初三数学频率与概率(一)

合集下载

九年级数学上册(HS)频率与概率

九年级数学上册(HS)频率与概率

当试验的所有可能结果不是有限个,或各种可能结果发 生的可能性不相等时,常常是通过统计频率来估计概率, 即在同样条件下,大量重复试验所得到的随机事件发生 的频率的稳定值来估计这个事件发生概率.
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等满足两张牌的数 字之积为奇数(记为事件A)的有 (1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这9种情况,所以P(A)= 9 . 1
种情况,小于等于乙的有7种情况,
∴P(甲胜)= 7 ,P(乙胜)=
5

12
12
∴甲、乙获胜的机会不相同.
课堂小结
当一次试验要涉及两个因素,并且可能出现的结果数目较 多时,为了不重不漏的列出所有可能的结果,通常采用列表 的办法.
当一次试验要涉及两个以上因素,并且可能出现的结果数 目较多时,为了不重不漏的列出所有可能的结果,通常采用 画树状图的办法.
九年级数学上(HS) 教学课件
25.2 随机事件的概率
第2课时 频率与概率
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.知道通过大量试验得到的频率可以作为事件发生概率的估计 值;(重点)
2.学会用列表法、画树形图发计算概率. (难点)
导入新课
回顾与思考 • 必然事件 在一定条件下必然发生的事件. • 不可能事件 在一定条件下不可能发生的事件. • 随机事件 在一定条件下可能发生也可能不发生的事件. 概率的定义 事件A发生的频率接近于某个常数,这时就把 这个常数叫做事件A的概率,记作P(A).

【中考小复习配套课件】北师大九年级上第六章频率与概率

【中考小复习配套课件】北师大九年级上第六章频率与概率

数学·新课标(BS)
上册第六章复习 ┃ 考点攻略
[解析] 要确定选择哪个袋子成功的机会大, 应 计算从每个袋子中取出黑球的概率的大小.在甲袋 9 9 中, 取出黑球) P( = = ; 在乙袋中, 取出黑球) P( 21+9 30 90 = 9 9 9 = . 因为 < , 所以选择乙袋成功 190+90+10 29 30 29
考查意图
反比例函数
统计与概率
2,4,5,6,7,11,13,17,18,19,22,23
1,3,8,9,12,14,15,20,21
综合
10,16,24
分类讨论、数形结合
亮点
第16题属于探索图形规律,第24题结合动点考查反比例函数的性质.
数学·新课标(BS)
上册阶段综合测试三(月考)┃ 试卷讲练 【针对第8题训练 】 1.从-2,-1,2这三个数中任取两个不同的数作为点的坐 1 标,该点在第四象限的概率是________. 3

代数 知识与 技能 几何 统计与概率 投影与视图
9、10、16、23、24
2、6、7、11、17、20、23、24 4、5、8、10、13、14、16、21、22 9、15、19 1、3、12、18
数学·新课标(BS)
九年级上册综合测试┃ 试卷讲练
思想方法
亮点
从特殊到一般,数形结合思想 第10题结合动点考查,第14题考查图形的拼接,第16题考查 图形规律探索,第22题以阅读理解的方式考查学生的认知能力 和理解能力.
[注意] 用列表法或树状图法求概率时应注意各种情况发生的 可能性务必相同.
数学·新课标(BS)
上册第六章复习 ┃ 知识归类 2.投针试验 (1)获得复杂随机事件发生的概率的方法是试验估计. (2)投针试验可以用来估计圆周率π的值. (3)具有广泛应用性的蒙特卡罗方法主要应用了概率和统计 两部分知识. 3.试验估算

人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计

人教版数学九年级上册25.3《用频率估计概率(第1课时)》教学设计
2.培养学生严谨、踏实的科学态度,通过大量实验数据的分析,让学生认识到数学知识的客观性和科学性。
3.的意识,提高学生的实践能力。
4.培养学生的团队合作精神,让学生在合作交流中学会尊重他人、倾听他人意见,提高人际交往能力。
5.培养学生勇于探索、不断进取的精神,鼓励学生在面对困难时保持积极向上的态度,增强克服困难的信心。
3.学生在合作交流中,如何有效地倾听、表达、沟通,提高团队合作效率。
教学设想:
1.创设情境,引入新课:通过生活中的实例,如彩票中奖概率、投篮命中率等,引出频率的概念,激发学生的兴趣。
2.自主探究,理解概念:让学生自主进行实验,收集数据,计算频率,进而引导学生发现频率与概率之间的关系。
3.合作交流,解决问题:分组讨论,让学生在小组内分享实验过程和结果,互相借鉴,提高解决问题的能力。
2.解释频率与概率的关系:通过实际例子,如抛硬币实验,引导学生发现频率在大量实验中趋于稳定,且稳定值接近于概率。
3.操作演示:教师进行实验演示,如抛硬币、掷骰子等,让学生观察并记录实验数据,计算频率。
4.方法讲解:教师详细讲解如何利用频率来估计概率,以及在实际操作中需要注意的问题。
(三)学生小组讨论,500字
(五)总结归纳,500字
在总结归纳环节,教师引导学生进行以下思考:
1.回顾频率的定义,总结频率与概率之间的关系。
2.梳理用频率估计概率的方法,强调实验数据的重要性。
3.反思本节课的学习过程,分享学习心得和收获。
4.提醒学生课后继续思考频率与概率的关系,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的用频率估计概率的知识,检验学生对课堂内容的掌握情况,特布置以下作业:
3.实践性:作业要注重实践,引导学生将所学知识应用于实际问题,提高学生的应用能力。

§6-1-1频率与概率(1)频率和概率的关系(liushuling )

§6-1-1频率与概率(1)频率和概率的关系(liushuling )

(1,5) (1,6) (2,5) (2,6) (3,5) (3,6) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)
概率的综合应用:
3.有长度分别为2cm,2cm,4cm,5cm的小棒 各一根,放在不透明的纸盒中,每次从中任 意取一根小棒(不放回),取了三次,取得 的三根小棒恰好能构成一个三角形的概率是 多少?
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
3
4 5 6
(6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
(2) 取3枚硬币:在第一枚的正面贴上 红色标签,反面贴上蓝色;在第二枚的正 面贴上蓝色标签,反面贴上黄色;在第三 枚的正面贴上黄色标签,反面贴上红色, 同时抛三枚硬币,落地后颜色各不相同的 机会有多大?
概率是 2/3 ; (2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 ; (3)随机从中一次摸出两个球,两球 均为红球的概率是 。
(2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 4/9 ;
红球 红球 红球 红球 兰球 兰球 1 2 3 4 5 6
2一般地,不确定事件发生的可能性 是有大小的。 表示方式一:
1(或100%) 必然事件发生的可能性:_______________ 不可能事件发生的可能性:____________ 用0来表示 不确定事件发生的可能性是 大于0小于1的 。
表示方式二:
用线段图可表示为:
0
不可能 发生
½(50%)
明白了
懂得了
合作交流的重要性

