习题解答基本体的三视图
高中数学 3三视图课后习题(带答案)
3 32 正视图 侧视图 俯视图图1 三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π2.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B .93C.123D.1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B)32+817(C)48+817(D)802,它的三视图中的俯视图如右图所7.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为3示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为m__________39.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cmcm. 10.(2010浙江理数)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________311.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
14.(2010天津理数)(12)一个几何体的三视图如图所示,则这个几何体的体积为15.(2010湖南理数)13.图3中的三个直角三角形是一个体积为203cm的几何体的三视图,则h= cm.16.(2010福建理数)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.17.(2010广东理数)6.如图1,△ ABC为三角形,AA'//BB'//CC', CC'⊥平面ABC 且3AA'=32BB'=CC' =AB,则多面体△ABC -A B C'''的正视图(也称主视图)是18.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 1819.【2012高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2220.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是21.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B .3πC .10π3D .6π22.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .23.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱24.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+12525.【2012高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.26.【2012高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。
经典:机械制图-基本几何体的三视图
圆球面上取点
k
k
k
辅助圆法
圆的半径?
圆环
b’ a’
(c ) (a )
面上找点:
纬圆法
思考:
• 点B的位置, 另两个投影及可见性
a” • 点C的位置, 能否确定
主视图 俯视图 侧视图
可见 前半环 上半外环 左半外环
不可见 后半环
其余 其余
个人观点供参考,欢迎讨论
个人观点供参考,欢迎讨论
转 体
圆柱
圆柱
圆柱面上取点
1′ 3′
1″ 3″
a
a
2′
4′
2″ 4″
A
1(2)
a
3(4)
利用投影 的积聚性
圆锥
圆锥
s
●
k
(n)
b′ d′
n ●
s b
k d
圆锥面上取点
●s
●(n)
k b″
★辅助直线法
SO N●
A O1
如何在圆锥面 上作直线?
过锥顶作一条 素线。
★辅助圆法
圆的半径?
圆球
圆球
画出点画B出的A第点三的个三投面影投并影找到点B的位置
a (b) b
a
a
b
A B
棱锥
棱锥 棱锥投影:棱锥底面是水平面,前、 后棱面是侧垂面,左、右棱面正垂 面。
棱锥
底面ABC是水平面,在俯视图上反 映实形。侧棱面SAC为侧垂面,另 两个侧棱面为一般位置平面。
s
s
S
a
b
c a(c)
b
C
a
s
任务三: 基本几何体
基本几何体
平面基 本体
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图(20个含答案)
三视图(一)1(2011西城一模理12).一个棱锥的三视图如图所示,则这个棱锥的体积为_____.2(2011西城一模文5).一个棱锥的三视图如图所示,则这个棱锥的体积是(A)6(B)12(C)24(D)363.(2011朝阳一模理6)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()(A )612(B )33(C )64(D )2334(2011门头沟一模理3).一几何体的三视图如右图所示,则该几何体的体积是(A) 2 (B) 4 3(C)312+(D)316+正(主)视图俯视图侧(左)视图3443 33正(主)视图俯视图侧(左)视图3443 33侧视图正视图1俯视图2主视图左视图111ABC DO EA 1B 1C 1D 1 5(2011石景山一模理4).一个空间几何体的三视图及部分数据如图所示(单位:cm ),则这个几何体的体积是( ) A . 33cm B .352cm C . 32cm D .332cm6(2011朝阳一模文6.)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()(A )23(B )33(C )223 (D )2337(2011丰台文5).如图所示,O 是正方体ABCD -A 1B 1C 1D 1对角线A 1C 与AC 1的交点,E 为棱BB 1的中点,则空间四边形OEC 1D 1在正方体各面上的正投影不可能...是( )8(2011海淀一模文11). 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_____.(A) (B) (C) (D)正视图俯视图侧视图13PDCBA1A 1D 1B 1C 左视主视9(2011门头沟一模文10).一几何体的三视图如左下图所示,则该几何体的体积是10(2011石景山一模文4).一个空间几何体的三视图及部分数据如图所示 (单位:cm ),则这个几何体的表面积是( ) A .29πcm B .212πcm C .215πcm D .224πcm参考答案:1.122.B3.B4.B5.D6.B7.A _8._1__9. 3710.D俯视23主视左视11(第10题(二)1(10。
