分式及分式方程复习讲义汇总
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
《分式方程》 讲义
《分式方程》讲义一、什么是分式方程在我们学习数学的过程中,方程是一个非常重要的概念。
之前我们接触过一元一次方程、二元一次方程等,今天我们要来认识一种新的方程类型——分式方程。
那到底什么是分式方程呢?分式方程是指方程里含有分式,并且分母里含有未知数或含有未知数整式的有理方程。
比如说,像这样的方程:$\frac{x}{x-1} = 2$ ,$\frac{2}{x} + 3 = 5$ ,它们都是分式方程。
因为在这些方程中,分母中都含有未知数。
二、分式方程的解法接下来,我们重点来学习一下分式方程的解法。
解分式方程的一般步骤可以总结为以下几步:1、去分母这是解分式方程最为关键的一步。
我们要找到所有分式的最简公分母,然后将方程两边同时乘以这个最简公分母,把分式方程化为整式方程。
例如,对于方程$\frac{x}{x-1} = 2$ ,最简公分母是$x 1$ ,方程两边同时乘以$x 1$ ,得到$x = 2(x 1)$。
2、解整式方程完成去分母后,我们得到了一个整式方程。
接下来,按照解整式方程的方法求解这个方程。
就以上面得到的整式方程$x = 2(x 1)$为例,展开得到$x =2x 2$ ,移项可得$2x x = 2$ ,即$x = 2$ 。
3、检验这一步非常重要,却很容易被忽略。
我们将求得的解代入原分式方程的分母中,如果分母不为零,那么这个解就是原分式方程的解;如果分母为零,那么这个解就是增根,原分式方程无解。
还是以方程$\frac{x}{x-1} = 2$ 为例,把$x = 2$ 代入分母$x 1$ ,$2 1 = 1$ ,不为零,所以$x = 2$ 是原方程的解。
三、分式方程的增根在解分式方程的过程中,增根是一个需要特别关注的概念。
增根是分式方程化为整式方程后,产生的使分式方程的分母为零的根。
为什么会产生增根呢?这是因为在去分母的过程中,我们乘以了一个含有未知数的式子,这个式子有可能为零。
而等式两边同乘以零是不符合数学规则的,所以可能会产生额外的根,也就是增根。
分式及分式方程总复习纲要
分式及分式方程总复习纲要(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--B A第十六章 分式1. 分式的定义:如果A 和B 均为整式..,B .中含有字母.....,那么式子 叫做分式。
例如:x 5,3522-x x ,32m m n -+,6523,32-+--x x x b a s 等都是分式。
因为这些式子的分母中都含有......字母..,所以他们都是分式。
注意:分式的分子和分母都是整式.........,但是分子可以含字母.也可以不含字母,而分母中必须......含有字母.....下列式子π25x ,5,32,401222y x x x ++-中,它们的分母中都不含有字母,所以都不是分式,而是整式.特别要注意π25x ,它的分母上是π,但π它表示的是常数…,所以π25x 不是分式。
整式和分式统称为有理式.2. 分式有意义的条件是:分母不为零;注意:分式是否有意义,与分子无关.只要分母不等于零,分式就有意义................................例如1:对分式32522-+-x x x ,要使这个分式有意义,就必须满足x 2+2x -3≠0,即 (x -1)(x +3)≠0,∴ x ≠1且x ≠-3,当x ≠1且x ≠-3时,分式32522-+-x x x 才有意义.3.分式值为零的条件分子为零且分母不为零.要使分式的值为零,必须在分式有意义的前提下.....................,才能谈到它的值是多少.这就是说“分式的值为零”包含两层意思:一是分式有意义,二是分子的值为零................,不要误解为“只要分子的值为零,分式的值就是零”. 例如2:当x 为何值时,分式62||2-+-x x x 的值为零; 解 |x |-2=0, …… ①x 2+x -6≠0,…… ②解:由①式得x =±2,又由②式得 (x -2)( x +3)≠0 , 即x ≠2且x ≠-3. ∴ x =-2.4.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
分式与分式方程知识点总结
分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。
分式可以表示为a/b的形式,其中a为分子,b为分母。
分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。
即(a/b)*(c/d)=(a*c)/(b*d)。
2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。
即(a/b)/(c/d)=(a*d)/(b*c)。
分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行加法运算。
即a/b+c/d=(a*d+b*c)/(b*d)。
