(完整版)单相桥式整流电路

合集下载

单相桥式可控整流电路

单相桥式可控整流电路
电阻负载时相同。
图3-7 单相全控桥带阻感负载时的电路及波形 (接续流管)
接入VD:扩大移相范围,不让 ud出现负面积。 移相范围:0 ~ 180 ud波形与电阻性负载相同 Id由VT1和VT3,VT2和VT4, 以及VD轮流导通形成。
uT波形与电阻负载时相同。
3.2 单相桥式可控整流电路
4. 带反电动势负载时的工作情况
u2
a)
VT4
VT3
id
L ud
R
•u2过零变负时,由于电感的作用晶 闸管VT1和VT4中仍流过电流id,并
不关断。
•至ωt=π+α 时刻,给VT2和VT3加
触 发 脉 冲 , 因 VT2 和 VT3 本 已 承 受 正电压,故两管导通。
•VT2 和 VT3 导 通 后 , u2 通 过 VT2 和
3.2 单相桥式可控整流电路
一、单相桥式可控整流电路
1.带电阻负载的工作情况
α
➢ 工作原理及波形分析
VT1和VT4组成一对桥臂,在u2正 半周承受电压u2,得到触发脉冲 即导通,当u2过零时关断。
VT2 和 VT3 组 成 另 一 对 桥 臂 , 在 u2 正 半 周 承 受 电 压 - u2, 得 到 触 发脉冲即导通,当u2过零时关断。
➢ 由于电感存在Ud波形出现负面积,使Ud下降。 ➢ α可调范围: 0 ~ 90
3.2 单相桥式可控整流电路
➢接入VD:扩大移相范围,不让ud 出现负面积。 ➢移相范围:0 ~ 180 ➢ud波形与电阻性负载相同 ➢Id由VT1和VT4,V2和VT3,以 及VD轮流导通形成。
图3-10 单相桥式全控整流电路, 有反电动势负载串平波电抗器、接续流二极管
T
i2 a

(完整版)单相桥式半控整流电路

(完整版)单相桥式半控整流电路

单相桥式半控整流电路1.带电阻负载的工作情况在单向桥式半控整流电路中,VT1和VD4组成一对桥臂,VD2和VT3组成另一对桥臂。

在u 正半周(即a 点电位高于b 点电位),若4个管子均不导通,负载电流id 为零,ud 也为零,VT1、VD4串联承受电压u ,设VT1和VD4的漏电阻相等,则各承受u 的一半。

若在触发角处给VT1加触发脉冲,VT1和VD4即导通,电流从电源a 端经VT1、R 、VD4流回电源b 端。

当u 过零时,流经晶闸管的电流也降到零,VT1和VD4关断。

在u 负半周,仍在触发延迟角处触发VD2和VT3,VD2和VT3导通,电流从电源b 端流出,经VT3、R 、VD2流回电源a 端。

到u 过零时,电流又降为零,VD2和VT3关断。

此后又是VT1和VD4导通,如此循环地工作下去。

晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。

整流电压平均值为α=0时, Ud =Ud0=0.9 U2。

α =180°时, Ud = 0。

可见,α角的移相范围为0--180°。

θ 的范围为0--180.向负载输出的直流电流平均值为:晶体管VT1和VD4,VD2和VT3轮流导电,流过晶闸管的电流平均值只有输出直流平均值的一半,即:流过晶闸管的电流有效值为:变压器二次侧电流有效值I2与输出直流电流有效值I相等,为2.带RL负载的工作情况先不考虑(续流二极管VDR )1.每一个导电回路由1个晶闸管和1个二极管构成。

2.在u2正半周,处触发VT1,u2经VT1和VD4向负载供电。

3.u2过零变负时,因电感作用使电流连续,VT1继续导通,但因a点电位低于b点电位,电流是由VT1和VD2续流,ud=0。

4.在u2负半周,处触发触发VT3,向VT1加反压使之关断,u2经VT3和VD2向负载供电。

5.u2过零变正时,VD4导通,VD2关断。

VT3和VD4续流,ud又为零。

续流二极管VDR1若无续流二极管,则当α突然增大至180或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。