(完整版)高中数学3三视图课后习题(带答案)
(完整版)高中数学3三视图课后习题(带答案)332 正视图侧视图俯视图图1 三视图课后习题1.(陕西理5)某几何体的三视图如图所示,则它的体积是A .283π-B .83π-C .82π-D .23π2.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为3.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+4.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63 B .93C .123D .1835.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .826.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A )48 (B )32+817 (C )48+817 (D )807.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理10)一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为__________3m9.(2010湖南文数)13.图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm10.(2010浙江理数)(12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .11.(2010辽宁文数)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为 .12.(2010辽宁理数)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13.(2010天津文数)(12)一个几何体的三视图如图所示,则这个几何体的体积为。
第2章 基本体三视图-1
b′
a′
(1′)
1
c a b
2、圆柱表面上取点
已知圆柱面上的点A、B、C的一个投影(a')、b''、c,试作出其另两个 投影。
( )
分析:点A的(a')为不
可见,故它处在后半个圆 柱面上,b''处在侧视转 向线上,故B点位于圆柱 的最前素线,由c可知, 点C位于圆柱的顶面上。 整个作图过程如图所示。
四、基本体的表面上取点
2、椎体的共性和表面上取点 常见的椎体有正棱锥、正圆锥等,其共性有:
※
棱线或素线汇交于一点;
被平行与底面的截平面截切时,其切口形 状与底面形状一直,切口大小随切平面与底面 的距离的改变而改变
※
1)、棱锥表面上取点 2)、圆锥表面上取点
1、三棱锥表面上取点
r
1
1
r
1
R
Ⅰ
1、三棱锥表面上取点
b′
b″
c′
a′ a b c a″
(c″)
2、圆锥表面上取点
5、球的表面上取点
五、圆环
1、圆环的形成
圆环可以看成是以圆为母线,绕与圆在 同一平面内,但不通过圆心的轴线旋转而成。
2、圆环的画法
Байду номын сангаас 3、圆环的投影特点
4、环面上的取点
当环面轴线垂直于H面时,在其表面上取点 采用纬圆法。
在投影图上表示回转体, 回转面用转向轮廓线表示。转向 就是把组成立体的回转面 轮廓线通常是位于曲面最前最后、 或平面表示出来,然后判 最上最下或是最左最右的素线。 断可见性。 转向轮廓线将回转面分为可见和 不可见的两部分 转向轮廓线
转向轮廓线
绘制曲面立体的投影归结为绘制 出围成曲面立体各表面的投影,或绘制 出曲面立体各轮廓线、尖点的投影和转 向轮廓线。
机械制图习题集答案1-5
第一章制图的基本知识和技能班级姓名学号日期
第一章制图的基本知识和技能班级姓名学号日期
第一章制图的基本知识和技能班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第三章正投影法的基本原理班级姓名学号日期
第四章变换投影面法班级姓名学号日期
第四章变换投影面法班级姓名学号日期
第四章变换投影面法班级姓名学号日期
第五章基本体的三视图班级姓名学号日期
第五章基本体的三视图班级姓名学号日期
第五章基本体的三视图班级姓名学号日期
31 / 31。
三视图习题(含答案)
几何体的三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A.2 C..66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,的体积为().A.2π+B. 4π+C. 23π+D. 43π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( )第7题侧(左)视图正(主)视俯视图俯视图 正(主)视图 侧(左)视图(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
三视图经典习题
三视图经典习题
1.正确答案为C。
水平放置的正四面体的三视图都是正三角形。
2.正确答案为D。
几何体②和几何体④的主视图和左视图相同。
3.该几何体的左视图为一个正方形和一个等腰直角三角形组成的图形。
4.俯视图可能是一个边长为1的正方形。
5.直观图可能是一个长方体。
6.最长的一条棱的长为2.
