锅炉水位PLC电气控制系统设计
基于PLC的锅炉电加热控制系统设计
基于PLC的锅炉电加热控制系统设计摘要本文针对锅炉电加热控制系统的实际需求,基于PLC,设计了一种可靠的电加热控制系统。
该系统通过PLC的控制,实现了对电加热器的开启、关闭、电流的调节等功能。
同时,系统还通过人机界面进行了参数设置和异常报警等功能。
实验结果表明,该系统具有高可靠性、稳定性,能够满足锅炉电加热的实际需求。
关键词:PLC、锅炉、电加热、控制系统一、引言锅炉是工业生产中常用的一种设备,其主要作用是将水加热为蒸汽,并通过蒸汽驱动液体或气体来完成工业生产流程。
而锅炉的加热方式一般有煤、油、气、电等多种方式,其中电加热由于其无污染、易控制等优点,被广泛应用于各种工业生产环节中。
然而,锅炉电加热控制系统的设计存在一些问题,如控制精度低、容易出现故障等。
这些问题给锅炉电加热操作带来了很大的不便,因此,需要设计一种基于PLC的锅炉电加热控制系统,以提高其可靠性和稳定性。
二、设计思路和方法1.设计思路基于以上问题,本文设计了一种基于PLC的锅炉电加热控制系统。
该系统采用西门子S7-200 PLC作为主控制器,通过PLC与电加热装置进行连接,实现对电加热装置的开关控制和电流调节。
同时,本文还设计了人机界面,以便进行参数设置和异常报警等功能。
通过该系统,可以实现对电加热的精确控制,从而提高锅炉的加热效率和生产稳定性。
2.设计方法(1)硬件部分设计系统硬件包含主要的PLC、电加热器、人机界面等几个部分。
PLC:采用西门子S7-200 PLC作为主控制器,通过该控制器,实现对电加热设备的精确控制。
电加热器:采用模块化的电加热器,可以根据实际需求进行扩展和修改。
人机界面:设计了触摸屏人机界面,以便进行电加热控制和参数设置等功能。
(2)软件部分设计软件部分主要包含PLC程序和人机界面程序两部分。
PLC程序:由于锅炉电加热主要是控制电加热的开关和电流调节,因此,PLC程序中主要包含电加热开关控制、电流调节等基本功能。
基于PLC的锅炉供暖监控系统设计
4、监控界面设计技术
4、监控界面设计技术
在上位机监控界面方面,我们采用了组态软件来设计监控界面。组态软件是 一种广泛使用的工业自动化监控软件开发工具,它支持多种图形元素和控件,可 以方便地实现实时数据展示、报警提示、历史数据查询等功能。我们根据锅炉的 实际运行情况,设计了相应的监控界面,并编写了相关的脚本代码,以实现对锅 炉运行数据的实时展示和报警提示等功能。
2、控制技术
2、控制技术
在控制方面,我们采用了PID(比例-积分-微分)控制算法来实现对锅炉的燃 烧和给水控制。PID控制是一种经典的连续控制系统,它通过比较设定值与实际 值之间的误差来计算控制量,实现对被控对象的精确控制。我们根据锅炉的实际 情况,对PID控制算法进行了相应的调整和优化,以实现对锅炉的燃烧和给水系 统的有效控制。
二、关键技术
1、数据采集技术
1、数据采集技术
在数据采集方面,我们采用了高精度传感器和PLC模拟量输入模块,实现了对 锅炉运行参数的实时监测。传感器包括温度传感器、压力传感器和水位传感器等, 它们将采集到的信号通过变送器转换为标准的电信号,再通过PLC模拟量输入模 块输入到PLC中进行数据处理。
一、系统需求与设计
一、系统需求与设计
锅炉供暖系统的主要任务是维持锅炉中水的温度在设定的范围内,同时也要 确保供暖设备的正常运行。因此,系统的需求主要包括:
一、系统需求与设计
1、实时监测锅炉的水温、压力等参数; 2、通过调节锅炉的燃烧器输出,控制水温; 3、保障供暖设备的稳定运行;
一、系统需求与设计
三、应用效果
3、提高了管理效率。通过远程监控锅炉的运行状态,可以在上位机上实现锅 炉的集中管理和监控,从而提高了管理效率。
谢谢观看
基于plc的锅炉控制系统的设计方案
设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。
以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。
-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。
2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。
-压力传感器:监测锅炉的压力情况。
-液位传感器:监测水箱水位,确保水位在安全范围内。
-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。
3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。
-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。
4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。
-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。
5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。
-设置报警系统,当参数超出设定范围时及时警示操作员。
6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。
7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。
-测试程序逻辑,确保系统稳定可靠,符合设计要求。
以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。
在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。
基于PLC的蒸汽锅炉控制系统的设计
基于PLC的蒸汽锅炉控制系统的设计摘要:目前,随着工业的发展,锅炉作为能源转化的重要动力设备之一,其主要作用体现在城市供热和现代化工业生产中。
由于我国目前多数主流锅炉自动化控制水平不高,许多问题接踵而至,比如能源转化率低,导致资源浪费和环境污染;工人的操作水平参差不齐,导致各种安全隐患等。
通过现代化控制手段改造锅炉的燃烧系统,可以提高能源转化率,有效减少资源的浪费。
利用上位机实时监控生产全过程,降低风险,减少一线人员的工作量。
这样在节约能源的同时,也保证了生产运行的安全。
关键词:PLC;蒸汽锅炉;控制系统引言在工业生产阶段,应用与之相匹配的设备不仅能够有效提高生产效率,更能实现对成本的合理缩减。
尤其是在锅炉生产中,安全指标的提升逐渐成为长远发展的关键点,蒸汽锅炉的正确使用也就显得尤为重要。
以技术发展为依托,蒸汽锅炉的PLC系统抓紧被应用到实践生产中,这就大大提高了自动化发展能效。
