紧固件磷化处理的发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紧固件磷化处理的发展
磷化处理就是将金属浸在由磷酸、磷酸盐和其他成分组成的磷化液中,经过化学作用而在金属表面生成一种不溶性的磷酸盐层,俗称磷化膜。磷化膜主要由磷酸铁、锌、锰、钙等组成,厚度一般在5~20μm颜色一般由暗灰色到黑灰色,它的基体结合牢固,具有良好的润滑性、耐蚀性及较高的电绝缘性等。磷化处理所需设备简单,操做方便,成本低,生产效率高,被广泛地应用于机械、车辆、船舶、航空航天及家电等行业。
近年来,紧固件行业迅猛发展,越来越重视紧固件表面处理技术,为此,磷化处理也得到极大的发展。①磷化处理温度由高温向中温、低温、常温发展。一般情况下,高温磷化工艺形成的磷化膜结晶粗大,膜厚,磷化中产生的沉渣很多,消耗的热能大,挂灰严重。中温、低温、常温磷化形成的磷化膜均匀致密、膜薄,能耗低,物料消耗小。②磷化工艺向简单化发展。有的磷化产品可直接刷涂,如“四合一”、“三合一”等常温磷化产品。有的简化了工艺流程,磷化、钝化并为一道工序,而且产品的品质技术指标仍能达到、甚至有的指标超过了国家标准。③磷化产品组分复杂化。这样提高了磷化的品质,降低了磷化温度,加强了磷化工作液的稳定性。④减少污染、降低成本。重点解决磷化产品中的亚硝酸盐、重金属、磷酸盐、高温、酸雾给环境造成的污染,降低了为改善环境所付出的成本。
磷化工艺的确定,主要是以下两个方面。
第一,优选磷酸液。磷化膜的品质优劣主要表现在晶体粗细和致密程度、表面有无沉淀物及膜厚等方面,它们的差异直接影响磷化膜的品质。目前普遍采用磷化膜主要由铁系、锌系、锰系、锌钙系等磷酸盐溶液进行磷化,其中锌钙系性能最优良。
第二,控制工艺参数。关键要控制磷化温度(25~40℃),时间(3~20min),促进剂含量(3~5气点)及总酸度(20~40点)和游离酸度(0.8~3点)。
温度过太低则不能成膜或成膜速度慢,膜不完整,易泛黄;反之,膜粗大,耐蚀性低,同时槽液稳定性变差,沉渣增多。
促进剂含量低,成膜慢,膜层泛黄;反之,沉渣明显增多,膜层带彩色。
总酸度稍高,能加快磷化反应的进行,磷化膜薄而致密。但不宜过高,否则沉渣多,膜层挂灰。游离酸度低,有利于降低磷化温度和沉渣量;反之,沉渣增多,甚至不成膜。
其次,还要掌握槽液的调整方法。具备化验条件的企业,做到磷化前检测槽液总酸度、游离酸度、促进剂气点等,严格槽液管理。凭经验管理槽液效果也不错,槽液要定期排渣和更新。如每周排渣一次,脱脂槽、表面调整槽每月更新一次。
典型的磷化工艺
①脱脂(金属脱脂剂,60~65℃,3~4min)→热水洗(80~90℃)→酸洗(HCI:H2O=1:1,除锈加速剂适量,5~6min)→水洗→表面调整(表面调整剂5g/L,1min)→磷化(常温,冬天适当加温,6min)→二道水洗→烘干。
②脱脂(金属脱脂剂,30~40℃,5~10min)→水洗→酸洗(HCI:H2O=1:4,除锈加速剂适量,20~30min)→水洗→表面调整(表面调整剂5g/L,1min)→磷化(常温,20~30min)→水洗→烘干。
③脱脂(金属脱脂剂,60~70℃,3min)→热水洗(80~90℃)→表面调整(表面调整剂5g/L,1min)→磷化(30~40℃,10~20min)→水洗→烘干(脱脂前手工除去局部浮锈,浸渍脱脂后手工擦洗补充除油)。
④脱脂表面调整“二合一”(40~50℃,5~10min)→水洗→酸洗(HCI:H2O=1:1,10min)→水洗→(表面调整剂5g/L,1min)→磷化(30~40℃,20~30min)→水洗→烘干。
第一种工艺适宜油、锈较重的紧固件,工艺设计最佳,能获得优质磷化膜。其优点为:负载容量大,生产效率高。脱脂后热水洗,紧固件表面清洁。酸洗后水洗能洗净紧固件表面的残酸及吸附的缓蚀剂,避免抑制磷化反应,造成磷化不均匀。磷化后二道水洗,能洗掉磷化膜上的残留可溶性盐,避免引起涂层的早期起泡和脱落。
