另外一种衰落:慢衰落 - 由传播条件引起的。
25
第4章 信 道
多径效应简化分析:设 发射信号为:f(t) 仅有两条路径,路径衰减相同,时延不同
两条路径的接收信号为:A f(t - 0) 和 A f(t - 0 - )
Af (t 0 ) AF ()e j(0 )
Af (t 0 ) Af (t 0 ) AF ()e j0 (1 e j )
上式两端分别是接收信号的时间函数和频谱函数 ,
故得出此多径信道的传输函数为
H () AF ()e j0 (1 e j ) Ae j0 (1 e j ) F ()
信道编码
2. 前向纠错方式 前向纠错方式记作FEC(Forword ErrorCorrection)。发 端发送能够纠正错误的码,收端收到信码后自动地纠正传 输中的错误。其特点是单向传输,实时性好,但译码设备 较复杂。
3. 混合纠错方式 混合纠错方式记作HEC(Hybrid ErrorCorrection)是FEC 和ARQ方式的结合。发端发送具有自动纠错同时又具有检错 能力的码。收端收到码后,检查差错情况,如果错误在码的
现传输中的一位错误。如果是(3,1)重复码,两个许用码组是 000 与111, d0=3; 当收端出现两个或三个 1 时,判为 1,否则判 为 0。此时,可以纠正单个错误,或者该码可以检出两个错误。
码的最小距离d0 直接关系着码的检错和纠错能力;任 一(n,k)分组码,若要在码字内: (1) 检测e个随机错误,则要求码的最小距离d0≥e+1; (2) 纠正t个随机错误, 则要求码的最小距离d0≥2t+1; (3) 纠正t个同时检测e(≥t)个随机错误,则要求码的最小 距离d0≥t+e+1。
2.3.5 恒比码
码字中 1 的数目与 0 的数目保持恒定比例的码称为恒比码。
由于恒比码中,每个码组均含有相同数目的 1 和 0,因此恒比
码又称等重码,定 1 码。这种码在检测时,只要计算接收码元 中 1 的数目是否正确,就知道有无错误。
目前我国电传通信中普遍采用 3∶2 码,又称“5 中取 3”
S3指示23-1种不同的错误图样,校正子与错码位置的对应关 系如表2-5所示。
表2-5 校正子与错码位置的对应关系
S1 S2 S3 001 010 100 011
错码位置 a0 a1 a2 a3
S1 S2 S3 101 110 111 000
通信技术基础 第四章 数字编码技术
提高编码效率的角度出发,L的取值应尽量的小。例如,对26个英文字
母进行二进制编码时,Lmin=log226=4.7,因此可取L=5。 常用信息码有ASCII码、Morse码、BCD码等。 大连理工大学出版社
第4章 数字编码技术 4.1.2 语音编码
模拟信息的数字化原因:
由于数字通信在信号的传输质量、信号的处理等方面具
缺点:收发双方的压扩特性不易做得一致,且温度等因素的影响大。
大连理工大学出版社
第4章 数字编码技术
均匀量化存在的问题是: 小信号时信噪比太小,大信号时信噪比浪费。
非均匀量化的 均匀量化的 量化信噪比 量化信噪比
动态范围 动态范围 要求的量化 信噪比
大连理工大学出版社
信号电平
第4章 数字编码技术
3 编码(Coding) 用一组代码来表示每一个量化后的样值。量化以后每一个样值都
0
比较电平
取样值
取样值
c11 c1 c9 c8 c7 c5 c4 c3 c2 c1 c0
0
量化值
量 化 后 信 号 波 形
大连理工大学出版社
第4章 数字编码技术
量化可以有均匀量化和非均匀量化两种
均匀量化:各量化电平之间的间隔是固定的,这种量化被称为均匀量化;
均匀量化的量化噪声功率与量化台阶的平方成正比,出现话音弱时的 信噪比低、干扰大,而话音强时的信噪比高、干扰小的反常情况,
样信号的小样值部分被充分放大,
大样值部分被适当压缩。被压缩 的抽样信号虽然再经过均匀量化;
接收端相应增加非线性放大器 (扩张),以消除压缩带来的信 号失真:对小信号放大量小,对
大信号放大量大。
大连理工大学出版社
第4章 数字编码技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图4.18 交织的方法
2020/2/7
16
图4.19 GSM系统的语音交织
2020/2/7
17
本章小结 本章详细讨论了信源编码和信道编码的相关问题,信 源编码部分主要包括等长码和等长信源编码定理、变 长码和变长信源编码定理、霍夫曼编码;信道编码部 分主要介绍了几种常用的信道编码方法,主要有:线 性分组码、循环码、级联码、检错码、Turbo码、卷 积码和交织编码等。对各种编码方法的更深入的学习 请参考相关著作。
2020/2/7
18
第四章信源编码与信道编码
【案例4.1】
图4.1 编码器
2020/2/7
1
【案例4.2】
图4.2 音视频编解码器
2020/2/7
2
4.1 信息传输概述 1.信息传输的基本模型
图4.3 信息传输的基本模型
2020/2/7
3
2.信息传输的一般模型
2020/2/7
4
4.2 无失真信源编码 4.2.1 编码的有关概念
2020/2/7
12
4.3.7 级联码
图4.13 典型级联码组成结构
2020/2/7
ቤተ መጻሕፍቲ ባይዱ
13
4.3.8 Turbo码 1.Turbo码的编码原理
图4.16 Turbo编码器结构原理框图
2020/2/7
14
2.Turbo码的译码原理
图4.17 Turbo码译码器原理框图
2020/2/7
15
4.3.9 交织编码
2020/2/7
8
2020/2/7
9
2020/2/7
10
4.3信道编码
4.3.1 信道编码的定义 4.3.2. 信道编码的分类 4.3.3 线性分组码 4.3.4 循环码 4.3.5 检错码 4.3.6 卷积码
图4.11 (3,1)卷积码编码器
2020/2/7
11
(a)编码器;(b)译码器 图4.12 (2,1)卷积码(k=2)
(1)二元码 (2)等长码 (3)变长码 (4)非奇异码 (5)奇异码
(6)同价码 (7)码的N次扩展码 (8)惟一可译码
2020/2/7
5
4.2.2 等长码与等长信源编码定理
2020/2/7
6
4.2.3 变长码与变长信源编码定理 4.2.4 霍夫曼码
2020/2/7
7
在本例中,信源的熵为
8
H ( X ) p(xi ) log2 p(xi ) 2.55(比特 / 符号) i1