初三数学上学期同步讲解:用频率估计概率

初三数学上学期同步讲解:用频率估计概率

用频率估计概率一、知识点1. 用频率可以估计概率一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么事件A发生的概率P(A)=p=m n.二、标准例题:例1:做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是()A.概率等于频率B.频率等于12C.概率是随机的D.频率会在某一个常数附近摆动【答案】D【解析】A、概率不等于频率,A选项错误;B、频率等于正面朝上的次数总次数,B选项错误C、概率是稳定值不变,C选项错误D、频率会在某一个常数附近摆动,D选项是正确的。

故答案为:D总结:此题主要考查了概率公式,以及频率和概率的区别。

例2:“五一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落子在”铅笔“区域的概率大约是0.70B.假如你去转动转盘一次,获得“铅笔”概率大约是0.70C.如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次D.转动转盘20次,一定有6次获得“文具盒”【答案】D【解析】A、频率稳定在0.7左右,故用频率估计概率,指针落在“铅笔”区域的频率大约是0.70,故A选项正确;由A可知B、转动转盘一次,获得铅笔的概率大约是0.70,故B选项正确;C、指针落在“文具盒”区域的概率为0.30,转动转盘2000次,指针落在“文具盒”区域的次数大约有3000×0.3=900次,故C选项正确;D、随机事件,结果不确定,故D选项正确.故选D.总结:本题要理解用面积法求概率的方法.注意概率是多次实验得到的一个相对稳定的值.例3:下表记录了一名球员在罚球线上投篮的结果.(1)计算表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?【答案】(1)见解析;(2)0.5.【解析】(1)根据题意得:28÷50=0.56;60÷100=0.60;78÷150=0.52;104÷200=0.52;123÷250≈0.49;152÷300≈0.51;350÷251≈0.50;见下表:(2)由题意得:投篮的总次数是50+100+150+200+250+300+350=1400(次),投中的总次数是28+60+78+104+123+152+251=796(次),则这名球员投篮的次数为1400次,投中的次数为796,故这名球员投篮一次,投中的概率约为:796 1400≈0.5.故答案为:0.5.总结:本题考查利用频率估计概率,解题的关机爱你是掌握利用频率估计概率.例4:为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.【答案】(1)故答案为100,30;(2)见解析;(3)0.45.解:(1)5415100360÷=,所以样本容量为100;B组的人数为100153515530----=,所以3010030100a=⨯=,则30a=;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为153045+=,样本中身高低于160cm的频率为450.45 100=,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.总结:本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.三、练习1.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是1 2【答案】D解:小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23是错误的,3次试验不能总结出概率,故选项A错误,某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,但不一定有5张中奖,故选项B错误,某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12不正确,中靶与不中靶不是等可能事件,一般情况下,脱靶的概率大于中靶的概率,故选项C错误,小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的可能性是12,故选项D正确,故选:D.2.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:下面有四个推断:①当移植的树数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是()A.①③B.①④C.②③D.②④【答案】C【解析】解:①当移植的树数是1 500时,表格记录成活数是1 335,这种树苗成活的概率不一定是0.890,故错误;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900,故正确;③若小张移植10 000棵这种树苗,则可能成活9 000棵,故正确;④若小张移植20 000棵这种树苗,则不一定成活18 000棵,故错误.故选:C.3.某运动员投篮5次,投中4次,则该运动员下一次投篮投中的概率为()A.15B.14C.45D.不能确定【答案】D【解析】因为投中是不确定的事件,所以下次投篮投中的概率不能确定.故选:D4.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【答案】B【解析】解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1-20%-50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.5.在利用正六面体骰子进行频率估计概率的实验中,小闽同学统计了某一结果朝上的频率,绘出的统计图如图所示,则符合图中情况的可能是()A.朝上的点数是6的概率B.朝上的点数是偶数的概率C.朝上的点数是小于4的概率D.朝上的点数是3的倍数的概率【答案】D【解析】A. 掷一枚正六面体的骰子,出现6点的概率为16,故此选项错误;B. 掷一枚正六面体的骰子,点数为偶数的概率为12,故此选项错误;C.掷一枚正六面体的骰子,点数小于4的概率为12,故此选项错误;D.掷一枚正六面体的骰子,点数为3的倍数的概率为10.333,故此选项正确;6.对某批乒乓球的质量进行随机抽查,结果如下表所示:当n越大时,优等品率趋近于概率______.(精确到0.01)【答案】0.82.【解析】解:由表可知,随着乒乓球数量的增多,其优等品的频率逐渐稳定在0.82附近,在这批乒乓球中任取一个,它为优等品的概率大约是0.82,故答案为:0.82.7.有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是______.【答案】20【解析】解:石块标记3的面落在地面上的频率是15100=320,于是可以估计石块标记3的面落在地面上的概率是3 20.故答案为:3 20.8.某篮球运动员在同一条件下进行投篮训练,结果如下表:投中的频率根据上表,该运动员投中的概率大约是__________(结果精确到0.01).【答案】0.85【解析】由表格可知,该运动员大量投篮时,投中的频率稳定在0.85附近,所以该运动员投中的概率大约是0.85. 故答案为:0.85.9.某林场要考察一种幼树在一定条件下的移植成活率,在移植过程中的统计结果如下表所示:在此条件下,估计该种幼树移植成活的概率为_________________(精确到0.01);若该林场欲使成活的幼树达到4.3万棵,则估计需要移植该种幼树_________万棵.【答案】0.86 5【解析】(1)概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.86.(2)由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定. 当移植总数为15000时,成活率为0.861,于是可以估计树苗移植成活率为0.86, 则该林业部门需要购买的树苗数量约为4.3÷0.86=5万棵. 10.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. (1)他们在一次实验中共做了60次试验,试验的结果如下:①填空:此次实验中“3点朝上”的频率为________;②小红说:“根据实验,出现3点朝上的概率最小.”她的说法正确吗?为什么?(2)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.【答案】(1)①110;②小红的说法不正确,理由详见解析;(2)16. 【解析】解:(1)①∵实验中“3点朝上”的次数有6次,总数为60, ∴此次实验中“3点朝上”的频率为6÷60=110; ②小红的说法不正确,∵利用频率估计概率实验次数必须比较多,重复实验,频率才慢慢接近概率,而她的实验次数太少,没有代表性,∴小红的说法不正确;(2)两枚骰子朝上的点数之和可能情况:,,,,, ,∴和为2的有1种, 和为3的有2种, 和为4的有3种, 和为5的有4种, 和为6的有5种, 和为7的有6种, 和为8的有5种, 和为9的有4种, 和为10的有3种, 和为11的有2种, 和为12的有1种,两枚骰子朝上的点数之和为7时的概率最大, 则最大概率为:6÷36=16.11.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3. (1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数. 【答案】(1)50;(2)60 【解析】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.3)=50(个) (2)设小明放入红球x 个.根据题意得:200.5100xx+=+解得:x =60(个).经检验:x =60是所列方程的根. 答:小明放入的红球的个数为60.12.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计当n很大时,摸到白球的频率将会接近(精确到0.1);(2)假如摸一次,摸到黑球的概率P=;(3)试估算盒子里黑颜色的球有多少只.【答案】(1)0.6;(2)0.4;(3)20.【解析】(1)当n很大时,摸到白球的频率将会接近0.6(2)摸到黑球的概率P=1-0.6=0.4(3)盒子里黑颜色的球有50×0.4=20.13.“五一”期间,某商场推出“购物满额即可抽奖”活动.商场在抽奖箱中装有1个红球、2个黄球、3个白球、8个黑球,每个球除颜色外都相同,红球、黄球、白球分别代表一、二、三等奖,黑球代表谢谢参与.获得抽奖机会的顾客每次从箱子中摸出一个球,按相应颜色对应等级兑换奖品,每次所摸得球再放回抽奖箱,摇匀后由下一位顾客抽奖.已知小明获得1次抽奖机会.(1)小明是否一定能中奖___________;(填是、否)(2)求出小明抽到一等奖的概率;(3)在这个活动中,中奖和没中奖的机会相等吗?为什么?如果不相等,可以如何改变球的个数,使中奖和没中奖的机会相等?(只写一种即可)【答案】(1)否;(2)小明抽到一等奖的概率是114;(3)见解析.【解析】解:(1)否;(2)球的个数有123814+++=(个),而红球有1个所以小明抽到一等奖的概率是1 14;(3)因为黑球的个数有8个,所以没有中奖的概率是84 147=,则中奖的概率是43177 -=,因为43 77≠,所以中奖和没中奖的机会不相等,可以减少2个黑球使中奖和没中奖的机会相等.(答案不唯一).14.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?【答案】(1) 0.58;(2) 0.6;(3)白球12(个),黑球8 (个)【解析】(1)a=290500=0.58,故答案为:0.58;(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60;(3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).答:黑球8个,白球12个.15.一个袋中装有7个红球,8个黑球,9个白球,每个球除颜色外都相同.(1)求从袋中随机摸出一个球是红球的概率;(2)若先从袋中拿出7个红球和(5)m m>个黑球,再从剩下的球中摸出一球.①若事件“再摸出的球是白球”为必然事件,求m的值;②若事件“再摸出的球是白球”为随机事件,求m 的值,并求出这个事件概率的最小值. 【答案】(1)724;(2)①8m =;②6m =,911. 【解析】解:(1)从袋中随机摸出一个球是红球的概率7778924==++.(2)①由题意袋中,都是白球,8m =. ②由题意6m =或7或8,当6m =时,这个事件概率的最小,最小值911=. 16.小明在一个不透明的口袋里装若干个白球,要求本学习小组的其他成员在不允许将球倒出来数的情况下,估计白球的个数.小组成员小华应用了统计与概率的思想和方法解决了这个问题.他拿了8个黑球放入口袋里,将球搅匀.然后学习小组进行有放回的摸球实验,下表是活动进行中的一组统计数据.请你根据以上统计数据,帮助小华解答下列问题:(1)补全上表中的有关数据,并估计:当n 很大时,摸到白球的频率将会接近______; (2)估计口袋里白球的个数. 【答案】(1)0.4;(2)12. 【解析】(1)上表中的有关数据是0.399,当n 很大时,摸到黑球的频率将会接近0.4.(2)设白球的个数为x ,则80.48x =+,解得12x =.。