但是蒸汽锅炉的自动化水平与预期目标之间存在显著差距,相对的能源消耗量大、参数缺少精准调控等问题也频繁发生,这就需要针对PLC的自动控制技术进行全面分析及探究,找寻更为有效的发展路径,促使其能效作用充分发挥。
1基于PLC的新型蒸汽锅炉自动控制系统总体方案基于PLC的新型蒸汽锅炉自动控制系统设计目标为将原来由继电器等基础器件控制或者人工操作的锅炉控制系统通过对水位、蒸汽流量、压力、排烟温度等参数的联合调控实现自动控制。
整个自动控制系统分为三级操控模式。
蒸汽锅炉控制系统的主要功能是实现锅炉的水位控制、蒸汽流量控制、蒸汽压力控制、排烟温度控制和监测。
具体功能如下:(1)自动控制:自动控制锅炉的运行参数,使蒸汽锅炉满足工作要求,并且可以安全、经济地运行。
(2)程序控制:通过对锅炉设定一个具体的操作顺序以及各参数的定义来编制程序实现对锅炉的自动控制,完成锅炉的正常运行。
如首先进行启动设置,然后将煤斗中的煤炭运送至炉膛进行燃烧,并按照顺序控制启动引风机、鼓风机以及炉排。
基于PLC控制的电锅炉控制系统
基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。
PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。
本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。
1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。
PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。
2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。
在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。
电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。
3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。
在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。
通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。
4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。
5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。
基于plc的锅炉供热控制系统的设计
基于plc的锅炉供热控制系统的设计工业控制系统中,PLC(可编程逻辑控制器)被广泛应用于各种设备的控制和监控。
本文将重点讨论基于PLC的锅炉供热控制系统的设计。
一、系统概述锅炉供热控制系统是指通过对锅炉进行温度、压力等参数的监测和控制,实现对供热系统的稳定运行和效率优化。
基于PLC的控制系统能够实现自动化控制,节约人力资源,提高系统运行效率。
二、系统组成1. PLC控制器:作为控制系统的核心,PLC负责接收各种传感器采集的数据,并根据预先设定的控制策略执行相应的控制动作。
2. 传感器:用于监测锅炉的各项参数,如温度传感器、压力传感器等。
3. 执行元件:包括电磁阀、泵等执行元件,通过PLC控制输出信号来实现对锅炉操作的控制。
三、系统设计1. 硬件设计:选择适合的PLC型号和合适的IO模块,根据实际需要设计合理的接线和布置。
2. 软件设计:编写PLC程序,包括主控程序和各个子程序,实现对供热系统的全面控制和监控。
四、系统功能1. 温度控制:根据设定的温度范围,实现对锅炉加热的自动控制,确保供热系统温度稳定。
2. 压力保护:设定压力上下限,一旦超过范围即刻停止加热,确保系统安全运行。
3. 水位控制:通过水位传感器监测水位,保持恰当的水位以确保供热效果。
4. 故障诊断:PLC系统能够实时监测各个元件的运行状态,一旦有异常即可及时报警并进行故障诊断。
五、系统优势1. 自动化程度高:基于PLC的供热控制系统可以实现全自动化控制,减少人为干预,节约人力成本。
2. 稳定可靠:系统通过对各项参数的实时监测和控制,确保供热系统的稳定性和可靠性。
3. 灵活性强:PLC程序可以根据实际需要进行定制化设计,满足不同应用场景的需求。
六、总结基于PLC的锅炉供热控制系统的设计,能够实现对供热系统的智能化控制和监测,提高系统的稳定性和效率,减少运行成本,是目前工业控制领域的主流趋势。
希望本文的介绍能够对您有所帮助。
感谢阅读!。
基于PLC的锅炉水位控制
基于PLC的汽包水位自动控制系统设计摘要以某厂的35T/h蒸汽锅炉为对象,结合蒸汽锅炉的结构,设计了一套基于PLC 的汽包水位自动控制系统设计。
系统设计采用罗克韦尔自动化公司的ControlLogix系列PLC,配置Logix 5550型号的1756-L1 M2处理器模块,模拟量输入采用1756-OB16D模块,数字量输出采用1756-IF6I模块,以太网通讯接口采用1756-ENBT模块,设备网通讯接口采用1756-DNB模块,控制系统使用编程软件RSLogix5000来设计锅炉控制的梯形图。
为了维持汽包水位的稳定,采用了三冲量串级控制,有效克服了“虚假水位’’对汽包水位控制的影响。
系统采用工控机作为上位机,并使用罗克韦尔自动化公司的RSView32进行监控界面的设计,这样能够使得在上位机上实时监控系统的运行状况并可以设置系统的工作参数。
使用罗克韦尔RSLINX软件完成系统通讯网络的组建,来完成以太网,设备网之间的通讯。
控制系统遵循的PID参数整定的工程整定方法,并模拟研究,最总完成系统设计,PLC在锅炉汽包水位控制系统的最终完成。