7.表面积为70平方厘米,体积为24立方厘米。
8.四棱锥的表面积无法确定,需要知道它的高才能计算。
9.体积为216立方厘米。
10.体积为48立方厘米。
11.无法确定几何体的形状和尺寸,无法计算体积。
三视图练习带答案
三视图练习1.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm ),则该三棱柱的表面积为:A .24πcm 2B.)3824(+ cm 2C .314 cm2D .318 cm22.如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1 A .1 B .21C .61D .31正视图 侧视图 俯视图3.4. 为2A .324 B . 334 C. 635.一个几何体的三视图如图所示(单位长度: cm ),则此几何体的表面积是A .(80+cm 2 B. 96 cm 2C. (96+cm2D. 112 cm 2俯视图俯视图俯视图侧视图正视图侧视图正视图6.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为7. 如图,一个空间几何体的主视图和左视图都是边长为1俯视图是一个圆,那么这个几何体的侧面积...为_____2π8.用单位立方块搭一个几何体,使它的主视图和俯视图 如右图所示,则它的体积的最小值与最大值分别为( ) A .9与13 B .7与10 C .10与16 D .10与159.如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是①长方体 ②圆锥 ③三棱锥 ④圆柱A .④③②B .②①③C .①②③D .③②④10.一个几何体的三视图如图所示,则该几何体的体积等于(A) 8 + 4π3 (B) 4 + 4π3(C) 8 + 4π (D) 10π311.一个几何体的三视图如右图所示,其中正视图 和侧视图是腰长为4的两个全等的等腰直角三角形. 则该几何体的体积是 ;用 3 个这样的(甲)(乙)(丙)主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图左视图 主视图 主视图 俯视图俯视图侧视图正视图侧视图正视图俯视图几何体可以拼成一个棱长为4的正方体.12.已知一几何体的三视图如下,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是 ①③④⑤ (写出所有正确结论的编号). ①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体; ⑤每个面都是直角三角形的四面体.13.如右图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为 (不考虑接触点) A . 6+3+π B . 18+3+π4 C . 18+23+π D . 32+π14.如图,水平放置的三棱柱的侧棱长和底边长均为2, 且侧棱1111AA A B C ⊥面,正视图是边长为2的正方形, 该三棱柱的左视图面积为( ). A. 4B. 32C. 22D.315. 一个空间几何体的正视图、侧视图是两个边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的体积等于( )A .1B .12C .13 D .1416. 一个几何体的三视图如右图所示(单位长度: cm),A. 2(24cm +B. 2(22cm +正视图 侧视图俯视图_ B _1_ A _1_ B_ A _ B _1 _ A _1 _ B _ A正视图俯视图C. 2(28cm +D. 2(26cm +17.如右图,一个空间几何体的主视图、左视图是周长为4一个内角为060的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为__π______.18.已知某个几何体的三视图如图(主视图中的弧线是半圆), 根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )3cm .A.π+8B.328π+C.π+12D.3212π+19.一个几何体的三视图如图所示,其中正视图与左视图都是边长为2的正三角形,则这个几何体的侧面积为 ( ) A B .2π C .3π D .4π例1 如图,下列物体的正视图和俯视图中有错误的一项是 ( )左视图主视图侧视图主视图俯视图俯视图左(侧)视图正(主)视图例 2 如图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是()①长方体;②圆锥;③三棱柱;④圆柱.A.④③②B.②①③C.①②③D.③②④以上两题都是考查最基本的三视图概念. 在理解三视图所表示的几何体中,应有必要的空间想象能力,三视图不仅可以让我们更好地把握空间几何体的性质,而且可以相互转化,即由空间几何体画出三视图,由三视图画出空间几何体,通过这样的转化,进一步培养学生的空间想象能力.斜二侧画法是画几何直观图的基础,在教学过程中,应从实际例子出发,明确画法的原理和法则.例 3 如果平面四边形水平放置直观是一个底角为45 ,腰和上底均为1(下底大于上底)的等腰梯形,那么原平面图形的面积是__________________________________.这是一个不难的问题,只要根据斜二侧画法的法则,即可作出解答,但很多学生在后来碰到这样的问题时,很难理解题目的条件,以至于无法解答,这说明在学习这个画法时就一知半解.高考解答题一般都以几何体作为载体,考查线面间的位置关系,而这个几何体完全可以利用三视图给出,这样不仅要有较好的空间想象能力,而且对三视图的概念应该理解,应用非常熟练,因此在教学过程中必须考虑到这些情况,全面提高学生的数学修养.例4 一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积(单位:cm).这是一个简单的计算题,容易弄错的地方是把图中所标的当作正三棱柱底面边长进行计算,其实是正三棱柱底面三角形的高,这就考查到了三视图的概念,如果再添加点其他元素或关系,则可以作为一个综合题进行考查.。
三视图习题50道(含答案).