九(上)数学试题(概率与频率)

九(上)数学试题(概率与频率)

九(上)数学试题(概率与频率)班级 姓名 得分一、选择题(每小题4分,计40分)( )1、在一副52张扑克牌中(没有大小王)任抽一张牌是方块的机会是A 、21 B 、31 C 、41 D 、0( )2、、以上说法合理的是( )A 、小明在10次抛图钉试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%.B 、抛掷一枚均匀的骰子,出现6的概率是1/6的意思是每6次就有1次掷得6.C 、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.D 、在课堂试验中,甲、乙两组同学估计硬币落地后正面朝上的概率分别为0.48和0.51.( )3、有两个完全相同的抽屉和3个完全相同的白色球,要求抽屉不能空着,那么第一个抽屉中有2个球的概率是52.32.31.21.D C B A ( )4、下列有四种说法:①了解某一天出入合肥市的人口流量用普查方式最容易; ②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. 其中,正确的说法是A 、①②③B 、①②④C 、①③④D 、②③④( )5、一个密码锁有五位数字组成,每一位数字都是0、1、2、3、4、5、6、7、8、9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为A 、51 B 、21C 、201 D 、 1001( )6、如图,有6张纸牌,从中任意抽取两张,点数和是奇数的概率是158.157.65.54.D C B A ( )7、在6件产品中,有2件次品,任取两件都是次品的概率是A 、51 B 、61 C 、101 D 、151( )8、一个口袋中装有4个白球,1个红球,7个黄球,除颜色外,完全相同,充分搅匀后随机摸出一球,恰好是白球的概率是A 、21 B 、31 C 、41 D 、71( )9、随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 A 、41 B 、21 C 、43 D 、1( )10、一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是 A 、61 B 、31 C 、21 D 、32二、填空题(每小题4分,计40分)11、小明与小亮在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中两个人都出“布”的概率是 .12、一个口袋中装有4个白色球,1个红色球,7个黄色球,搅匀后随机从袋中摸出1个球是黑色球的概率是 .13、一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 .14、在一个袋中装有除颜色外其余都相同的1个红色球、2个黄色球.如果第一次先从袋中摸出1个球后不再放回,第二次再从袋中摸出1个球,那么两次都摸到黄色球概率是 .15、如图两个转盘,指针落在每一个数上的机会均等,则两个指针同时落在偶数上的概率是 .16、小华买了一套科普读物,有上、中、下三册,要整齐的摆放在书架上,其中恰好按顺序摆放的概率是 .17、某学校的高一(1)班,有男生20人,女生24人,其中男生有18人住宿,女生有20人住宿。

第六章 频率与概率 课堂达标练习题课堂达标练习题(每节分ABC卷,有答案)

第六章 频率与概率 课堂达标练习题课堂达标练习题(每节分ABC卷,有答案)

频率与概率(1)宁阳十中 孔新华一、选择题1、掷一枚骰子,下列说法正确的是( )A 、1点或6点朝上的概率最小,3点或4点朝上的概率最大;B 、2点或5点朝上的概率小于3点或4点朝上的概率;C 、各点朝上的概率都相同;D 、各点朝上的概率因人而异,无法确定2、已知某种彩票的中奖率为60%,下列说法正确的是( )A 、购买10张彩票,必有6张中奖;B 、10人去买彩票,必有6人中奖;C 、购买10次彩票,必有6次中奖;D 、买得越多,中奖的概率越接近60%二、填空题1.检查某工厂一批产品的质量, 从中分别抽取10件、20件、50件、100件、150件、200件、300件检查, 检查结果及次品频率列入下表053.0055.0047.0050.0060.0050.00/161175310300200150100502010n n μμ次品频率次品数抽取产品总件数请你根据次品频率稳定的趋势估计该产品是次品的概率是2、 从数字1,2,3,4,5中任取两个不同的数,构成一个两位数,则这个数大于40的概率是________.频率与概率(1)宁阳十中 孔新华一、选择题1、从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为( )A 、0B 、1C 、91D 、942、接连三次抛掷一枚硬币,则正反面轮番出现的概率是( )A 、81B 、41C 、21D 、23二、填空题将4个球随机地放入4个盒中,则恰有一个盒子空着的概率为________.三、解答题两人做掷硬币猜正反面的游戏。