关键词:汽包水位控制三冲量PID控制PLC 工业以太网The Design of the Boiler Drum WaterLevelControl System with PLCABSTRACTIn a factory 35T / h steam boiler for the object, binding steam boiler drum level designof a PLC automatic control system design is based.System design using Rockwell Automation's ControlLogix series PLC, configure the Logix 5550 model 1756-L1 M2 processor module, analog input using the 1756-OB16D modules, digital output modules using the 1756-IF6I, Ethernet communication interface uses 1756-ENBT module, network communication equipment interface with 1756-DNB module, control systems use programming software to design the boiler control RSLogix5000 ladder. In order to maintain the stability of drum level, using athree-impulse cascade control, effectively overcome the impact of the "false waterlevel'' of drum level control.System uses IPC as a host computer, and using Rockwell Automation's RSView32 monitoring interface design, so the PC can be made in real-time monitoring system onthe operating conditions and operating parameters of the system can be set. Rockwell RSLINX software to complete the formation of the communication network system to complete the communication Ethernet network between devices. PID parameter tuning control system engineering followed tuning methods and simulation studies, most of the total completion of the system design, PLC in the boiler drum level control system finalized.KEY WORDS: Steam drum water level Three impulses control PID controlPLC Industrial Ethernet目录第1章绪论 (1)1.1 锅炉控制的发展和现状 (1)1.2 本设计的主要工作 (2)第2章控制系统方案设计 (3)2.1 原始资料介绍 (3)2.2 汽包水位的影响因素 (7)2.2.1 给水扰动的影响 (7)2.2.2 汽轮机耗气量扰动的影响 (8)2.2.3出水量扰动的影响 (9)2.3 汽包水位控制方案的设计 (9)2.4 控制算法及其参数整定 (14)2.4.1 PID算法介绍 (14)2.4.2 三冲量控制系统参数的计算 (15)第3章AB工业网络以及控制硬件选型 (18)3.1 概述 (18)3.1.1 信息层EtherNet/IP (19)3.1.2 控制网ControlNet (19)3.1.3 设备网DeviceNet (20)3.2 控制器的选型及控制平台 (21)3.2.1 控制器选型步骤 (21)3.2.2 罗克韦尔ControlLogix平台 (22)3.3 Logix5550处理器 (24)3.4 ControlLogix I/O模块 (26)3.5 PowerFlex 40变频器 (26)3.5.1 变频器的工作原理 (26)3.5.2 PowerFlex 40变频器的主要特点 (27)3.6 通讯网络模块 (28)第4章控制系统的设计 (30)4.1 系统整体的线路设计 (30)4.2 系统线路模块设计 (32)4.3 控制线路设计 (35)第5章控制系统软件设计 (37)5.1 程序流程设计 (37)5.2 DeviceNet 网络组态 (39)5.3 RSLogix5000程序设计 (44)5.3.1控制器组态 (44)5.3.2 I/O模块组态 (45)5.3.3通讯模块组态 (46)5.3.4梯形图程序设计 (46)第6章监控界面设计 (51)结论 (54)谢辞 (1)参考文献 (2)附录 (3)外文资料翻译 (4)第1章绪论1.1 锅炉控制的发展和现状蒸汽锅炉是企业重要动力设备,其任务供给合格稳定地蒸汽产品,以满足负荷需要。
基于PLC的锅炉电加热控制系统设计
基于PLC的锅炉电加热控制系统设计基于PLC的锅炉电加热控制系统设计包括以下几个步骤:1. 系统需求分析:确定锅炉电加热控制系统的功能需求,包括温度控制范围、加热功率调节范围、安全保护要求等。
2. 系统架构设计:根据需求分析结果,设计系统的硬件和软件架构。
硬件部分包括PLC、温度传感器、电加热器、电源等;软件部分包括PLC程序设计和人机界面设计。
3. 传感器选择和安装:根据需求分析确定温度传感器的类型和数量,并将其安装在适当的位置上,以便准确测量锅炉的温度。
4. 电加热器选择和安装:根据需求分析确定电加热器的类型、功率和数量,并将其安装在锅炉中,以提供所需的加热功率。
5. PLC程序设计:根据系统需求和硬件架构设计,编写PLC程序来实现温度控制和加热功率调节。
程序需要包括温度测量、温度控制算法、加热功率调节等功能。
6. 人机界面设计:设计一个直观易用的人机界面,用于监视和控制锅炉电加热控制系统。
界面应该显示当前温度、设定温度、加热功率等信息,并提供设定温度和加热功率的调节功能。
7. 安全保护设计:设计系统的安全保护功能,包括过温保护、过电流保护、短路保护等。
这些保护机制可以通过PLC 程序来实现,当检测到异常情况时,系统会自动停止加热并发出警报。
8. 系统测试和调试:在完成系统设计后,进行系统测试和调试,确保系统能够正常工作,并满足设计要求。
总之,基于PLC的锅炉电加热控制系统设计需要考虑到温度控制、加热功率调节、安全保护等方面的需求,并通过合适的传感器、电加热器、PLC程序和人机界面来实现。
在设计过程中,需要进行系统测试和调试,以确保系统能够稳定可靠地工作。
基于PLC系统的锅炉内胆水温控制系统设计
基于PLC系统的锅炉内胆水温控制系统设计1 PLC构成及WinCC的组态采用WinCC组态技术设计多机联网运行的实时监控系统,核心思想是通过计算机超强的处理能力,以软件实现实际生产过程变化,把传统控制中进行人工操作或数据分析与处理、数据输出与表达的硬件,利用方便的PC机软硬件代替。
建立WinCC组态监控系统。
首先启动WinCC,建立一个单用户项目——添加通讯驱动程序——选择通道单元——输入逻辑连接名,确定与S7-300端口的通讯连接。