单相桥式全波整流电路

单相桥式全波整流电路

整流电流大于IV
额定反向工作电压大于VRM
查晶体管手册,可选用整流电流为3A,额定反向工作电压 为100V的整流二极管2CZ12A(3A/100V)四只。
三、知识拓展
如果你的公司制造二极管,为了方 便使用者组装桥式整流电路,你有什么 好主意?
练习:QL型全桥堆的连接方法
T
V1
RL
全桥堆的正、负极端分别接负载的正、 负极。两个交流端接变压器输出端。
教学方法: 讲解法、作图法
过程教学: 一、复习引入
复习单相半波整流电路和单相全波整流电 路。
旧课回顾
1.单相半波整流电路
有什么优点和缺点? 优点:电路简单,变压器无抽头。 缺点:电源利用率低,输出电压脉动大。
旧课回顾
2.单相全波整流电路
有什么优点和缺点? 优点:整流效率高,
输出电压波动小。
缺点:变压器必须有中心抽头,
v1
负半-周负: 半-周:V3
TT
- - V4
V1
+ + V3
V4 V1 V21、桥式整流电路工作原理
RL RL 正半周:
V3 V2
电流通过V1、V3,V2、 V2V4截止。电流从右向左
通过负载。
V4 V1 V1负半周:
RL RL 电流通过V2、V4,V1、 V3截止。电流从右向左
通过负载。
V3 V2
§1.3.3 单相桥式全波整流电路
单相桥式全波整流电路
课题: §1.3.3 单相桥式全波整流电路
教学要求: 1、单相桥式全波整流电路的组成 2、整流原理 3、波形图 教学重点: 1、桥式全波整流电路的组成 2、整流原理分析 教学难点: 1、整流原理分析 2、整流电路中涉及输出电流、电压的计算

单相桥式全控整流电路

单相桥式全控整流电路

晶闸管额定电压:
UVTrated k U sav VTmax 509 V
(ksav 1.5)
17
电力电子技术
(3)移相:改变触发脉冲出现的时刻,即改变α的大小,叫做 移相。改变α的大小,也就控制了整流电路输出电压的大小, 这种方式也叫做“相控”。
4
单相桥式全控整流电路
(4)移相范围:改变α使输出整流电压平均值从最大值降到最 小值(零或负最大值),α的变化范围叫做移相范围。单相 桥式整流电路电阻负载时移相范围为180º。
Id
变压器二次交流电流有效值 I2rms Id
10
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作波形
11
单相桥式全控整流电路
单相桥式全控整流电路带反电动势负载的工作分析
由于存在反电势负载,晶闸管提前关断
停止导电角:=arcsin E
2U 2rm s
当α≥δ时,输出直流电压
电感有抗拒电流变化的特性,大电感负载状态由于电 感的储能作用,负载id始终连续且电流近似为一直线。
电路稳态工作时,每组晶闸管均在另一组晶闸管触发
导通时才换流关断,每组晶闸管导通时间均为180º。
8
9
单相桥式全控整流电路
大电感负载运行参数分析
交流电源电压 u2 2U2 sin t
整流输出电压平均值
负载整流电压平均值Udav
Udav
1 π
2U2rmssintd(t)
2U π
2rm
s
(1
c
os
)
0.9U2rm
s
1cos
2
直流电流平均值Idav
Idav
Udav R
0.9U2rms 1 cos