在已进行的9次游戏中,都出现正面朝上,那么第10次猜的时候,你会怎么猜?为什么?数学九年级上册第六章第一节第1课时(C 卷)频率与概率(1)宁阳十中 孔新华一、选择题1.下列说法正确的是 ( )A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2.如果采取抽签的方式决定两位选手的胜负。

人教九年级数学上册-用频率估计概率(附习题)

人教九年级数学上册-用频率估计概率(附习题)

课堂小结
事件 发生 的可 能性
发生结果 等可能
发生结果 不等可能



大量重复 试验




概 转化成数 率 学问题
1.频率与概率 的区别与联系
2.用频率估计事 件发生的概率
3.用替代物进 行模拟试验
[教材P147习题25.3T3变式题]一粒木质中国象棋棋子的正面刻了一个“兵”字,它的 反面是平的.将它从一-定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面 朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷试验, 试验数据如下表:
)时,每千克大约定价为多少元比较合适?
分析:首先要确认损坏的柑橘 有多少,可以通过统计“柑橘 损坏率”进行确认.
柑橘在运输、储存 中会有损坏,公司必 须估算出可能损坏的 柑橘总数,以便将损 坏的柑橘的成本折算 到没有损坏的柑橘售 价中.
问题 柑橘没有损坏,要获得 5 000 元利润应如 何定价?
设每千克柑橘售价为 x 元,则
在同样条件下,对这种幼树进行大量移植,
并统计成活情况,计算成活的频率,随着移植数
n越来越大,频率
m n
会越来越稳定,于是就可以
把频率作为成活率的估计值.所以可以估计幼树
移植成活的概率为 0.9 .
问题2 某水果公司以 2 元/ kg 的成本价新进 10 000 kg柑橘.如果公司希望这些柑橘能够获得利 润 5 000 元,那么在出售柑橘(去掉损坏的柑橘
验:每次摸出一个乒乓球记下它的颜色,如此重复
360次,摸出白色乒乓球90次,则黄色乒乓球的个数
估计为( B )
A.90个
B.24个

频率与概率(1)频率与概率的关系

频率与概率(1)频率与概率的关系
0
不可能 发生
½(50%)
可能 发生
1(100%)
必然 发生
请你分别举出例子予以说明.
回顾与思考 2
频率与概率知几何
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
必然事件发生的概率为1(或100%),记作P(必然事件)=1; 不可能事件发生的概率为0,记作P(不可能事件)=0; 不确定事件发生的概率介于0~1之间, 即 0<P(不确定事件)<1. 如果A为不确定事件,那么0<P(A)<1. 请你分别举出例子予以说明.
小结
拓展
回味无穷
频率与概率的关系 当试验次数很大时,一个事件发生 频率也稳定在相应的概率附近. 因此,我们可以通过多次试验, 用一个事件发生的频率来估计这 一事件发生的概率.
独立 作业
知识的升华
习题6.1
1题.
祝你成功!
两题的理论概率分别等于1/6和5/36.
下课了!
结束寄语
• 统计的基本思想: • 用样本去估计总体. • 用频率去估计概率.
议一议
7
“联想”的功能
探索频率与概率的关系
还记得七年级下册做过的掷硬币试验吗? 在掷硬币的试验中,当试验总次数很大时,硬币落地后 正面朝上的频率与反面朝上的频率稳定在1/2附近,我 们说,随机掷一枚均匀的硬币,硬币落地后正面朝上的 概率与反面朝上的概率相同,都是1/2. 类似地,在上面的摸牌试验中,当试验次数很大时,两 张牌的牌面数字和等于3的频率也稳定在相应的概率附 近.因此,我们可以通过多次试验,用一个事件发
九年级数学(上)第六章 频率与概率
6.1 频率与概率(1)频率与概率的关系
回顾与思考 1

九年级数学上册 6.1 频率与概率学案 北师大版

九年级数学上册 6.1 频率与概率学案 北师大版

练 案1、下列说法正确的是 ( ) A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生 B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31 D .全年级有400名同学,一定会有2人同一天过生日2、掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?3、一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率: (1)随机掷这个小正方体,落地后朝上面数字是6的概率是 ;(2)随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是 .6.1 频率与概率(2)学案学习目标: 学习用树状图和列表法计算涉及两步实验的随机事件发生的概率. 重难点:会用树状图和列表法计算涉及两步实验的随机事件发生的概率 学习过程: 一、复习1.当试验次数很大时,一个事件发生的 也稳定在相应的 附近.因此,我们可以通过多次试验,用一个事件发生的 来估计这一事件发生的 .2.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?3.抛骰子时,出现点数为6的概率是多少?二、自主学习(1)在前面的摸牌游戏中,在第一次试验中,如果摸得第一张牌的牌面的数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大? 如果摸得第一张牌的牌面的数字为2呢?(2)做一做:根据你所做的30次试验的记录,分别统计一下,摸得第一张牌的牌面的数字为1时,摸第二张牌的牌面数字为1和2的次数.摸得第二张牌的牌面的数字为1 ( 次) 第一张牌的牌面的数字为1( 次)摸得第二张牌的牌面的数字为2 ( 次) (3)议一议:阅读P175内容,你同意小明的看法吗? (4)想一想对于前面的摸牌游戏,一次试验中会出现哪些可能的结果?每种结果出现的可能性相同吗? (5)自学课本P176—P178页内容 (6)请用列表法解答例1当堂检测:1.随机掷一枚均匀的硬币两次,到少有一次正面朝上的概率是多少?(请用树状图法和列表法两种方法解答)2.从一定高度随机掷一枚均匀的硬币,落地后其朝上的一面可能出现正面和反面这样两种等可能的结果.小明正在做掷硬币的试验,他已经掷了3次硬币,不巧的是这3次都是正面朝上.那么,你认为小明第4次掷硬币,出现正面朝上的可能性大,还是反面朝上的可能性大,还是一样大?说说你的理由,并与同伴进行交流.3.袋中装有一个红球和一个黄球,他们除了颜色外都相同.随机从中摸出一球,记录下颜色再放回袋中,充分摇匀后,再随机摸出一球.两次都摸到红球的概率是多少?(请用列表法解答)练案1.袋中装有三个完全相同的球,分别标有“1”“2”“3”.从中随机摸出一球,以该球上的数字作为十位数;将球放回并充分摇匀后,再随机摸出一球,以该球上的数字作为个位数.那么所得数字为“23”的概率为多少?(请用树状图法解答)2.在摸球游戏中,如果每组3张牌,他们的牌面数字分别为1,2,3,那么从每组牌中各随机摸出一张牌,两张牌的牌面数字和为几的概率最大?最大的概率为多少?3.A,B,C三个小朋友在做游戏前需要确定游戏的先后顺序.他们协商约定:将两枚均匀的硬币同时向上抛出,落地后,若都是正面朝上,则A 先做;若都是反面朝上,则B先做;若一正一反,则C先做.这样的办法对三人是否公平?为什么?6.1 频率与概率(3)学案学习目标:1、进一步经历用树状图、列表法计算两步随机实验的概率.2、经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯.教学重点:用树状图、列表法计算概率教学难点:正确地利用列表法计算概率学习过程:一、复习检测1.当试验次数很大时,一个事件发生也稳定在相应的附近.因此,我们可以通过多次试验,用一个事件发生的来估计这一事件发生的 .2.利用或可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.3、请利用列表法.求出掷两枚骰子:(1)“点数和为12点”的概率;(2)“点数和至少是9点”的概率;(3)“两颗骰子点数相同”的慨率;(4)“两颗骰子的点数都是偶数”的概率;(5)“点数和为1点”的概率;(6)“点数和小于13点”的概率.二、自主学习1.完成课本P180页问题2、想一想:阅读课本P180---181页内容你认为谁做的对?说说你的理由。