然后在驱动程序连接下建立结构类型和元素,给过程变量分配一个在PLC中的对应地址(地址类型与通讯对象相关),给除二进制变量外的过程变量和内部变量设定上限值和下限值(当过程值超出上限值和下限值的范围时,数值将变为灰色,并且不可以再对其进行任何处理)。
接着创建和编辑主导航画面、单台空压机组态画面、远程监控画面、分析诊断画面、数据归档画面、报警显示画面、报警在线限制值画面、报表打印画面、用户登录方式画面等。
对画面中添加的按钮、窗口和静态文本等,进行组态变量连接、状态显示设置等等。
再对远程控制画面中的启动/停止按钮进行变量连接,设置手动控制和自动控制两种方式,并且手动控制为高级控制方式.通过设置随变量值的变化范围而改变颜色的比功率棒图进行故障诊断分析;通过对过程值的归档,建立历史和当前的表格与曲线两种状态的监控界面;利用报警和报表打印等,实现信息上报、及时反馈的功能,实现最佳的生产状态监测控制.还可通过用户管理权限的设置,为不同级别的用户设置权限和等待空闲时间,以更好地安全防护.1.1 PLC控制柜的组成(1) 电源部分(2) CPU模块西门子S7-300PLC,型号为CPU315—2 DP,它集成了MPI接口,可以很方便的在PLC站点、操作站OS、编程器PG、操作员面板建立较小规模的通讯。
它还集成了PROFIBUS-DP接口,通过DP可以组建更大范围的分布式自动化结构。
工作电压:DC 24V;通讯方式:CP5611网卡进行通讯;通讯协议:PROFIBUS-DP。
基于PLC的锅炉水温PID控制系统
基于PLC的锅炉水温PID控制系统————————————————————————————————作者:————————————————————————————————日期:21 设计任务设计一个基于PLC的锅炉水温PID控制系统,要求实现锅炉水温为80度,稳态误差1度,最大超调1度。
当锅炉内的水温低于或者高于80度时,可以通过外部端子的开关或者远程监控,使系统自动进行PID运算,保证最后锅炉内的水温能够维持在80度左右。
2 系统硬件设计2.1 器件选择本温度控制系统采用德国西门子S7-200 PLC。
S7—200 是一种小型的可编程序控制器,适用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能.因此S7-200系列具有极高的性能/价格比.S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型.此系统选用的S7—200 CPU226,CPU 226集成24输入/16输出共40个数字量I/O 点。
可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点。
13K字节程序和数据存储空间。
6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。
2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。
I/O端子排可很容易地整体拆卸。
在温度控制系统中,传感器将检测到的温度转换成4—20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。
在这里我们选择西门子的EM235 模拟量输入/输出模块。
EM235 模块具有4路模拟量输入/一路模拟量的输出。
它允许S7—200连接微小的模拟量信号,±80mV范围.用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。
基于PLC的锅炉控制系统的设计
基于PLC的锅炉控制系统设计是一种常见的工业自动化应用,用于实现对锅炉的自动化控制和监测。
下面是一个简要的锅炉控制系统设计的示例:
系统组成:
PLC(可编程逻辑控制器):作为控制系统的核心,负责接收输入信号、进行逻辑处理和输出控制信号。
传感器:用于测量锅炉的各种参数,如温度、压力、流量等。
执行器:用于执行控制信号,如阀门、泵等。
人机界面(HMI):提供人机交互界面,用于显示锅炉状态、操作控制等。
控制策略:
温度控制:根据锅炉的温度设定值和实际测量值,通过控制执行器来调节燃料供应、水流量等,以维持锅炉温度在设定范围内。
压力控制:根据锅炉的压力设定值和实际测量值,通过控制执行器来调节燃料供应、风量等,以维持锅炉压力在设定范围内。
安全保护:设置各种安全保护措施,如过热保护、低水位保护等,通过监测传感器信号,及时采取相应的控制措施,确保锅炉的安全运行。
编程实现:
使用PLC编程软件,根据控制策略进行逻辑编程,设置输入输出信号的连接关系,编写控制程序。
在编程中考虑异常处理、报警和故障诊断等功能,确保系统的可靠性和稳定性。
人机界面设计:
设计直观友好的人机界面,显示锅炉状态、参数、报警信息等。
提供操作界面,允许操作人员设定参数、监控状态、执行操作等。
在设计过程中,应充分考虑锅炉的特性、运行环境和要求,并遵循相关的安全标准和规范。
此外,进行实施前应进行充分的测试和验证,确保系统的功能和性能符合设计要求。
需要指出的是,以上仅是一个基本的锅炉控制系统设计示例,实际的设计可能会因具体的应用要求而有所差异。
基于PLC锅炉水温控制系统设计
基于PLC锅炉水温控制系统设计1. 引言1.1 背景锅炉是工业生产中常用的热能设备,用于产生蒸汽或热水,供应能量给生产过程中的各个环节。
在锅炉的运行过程中,水温是一个重要的参数,对于保证锅炉运行稳定、安全、高效具有重要意义。
传统的锅炉水温控制方法主要依靠人工操作,存在操作不准确、响应速度慢等问题。
因此,设计基于PLC(可编程逻辑控制器)的锅炉水温控制系统可以提高控制精度和响应速度。
1.2 目的本文旨在设计一个基于PLC锅炉水温控制系统,通过对传感器信号进行采集和处理,并通过PLC进行逻辑判断和控制输出信号,实现对锅炉水温进行精确可靠地控制。
2. 锅炉工作原理及参数2.1 锅炉工作原理锅炉是通过将液体(通常是水)加热至蒸发状态以产生蒸汽或提供加热能量。
其主要部件包括:进水系统、燃烧系统、排烟系统、水循环系统等。
2.2 锅炉水温参数锅炉水温是指锅炉内部循环水的温度,它是锅炉运行稳定性和效率的重要指标。
在正常运行中,锅炉水温应在一定的范围内保持稳定。
过高或过低的水温都会对锅炉运行造成不利影响。
3. PLC控制系统设计3.1 PLC控制原理PLC是一种用于工业自动化控制的电子设备,它能够根据预设的程序和逻辑进行自动化控制。
PLC主要由处理器、输入/输出模块和编程设备等组成。
3.2 PLC应用于锅炉控制系统设计将PLC应用于锅炉控制可以实现自动化程度高、响应速度快等优点。
通过对传感器信号进行采集和处理,PLC可以实时监测并判断锅炉内部参数,并根据预设逻辑进行相应的输出信号,实现对锅炉水温的精确控制。