2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行减法运算。
即a/b-c/d=(a*d-b*c)/(b*d)。
分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。
即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。
2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。
即a/b=a/b,其中a能整除b。
3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。
分式方程是包含一个或多个分式的方程。
求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。
2.对于有理式的方程,可以通过解方程的方法求出x的值。
3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。
在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。
2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。
3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。
分式和分式方程复习课件
1、若分式x2 2的值为负数,求x的取值范围 x-2
解:∵x2+2≥2
变 式1、 若 分
式x2
2x
1的
值
为
正数,
求x的
∴x-2<0
x2
取值范围
即x<2
解:∵x2+2x+1=(x+1)2≥0
∴x+2>0,且x+1≠0
即x>-2且x≠-1
变 式2若 分 式2x 1 的 值 为 正 数, x2
求x的 取 值 范 围
所以m>2且m≠3
3.分式方程的增根问题.
例4若方程
4 x 有0增根,则增根为( )
c
A 0或2 B0 x 2C22x Dx 12
解:方程两边同乘以x(x-2),得
4 x2 0
x 2
但x=2时分母才为零,所以增根是x=2
反思
增根可能为0,也可能为2,具体是什么, 应化为整式方程解出来最后确定.
问题:甲从A地到B地步行用多长时间?
A
B
解: 40+20=60(分)=1小时
设甲从A地到B地用x小时,根据题意
A
B
30 15 10
x 1 x
解得 x1 3, x2
经检验, x1 3, x2
都是原方程的根,但
1
2
x2
1 2
1 2
不符合题意应舍去,所以X=3
答:甲从A地去B地步行所用时间为3小时.
1 ._分___母__中___含__有___未__知_ 数的方程叫分式方程.例如
2. 解分式方程的一般步骤:
1 x
1
2
x2 2 x
(1)去分母,在方程的两边都乘以 _____ 各个分_式___的__最___简约公去分分母
(完整版)分式和分式方程知识点总结大全
分式和分式方程知识点总结1、分式一般地,我们把形如A的代数式叫做分式,其中A, B都是整式,且BB含有字母。
A叫做分式的分子,B叫做分式的分母。
分式的分母必须含有字母。
分式也可以看做两个整式相除(除式中含有字母)的商在分数中,分母不能等于0.同样,在分式中,分母也不能等于0,即当分式的分母等于0时,分式没有意义。
分数的分子和分母同乘(或除以)一个不等于0的数,其值不变。
分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不其中,M是不等于0的整式利用分式的基本性质可以对分式进行化简把分式中分子和分母的公因式约去,叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
2、分式的乘除分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
AM A?CB ' D B?D分式的除法法则分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。
A C AD A?D__ __ ______ Q ____ ________B D B 'C B?C3、分式的加减同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减)。
A C A CB B B把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减)。
A C AD BC AD BCB D BD BD BD分式的混合运算,与数的混合运算类似。
先算乘除,再算加减;如果有括号,要先算括号里面的。
4、分式方程分母中含有未知数的方程叫做分式方程。
使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。
在解分式方程时,首先是通过去分母将分式方程转化为整式方程,并解这个整式方程,然后要将整式方程的根代入分式方程(或公分母)中检验。
分式与分式方程辅导讲义
分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。