九年级上册数学精品课件:用频率估计概率

九年级上册数学精品课件:用频率估计概率

联系:
频率与概率的关系
频率
事件发生的 频繁程度
稳定性
概率 大量重复试验
事件发生的
可能性大小
在实际问题中,若事件的概率未知,常用频率作为 它的估计值.
区别:频率本身是随机的,在试验前不能确定,做同
样次数或不同次数的重复试验得到的事件的频率都可能 不同,而概率是一个确定数,是客观 存在的,与每次试 验无关.
2048 4040 10000 12000 24000
“正面向上” “正面向上”
次数m
频率(
m n
)
1061
0.518
2048
0.5069
4979
0.4979
6019
0.5016
12012
0.5005
支持
归纳总结
通过大量重复试验,可以用随机事件发生的频率 来估计该事件发生的概率.
数学史实
人们在长期的实践中发现,在随机试验中,由于 众多微小的偶然因素的影响,每次测得的结果虽不 尽相同,但大量重复试验所得结果却能反应客观规 律.这称为大数法则,亦称大数定律.
摸球的次数n
100 200 300 500 800 1000 3000
摸到白球次数m 65 124 178 302 481 599 1803
摸到白球概率 m 0.65 0.62 0.59 0.604 0.601 0.599 0.601
n
3
摸球的次数n
100 200 300 500 800 1000 3000
答:这是因为频数和频率的随机性以及一定的规律 性.或者说概率是针对大量重复试验而言的,大量重 复试验反映的规律并非在每一次试验中都发生.
3.在一个不透明的盒子里装有除颜色不同其余均相同的 黑、白两种球,其中白球24个,黑球若干.小兵将盒子 里面的球搅匀后从中随机摸出一个球记下颜色,再把它 放回盒子中,不断重复上述过程,下表是试验中的一组 统计数据:

初中数学 文档:帮你理清“频率与概率”

初中数学 文档:帮你理清“频率与概率”

帮你理清“频率与概率”一、首先理清它们的概念频率是指每一个考察对象出现的次数与总次数的比值,它的计算公式是:=频数频率数据总数;而概率是指在大量重复进行同一试验时,事件A发生的频率总是接近于某一个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A),它也是一个比值,即P=(A)随机事件可能出现的结果数随机事件所有可能出现的结果数,利用这个公式,就可以计算随机事件的概率了.要注意:概率和频率是统计中的两个重要的统计量,它们都是一个比值.二、其次理清它们之间的关系1.关系:在进行实验的时候,当实验的次数很大时,某个事件发生的频率稳定在相应的概率附近.2.作用:我们可以通过多次实验用一个事件发生的频率来估计这一事件发生的概率注意:(1)一个事件发生的频率接近于概率,必须有足够的实验次数.(2)我们可以用频率来估计概率,但不能说频率就等于概率,这两者的区别在于:频率是通过多次实验得到的数据,而概率是理论上事件发生的可能性.三、通过实验的方法估计事件发生的概率可以在多次实验时事件发生的频率接近概率的特点,我们可以利用实验的方法来估计某些事件发生的概率.注意:(1)在实验时应注意实验的随机性,如摸牌要强调在摸牌前将牌洗匀.(2)要保证足够的实验次数.(3)得到的概率仅仅是估计值,而不是准确值.四、学会简单事件的计算方法1.树状图法:画树状图是列举随机事件的所有可能结果的重要方法之一这是一种过去学过的方法,在分析可能出现的结果的过程中,采用画图把所有可能的结果一一列出,这幅图好象一棵倒立的树,称为树状图,它可以帮助我们分析问题而且可以避免重复和遗漏,既直观又条理分明2.列表法:列表法也是列举随机事件的所有可能结果的重要方法之一在对于一类可能出现的结果多而杂的随机事件,用树状图来描述比较复杂或难以画出图形,通常采用列表法分析可能出现的一切结果,比较简捷、明快,但用列表法进行计算概率往往是两次操作作为一次实验(例如摸扑克牌两次),或者在事件中有两个并列的条件(例如两个转盘),在这种情况下,我们往往将其中的一次操作或条件作为横列,另一次操作或条件作为纵列,列出表格.五、精彩回放例1.(内江市)小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图1),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.⑴ 你认为游戏公平吗?为什么?⑵ 游戏结束,小明边走边想,“反过来,能否用频率 估计概率的方法,来估算非规则图形的面积呢?”. 请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式). 解:⑴ 不公平 ,∵P(阴)=95949=ππ-π,即小红胜率为95,小明胜率为94∴游戏对双方不公平.⑵ 能利用频率估计概率的实验方法估算非规则图形的面积. 设计方案:① 设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S).如图2所示:② 往图形中掷点(如蒙上眼往图形中随意掷石子, 掷在图外不作记录).③ 当掷点数充分大(如1万次),记录并统计结果,设掷入正方形内m 次,其中n 次掷图形内. ④ 设非规则图形的面积为S ',用频率估计概率,图1图2即频率P '(掷入非规则图形内)=≈mn概率P(掷入非规则图形内)=S S 1故≈m n m Sn S SS ≈⇒11. 例2.(锦州市)2004年,锦州市被国家评为无偿献血先进城市,医疗临床用血实现了100%来自公民白愿献血,无偿献血总量吨,居全省第三位. 现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O 型的概率.(要求:用列表或画树状图的方法解答).【解】列表如下:O O A O (O,O) (O,O) (O,A) O (O,O) (O,O) (O,A) A(A,O)(A,O)(A,A)所以两次所抽血型为O 型的概率为49. 树状图如下(如图3):所以两次所抽血型为O 型的概率为49. 例3.(浙江省)某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?图3(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台. 解:(1) 树状图如下:有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ). (2) 因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是.(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x ,解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x ⎩⎨⎧==.29,7y x 所以希望中学购买了7台A 型号电脑.。

人教版九年级上册数学《用频率估计概率》概率初步PPT教学课件(第1课时)

人教版九年级上册数学《用频率估计概率》概率初步PPT教学课件(第1课时)