4. 系统硬件设计4.1 传感器选择选择适合的传感器对于准确获取锅炉水温至关重要。
常用的传感器包括热电偶、热电阻等。
在选择传感器时需要考虑其测量范围、精度和适应环境等因素。
4.2 PLC选型根据锅炉控制系统的需求,选择合适的PLC型号和规格。
需要考虑PLC的输入/输出点数、通信接口、运算速度等因素。
4.3 控制执行机构选型控制执行机构用于实现对锅炉水温的控制,常用的包括电动阀门、变频器等。
基于PLC的锅炉控制系统的设计
基于PLC的锅炉控制系统的设计本文介绍基于PLC的锅炉控制系统的设计的背景和目的。
锅炉控制系统是基于PLC(可编程逻辑控制器)的设计,采用了分布式控制策略。
整体架构包括以下几个组成部分:1.控制器控制器是锅炉控制系统的核心部分,由PLC实现。
PLC具备高速计算能力和强大的输入输出功能,可以对各个设备进行监控和控制。
它接收来自传感器的输入信号,并根据预设的逻辑和算法进行实时处理,向执行器发送输出信号以控制设备运行。
2.传感器传感器负责将锅炉系统的各个参数转化为电信号,并传输给PLC进行处理。
常见的传感器包括温度传感器、压力传感器、流量传感器等。
3.执行器执行器根据PLC的控制信号来执行相应的操作,如调节燃料供给、控制排放阀等。
它们与PLC之间通过信号线或总线进行连接。
4.人机界面人机界面提供给操作员与锅炉控制系统进行交互的界面。
它可以是触摸屏、计算机软件等形式,用于监视系统运行状态、设定参数以及显示报警信息等。
5.通信模块通信模块用于实现锅炉控制系统与外部设备的数据传输和通信。
它可以连接到局域网或远程服务器,实现与其他系统或监控中心的数据交互。
6.电源供应为了保证锅炉控制系统的稳定运行,需要提供可靠的电源供应。
这可以通过备用电源或UPS(不间断电源)来实现。
综上所述,基于PLC的锅炉控制系统采用分布式控制策略,通过控制器、传感器、执行器、人机界面、通信模块和电源供应等组成部分协同工作,实现对锅炉设备的监控和控制。
本文介绍基于PLC的锅炉控制系统所采用的控制策略和算法。
控制策略是指通过采取不同的控制方法和算法,在锅炉运行中实现温度、压力、流量等参数的稳定控制。
基于PLC的锅炉控制系统采用了以下主要的控制策略:PID控制:PID(比例、积分、微分)控制是一种常用的控制方法。
它通过根据控制对象的偏差来调节控制器的输出,使得偏差逐渐趋向于零,从而实现控制目标。
在锅炉控制系统中,PID控制常用于调节温度、压力和流量等参数。
基于PLC的锅炉水位控制系统设计毕业设计(论文)
图书分类号:密级:毕业设计(论文)基于PLC的锅炉水位控制系统设计DESIGN OF BOILER WATER LEVEL CONTROL SYSTEM BASED ON PLC学位论文原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。
除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。
本人完全意识到本声明的法律结果由本人承担。
论文作者签名:日期:学位论文版权协议书本人完全了解关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归所拥有。
有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。
可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
论文作者签名:导师签名:日期:年月日日期:年月日摘要汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。
PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。
本文分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“虚假水位”,提出了锅炉汽包水位控制系统的三冲量控制方案。
按照工程整定的方法进行了PID参数整定,并进行了仿真研究。
根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。
关键词汽包水位;三冲量控制;PLC;PID控制AbstractThe steam drum water level is a very important parameter for the boiler safe operation, both high and low steam drum water level may lead to extremely serious consequence; therefore it must be strictly to be controlled. With the rapid development of PLC technology, it can widely be applied to the process control domain and enhances the performance of control system enormously. PLC has already become the essential important equipment in automatic control domain.Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is ana lyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements hardware and system hardware design as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed.Keywords Steam drum water level Three impulses control PLC PID control目录摘要 (I)Abstract (II)1 绪论 (1)1.1 目前锅炉汽包水位系统的发展状况 (1)1.2 本设计的主要工作 (2)2 控制方案设计 (4)2.1 虚假水位的形成及对策 (4)2.2 汽包水位的影响因素 (4)2.3 汽包水位的控制方案设计 (7)3 硬件选型...................................................................................................... 错误!未定义书签。
汽包水位毕业论文---基于PLC工业锅炉汽包水位控制系统的设计
关键词: 汽包水位; 模糊PID; 三冲量
Abstract