知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。
字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。
知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。
式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。
教学课件:第五章-分式与分式方程-章末归纳与复习
解分式方程的一般步骤包括去分母、去括号、移项合并同类项和系数化 为1等步骤。
03
解析
解分式方程需要运用分式的性质和运算法则,通过去分母、去括号、移
项合并同类项和系数化为1等步骤,将分式方程转化为整式方程进行求
解。
答案与解析
4. 答案
分式方程的应用包括解决比例问题、速度问题、路程问题等 实际问题。例如,已知甲乙两地相距100公里,一辆汽车从 甲地出发,以每小时80公里的速度驶向乙地,求汽车到达乙 地所需时间。
解析
分式方程在解决实际问题中具有广泛的应用,如比例问题、 速度问题、路程问题等。通过建立数学模型,将实际问题转 化为数学问题,利用分式方程进行求解,可以得出实际问题 的解决方案。
THANKS
感谢观看
一元二次分式方程的解法
总结词
通过去分母,将一元二次分式方程转化为可 求解的一元二次方程,然后求解一元二次方 程得到分式方程的解。
详细描述
一元二次分式方程的一般形式为 ax^2+bx+c=0,其中 a、b、c 为已知数,x
为未知数。解一元二次分式方程时,首先去 分母,即将方程两边同时乘以公分母的最小 公倍数,将分式方程转化为整式方程。然后 利用配方法或公式法求解一元二次方程得到 x 的值。最后需要检验解的合理性,即把 x 的
04
分式的应用
分数运算在生活中的应用
日常购物计算折扣
建筑和装修中的比例计算
在购物时,经常需要计算折扣后的价 格,这涉及到分数的运算。
在建筑和装修中,经常需要使用比例 和分数来计算材料用量和布局。
食品分配
在家庭或餐厅中,当需要将食品等物 品均等分配时,需要使用分数运算。
分式方程在实际问题中的应用
九年级分式与分式方程讲义
分式与分式方程【知识点精讲】:1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】例1.化简:2222111x x x x x x-+-÷-+例2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+例3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.教师寄语:例4.解下列方程(1)013522=--+xx x x(2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【中考真题在线】:1. (2011安徽,15,8分)先化简,再求值:12112---x x ,其中x =-2.2. (2011江苏扬州,19(2),4分)(2)xx x 1)11(2-÷+3. (2011浙江衢州,17(2),4分)化简:3a b a ba b a b-++--.4. (2011四川重庆,21,10分)先化简,再求值:(x -1x -x -2x +1)÷2x 2-xx 2+2x +1,其中x 满足x 2-x -1=0.5. (2011福建泉州,19,9分)先化简,再求值2221x xx x x +⋅-,其中2x =.6. (2011湖南常德,19,6分)先化简,再求值.221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中7. (2011湖南邵阳,18,8分)已知111x =-,求211x x +--的值。
分式与分式方程知识点
分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
(完整)分式与分式方程题型分类讲义
分式方程及其应用一、基本概念1.分式方程:分母中含有 的方程叫分式方程。
2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程; (2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3。
用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检验所求的解是否 。
二、题型分类考点一:分式方程题型(一)分式方程去分母 1、解分式方程22311x x x时,去分母后变形为( )。
A .()()1322-=++x xB .()1322-=+-x xC .()()x x -=+-1322D .()()1322-=+-x x 2、下列方程是分式方程的是( )A .0322=--x xB .13-=x x C .x x =1 D .12=-πx题型(二)解分式方程用常规方法解下列分式方程:25211111 332552323x x x x x x x x x -+=+==+---++();(2);();题型(三)分式方程的解 1。