第二种工艺适宜油、锈中等的紧固件,工艺控制得当,也能获得较好的磷化膜。
第三种工艺适宜有油、无锈的紧固件,生产线上不设酸洗工艺,很适合气焊接异型件、紧固件磷化。
第四种工艺适宜油轻、锈重的紧固件,但采用了脱脂表面调整“二合一”工艺,使磷化质量受到影响,膜层粗糙、泛黄、挂灰等。
总之,紧固件磷化处理品质的优劣不仅取决于磷化工艺的选择和控制,而且取决于磷化工艺的管理。随着科学技术进步,紧固件磷化处理正朝着中低温、低成本、低能耗、无污染,以及磷化膜均匀致密、膜薄且耐蚀性能好的方向发展。
2、
冷镦钢盘条中珠光体类型组织的区分和判定
类别:技术问题
发布时间:2010/9/16 9:37:00
浏览数:1785
钢中的珠光体类型组织(简称珠光体)一般包括片状珠光体、索氏体、屈氏体等三种,它们通常呈现层片状的结构。在生产实践中如何明确辨别这三种组织确实还存在混乱和误区。我们做了一些更为详细的工作,与大家共同探讨。
1、关于珠光体的基本概念
1.1珠光体的片层间距
冷镦钢盘条中共析成分的奥氏体,冷却到临界点A1以下时,将分解为铁素体与渗碳体的混合物,称为珠光体,缓冷所得的珠光体呈片状,称为片状珠光体。片状珠光体中片层方向大致相同的区域称为珠光体团,在一个奥氏体晶粒内,可以形成几个珠光体团。珠光体团中相邻两片渗碳体(或铁素体)中心之间的(垂直)距离称为珠光体的片间距。片间距的大小主要决定于珠光体的形成温度,随着冷却速度的增加,奥氏体转变为珠光体的温度逐渐降低,亦即转变时的过冷度不断增大,则转变所得的珠光体片间距也不断减小。
一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;在更低的温度下形成的片间距为30~80nm的珠光体在生产上被称为屈氏体。
珠光体类型的组织的具体形成温度区间是:珠光体是临界点A1~650℃;索氏体是650~600℃;屈氏体是600~550℃。
实际上,关于珠光体类型组织的片间距的数值也存在不同的划分,比如,有的文献中的数据是珠光体:大于0.4;索氏体:0.2~0.4;屈氏体:小于0.2;还有的是,粗珠光体:0.6~0.7;珠光体:0.35~0.5;索氏体:0.25~0.3。也有人认为是:片层间距在0.1、0.25、0.6左右的珠光体类型组织分别为屈氏体、索氏体、片状珠光体。
对于珠光体层片间距区分范围的混乱,其实可以根据组织、性能之间的关系来明确。由于150nm对应着珠光体组织性能上的一个转折点,所以,有理由认为,一般所谓的片状珠光体的片间距约为150~450nm;索氏体的片间距约为80~150nm;屈氏体的片间距为30~80nm的划分是更为合理的。
1.2光学显微镜中的珠光体
一般所谓的片状珠光体,是指在光学显微镜(通常是500倍观察条件)下能够明显分辨出片层的珠光体;如果珠光体的片间距小到光镜难以分辨时,这种细片状珠光体被称为索氏体。实际上,用电子显微镜观察时,不论是索氏体还是在更低的温度下形成的屈氏体,都是层片状组织,只是片间距不同而已。不同的文献对于光学显微镜的放大倍数在分辨索氏体能力上的描述基本一致,在满足相应的数值孔径的基础上,认为400~500倍条件下,可以分辨片状珠光体,800~1000倍时可以分辨索氏体。根据GB/T13298-1991标准,通常辨别珠光体、屈氏体是在500倍放大倍数下进行观察,近似的判定是:如果放大倍数500倍下,铁素体和渗碳体难以分辨就是索氏体型珠光体。
但是,对于在光学显微镜中根据是否能分辨出片层状的结构来区分片状珠光体与索氏体我们认为存在需要探讨的必要。
2、生产实践中的应用
珠光体这样最基本的组织形态,在生产实践中确实有时得不到重视,很少碰到需要明确一个显微镜视场中是否同时存在片状珠光体和索氏体及判定方式的问题。但是,经常也