The boiler is numerous essential important power equipment of industrial department. So, the boiler has often become an indispensable part of many factories. Therefore, it is essential for automatic control system in the boiler equipment to research. The water level control system of the boiler is that the boiler produces the most important link in the control system. If the production operation of the boiler is unreasonable, it is improper to de the accident. The majority in these accidents is caused because of improper in control the water level of the boiler. That can see the importance in the equipment control system of the boiler of control of water level of steam dome of the boiler. The auto-control of the drum water level is very important. The drum water level is an important variable to be controlled, it is hard to get the mathematic model of the water level with adjust process. It is characteristic of nonlinearity, instability and time lag. The traditional control mode of three-variable in the drum water level most use PID, the effect of it can be improved. The fuzzy control does not need precise mathematic model of the controlled object, it only needs the experience of operator and the date of operating it has good robustness and it fit to control the system wit h nonlinearity and lag. Keywords: Drum water level, Fuzzy-PID, Three-variable
基于PLC的锅炉实时监控控制系统设计
摘要在工业迅速发展的推动下,我国的经济水平得到了大幅的提升。
锅炉作为最重要的动力机械设备起着不可替代的作用,因此锅炉有着巨大的发展前景,但是我国锅炉的燃烧效率较低,也就使得锅炉的供能不够高效。
本设计结合PLC控制技术对这一问题进行了重点的研究。
采用现代计算机技术对锅炉进行优化控制,从而大大提高其燃烧效率,节约一次能源,减少所产生的环境污染,对社会经济和环境质量的提高有很大的意义。
通过对锅炉各个部分控制要求的研究,结合参考文献和实际情况设计锅炉的自动控制系统。
所研究设计的控制系统可以对锅炉进行集中监测、控制、管理。
集中体现在对锅炉燃烧控制、水位汽包控制、过热蒸汽温度控制以及安全系统的控制设计。
本设计采用S7-300 PLC为核心控制器,同时结合变频器技术、传感器与检测技术以及以太网技术将所有设备构成一个整体,并与其他操作设备建立起良好的通信,对锅炉进行集散控制。
通过STEP7编程软件对PLC进行软件编程,构成对锅炉的实时监控系统。
关键词:锅炉;PLC;控制;STEP7AbstractWith the rapid development of industry, the level of economy has been greatly improved in China. Boilers as the most important power machinery equipment play an irreplaceable role. Therefore, boilers have great prospects. However, in China it is not enough to supply energy because of the low combustion efficiency of boilers.This design focuses on the issue with the PLC control technology. To raise its combustion efficiency, save primary energy sources and reduce the environment pollution, this paper uses modern computer technology to optimize the control of boilers, which has great impact on the socio-economic and environment quality. Through the study on the each part of control requirements combined with the references and lots of documentation, it designs an automatic control system of boilers that can be implemented on boiler for centralized monitoring, control and management. It intensively reflects on the control of boiler burning, the control of water level and bubbles, the control of superheated steam temperature and the design of safety inspection system.The design uses S7-300 PLC as the