已知方程261=311xax a x -=+-的解与方程的解相同,则a 等于( ) A .3 B .-3 C. 2 D .-22。
方程13462232622+++++++x x x x x x -5=0的解是( )A 。
无解 B. 0 , 3 C 。
—3 D 。
0, ±33。
如果)2)(1(3221+-+=++-x x x x B x A 那么A-B 的值是( ) A .34 B 。
35C. 41 D 。
分式和分式方程(复习)课件
最简公分母的确定
如果分母是单项式时,最简公分母是:①系数取最 小公倍数;②字母取所有字母;③字母的次数取所 有字母的最高次幂。 如果分母是多项式时,应该先考虑分解因式,再确 定最简公分母。 1 3 2 例: )通分: 与 (1 、 3 2 ax 2b x 3cx x2 x 1 ( 2)通分:2 与 2 x 2x x 4x 4
解:方程两边都乘以 4得: x
2
(x 2) a ( x 2)
2
2
若方程有增根,只能是 2或x 2 x 将x 2和x 2分别代入整式方程可得 : a 16或a 16
m 1 1、关于x的方程 1 x 1 x 2 1 有增根-1,求m
2、若方程
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 ······ 程的根. ··· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, 而不是分式方程的根.···· ····
x2 a x2 例:若关于x的方程 2 x2 x 4 x2 有增根,求a的值。
ab 1 1 解:由已知可得 3, 即 3(1), ab a b 1 1 1 1 同理得: 4(2), 5 b c c a 1 1 1 6 a b c 1 1 原式 ab bc ac 6 abc
分式 方程
概念:分母中含有未知数的有理方程,叫做 分式方程。 解分式方程的步骤: 将分式方程转化为整式方程(方程两边同时乘 以最简公分母) 解整式方程 检验(验根) 写出方程的解
解分式方程易错点分析
一、去分母时常数漏乘 最简公分母 2 x 1 例1、解方程: 2 x 3 3 x 二、去分母时,分子是 多项式不加括号 5 3 x 例2、解方程: 2 0 x 1 x 1 三、方程两边同时除以 可能为零的整式 3x 2 3x 2 例3、解方程: x4 x3
分式知识点总结及复习
分式知识点总结及复习一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。
其中 A 叫做分子,B 叫做分母。
需要注意的是,分母 B 的值不能为 0,如果 B=0,那么分式 A/B 就没有意义。
例如:1/x ,(x + 2)/(x 1) 等都是分式。
二、分式有意义的条件分式有意义的条件是分母不为 0。
即对于分式 A/B ,B ≠ 0 时,分式有意义。
例如,对于分式 1/(x 2) ,要使其有意义,则x 2 ≠ 0 ,即x ≠ 2 。
三、分式的值为 0 的条件分式的值为 0 时,要同时满足两个条件:1、分子为 0 ,即 A = 0 。
2、分母不为 0 ,即B ≠ 0 。
例如,若分式(x 1)/(x + 2) 的值为 0 ,则 x 1 = 0 且 x +2 ≠ 0 ,解得 x = 1 。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
用式子表示为:A/B = A×C/B×C ,A/B = A÷C/B÷C (C 为不等于0 的整式)例如:化简分式 2x/(3y) ,分子分母同时乘以 2 ,得到 4x/(6y) ,分式的值不变。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
2、字母:取相同字母的最低次幂。
例如:对分式(6x^2 y)/(9xy^2) 进行约分,分子分母的公因式为 3xy ,约分后得到 2x/3y 。
六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。
通分的关键是确定几个分式的最简公分母。
确定最简公分母的方法:1、系数:取各分母系数的最小公倍数。
2、字母:取所有字母的最高次幂。
3、因式:取分母中出现的所有因式。
例如:将分式 1/(x^2 4) 和 1/(2x + 4) 通分,分母分别为(x +2)(x 2) 和 2(x + 2) ,最简公分母为 2(x + 2)(x 2) ,通分后分别为2/2(x + 2)(x 2) 和(x 2)/2(x + 2)(x 2) 。
分式及分式方程复习讲义