单相桥式全控整流电路

单相桥式全控整流电路
3.1.2 单相桥式全控整流电路
◆基本数量关系 ☞☞和晶整闸 流222UU管电2。2 承压受平的均最 值大为:正向电压和反向电压分别为
Ud
1
2U2 sintd(t) 2
2U 2
1 cos 2
0.9U 2
1 cos 2
(3-9)
α=0时,Ud= Ud0=0.9U2。α=180时,Ud=0。可见,α角的 移相范围为180。 ☞向负载输出的直流电流平均值为:
U2=100 =141.4(V) 流过每个晶2闸管的电流的有效值为: IVT=Id∕ =6.36(A) 故晶闸管的额定电压为: UN=(2~3)×141.4=283~424(V) 晶闸管的额定电流为: IN=(1.5~2)×6.36∕1.57=6~8(A) 晶闸管额定电压和电流的具体数值可按晶闸管产品系列参数选取。
O
id
t
Id
O i2
Id
Id
t
O
t
图3-9 ud、id和i2的波形图
8/131
3.1.2 单相桥式全控整流电路
②整流输出平均电压Ud、电流Id,变压器二次侧电流有效值I2分别为
Ud=0.9 U2 cos=0.9×100×cos30°=77.97(A)
Id =(Ud-E)/R=(77.97-60)/2=9(A) I2=Id=9(A) ③晶2闸管承受的2最大反向电压为:
2/131
3.1.2 单相桥式全控整流电路
■带阻感负载的工作情况
◆电路分析
☞在u2正半周期
u
2
√触发角处给晶闸管VT1和VT4加触
O
t 发脉冲使其开通,ud=u2。
ud
√负载电感很大,id不能突变且波形近
O

(完整word版)单相桥式全控整流电路的设计

(完整word版)单相桥式全控整流电路的设计

目录1 设计方案及原理 (1)原理方框图 (1)主电路的设计 (1)主电路原理说明 (2)整流电路参数的计算 (2)2 元器件的选择 (3)晶闸管的选用 (3)变压器的选用 (4)3 触发电路的设计 (4)对触发电路的要求 (4)3.2 KJ004 集成触发器 (4)4 保护电路的设计 (5)过电压保护 (6)过电压保护 (6)过电流保护 (7)电流上涨率 di/dt 的克制 (7)4.1.4 电压上涨率 du/dt 的克制 (7)5 仿真剖析与调试 (8)成立仿真模型 (8)仿真结果剖析 (9)心得领会 . (11)参照文件 . (12)附录 . ...................................................... 错误!不决义书签。

单相桥式全控整流电路的设计1设计方案及原理1.1 原理方框图系统原理方框图如1-1 所示:触发电路保护电路驱动电路整流主电路负载图 1-1系统原理方框图1.2 主电路的设计主电路原理图以下列图1-2 所示:图 1-2单相桥式全控整流电路原理图1.3 主电路原理说明在电源电压 u2 正半周时期, VT1、VT4 蒙受正向电压,若在触发角 α 处给 VT1、VT4加触发脉冲, VT1、VT4导通,电流从电源 a 端经 VT1、负载、 VT4流回电源 b 端。

当 u2 过零时,流经晶闸管的电流也降到零, VT1和 VT4关断。

在电源电压 u2 负半周时期,仍在触发延缓角 α 处触发 VT2和 VT3, VT2 和 VT3导通,电流从电源 b 端流出,经过 VT3、 R 、 VT2流回电源 a 端。

到 u2 过零时,电流又降为零, VT2 和 VT3 关断。

今后又是 VT1和 VT4导通,这样循环的工作下去。

该电路的移向范围是0―π。

此外,因为该整流电路带的是反电动势负载,因此不是正半轴的随意时辰都能开通晶闸管的,要开通晶闸管一定在沟通电刹时价大于E 的时候去触发。

单相桥式全控整流电路

单相桥式全控整流电路

ud=0) ud=u2 ud=0 ud=-u2 ud=0
输出电压波形同电阻性负载,电路有自然续流功能 移相范围: 0~π; 导通角θ=π-α
㈡各电量计算
1、负载
Ud

0.9 1
cos
2
Id

Ud Rd
2、晶闸管
I dT

1 2
Id
IT
1 2
流二极管 IdD IdT
ID IT U DM 2U 2
㈢存在问题:失控现象
若突然关断触发脉冲或将α迅速移到 180°,可能出现一只晶闸管直通,两 只整流二极管交替导通的电路失去控制 的现象,即失控现象。 此时输出变成单相不可控半波整流电压 波形,导通的晶闸管会因过热而损坏。 解决办法:接续流二极管VD
㈣接续流二极管VD后电路分析
在的负半周 0<ωt<α期间 VT1~VT4都不导通 ωt=α 时刻 触发 0<ωt<α期间 VT2、VT4导通 ωt=π 时刻 VT2、VT4关断
结论
1、在交流电源电源u2的正、负半周里, VT1、 VT3和 VT2、VT2两组晶闸管轮流触发导通,将 交流电转变成脉动直流电;
2、改变 α 角度大小,ud、id波形相应改变;
2、参数计算:
•输出电流平均值
Id