新知探究 跟踪训练
一粒木质中国象棋“兵”,它的正面雕刻一个“兵”字, 它的反面是平的.将它从一定高度下掷,落地反弹后可 能是“兵”字面朝上,也可能是“兵”字面朝下.由于 棋子的两面不均匀,为了估计“兵”字面朝上的概率, 某试验小组做了棋子下掷的试验,试验数据如下表: (1) 请将数据表补充完整;
实验次数 20 40 60 80 100 120 140 160
(3) 这个试验说明了什么问题? 在图钉落地试验中,“钉帽着地”的频率随着试验次 数的增加,稳定在常数56.5%附近.
频率
概率
试验值或使用时的统计 值
理论值
区 别
与试验次数的变化有关 与试验次数的变化无关
与试验人、试验时间、 与试验人、试验时间、
试验地点有关
试验地点无关
联 系
试验次数越多,频率越趋向于概率
(2)根据上表的数据,在下图中标注出对应的点.
正面向上的频率 1 0.5
O 100 200 300 400 抛掷次数
请同学们根据试验所得的数据想一想:“正面向上” 的频率有什么规律?
可以发现,在重复抛掷一枚硬币时,“正面向上” 的频率在0.5附近摆动. 随着抛掷次数的增加,在0.5附 近摆动的幅度越来越小.
填完表后,从表中可以看出,随着柑橘质量的增加, 柑橘损坏的频率越来越稳定.柑橘总质量为500 kg时的 损坏频率为0.103,于是可以估计柑橘损坏的概率为0.1 (结果保留小数点后一位).由此可知,柑橘完好的概率 为0.9.
解:根据估计的概率可以知道,在10 000kg柑橘中完好 柑橘的质量为10 000×0.9=9 000(kg), 完好柑橘的实际成本为 (元/kg) 设每千克柑橘的销价为x元,则应有(x-2.22)×9 000=5 000, 解得 x≈2.8. 因此,出售柑橘时每千克定价大约2.8元可获利润5 000

九年级数学: 用频率估计概率教案(第一课时)

九年级数学: 用频率估计概率教案(第一课时)

27.3 利用频率估计概率(第1课时)教学目标:1.理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.掌握用模拟实验求概率的方法及其他们的应用。

重难点、关键:重点:讲清用频率估计概率的条件及方法。

难点与关键:比较用列举法求概率与用频率估计概率的条件与方法。

疑难分析:1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.3.利用频率估计出的概率是近似值.教学过程:一、复习引入请同学们口答下面几个问题:1.用列举法求概率的条件是什么?2.用列举法求概率的方法是什么?3.A=事件,P(A)的取值范围是什么?4.列表法、树形图法是不是列举法,他在什么时候应用?二.展示学习目标(口述)1.理解用频率估计概率的条件及方法。

2.应用用频率估计概率的方法解决一些实际问题。

三.出示自学提示,布置自学任务阅读课文第99页的内容,根据要求完成下面的实验和问题(课前完成):1.实验:前后两排学生为一组,每组同学掷一枚硬币50次,记录硬币正面向上的频数,求出正面向上的频率。

2.根据表25-4思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势有何规律?3.你认为在什么情况下采用频率估计概率的办法?4.对一个随机事件A,用频率估计的概率P(A)可能小于0吗?可能大于1吗?5.思考:抛掷硬币“正面向上”的概率为0.5,是不是抛掷10次一定会有5次正面向上?四.教师组织引导学生梳理知识1.完成实验任务。

(1)汇总,填写表格.(2)完成绘图.(3)思考:频率在那个数左右浮动?2.针对提出的问题,各小组回报学习结果。

3.归纳总结。

4.例题选讲例1 某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率。

频率与概率教案设计

频率与概率教案设计

频率与概率教案设计这是频率与概率教案设计,是优秀的数学教案文章,供老师家长们参考学习。

频率与概率教案设计第1篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的a、b、c、d、e五个牌子雪糕的数量.频率与概率教案设计第2篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的`,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.频率与概率教案设计第3篇1、统计科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A 小于10,N是正整数。

浙教版数学九年级上册《2.3 用频率估计概率》教案1

浙教版数学九年级上册《2.3 用频率估计概率》教案1

浙教版数学九年级上册《2.3 用频率估计概率》教案1一. 教材分析浙教版数学九年级上册《2.3 用频率估计概率》是对概率论的一个初步介绍。

本节内容通过实例让学生理解频率与概率的关系,学会如何利用频率来估计概率,并能够运用这一方法解决一些实际问题。

教材通过具体的实验和数据分析,引导学生感受概率论的基本思想,为后续学习更深入的概率知识打下基础。

二. 学情分析九年级的学生已经具备了一定的数据分析能力,对随机事件有一定的认识。

但用频率估计概率这一概念对学生来说较为抽象,需要通过具体的实例和操作来深入理解。

在教学过程中,教师应关注学生的认知水平,尽可能地让学生通过自主探究、合作交流来掌握这一概念。

三. 教学目标1.让学生了解频率与概率的关系,理解用频率估计概率的方法。

2.培养学生通过实验和数据分析来探究问题、解决问题的能力。

3.提高学生的数学思维能力和实际应用能力。

四. 教学重难点1.重点:频率与概率的关系,用频率估计概率的方法。

2.难点:如何引导学生通过实验和数据分析来理解用频率估计概率的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来学习用频率估计概率的方法。

2.运用实验教学法,让学生亲自动手进行实验,观察频率与概率的关系。

3.采用合作交流的学习方式,让学生在讨论中深入理解用频率估计概率的方法。

六. 教学准备1.准备相关实验材料,如骰子、卡片等。

2.设计好实验方案,确保实验结果具有可重复性。

3.准备相关练习题,以便在巩固环节进行练习。

七. 教学过程导入(5分钟)教师通过一个简单的实验引入课题,例如抛硬币实验,让学生观察正面朝上的频率。

提问:这个频率与概率有什么关系?如何用频率来估计概率?呈现(10分钟)教师呈现实验结果,引导学生思考频率与概率的关系。

通过多次实验,让学生观察频率的波动情况,探讨如何用频率来估计概率。

操练(10分钟)学生分组进行实验,每组选择一个随机事件,如掷骰子、抽卡片等,记录实验结果,计算频率。

人教版九年级数学下册精品教案 用频率估计概率1

人教版九年级数学下册精品教案  用频率估计概率1

25.3 用频率估计概率教案11.理解试验次数较大时试验频率趋于稳定这一规律.2.结合具体情境掌握如何用频率估计概率.3.通过概率计算进一步比较概率与频率之间的关系.一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:频率【类型一】频率的意义某批次的零件质量检查结果表:(1)计算并填写表中优等品的频率;(2)估计从该批次零件中任取一个零件是优等品的概率.解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率.解:(1)填表如下:(2)0.8【类型二】频率的稳定性在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________.解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近16.探究点二:用频率估计概率 【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】 频率估计概率的实际应用 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x 条鱼,则5∶200=30∶x ,解得:x =1200,故答案为:1200. 方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.25.3 用频率估计概率教案2【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。

用频率估计概率-九年级数学人教版(上)(原卷版+解析版)

用频率估计概率-九年级数学人教版(上)(原卷版+解析版)