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是( (A2 (B1 (C23(D132、一个几何体的三视图如图,该几何体的表面积是((A372 (B360 (C292 (D2803、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是(A3523cm3(B3203cm3 (C2243cm3(D1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主视图与侧(左视图分别如右图所示,则该几何体的俯视图为: (5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 (A.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图是(10、一空间几何体的三视图如图所示,则该几何体的体积为( .A.2π+B. 4π+C. 2π+D. 4π 11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A .9πB .10πC .11πD .12π第7题侧(左视图正(主视图俯视图俯视图正(主视图侧(左视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c2m为((A(B(C(D13、若某几何体的三视图(单位:cm如图所示,则此几何体的体积是3cm.14、设某几何体的三视图如上图所示。
则该几何体的体积为3m15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm,可得这个几何体的体积是(A.3 4000 cm3B.3 8000 cm3C.3 2000cmD.34000cm16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(A.33π B.2πC.3π D.4π第14题正视图侧视图俯视图第17题17、如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积为(A .32πB .16πC .12πD .8π18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11π D .12π19、右图是一个多面体的三视图,则其全面积为( AB6C6 D4 20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为(A .2πB .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm如图所示,则该几何体的侧面积为_ ______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm, 则此几何体的表面积是(A. 2(20cm + B.212cmC. 2(24cm + D. 242cm俯视图左视图俯视图图2723. 如右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为A .π3 B .π2 C .π23D .π424. 如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12。
5.机械制图第五章基本体的三视图
机 械
制 图
基本体的三视图
程叶新
§5-1 基本体的概念
基本体
最简单的几何形体。
平面体
每个表面都是平面
曲面体
至少有一个表面是曲面
棱柱
棱锥
圆柱
圆锥
圆球 圆环
§5-2 平面体的三视图
§5-2-1 棱柱的三视图
棱柱的定义:
有两个互相平行的平面,其余各 平面都是平行四边形,由这些平面 所围成的几何体叫做棱柱。
如图,圆柱的三个面都是特殊位置面,上平面和下平面是水平面, 圆柱面是铅垂面,在投影上都有积聚。在有积聚性的投影上,这些面上 点的投影根据“长对正、高平齐、宽相等”的投影规律可直接画出,且 点的投影为可见。(具体画法见后面的演示)
圆柱表面点的投影
(d’)
(d”) a”
a’
b’ c’ (c) d c” b”
(d’)
(c’)
c”
d
(c) b a
Hale Waihona Puke 三棱锥的三视图从 上 向 下 看
V 主视图
W 左视图
H 俯视图
§5-2-2-1 棱锥表面点的投影
棱锥的侧表面有一般位置面。 一般位置面对三个投影面都倾斜,三个 投影都是类似性线框,在投影上没有积聚, 其表面点的投影需运用辅助线的方法求得。 辅助线的方法有两种: 1、素线法 2、平行线法
素线法 棱锥的侧面是无数条素线构成的,棱 锥侧面上任意一点必然在其中的某一条素 线上,要作出该点的投影,先作出这条素 线的投影,然后根据投影规律,将点的投 影画至该素线的同面投影上即可。
正圆锥表面点的投影
b’ a’ (c”) (c’)
(b”)
a”
c
三视图习题50道(含答案)
三视图习题50道(含答案)三视图练习题1、若某空间⼏何体的三视图如图所⽰,则该⼏何体的体积是()(A)2 (B)1 (C)23(D)132、⼀个⼏何体的三视图如图,该⼏何体的表⾯积是()(A)372 (B)360 (C)292 (D)2803、若某⼏何体的三视图(单位:cm)如图所⽰,则此⼏何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、⼀个长⽅体去掉⼀个⼩长⽅体,所得⼏何体的正(主)视图与侧(左)视图分别如右图所⽰,则该⼏何体的俯视图为:()5、若⼀个底⾯是正三⾓形的三棱柱的正视图如图所⽰,则其侧⾯积...等于 ( )A.2 C..66、图2中的三个直⾓三⾓形是⼀个体积为20cm2的⼏何体的三视图,则h= cm第2题第5题7、⼀个⼏何体的三视图如图所⽰,则这个⼏何体的体积为。