Ud E Rd
•其它参数计算与大电感负载时相同
2.3 单相桥式半控整流电路
一、电路结构(flash)
将单相桥式全控整流电路中的一对晶 闸管换成两只整流二极管即可
工作特点:晶闸管需触发才导通;整 流二极管承受正向电压时会自然(换 相)导通
二、电路工作原理及参数计算
Id

Ud R

单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理

单相桥式全控整流电路基本工作原理该电路的基本工作原理如下:1.开通晶闸管:当输入交流电信号通过变压器降压后,将其接入晶闸管的两个交流输入端,晶闸管的门极接入触发控制电路。

在晶闸管通态分析中,容易发现当控制电路输出触发信号时,晶闸管正向导通,出现一个正导通的主电路。

此时,电流会通过晶闸管并进入负载电路。

2.关断晶闸管:在晶闸管正向导通后,电池使负载电路到负电压,负载电路从正向导通瞬间开始以反向电压工作,并保持该反向电压直到接下来正向导通的晶闸管。

3.换流:当正向导通的晶闸管关闭后,由于变压器的储能作用,晶闸管的另一对形成了正导通的主电路。

同样,电流会通过晶闸管并进入负载电路。

通过四个晶闸管的交替工作,即实现了电流的不间断输出,并将交流电信号变换为直流电信号。

4.触发控制:晶闸管的触发控制电路可以通过改变晶闸管的触发脉冲的时间、幅度和频率,来实现对晶闸管导通的控制。

具体来说,控制电路可以感知输入交流电信号的特性,并产生与之匹配的触发电压和触发时间,以确保晶闸管在合适的时机导通,并实现需求的电流输出。

5.平滑滤波:为了减小输出直流电的波动,通常在单相桥式全控整流电路的输出端串联一个滤波电路,通过电感和电容元件对输出电流进行平滑滤波,使得输出电流更加稳定。

-输出电流可以通过控制晶闸管的触发角度和宽度来实现对电路负载的精确控制。

-该电路可以实现电压和电流的双向控制,适用于多种应用场景,如交流调压、变频调速和直流供电等。

-由于使用了可控硅元件,电路具有较高的效率和可靠性。

需要注意的是,单相桥式全控整流电路在实际使用中需要根据具体需求来选择合适的晶闸管和控制电路参数,以实现期望的工作效果。

此外,由于晶闸管具有半导体器件的特性,需要采取一定的保护措施,以防止过流和过压等情况的发生。

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。

电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。

1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。

两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。

4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。

此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。

晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相桥式整流电路

单相桥式整流电路
单相桥式整流电路
(Single-phase Bridge Rectifier Circuit)
张小华
单相桥式整流电路的工作原理
u2正半周时
电流通路
+
T
+
u1
A D4
u2
D1
D3
RL uo
B
D2
-
-

单相桥式整流电路
单相桥式整流电路的工作原理
u2负半周时 电流通路
-
T
u11
A D4
u2
D1
D3
+
RL
⒈单相桥式整流电路的组成、工作原理; ⒉电路主要参数的计算;
9
思考与练习
1.根据实际情况设计并制做一个单相桥 式整流电路。
2.电路中若有一个二极管反接、或虚焊、 或烧毁,有何现象?分析其原因。
3.查阅整流电路其它方面的应用,并相 互交流。
10
电路需完善的问题
Uo是脉动的直流输出,如何变为平滑 输出,趋近标准直流呢?
∴ U2=Uo/0.9=60/0.9≈66.7(V)
7
应用举例
⑵ 流过二极管的平均电流为:
ID IO 2 4A 2 2( A)
二极管承受的反向峰值电压为: U RM 2U2 1.41 66.7 94(V )
查手册可选型号为2CZ12A(3A/100V) 二极管四只。
8
小结
⑵二极管工作参数
平均电流(average current)
ID