第二十五章概率25.3用频率估计概率一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.在综合实践活动中,小明、小亮、小颖、小菁四位同学用投掷一枚图钉的方法估计顶尖朝上的概率,他们实验次数分别为20次、50次、150次、200次,其中,哪位同学的实验相对科学A.小明B.小亮C.小颖D.小菁2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为A.20 B.30C.40 D.503.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A.6 B.16C.18 D.244.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球5.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9环以上”的次数15 33 78 158 321 801“射中9环以上”的频率0.75 0.825 0.78 0.79 0.8025 0.801 则该运动员射击一次时“射中9环以上”的概率约为(结果保留一位小数)A.0.7 B.0.75C.0.8 D.0.9二、填空题:请将答案填在题中横线上.6.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是__________.7.下表记录了某种幼树在一定条件下移植成活情况:移植总数n400 1500 3500 7000 9000 14000成活数m325 1336 3203 6335 8073 12628成活的频率(精确到0.01)0.813 0.891 0.915 0.9050.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是__________(精确到0.1).8.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有__________千克种子能发芽.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n2048 4040 10000 12000 24000 摸到白球的次数m1061 2048 4979 6019 12012摸到白球的频率mn0.518 0.5069 0.4979 0.50160.5005(1)请估计:当n很大时,摸到白球的频率将会接近__________;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率.10.某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).转动转盘的次数n100 150 200 500 800 1000落在“10元兑换券”的次数m68 111 136 345564 701落在“10元兑换券”的频率mn0.68 a0.68 0.69 b0.701(1)a的值为__________,b的值为__________;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是__________;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)第二十五章 概率25.3 用频率估计概率一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.在综合实践活动中,小明、小亮、小颖、小菁四位同学用投掷一枚图钉的方法估计顶尖朝上的概率,他们实验次数分别为20次、50次、150次、200次,其中,哪位同学的实验相对科学 A .小明 B .小亮C .小颖D .小菁【答案】D2.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为 A .20 B .30C .40D .50【答案】A【解析】根据题意得30nn=0.4,解得:n =20,故选A . 3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 A .6 B .16C .18D .24【答案】B【解析】∵摸到红色球、黑色球的频率稳定在15%和45%, ∴摸到白球的频率为1–15%–45%=40%, 故口袋中白色球的个数可能是40×40%=16个. 故选B .4.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球【答案】D5.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 4001000 “射中9环以上”的次数15 33 78 158 321 801“射中9环以上”的频率0.75 0.825 0.78 0.79 0.8025 0.801 则该运动员射击一次时“射中9环以上”的概率约为(结果保留一位小数)A.0.7 B.0.75 C.0.8 D.0.9【答案】C【解析】∵从频率的波动情况可以发现频率稳定在0.8附近,∴这名运动员射击一次时“射中9环以上”的概率大约是0.8.故选C.二、填空题:请将答案填在题中横线上.6.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是__________.【答案】100【解析】由题意可得,3n=0.03,解得,n=100.故估计n大约是100.故答案为:100.7.下表记录了某种幼树在一定条件下移植成活情况:移植总数n4001500 3500 7000 9000 14000成活数m325 1336 3203 63358073 12628 成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902 由此估计这种幼树在此条件下移植成活的概率约是__________(精确到0.1).【答案】0.98.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有__________千克种子能发芽.【答案】8.8【解析】∵大量重复试验发芽率逐渐稳定在0.88左右,∴10kg种子中能发芽的种子的质量是:10×0.88=8.8(kg),故答案为:8.8.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n2048 404010000 1200024000 摸到白球的次数m1061 2048 4979 6019 12012摸到白球的频率mn0.518 0.5069 0.4979 0.5016 0.5005(1)请估计:当n很大时,摸到白球的频率将会接近__________;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率.(3)列表得:第二次第一次白1 白2 黑1 黑2白1 (白1,白1)(白1,白2)(白1,黑1)(白1,黑2)白2 (白2,白1)(白2,白2)(白2,黑1)(白2,黑2)黑1 (黑1,白1)(黑1,白2)(黑1,黑1)(黑1,黑2)黑2 (黑2,白1)(黑2,白2)(黑2,黑1)(黑2,黑2)由列表可得,共有16种等可能结果,其中两个球颜色相同的有8种可能.∴P(颜色相同)=816=12.10.某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).转动转盘的次数n100 150 200500 800 1000落在“10元兑换券”的次数m68 111 136 345 564 701落在“10元兑换券”的频率mn0.68 a0.68 0.69 b0.701(1)a的值为__________,b的值为__________;(2)假如你去转动该转盘一次,获得“10元兑换券”的概率约是__________;(结果精确到0.01)(3)根据(2)的结果,在该转盘中表示“20元兑换券”区域的扇形的圆心角大约是多少度?(结果精确到1°)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17次课:频率与概率(一)一、考点、热点回顾知识概括:本章的主要内容是通过实验体会概率的意义,在具体情境中,了解频率与概率的关系,会用实验的方法估计一个事件发生的概率。

知道在大量重复实验时,实验发生的频率可以作为事件发生概率的估计值;同时在具体情境中学习运用列举法(包括列表、画树状图等)来计算简单事件发生的概率。

经历“猜测结果–––进行实验––––分析实验结果”的过程,建立正确的概率直觉,进一步丰富对概率知识的认识。

1. 当实验的次数很大时,我们会发现事件发生的频率稳定在相应的概率附近。

因此,我们可以通过大量实验,用一个事件发生的频率来估计这一事件发生的概率;同时能运用列举法(列表、画树状图)计算简单事件发生的概率。

2. 一般地我们用实验的方法来估计一个事件发生的概率,但有时通过实验的方法估计一个事件发生的概率有一定的难度时,我们可以通过模拟实验的方法来估计该事件发生的概率的大小。

3. 求概率的方法: (1)列表;(2)画树状图;(3)实验或模拟实验的方法要点分析:1. 通过实验体会概率的意义,了解频率与概率的关系。

随机现象表面看无规律可循,出现哪一个结果事先无法预料,但当我们大量地重复实验时,实验的每一个结果都会呈现出其频率的稳定性。

如:通过实验获得图钉从一定高度落下后钉尖着地的概率,在具体的实验活动中,对频率与概率之间的这种关系进行体会,通过实验感受到大量重复实验时频率可以作为事件发生概率的估计值,并可以利用这种方法来估计一些事件发生的概率。

2. 经历“猜测结果→进行实验→分析实验结果”的过程,建立正确的概率直觉。

生活经验是学习概率的基础,但其中往往有一些是错误的,因此建立正确的概率直觉是非常重要的,必须亲自经历对随机现象的探索过程,亲自动手进行实验,收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较。

如下面掷硬币游戏的公平性问题:小明和小亮在做掷硬币的游戏。

任意掷一枚硬币两次,如果两次朝上的面相同,那么小明获胜;如果两次朝上的面不同,那么小亮获胜。

这个游戏公平吗? 小刚认为不公平,他认为小明获胜的概率为,而小亮获胜的概率是。

其实小刚存在的误解是把硬币出现的2313结果认为两正和两反的次数比一正一反的次数多,实际上澄清小刚误解的一个重要方法是亲身经历实验,通过实验结果修正自己的想法。

同时在实验的过程中可以发现,每一次实验的结果事先是无法预料的,收集到的实验数据都带有不确定性,但大量实验后,四种情况(两正、两反、一正一反、一反一正)出现的频率都是稳定在同一数值上,所以小刚的猜测是不正确的。

3. 学习利用列举法计算简单事件发生的概率。

了解概率的意义,理解现实世界中随机现象的特点是本章的重点和难点,通过现实生活中熟悉和感兴趣的问题,丰富对概率背景的认识,积累大量的活动经验,探索计算概率的方法,体会随机观念的特点。