8、如图,⽹格纸的⼩正⽅形的边长是1,在其上⽤粗线画出了某多⾯体的三视图,则这个多⾯体最长的⼀条棱的长为______.9、如图1,△ ABC 为正三⾓形,AA '//BB ' //CC ' , CC ' ⊥平⾯ABC 且3AA '= 32BB '=CC '=AB,则多⾯体△ABC -A B C '''的正视图(也称主视图)是()10、⼀空间⼏何体的三视图如图所⽰,则该⼏何体的体积为( ).A.2π+B. 4π+C. 23π+D. 43π+ 11、上图是⼀个⼏何体的三视图,根据图中数据,可得该⼏何体的表⾯积是()A .9πB .10πC .11πD .12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、⼀个棱锥的三视图如图,则该棱锥的全⾯积(单位:c2m)为()(A)(B)(C)(D)13、若某⼏何体的三视图(单位:cm)如图所⽰,则此⼏何体的体积是3cm.14、设某⼏何体的三视图如上图所⽰。
专题29.2 三视图(解析版)
专题29.2 三视图1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
【例题1】如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.主视图会发生改变B.俯视图会发生改变C.左视图会发生改变D.三种视图都会发生改变【答案】A【解析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.【点拨】本题考查了简单组合体的三视图,从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.【例题2】如图是由一个长方体和一个球组成的几何体,它的主视图是()A. B. C. D.【答案】C【解析】从正面看几何体,确定出主视图即可.几何体的主视图为:【点拨】主视图就是从几何体正面看得到的图形。
【例题3】如图所示的几何体的俯视图是()A B C D【答案】D【解析】此几何体的俯视图如图:【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【例题4】下列几何体中,俯视图不是圆的是()A.四面体 B.圆锥C.球 D.圆柱【答案】A【解析】分别找出从图形的上面看所得到的图形即可.A.俯视图是三角形,故此选项正确;B.俯视图是圆,故此选项错误;C.俯视图是圆,故此选项错误;D.俯视图是圆,故此选项错误。
【点拨】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的上面看所得到的图形.1.如图是由4个相同的小立方体搭成的几何体,则它的主视图是()A.B.C.D.【答案】B【解析】主视图有2列,每列小正方形数目分别为1,2.如图所示:它的主视图是:.【点拨】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.2.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A. B. C. D.【答案】D【解析】根据俯视图是从上面看到的图象判定则可.从上面看下来,上面一行是横放3个正方体,左下角一个正方体.【点拨】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.πB.2πC.3πD.(+1)π【答案】C【解析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为的正三角形.∴正三角形的边长==2.∴圆锥的底面圆半径是1,母线长是2,∴底面周长为2π∴侧面积为2π×2=2π,∵底面积为πr2=π,∴全面积是3π.4.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个 B.5个C.6个 D.7个【答案】B.【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.由主视图和左视图可确定所需正方体个数最少时俯视图为:,则搭成这个几何体的小正方体最少有5个.5.如图所示,该几何体的俯视图是()A.B.C.D.【答案】C.【解析】根据俯视图是从物体的上面看得到的视图进行解答即可.从上往下看,可以看到选项C所示的图形.故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C.【解析】根据从上边看得到的图形是俯视图,可得答案.从上边看是一个田字,“田”字是中心对称图形.7.如图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()A. B.C. D.【答案】C【解析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.解:从正面看,下面一行是横放3个正方体,上面一行是一个正方体.如图所示:【点拨】本题考查了三种视图中的主视图,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.8.下列图形中,主视图为①的是()A.B.C. D.【答案】B.【解析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.A.主视图是等腰梯形,故此选项错误;B.主视图是长方形,故此选项正确;C.主视图是等腰梯形,故此选项错误;D.主视图是三角形,故此选项错误.9.下列几何体中,主视图与俯视图不相同的是()A.正方体 B.四棱锥 C.圆柱 D.球【答案】B.