core controller. At the same time, it applies distributed control of boilers, combined with the inverter technology, sensors and measurement technique and Ethernet technique to all the devices as a whole. And set up a good communication with other operating equipment. Through STEP 7 programming software for upper computer software programming . It constitutes a true time monitoring and control system of boilers.Key words: boilers; Programmable Logic Controller; control; STEP 7III目录摘要........................................................................................................................................... I II Abstract ......................................................................................................................................... I V 目录.. (V)1 绪论 (1)1.1 本课题的内容和意义 (1)1.2 锅炉技术的现状及其未来的发展前景 (1)1.2.1 锅炉技术的现状 (1)1.2.2 锅炉的发展趋势 (2)1.3 本课题的目的及要求 (2)2 锅炉系统控制方案设计 (3)2.1 锅炉运行过程简介 (3)2.1.1 锅炉结构及其工艺介绍 (3)2.1.2 锅炉的工作过程 (4)2.2 锅炉水位控制方案设计 (4)2.2.1 锅炉汽包水位控制要求 (4)2.2.2 锅炉汽包水位控制方案设计 (5)2.3 锅炉燃烧控制方案设计 (5)2.3.1 锅炉燃烧控制要求 (5)2.3.2 主蒸汽压力控制方案设计 (6)2.3.3 送风控制方案设计 (7)2.3.4 引风控制方案设计 (8)2.4 锅炉过热蒸汽温度控制方案设计 (8)2.4.1 过热蒸汽温度控制方案要求 (8)2.4.2 过热蒸汽减温器的安装设计 (8)2.5 小结 (9)3 锅炉控制系统设计 (10)3.1 锅炉控制系统硬件设计 (10)3.1.1 硬件型号选定 (10)3.1.2 锅炉控制系统硬件设计 (12)3.2 锅炉系统软件设计 (13)3.3 I/O地址分配表 (16)3.4 软件编程 (18)4 锅炉控制系统仿真 (24)4.1 汽包水位控制系统整定与仿真 (24)4.2 锅炉燃烧控制系统整定与仿真 (25)4.2.1 主蒸汽压力控制回路整定与仿真 (25)4.2.2 送风控制系统整定与仿真 (27)4.2.3 引风控制系统整定与仿真 (28)5 结论与展望 (30)5.1 结论 (30)5.2 不足之处及未来展望 (30)致谢 (31)参考文献 (32)III基于PLC的锅炉实时监控控制系统设计1 绪论锅炉作为社会工业生产的重要设备,对经济的推动有着巨大的影响,因此对锅炉的不断优化也是现代科技发展的一个重要方向。
基于PLC的锅炉液位控制系统
基于PLC的锅炉液位控制系统摘要:工业锅炉液位控制的任务是通过控制给水流量使其与蒸发量保持动态平衡,使汽包水位维持在工艺允许的范围之内,是保证锅炉安全生产运行的必要条件,也是锅炉正常生产运行的主要指标之一。
若水位过高,影响汽水分离的效果;而水位过低则会破环汽水循环,严重时导致锅炉爆炸,为了保证生产安全高效的进行必须严格控制锅炉液位使其保持恒定或按一定规律变化。
关键词:PLC;锅炉液位;控制系统1系统结构和控制方案PLCS7-200CPU224作为控制器进行控制,主要是对燃煤锅炉进行控制,包括风机、给煤机的开关,根据液位变化对进出水口阀门的控制,根据锅炉内温度变化进行自动控制,利用PLC中所带有的PID调节器进行调节,以控制锅炉内的温度,再利用远程传输的功能,可以在用户处装上温度传感器,将其温度转成标准信号传到PLC主机上,观测到的温度根据需要进行调节,提高或降低锅炉的温度,直接控制传到用户的温度。
在锅炉内装有压力传感器,这是十分必要的,如果压力过高,可能会降低锅炉的寿命,甚至发生危险,所以一定要控制压力,当压力超过一定的数值,需报警,并迅速进行处理,降低锅炉内的压力,以免发生危险。
根据系统的要求,选取西门子PLCS7-200CPU224作为控制核心,同时还扩展了2个EM231模拟量输入模块、1个EM223数字量输入模块和1个CP243-1以太网模块。
CPU224的I/O点数是14/10。
所以要扩展1个EM223的数字量输入/输出模块,它的I/O点数是16/16,作用是提供附加的输入、输出点,这样完全可以满足系统的要求。
同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧检测传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。
PLC通过检测温度、水位、压力、流量和气体中的含氧量给出控制信号控制燃烧机、真空泵、给媒机、电磁阀等输出设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉水位PLC电气控制系统设计
发表时间:2019-05-05T15:21:28.417Z 来源:《基层建设》2019年第4期作者:章航伟
[导读] 摘要:在锅炉运行中,水位是一个很重要的参数。
杭州富尔顿热能设备有限公司浙江杭州 310018
摘要:在锅炉运行中,水位是一个很重要的参数。
若水位过高,则会影响汽水分离的效果,使用电气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。
同时高性能的锅炉产生的蒸汽流量很大,而汽包的体积相对来说较小所以锅炉水位控制显得非常重要。
锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡维持汽包内水位在允许的范围内变化。
关键词:锅炉水位;PLC电气控制;系统设计
1锅炉的基本构成
1.1气锅
由上下锅炉和沸水管组成。
水在管内受外部烟气加热,因而管簇内发生自然的循环流动,并逐渐汽化,产生的饱和蒸汽聚集在锅筒里面。