如:即使告诉你中奖的概率为,那么你买张奖券也不一定能中奖;又如:明天的降110001000水概率为10%,后天的降水概率是90%,但却有可能明天下雨了,而后天没有下雨。

从这些例子可以说明我们不能在实验之前预知实验的确切结果,只能知道每个结果发生的概率,这就是随机观念。

4. 学会用实验的方法估计一个事件发生的概率,并会设计一个方案来估计一个事件发生的概率。

用模拟实验的方法来估计一个事件发生的概率是本章的一个难点。

如某种“36选6”的彩票规定:从1~36这36个数字中选择6个(可以重复),如果其中有2个与所公布的中奖号码(不妨设为3,1,8,6,6)相同,即可获取四等奖,我们就可以利用计算器模拟实验估计获得四等奖的概率,利用计算器产生1~36之间的随机数,并记录下来,每产生6个随机数为一次实验,通过多次实验来看看有与上面中奖号码中2个相同的数的频率是多少,从而估计出四等奖的中奖概率。

5. 运用统计与概率的知识和方法解决一些简单的实际问题。

通过实例进一步丰富对概率的认识,并能解决一些实际问题,如:统计一段英文中字母“A ”或“G ”出现的频率,从而了解键盘的设计原理和破译某种密码的方法;又如调查学校周围道路交通状况,为交通方面提出合理的建议等;将统计与概率有机地结合起来,学会运用概率的相关知识解决日常生活中的一些问题,从而提高自己解决问题的能力。

二、典型例题例1. 两袋分别盛着写有0,1,2,3,4,5六个数字的六张卡片,从每袋中各取一张,求所得之和等于6的概率,现有小刚和小颖分别给出了下述两种不同解答:小刚的解法:两数之和共有0,1,2,3……10,这11种不同的结果,因此所求的概率为;111小颖的解法:从每袋中各任取一张卡片共有36种取法,其中和数为6的情况共有5种。

(1,5)(2,4)(3,3)(4,2)(5,1)因此所有的概率为536请问哪一种解法正确?为什么?解:小刚的解法是错误的;小颖的解法是正确的。

因为从每袋中各取一张组成两数之和的可能结果有36种情况,且每种情况发生的可能性相同,而出现和为6的情况共5次,因此所得数字之和为的概率为。

而小刚的错误是没有考虑到事件发生的等6536可能性。

例2. 小华和小明做抛掷两枚硬币的游戏,每人各抛10次,看看不确定事件“出现两个正面”的次数。

下表是小华和小明的实验记录:实验结果的频数 小华 小明 两个正面的频数2 1 不是两个正面的频数 8 9在小华的10次实验中,“出现两个正面”的次数是2次,“出现两次正面”的频率是2102010,也就是%,小明“出现两次正面”的频率是多少?那么次实验中,小华和小明“出现不是两个正面”的频率是多少?小华和小明“出现两个正面”的频率之差是多少?并说明两人的“出现两个正面”的频率为什么不相同? 解:小明在10次实验中,“出现两次正面”的次数只有1次,所以“出现两次正面”的频率是10%。

小华“出现不是两次正面”的频率是(1-20%)=80%。

小明“出现不是两次正面”的频率是(1-10%)=90%。

小华和小明“出现两个正面”的频率之差是(20%-10%)=10%。

在实验过程中,实验频率存在着偶然性、随机性。

例3. 用列表的方法求下列概率1. 已知|a|=2,|b|=5,求|a+b|的值为7的概率2. 袋中有1个红球和1个黄球,它们除了颜色外其余都相同,任意摸出一球,再放回袋中再摸,求至少一次摸到红球的概率。

解:1. 因为|a|=2,所以a=±2因为|b|=5,所以b=±5a=2 a=-2b=5 (5,2)(5,-2)b=-5 (-5,2)(-5,-2)∴|+=+=+=-=+=-+=+=--=a b a b a b a b|||||||||||||||257253523527或或或∴+= P a b(||)的值为71 22.红球黄球红球(红,红)(红,黄)黄球(黄,红)(黄,黄)∴P()至少一次摸到红球=3 4例4.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(•m,n)在函数y=2x的图象上的概率是多少?例5.(2006年大连市)在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为12,求x和y的值.例6.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写出5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,•然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?三、课后练习1. 某位同学抛掷两枚硬币,分10组实验,每组20次,下面是共计200次实验中记录下的结果。

实验组别两个正面一个正面没有正面第1组 6 11 3第2组 2 10 8第3组 6 12 2第4组7 10 3第5组 6 10 4第6组7 12 1第7组9 10 1第8组 5 6 9第9组 1 9 10第10组 4 14 2(1)在他的每次实验中,抛出的________、________、________都是不确定事件。

(2)在他10组实验中,抛出“两个正面”的次数最多的是他的第________组实验,抛出“两个正面”的次数最少的是他的第________组实验。

(3)在他的第1组实验中,抛出“两个正面”的频率是________,在他的前2组实验中,抛出“两个正面”的频率是________,在他的前8组实验中,抛出的“两个正面”的频率是________,从这些数据中可以说明______________。

(4)在他的10组实验中,抛出“两个正面”的频率是___________,抛出“一个正面”的频率是_________,抛出“没有正面”的频率是________,这三个频率之和是________。

2. 小亮和小明在玩游戏,游戏规则如下:投掷两个正方体的骰子,把两个骰子的点数相加,如果掷出“和为7”,则小亮赢;如果掷出“和为9”,则小明赢,你认为这个游戏公平吗?为什么?如果不公平,请用列表方法说明谁的概率大。

3. 在不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色。

每次从袋中摸出1个球,然后放回搅匀再摸,在多次的摸球实验中得到下列表中部分数据:摸球次数40 80 120 160 200 240 280 320 360 400 出现红色的频数14 23 38 52 67 86 97 111 120 136出现红色的频率35%32%33%35%35%(1)请将数据表补充完整(2)画出频率折线图3)观察上面的图表可以发现:随着实验次数的增大,出现红色小球的频率接近于_____4. 利用计算器产生1~6的随机数(整数),连续两次随机数相同的概率是多少?试用列表法说明。

5. 准备20张大小相同的小卡片,上面分别写好数字1到20,然后将卡片放在袋子里搅匀。

每次从袋中抽出一张卡片,记录下结果,然后放回搅匀再抽。

(1)将实验结果填入下表:实验次数20 40 60 80 100 120 140 160 180 200出现5的倍数的频数出现5的倍数的频率(2)根据上表中的数据绘制频率折线图。

(3)从实验数据中可以发现什么规律?(4)频率随着实验次数的增加,稳定于什么值?(5)从袋中抽出一张卡片是5的倍数的概率是多少?四、课后反馈表1、本次课学生总体满意度打分(满分100分)______ _________________ 。

2、学生对课程内容的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意3、学生对授课教师的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意4、学生对授课场地的满意度()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意5、学生对授课教师的上课的总体精神状态()A.非常满意B.比较满意C.一般D.比较不满意E.非常不满意6、您对本课程的意见和建议:______ ______ _________ __ 。

相关文档
最新文档