【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.四棱锥的主视图与俯视图不同.10.下列几何体的左视图为长方形的是()A. B.C.D.【答案】C.【解析】找到个图形从左边看所得到的图形即可得出结论.A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.11.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【答案】D.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看是一个等腰三角形,高线是虚线.12.如图所示的几何体的主视图是()A.B.C.D.【答案】B.【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形.13.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【答案】C.【解析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.从左边看竖直叠放2个正方形.14.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层是两个正方形,第二层是左边一个正方形.15.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【答案】B.【解析】根据从上面看得到的图形是俯视图,可得答案.从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形.16.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【答案】C.【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.17.如图所示的几何体的左视图是()A.B.C.D.【答案】D.【解析】根据从左边看得到的图形是左视图,可得答案.从左边看是两个等宽的矩形,矩形的公共边是虚线。
题型02 简单几何体的三视图(解析版)
备考2021年中考一轮复习点对点必考题型题型02 简单几何体的三视图考点解析1.简单几何体的三视图(1)画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.(2)常见的几何体的三视图:圆柱的三视图:2.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.五年中考1.(2019•成都)如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【点拨】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.2.(2018•成都)如图所示的正六棱柱的主视图是()A.B.C.D.【点拨】根据主视图是从正面看到的图象判定则可.【解析】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.3.(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看一层三个小正方形,故选:C.4.(2016•成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【点拨】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解析】解:从上面看易得横着的“”字,故选:C.5.(2015•成都)如图所示的三视图是主视图是()A.B.C.D.【点拨】根据原图形得出其主视图,解答即可.【解析】解:A、是左视图,错误;B、是主视图,正确;C、是俯视图,错误;D、不是主视图,错误;故选:B.一年模拟1.(2019·锦江一诊)有一透明实物如图,它的主视图是()A.B.C.D.【点拨】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解析】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.2.(2019·成华一诊)如图所示的几何体,它的左视图是()A.B.C.D.【点拨】根据左视图即从物体的左面观察得到的视图,进而得出答案.【解析】解:如图所示的几何体的左视图为:.故选:D.3.(2019·武侯一诊)如图所示的支架(一种小零件)的两个台阶的高度和宽度分别相等,则它的主视图为()A.B.C.D.【点拨】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解析】解:从正面看去,是两个有公共边的矩形,如图所示:故选:D.4.(2019·成华二诊)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.(2019·青羊一诊)观察下列几何体,主视图、左视图和俯视图都是矩形的是()A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、主视图为矩形,俯视图为圆,错误;B、主视图为矩形,俯视图为矩形,正确;C、主视图为等腰梯形,俯视图为圆环,错误;D、主视图为三角形,俯视图为有对角线的矩形,错误.故选:B.6.(2019·青羊二诊)图中三视图对应的正三棱柱是()A.B.C.D.【点拨】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解析】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.7.