分式及分式方程教学目标:1.掌握分式概念、性质及运算.2.掌握分式方程的概念、解法、及增根问题.一、知识回顾知识点1:分式及分式概念分式:分母还字母的代数式:易辨错的分式有:0x ,2x x ,11x+等.分式方程:分母含字母的方程叫分式方程.知识点2:分式性质易错点1 约分,找公因式,同时约去分子分母的公因式.用的是分式的除法性质 易错点2 通分,找最简公分母,化异分母为同分母,用的是分式的乘法性质.知识点3:解分式方程1.思路:去分母,变分式方程为整式方程求解,记得验根.2.易淆点(1)把分子分母中的分数,小数变成整数时,是分子分母同时扩大多少倍,用的是分式的性质; (2)去分母,方程的每项同乘分母的最简公分母,用的是等式性质; 3.增根问题增根的概念:是整式方程的根,同时又使最简公分母为0的根叫增根,必须满足这两个条件. 常考题型:求含参数的增根问题. ◆课前热身1.下列式子中,哪些是分式?哪些是整式?①x 1,②3x ,③5342+b ,④352-a ,⑤22y x x -,⑥ 121222+-++x x x x , ⑦()b a c -÷,⑧x x 2,⑨2)1(--x 分式:____________________;整式___________________; 2. 当x ___________时,分式43x x --有意义;当x ____时,分式422--x x 无意义. 3. 若分式142+-x x 的值为0,那么____________.4. 填空(1)223(__)22x x x x =++; (2)2(____)()x y x y x y -=++; (3)2(____)a ab a bab --=5. 化简:232312a b ab -=__________;223(1)9(1)a b m ab m --=__________ ;(3)22211m m m -+-=_____________. 6. 计算:223286a y y a ⋅=_______;a a a a 21222+⋅-+=___________. 7. 1112+-+a a a =_____________;21422---a a a =______________. 8.下列关于x 的方程,是分式方程的是( )A .23356x x ++-=B .137x x a -=-+C .x a b xa b a b-=- D .2(1)11x x -=- 9. 若关于x 的分式方程311x a x x --=-有增根,则a =____________. 10.解下列分式方程:512552x x x+=--;分式部分 二、例题辨析例1 若分式24xx +的值为正数,则x 的取值范围是( ) A. x >0 B. x >-4 C. x ≠0 D. x >-4且x ≠0练习 (1)当x ________时,分式xx 61212-+的值为负数.例2 如果把分式xx y+中的x 和y 都扩大3倍,那么分式的值( ) A .不变 B .变大3倍 C .缩小3倍 D .无法确定练习 (1)把分式yx x +2中的x 和y 都扩大3倍,分式值____________.(2)不改变分式的值,把分子、分母的系数化为整数.①y x yx 41313221+- ②ba ba +-04.003.02.0例3 计算(1)3131+--x x练习:(1) a a --+242 (2) x x x ----13132例4 化简求值:若x =33,求233()22x x x x x-÷+--的值.练习 化简求值3,32),()2(222222-==--+÷+---b a b a a b a a b ab a a b a a 其中.三、归纳总结1.区别分数与分式:分数是一个具体的数,是整式.分式的分母一定含有字母,是分式,2.分数与分式在形式上相近,性质上也类似,所以由熟悉的分数来类比学习和理解分式的性质和运算.3.分式的运算中,分子分母能因式分解的要先分解因式.四、拓展延伸例5 1.如果分式111a b a b+=+,那么a b b a +的值为( ). A.1 B.-1 C.2 D.-22.已知:511=+y x ,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.练习 1.若实数a 、b 满足:2a bb a+=,则22224a ab b a ab b ++++的值为_________ . 例6 已知2310x x -+=,求441xx +的值.练习 若x +1x =3,求2421x x x ++的值.分式方程部分例7 解下列分式方程(1)x x 311=-; (2)0.2100.10.3x x-=-; (3)114112=---+x x x ; (4)x x x x -+=++4535提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.练习 解下列方程:(1)021211=-++-xxx x ; (2)0.4230.10.3x x x -=--;例8 若关于x 的分式方程3132--=-x mx 有增根,求m 的值.练习 1. 若分式方程()1516-+=-x x x x 有增根,则增根是( ) A. x =1 B. x =1和x =0 C. x =0 D. 无法确定2.若关于x 的方程21x x x +--13x =33x kx +-有增根,求增根和k 的值.3. m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根?五、作业与思考(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .。
分式和分式方程知识点总结大全
分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。