下锅筒起着连接沸水管的作用,同时储水。
1.2 炉膛
是使燃料充分燃烧并放出热能的设备。
燃料(煤,燃油或煤气)由传送设备直接送入炉内燃烧。
所需的空气由鼓风机送入,燃尽的灰渣被炉排带到除灰口。
落入灰斗中,得到的高温烟气依次经过各个受热面,将热量传递给水以后,由烟囱排到大气中。
1.3 过热器
是将锅炉所产生的饱和蒸汽继续加热为过热蒸汽的换热器。
1.4 省煤器
利用烟气余热加热锅炉给水,以降低排出烟气温度的换热器。
1.5 空气预热器
是继续利用离开省煤器后的烟气余热,加热燃料燃烧所需要的空气的换热器。
通常,大、中型锅炉中均设有空气预热器。
2锅炉水位控制系统在锅炉生产控制系统中的重要性
锅炉是一种受压又直接受火的特种设备,是工业生产中的常用设备。
对锅炉生产如果操作不合理,管理不善,处理不当,往往会引起事故,轻则停炉影响生产,重则造成爆炸,造成人身伤亡,损坏厂房、设备,后果十分严重。
因此,锅炉的安全问题是一项非常重要的问题,必须引起高度重视。
工业锅炉中最常见的事故有:锅内缺水,锅炉超压,锅内满水,汽水共腾,炉管爆破,炉膛爆破,二次燃烧,锅炉灭火等。
其中以锅炉缺水事故比例最高。
这些事故中的大部分是由于锅炉水位控制不当引起的,可见锅炉汽包水位控制在锅炉设备控制系统中的重要性。
3锅炉控制系统的设计
3.1 系统硬件设计
本系统PLC基本配置要求有9点开关量输入,10点开关量输出;3路模拟量输入,1路模拟量输出。
其中SB0锅炉运行开关,SB1、SB2水位控制开关,SB3空气压力开关,SB4燃油压力开关,SB5鼓风压力开关,SB6、SB7蒸汽压力保护开关,SB8火焰检测器开关,KM1燃烧器鼓风机接触器,KM2油泵接触器,KM3空压机接触器,FM报警蜂鸣器,Kv1点火喷油电磁阀,TR点火线圈继电器,Kv2燃油电磁阀。
3.2 系统软件设计
锅炉控制系统全自动起动、停炉和故障事件处理,按照要求在PLC中编制用户程序,实现:给水、扫气、点火、燃烧等过程的全自动起、停控制。
锅炉水位自动控制,蒸汽压力自动控制,燃烧程序自动控制,保护与报警功能的实现。
根据控制要求自动起停风机、开闭风门和控制风门的大小,完成扫气工序。
3.3 PLC输入输出控制系统
PLC具有可靠性高、抗干扰能力强,建造工作量小、维护方便,体积小、质量轻,能耗低等显著特点,运用PLC控制锅炉已越来越成为一种趋势。
(1)锅炉PLC控制过程
首先确定PLC输入、输出信号,确定哪些机床信号(如按钮、行程开关、继电器触点、无触点开关的信号等)需要输入给PLC,哪些信号(如继电器线圈、指示灯及其他的执行电路)需要从PLC输出给锅炉,从而计算出对PLC的输入、输出线数目以及IO地址分配。
(2)PLC输入输出信号
PLC系统输入输出信号。
利用系统输入输出IO分配,控制相应动作。
输入信号包括刀具换刀、刀具夹紧、气压报警、坐标轴回零、坐标轴正负限位信号、主轴速度到达信号、外部运行允许信号等。
根据程序控制输出信号,也可以按照控制需要对程序进行修改,改变输出信号或IO分配。
输出信号包括刀具正反转、刀具换刀位、主轴使能、冷却开、伺服使能、伺服强电允许、主轴松紧等,输出信号也可以扩展。
4基于PLC的锅炉自动控制系统设计过程
实现锅炉自动控制系统设计,首先我们需要对锅炉的整体结构有一个大致的了解:锅炉,顾名思义,由锅和炉组成,简单来说,锅是用来加热水的,炉是用来燃烧燃料的;前者涉及的是蒸汽输送系统和送水系统,后者涉及的是送煤系统和燃料燃烧系统。
控制系统可以通过这一系列的控制信号和控制点对燃料供应系统、热水循环系统、燃烧系统以及热水锅炉机组控制系统进行及时有效的控制,从而保证系统能够对燃气是否泄漏做出判断,防止安全事故的发生、能够在水量不足的时候及时补充水、对锅炉水位进行监测,以保证锅炉不会因为水位过高或过低而发生事故、对锅炉压力进行监测,防止锅炉在超压时运行以及对炉水温度进行实时跟踪,防止炉水温度超过安全设定,保证机组安全运行。
总而言之,用PLC实现的自动控制可以让锅炉更为安全、稳定并经济合理的运行。
5 PLC在系统中的应用
针对锅炉控制对象的特点,周边环境的特殊性及运行周期的连续性,选用SIEMENS公司的S7-200系列PLC控制锅炉汽包系统。
S7-
200PLC具有单独的S7-200CPU和多种可选择的扩展模块,组合方便,控制方式多样化,控制规模由几点到几百点不等。
针对锅炉控制系统的I/O点数,系统中S7-200PLC的CPU选择CPU222模块,选择EM235作为模拟量输入输出模块。
扩展模块耗电量大,做多带2个,但CPU222能够满足其基本要求。
系统的控制原理是:现场信号(汽包水位,蒸汽压力,给水流量等物理量)通过传感器检测,变送器传递并转换,传递给EM235,通过模拟量和数字量转换,传送给CPU222,处理数据后,传递给PID模块,将数值转换成标准控制信号,经EM235输出到电动阀门,实施自动控制。
传递数据的同时,CPU222具有自报警功能,超过上限时,产生报警信号。
整个PLC系统的启动,停止等功能的控制主要通过控制开关来完成。
在Windows平台中,西门子PLC选用“STEP 7-Micro/WIN32”编程软件,参数的初始化是通过调用子程序完成的,累加器、PID、定时器等都是通过其完成的。
数字滤波是通过采集模拟量完成的。
通过滤波处理的数据,转换成物理量,和PID模块的标准值比较,进行PID运算,转换成标准控制信号,传递给输出模块,完成其系统的正常运行。
6 结语
在锅炉运行中,水位是一个很重要的控制参数,它间接地反映了锅炉负荷和给水的平衡关系。
保持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。
锅炉汽包水位过高,会影响汽包内汽水分离装置的正常工作,造成出口蒸汽中水分过多,结果使过热器受热面结垢而导致过热器烧坏,同时会使过热蒸汽汽温产生急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低,则由于汽包内的水量较少,当负荷很大时,水的汽化速度很快,因而汽包内的水量变化速度很快,如不及时有效控制,就会使汽包内的水全部汽化,导致锅炉被烧坏或爆炸。
同时高性能的锅炉产生的蒸汽流量很大,而锅筒的体积相对来说较小,所以锅炉水位控制显得非常重要。
锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持锅筒内水位在允许的范围内变化。
高压锅炉汽包长期在高水位下运行,已成为高参数汽包锅炉普遍存在的问题。
研究汽包内部实际水位与水位计显示水位差值的成因,并设法修正和消除这个差值,对于合理控制汽包水位,保证机组安全经济运行有着重要的现实意义。
[1]潘光峰,许健.老式锅炉控制系统的PLC控制改造[J].煤矿现代化.2009(02)
[2]孙宝山.PLC系统在蒸汽锅炉控制中的应用[J].炼油与化工.2009(04)。