(2019·武侯二诊)下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解析】解:A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选:C.8.(2019·锦江二诊)如图,该立体图形的俯视图是()A.B.C.D.【点拨】根据几何体的三视图,即可解答.【解析】解:如图所示的立体图形的俯视图是C.故选:C.9.(2019·高新一诊)如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是()A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.10.(2019·武侯二诊)如图所示的几何体的左视图是()A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从左面看,得到的视图是A.故选:A.精准预测1.如图所示几何体的左视图正确的是()A.B.C.D.【点拨】找到从几何体的左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解析】解:从几何体的左面看所得到的图形是:故选:A.2.下列立体图形中,主视图是三角形的是()A.B.C.D.【点拨】根据从正面看得到的图形是主视图,可得图形的主视图.【解析】解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.3.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【点拨】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【解析】解:该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选:B.4.如图所示几何体,从左面看是()A.B.C.D.【点拨】从左面看到的是左面位置上下两个正方形,右面的下方一个正方形,由此得出答案即可.【解析】解:左面位置上下两个正方形,右面的下方一个正方形的图形是.故选:B.5.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【点拨】主视图是分别从物体正面看,所得到的图形.【解析】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.6.学校超市的货架上摆放着某品牌方便面,从三个不同的方向看可以看到下图所示的形状图,则货架上的方便面至多有()A.7盒B.8盒C.9盒D.10盒【点拨】由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,进而求出答案,做出选择.【解析】解:由从三个不同的方向看到的形状,可以在俯视图上,标出相应的摆放的最多数量,求出至多有9盒,故选:C.7.如图是由小立方块搭成的几何体,则从左面看到的几何体的形状图是()A.B.C.D.【点拨】从左面看到的图形是两列,其中第一列有两个正方形,第二列有1个正方形,做出判断即可.【解析】解:从左面正投影所得到的图形为选项B.故选:B.8.如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的()A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变【点拨】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解析】解:如果将小正方体A放到小正方体B的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.10.如图,下列选项中不是正六棱柱三视图的是()A.B.C.D.【点拨】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.11.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【点拨】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解析】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.12.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.【点拨】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解析】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.13.如图所示的支架是由两个长方体构成的组合体,则它的左视图是()A.B.C.D.【点拨】根据从左边看得到的图形是左视图,可得答案.【解析】解:从左边看下边是一个中间为虚线的矩形,故选:A.14.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.【点拨】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解析】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.15.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【点拨】根据从上边看得到的图形是俯视图,可得答案.【解析】解:从上边看是一个六边形,中间为圆.故选:D.。