基本概念:1.分子和分母:分数中的a称为分子,b称为分母。
2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。
3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。
4.相等分式:两个分子和分母比值相等的分式称为相等分式。
例如,2/3和4/6是相等的分式。
分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。
运算结果的分母保持不变,并将分子相加或相减。
2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。
结果要简化。
3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。
结果要简化。
分式方程:分式方程是指含有分式的方程。
解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。
2.化简方程:将方程中的分式进行化简,得到方程的最简形式。
3.解方程:根据方程的形式,进行求解。
常见的方法包括合并同类项、配方、移项等等。
常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。
例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。
例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。
例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。
例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。
在几何学中,分式用于解决一些面积、体积等问题。
在经济学中,分式用于解决利润、成本等相关问题。
分式与分式方程知识点复习 打印
分式与分式方程一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
二、 分式有意义的条件是分母不为零;【B ≠0】分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
例3:当x 取何范围内取值时,下列分式有意义?(1)4422+-+x x x , (2)1222-++x x .三、分式的基本性质:分式的分子与分母同乘或除以一个_______的整式,分式的值不变。
四、分式的通分和约分:关键先是分解因式。
类型一 约分:(1)22699x x x ++-; (2)2232m m m m-+-类型二 通分:26x ab ,29y a bc类型三 分式化简求值:(1)168421161814121111a a a a a a --++++++++-; C B C A B A ⋅⋅=CB C A B A ÷÷=(2)492372252132+++++-++-++x x x x x x x x ;类型四 运用“降次”转化1.已知x 2+3x+1=0,求x 2+21x的值.2.已知x+1x =3,求2421x x x ++的值.五、分式的运算:分式乘法法则: 分式除法法则: 分式乘方法则: 分式的加减法则:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
1.当分式211x --21x +-11x -的值等于零时,则x=_________。
2.已知a+b=3,ab=1,则a b +b a的值等于_______。
3.计算:222x x x +--2144x x x --+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式及分式方程
教学目标:
1 •掌握分式概念、性质及运算.
2 •掌握分式方程的概念、解法、及增根问题.
一、知识回顾
知识点1:分式及分式概念
分式:分母还字母的代数式:易辨错的分式有: 分式方程:分母含
字母的方程叫分式方程.
知识点2:分式性质
易错点1约分,找 公因式,同时约去分子分母的公因式•用的是分式的除法性质 易错点2通分,找 最简公分母,化异分母为同分母,用的是分式的乘法性质.
知识点3:解分式方程
1 •思路:去分母,变分式方程为整式方程求解,记得验根.
2 .易淆点
(1) 把分子分母中的分数,小数变成整数时,是分子分母同时扩大多少倍,用的是分式的性质; (2) 去分母,方程的每项同乘分母的最简公分母,用的是等式性质;
3.增根问题
增根的概念:是 整式方程的根,同时又使最简公分母为 0的根叫增根,必须满足这两个条件. 常考题型:求含参数的增根问题. ♦课前热身
1. 下列式子中,哪些是分式?哪些是整式?
分式: ______________________ ;整式 _____________________ ;
2. 当x ___________ 时,分式 土N 有意义;当x _____________ 时,分式 :_2无意义.
x —3 x 一4
2x — 4
3. 若分式 ------- 的值为0,那么 _______________ .