1 2
IO ( A)
反向峰值电压(reverse peak voltage)
U RM 2U 2 (V )

单相桥式全控整流电路(阻感性负载)

单相桥式全控整流电路(阻感性负载)

1、单相桥式全控整流电路(阻-感性负载)1、1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管就是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1、单相桥式全控整流电路(阻-感性负载)1、2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波得(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波得ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b →Tr得二次绕组→a流通,此时负载上有输出电压(ud=u2)与电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波得(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波得ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr得二次绕组→b流通,电源电压沿正半周期得方向施加到负载上,负载上有输出电压(ud=-u2)与电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1、3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3、单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟α/360*0、02,如图4图4、单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0、02,占空比10%,时相延迟(α+180)/360*0、02,如图5图5、单相桥式全控整流电路脉冲参数设置1、4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相桥式整流电路图及工作原理 (含参数计算)

单相桥式整流电路图及工作原理 (含参数计算)

单相桥式整流电路图及工作原理 (含参数计算)
1.工作原理单相桥式整流电路是最基本的将交流转换为直流的电路,其电路。

图10.1.2单相桥式整流电路(a)整流电路 (b)波形图在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。

根据图10.1.2(a)的电路图可知:
当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。

当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。

在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。

单相桥式整流电路的波形图见图10.1.2(b)。

2.参数计算根据图10.1.2(b)可知,输出电压是单相脉动电压。

通常用它的平均值与直流电压等效。

流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。

此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。

3.单相桥式整流电路的负载特性曲线单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线。

曲线的斜率代表了整流电路的内阻。

图10.1.3 负载特性曲线。

单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)

单相桥式全控整流电路(纯电阻_阻感_续流二极管_反电动势)

电力电子技术实验报告实验名称:单相桥式全控整流电路的仿真与分析班级:自动化091组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相桥式全控整流电路(电阻性负载) .............................................. 错误!未定义书签。

1. 电路的结构与工作原理 (1)2. 单相桥式全波整流电路建模 (2)3. 仿真结果与分析 (4)4. 小结 (6)二. 单相桥式全控整流电路(阻-感性负载) ............................................. 错误!未定义书签。

1. 电路的结构与工作原理................................................................. 错误!未定义书签。

2. 建模................................................................................................. 错误!未定义书签。

3. 仿真结果与分析............................................................................. 错误!未定义书签。

4. 小结................................................................................................. 错误!未定义书签。

三. 单相桥式全控整流电路(反电势负载)......................................... 错误!未定义书签。

1. 电路的结构与工作原理................................................................. 错误!未定义书签。

单相桥式全控整流电路

单相桥式全控整流电路

1. 单相桥式全控整流电路(阻-感性负载)1.1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1. 单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4. 单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5图5. 单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 单相整流、滤波电路
复习:
你知道吗?我们现在用的电源是什么电源?
什么是交流电?
➢大小和方向都随时间作周期性变化的电流或电压——交流 电流或交流电压——统称为交流电。
➢最常用的是交流电:大小和方向都随时间按正弦规律变 化。——正弦交流电。
实际电子电路需要的是直流电流。
整流电路 所以就需要把交流电变换成直流电流——

第三节 整流电路
➢整流——将交流电流变换成单向脉动电流的过程 ➢整流电路——实现这种功能的电路
利用二极管的单向导电特性可实现单相整流和三相整流。 单相整流电路多用于小容量(200W以下)整流装置中,三相整流 电路在大容量整流装置中
二极管可以看成是理想开关:当二极管导通时相当于开关闭合,截
止时相当于开关断开。也就是说我们在分析电路时可以忽略二极管正 向导通电阻。
4、单相半波整流电路的二极管的选用
(1)最大整流电流: IFM IL
(2)最高反向工作电压:VRM 2V2
二、单相桥式全波 整流电路
单相桥式全波整流电路
整流的目的:变交流电为脉动的直流电
复习:单相半波整流电路
半波整流电路优点电路简单,使用元件 少,缺点是输出电压波动大,效率低。
二、单相桥式全波整流电路
一、单相半波整流电路 1.电路组成
2.工作原理
第三节 整流电路
变压器、 二极管和 用电器(负载电阻)
正半周时,设A为“+”, B为“-”V处于导通有 电流流过负载。如果忽 略二极管的正向压降, 此时负载上的电压vL=v2。
2.工作原理
第三节 整流电路
负半周时,A为负,B 为正,V处于截止。忽 略二极管的漏电流, 此期间无电流流过负 载RL,此期间负载上 的电压vL=0。
本节重点
(1)会画单相桥式全波整流电路 (2)理解单相桥式整流电路的工作原理