习题解答基本体的三视图
基本体三视图习题答案
7.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
8.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
9.画出被截切平面立体的第三视图。
基本体三视图习题答案
10.画出被截切平面立体的第三视图。
基本体三视图习题答案
33.完成第三投影。
基本体三视图习题答案
34.完成第三投影。
基本体三视图习题答案
35.完成第三投影。
基本体三视图习题答案
36.完成第三投影。
基本体三视图习题答案
37.求作所缺的相贯线投影。
基本体三视图习题答案
38.求作所缺的相贯线投影。
基本体三视图习题答案
39.求作所缺的相贯线投影。
基本体三视图习题答案
11.画出被截切平面立体的第三视图。
基本体三视图习题答案
12.画出被截切平面立体的第三视图。
基本体三视图习题答案
13.画出被截切平面立体的第三视图。
基本体三视图习题答案
14.画出被截切平面立体的第三视图。
基本体三视图习题答案
15.画出被截切平面立体的第三视图。
基本体三视图习题答案
基本体三视图习题答案
28.完成下列第三视图。
基本体三视图习题答案
29.画出被截切回转体的第三视图。
基本体三视图习题答案
30.画出被截切回转体的第三视图。
基本体三视图习题答案
31.画出被截切回转体的第三视图,补全第二视图中所缺 的图线。
基本体三视图习题答案
32.画出被截切回转体的第三视图,补全第二视图中所缺 的图线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本体三视图习题答案
4.求作平面立体的第三视图及表面上点的其余投影,并 标注尺寸,尺寸数值直接从图中量取整数。
基本体三视图习题答案
5.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
6.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
47.求作第三视图。
基本体三视图习题答案
48.求作第三视图。
基本体三视图习题答案
49.完成套筒主视图,并标注该套筒的尺寸(由图中量取 整数)。
基本体三视图习题答案
50.求作俯视图。
基本体三视图习题答案
51.完成俯视图,并补全主视图上的缺线。
基本体三视图习题答案
52.补全左视图中的缺线。
基本体三视图习题答案
33.完成第三投影。
基本体三视图习题答案
34.完成第三投影。
基本体三视图习题答案
35.完成第三投影。
基本体三视图习题答案
36.完成第三投影。
基本体三视图习题答案
37.求作所缺的相贯线投影。
基本体三视图习题答案
38.求作所缺的相贯线投影。
基本体三视图习题答案
39.求作所缺的相贯线投影。
基本体三视图习题答案
7.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
8.求作下列回转体的第三视图及表面上点的其余投影, 并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
9.画出被截切平面立体的第三视图。
基本体三视图习题答案
10.画出被截切平面立体的第三视图。
基本体三视图习题答案
22.完成下列第三视图。
基本体三视图习题答案
23.完成下列第三视图,并标注尺寸,数值直接在图中量 取整数。
基本体三视图习题答案
24.完成下列第三视图。
基本体三视图习题答案
25.完成下列第三视图。
基本体三视图习题答案
26.完成下列第三视图。
基本体三视图习题答案
27.完成下列第三视图。
16.画出被截切平面立体的第三视图。
基本体三视图习题答案
17.画出被截切平面立体的第三视图。
基本体三视图习题答案
18.画出被截切平面立体的第三视图。
基本体三视图习题答案
19.画出被截切平面立体的第三视图。
基本体三视图习题答案
20.画出被截切平面立体的第三视图。
基本体三视图习题答案
21.完成下列第三视图,并标注尺寸,数值直接在图中量 取整数。
基本体三视图习题答案
53.完成主视图,并标注尺寸,数值直接从图中量取整数。
基本体三视图习题答案
40.求作所缺的相贯线投影。
基本体三视图习题答案
41.求作所缺的相贯线投影。
基本体三视图习题答案
42.求作所缺的相贯线投影。
基本体三视图习题答案
43.求作第三视图。
基本体三视图习题答案
44.求作第三视图。
基本体三视图习题答案
45.求作第三视图。
基本体三视图习题答案
46.求作第三视图。
基本体三视图习题答案
11.画出被截切平面立体的第三视图。
基本体三视图习题答案
12.画出被截切平面立体的第三视图。
基本体三视图习题答案
1பைடு நூலகம்.画出被截切平面立体的第三视图。
基本体三视图习题答案
14.画出被截切平面立体的第三视图。
基本体三视图习题答案
15.画出被截切平面立体的第三视图。
基本体三视图习题答案
基本体三视图习题答案
1.求作平面立体的第三视图及表面上点的其余投影,并 标注尺寸,尺寸数值直接从图中量取整数。
基本体三视图习题答案
2.求作平面立体的第三视图及表面上点的其余投影,并 标注尺寸,尺寸数值直接从图中量取整数。
基本体三视图习题答案
3.求作平面立体的第三视图及表面上点的其余投影,并 标注尺寸,尺寸数值直接从图中量取整数。
基本体三视图习题答案
28.完成下列第三视图。
基本体三视图习题答案
29.画出被截切回转体的第三视图。
基本体三视图习题答案
30.画出被截切回转体的第三视图。
基本体三视图习题答案
31.画出被截切回转体的第三视图,补全第二视图中所缺 的图线。
基本体三视图习题答案
32.画出被截切回转体的第三视图,补全第二视图中所缺 的图线。