北师大必修4《平面向量》测试题及答案

合集下载

(常考题)北师大版高中数学必修四第二章《平面向量》检测(包含答案解析)

(常考题)北师大版高中数学必修四第二章《平面向量》检测(包含答案解析)

一、选择题1.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .4332.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17113.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .324.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .35.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .06.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26C 6D .237.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C.2133a b +D .1233a b +8.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC∆的面积之比为( ) A .12B .1C .32D .29.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:110.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-11.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .0,3⎡⎤⎣⎦B .3,3⎡⎤⎢⎥⎣ C .3,3⎡⎤⎣⎦D .[]0,312.设非零向量a 与b 的夹角是23π,且a a b =+,则22a tb b+的最小值为( )A .33B .32C .12D .1二、填空题13.在矩形ABCD 中,已知E 、F 分别是BC 、CD 上的点,且满足2BE EC =,3CFFD .若(),AC AE AF R λμλμ=+∈,则λμ+的值为______.14.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 17.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 18.已知平面非零向量,,a b c 两两所成的角相等,1a b c ===,则a b c ++的值为_____.19.若点O 和点F 分别为椭圆24x +23y =1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为________.20.已知平面向量a ,b 满足1a =,2a b -与2b a -的夹角为120°,则2b 的最大值是_______.三、解答题21.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角. 22.设非零向量a ,b 不共线.(1)若(),1a t =,()5,b t =,且//a b ,求实数t 的值;(2)若OA a b =+,2OB a b =+,3OC a b =+.求证:A ,B ,C 三点共线. 23.已知,,a b c 是同一平面内的三个向量,其中(1,2)a = (1)若||25c =,且//c a ,求c 的坐标; (2)若5||2b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 24.已知向量()cos ,sin m x x =-,()3,3n =,[]0,x π∈. (1)若m 与n 共线,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 25.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角. 26.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=.(1)求32a b c +-;(2)求满足a mb nc =+的实数,m n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=2.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可.【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222mOD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=,所以12950 2nm-⨯-=,联立方程组124502129502mnnm-⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811mn⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m-=.故选D【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.3.D解析:D【分析】以O为原点,边OA和OC所在的直线分别为x和y轴建立如图所示的平面直角坐标系,设(),P x y,易得1,2y xαβ==,则12x yαβ+=+,再将原问题转化为线性规划问题,求目标函数12x y+在可行域BCD内(含边界)的最大值,即可求出结果.【详解】以O为原点,边OA和OC所在的直线分别为x和y轴建立如图所示的平面直角坐标系,则()()0,1,2,0C D,如下图所示:设(),P x y,∵(,)OP OC OD Rαβαβ=+∈,∴()()(),0,12,0)2,(x yαββα=+=,∴2,x yβα==,即1,2y xαβ==,∴12x yαβ+=+,令1,2z x y=+则12y x z=-+,其中z为直线12y x z=-+在y轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.4.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.5.B解析:B 【分析】建立坐标系,逐段分析·PE PF 的取值范围及对应的解. 【详解】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤, ∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+, 06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B. 【点睛】本题主要考查平面向量数量积的运算,二次函数的根的个数判断,属于中档题.6.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.7.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.8.A解析:A 【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.9.B解析:B 【分析】根据23OA OB OC ++=32AB BC CA ++,化简得到12033OA OB OC ++=,设12,33OB OD OC OE ==,则O 为ADE 的重心,有AODAOEDOES SS==,则93,,232AOB BOC AOC S S S S S S ∆∆∆===求解. 【详解】由23OA OB OC ++=32AB BC CA ++,得233322OAOA OB OC OB OA OC OB OA OC ++=-+-+-, 整理得:320OA OB OC ++=,12033OA OB OC ∴++=,设12,33OB OD OC OE ==,则0OA OD OE ++=,即O 为ADE 的重心,AODAOEDOESSSS ∴===,则93,,232AOB BOC AOC S S S S S S ∆∆∆===, 93::3::2:3:122AOB BOC AOC S S S ∆∆∆∴==,故选:B. 【点睛】本题主要考查平面向量的平面几何中的应用,属于中档题.10.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D .【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.11.D解析:D 【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围. 【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤. 故选:D. 