X +1
-1等. x
①x '②:’③為’④写’⑤亡’⑥
2
x 2x1 x 2
-2x 1
2
⑦c" a-b ,⑧—,⑨(x-1),
x
2
a
1 = 2a
1
a 1
a 1
; 2
a -4 a — 2
8.下列关于x 的方程,是分式方程的是(
)
2 x c
3 x x-1 c
x a b x
(x-1)2
彳
A. _3 一
B. --- =3—X
C.
=— ——
D. 1
5 6
7 a a b
a b
X -1
x - a 3
9. 若关于x 的分式方程 ----- - 一=1有增根,则a= ______________ x -1 x
x 5
10. 解下列分式方程:
1 ;
2x —5
5—2x
分式部分 二、例题辨析
的值为正数,则x 的取值范围是()
x
A. x >0
B. x >-4
C.
x M0 D. x >-4 且 x M0
如果把分式 中的x 和y 都扩大3倍,那么分式的值( x+y
A .不变
B .变大3倍
C .缩小3倍 D
.无法确定
(1 )当 x
_____________ 时,分式 的值为负
数.
12 —6x 4.填空(1)
3x
2
x 2
2x () x 2
(2)
(—); (x y )
2
;
(3)
a 2 - a
b a - b ab ( _______ )
5.化简:
3a 2b 3
-12ab 2
3a 2
b(m -1) 2
9ab (1 -
(3) 2
m - 2m 1 1 -m 2
6.计算:
6a 2y 2
8y 3a 7
a 2
1 _
a —2 a 2
2a
练习
1 1
⑵
2
x 求
练习 2
a
例4
例3 )的值. 2 —X
化简求值:若x
二上3
3
-3x
3
(x
x -2
三、归纳总结
计算 (1)
(1) a
2 —
2 —a
x -3 3 x 2
-1 1 -
x
化简求值(一
a
-
a —
b a —2ab +b
八其中 a ^,b _3
.
(2 )不改变分式的值,把分子、分母的系数化为整数
1 2
x y ① 2__3: 1 1
x y
_ 0.2a _0.03b
② ^40-^
x -3 x 3
练习: 2
x
(1)把分式
中的x 和y 都扩大3倍,分式值
7二
・:
1.区别分数与分式:分数是一个具体的数,是
整式•分式的分母一定含有字母,是 分式,
2. 分数与分式在形式上相近, 性质上也类似,所以由熟悉的分数来类比学习和理解分式的性质和运算
3. 分式的运算中,分子分母能因式分解的要先分解因式
四、拓展延伸
11 1 a b
_ •一 =——,那么_ . _的值为(
a b a b
b a A.1
B.-1
C.2
D.-2
2.已知:一」=5 ,求2
x —3xy 2y
的值.提示:整体代入,①
x • y =3xy ,②转化出一」.
x y x+2xy+y
x y
2 2
a b a ab b
2 r 2
的值为
b
a
a 2
4ab
b 2
1
已知x 2 -3x ^0,求X 4
•飞的值.
x
若x + 一 =3,求的值.
x
x+x+1
例5 1.如果分式
1.若实数a 、b 满足:
分式方程部分
提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根
若关于x 的分式方程 —=1 -旦有增根,求m 的值.
x —3
x —3
6
x 十5
1.若分式方程一
6
有增根,则增根是(
x —1 x (x —1)
A. x = 1
B. x = 1 和 x = 0
C. x = 0
D.无法确定
解下列分式方程
(1)
0.2 0.1x -0.3
丄=0 ;
(3) 「亠=1
x —1 x -1
(2) 亠 _2= °4
x~3
0・1x~0・3
2.若关于x 的方程 x 1 2
x -x
1 3x
有增根,求增根和 k 的值.
五、作业与思考
x • 7 x ■ 9 x 10 x 6
x 6 x 8 x 9 x 5
提示:(1)换元法,设—y ;
( 2)裂项法,
x +1
3. m 为何值时,关于 x 的方程
mx
2
x -2 x 「4
会产生增根?
(1)
x 4x - 4
--- + ------
x 1 x。