工作过程
U2正半周时,a端正,b 端负,电流由a经VD1、RL、 VD3到b,因二极管正向压降 很小,负载电压uL≈u2。
U2负半周时, a端负,b端正,电流由b经VD2、RL、 VD4到a,因二极管正向压降很小,负载电压uL≈u2。
由此可见,在输入电压v2变化一个周期 内,二极管就象一个自动开关,v2为正
半周——开关接通;v2为负半周——开 关断开。因此,负载RL上得到的是方向 不变、大小变化的脉动直流电压vL。
在输入电压为单相正弦波时,负载RL上 得到的只有正弦波的半个波,故称为单 相半波整流电路。
3.负载上的直流电压和电流
最大整流电流: IFM IL
最高反向工作电压: VRM 2U 2
第三节 整流电路
思考题:
如果把二极管反接呢?
例题:
第三节 整流电路
下图所示电路中,若负载电阻RL=0.9KΩ,负载电流 I1=10mA试求:
(1)电源变压器次级电压V2; (2)整流二极管承受的最大反向电压VRM。
小结:
第三节 整流电路
负载上的直流电压和电流
负载电压:UL 0.9U 2
负载电流: IL UL 0.9 U 2
RL
RL
练习:有一变压器的二次侧电压的有效值为22V,若用单相
桥式全波整流电路整流,则输出的电压为多少?若负载为纯
电阻11欧姆,则输出电流为多少?
解:有题意知U2=22V,RL=11Ω。
UL 0.9U 2 0.922V 19.8V
(3)单相桥式全波整流电路,如果负载电流为10A,则流过 每只二极管的电流是( C ) A、10A B、6A C、5A D、2.5A
单相桥式全波整流电路
课后练习
(1)画出单相桥式全波整流电路图。 (2)同学之间相互讲解整流过程。
1、单相半波整流电路的结构 2、单相半波整流电路的工作原理
(1)无论是正半波还是负半周流过负载的电流的方向是不变 的——整流; (2)电流的方向不变但是大小还要随时间周期性变化——脉 动直流电。
3、单相半波整流电路的输出电压和电流
(1)输出电压:VL 0.45V2
(2)输出电流:I L
VL RL
0.45V2 RL
可求得变压器二次侧电压:
U 2 UL 15V 16.7V 0.9 0.9
单相桥式全波整流电路
练习题: (1)将交流电变成单方向脉动直流电的过程为( 整 流 )
(2)单相桥式全波整流电路,如果电源变压器二次侧电压为 100V,则负载电压是( C ) A、100V B、45V C、90V D、60V
第三节 整流电路
① 负载上的直流电压VL (割补法)
UL 0.45U 2
② 流过负载的直流电流是:
IL UL 0.45U 2
RL
RL
I I ③ 流过二极管的正向电流和流过负载的电流相等。即:V L
④ 二极管截止时,它承受的反向峰值电压是:
VRM 2U 2 1.4U 2
所以正确选用二极管,必须满足:
IL UL 0.9 U 2 0.9 22V 1.8A
RL
RL
11
单相桥式全波整流电路
例题 有一个直流负载,它的额定电压是15V,额 定电流是1A。若用单相桥式全波整流电路供电, 求变压器的二次电压应为多少?
单相桥式全波整流电路
解:根据题意可知:负载电压:UL=15V; 负载电流:IL=1A。
相关文档
最新文档