【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC=(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==, a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb b b bπ++++=, 222222222244cos42312444a t a b t b a t a a t a t t baπ++-+==-+当且仅当1t =时,22a tb b+的最小值为3故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】本题首先可根据题意得出然后将转化为再然后根据列出算式最后通过计算即可得出结果【详解】如图结合题意绘出图像:因为所以则故因为所以解得故答案为:【点睛】关键点点睛:本题考查向量的相关运算主要考查解析:13 10【分析】本题首先可根据题意得出23BE AD、14DF AB=,然后将AC AE AFλμ=+转化为2314AB ADλμλμ⎛⎫⎛⎫+++⎪ ⎪⎝⎭⎝⎭,再然后根据AC AB AD=+列出算式,最后通过计算即可得出结果.【详解】如图,结合题意绘出图像:因为2BE EC=,3CF FD,所以2233BE BC AD,1144DF DC AB ,则23AE AB BE AB AD,14AF AD DF AD AB,故3142AB ADAC AE AF AD ABλμλμ⎛⎫⎛⎫=+=++⎪ ⎪⎝⎭⎝⎭+4231AB ADλμλμ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭,因为AC AB AD=+,所以114213λμλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得910λ=,25μ=,1310λμ+=,故答案为:1310.【点睛】关键点点睛:本题考查向量的相关运算,主要考查向量的三角形法则以及平行四边形法则的应用,考查计算能力,考查数形结合思想,是中档题.14.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,2AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为3AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).17.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =, ∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.18.3或0【分析】由于三个平面向量两两夹角相等可得任意两向量的夹角是或由于三个向量的模已知当两两夹角为时直接算出结果;当两两夹角为时采取平方的方法可求出三个向量的和向量的模【详解】由题意三个平面向量两两解析:3或0 【分析】由于三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒,由于三个向量的模已知,当,,a b c →→→两两夹角为0时,直接算出结果;当,,a b c →→→两两夹角为120︒时,采取平方的方法可求出三个向量的和向量的模. 【详解】由题意三个平面向量两两夹角相等,可得任意两向量的夹角是0或120︒, 当,,a b c →→→两两夹角为0时,,,a b c →→→方向相同,则3a b c →→→++=; 当,,a b c →→→两两夹角为120︒时,由于1a b c ===, 则2222222a b c a b c a b a c b c→→→→→→→→→++=+++⋅+⋅+⋅111211cos120211cos120211cos1200=+++⨯⨯⨯︒+⨯⨯⨯︒+⨯⨯⨯︒=,则20a b c →→→++=,∴0a b c →→→++=. 综上a b c →→→++的值为3或0. 故答案为:3或0. 【点睛】本题考查平面向量的模的求法,涉及向量的夹角和向量的数量积运算,解题的关键是理解向量夹角的定义,考查运算能力.19.6【分析】由椭圆方程得到FO 的坐标设P(xy)(-2≤x≤2)利用数量积的坐标运算将·转化为二次函数最值求解【详解】由椭圆+=1可得F(-10)点O(00)设P(xy)(-2≤x≤2)则·=x2+x解析:6 【分析】由椭圆方程得到F ,O 的坐标,设P (x ,y )(-2≤x ≤2),利用数量积的坐标运算将OP ·FP 转化为二次函数最值求解. 【详解】由椭圆24x +23y =1,可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP ·FP =x 2+x +y 2=x 2+x +321-4x⎛⎫ ⎪⎝⎭=14x 2+x +3 =14(x +2)2+2,-2≤x ≤2, 当x =2时, OP ·FP 取得最大值6. 故答案为:6 【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.20.【分析】设设则有联立四个方程令整理得到从方程有根判别式大于等于零求得结果【详解】设由题意可知则由与夹角为所以①且②③④因为联立①②③④令即整理得将其看作关于的方程若方程有解则有整理得解得因为所以的最解析:52【分析】设设2a b c =-,2b d a =-,则有cos120c d c d ⋅=︒,22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,2222(2)44c a b a a b b =-=-⋅+,2222(2)44d b a b a b a =-=-⋅+,联立四个方程,令21,m b n a b =+=⋅,整理得到2228204330n mn m m -+-+=,从方程有根,判别式大于等于零求得结果.【详解】设2a b c =-,2b d a =-,由题意可知,则由c 与d 夹角为120︒, 所以cos120c d c d ⋅=︒,①且22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,②2222(2)44c a b a a b b =-=-⋅+,③ 2222(2)44d b a b a b a =-=-⋅+,④因为11,cos1202a =︒=-, 联立①②③④,2222244104444b a b a a b b b a b a +-⋅=-⋅+⋅-⋅+,令21,m b n a b =+=⋅,即410m n -=2222168010044316161212129m mn n m mn m mn n n m n -+=---+++--,整理得2228204330n mn m m -+-+=,将其看作关于n 的方程,若方程有解,则有22(20)428(433)0m m m ∆=-⨯⨯-+≥,整理得2770m m -+≤,解得7722m +≤≤因为21m b =+,所以2b 的最大值是75122++-=,故答案为:52+. 【点睛】思路点睛:该题考查的是有关向量的问题,解题思路如下: (1)根据向量数量积的定义式求得两向量的数量积;(2)根据向量数量积运算法则求得其结果;(3)利用向量的平方与向量模的平方相等,得到等量关系式;(4)联立,从方程有根,判别式大于等于零,得到不等关系式,求得结果.三、解答题21.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题22.(1)2)证明见解析. 【分析】(1)利用平面向量的坐标运算和共线定理列方程求出t 的值; (2)根据条件得到2AC AB =且有公共点A ,即可得到结论. 【详解】解:(1)∵(),1a t =,()5,b t =,且//a b ,故250t t -=⇒=, 即实数t 的值为:5±;(2)证明:∵OA a b =+,2OB a b =+,3OC a b =+. ∴AB OB OA b =-=,2AC OC OA b =-=,即2AC AB =且有公共点A , 故A ,B ,C 三点共线. 【点睛】本题考查向量平行的坐标表示,用向量法证明三点共线,属于基础题. 23.(1)(2,4)或(2,4)--;(2)π. 【分析】(1)根据共线向量的坐标关系运算即可求解; (2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a ,222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩,(2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a ba b θ⋅∴==-, 又[0,π]θ∈,πθ∴=. 【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题.24.(1)3-2)6π【分析】(13sin =-x x ,进而可得结果.(2)由平面向量的数量积可得3cos -x x ,进而可得结果. 【详解】(1)由//m n 3sin tan 3=-⇒=-x x x(2)13cos 3sin cos 132π⋅=-=⋅⋅=⨯m n x x m n 可得1sin()32x π-=-,因为2[0,],[,]333ππππ∈-∈-x x 所以366πππ-=-⇒=x x【点睛】本题考查了平面向量共线的坐标表示、平面向量数量积运算的坐标表示和三角恒等变换,考查了运算求解能力和逻辑推理能力,属于中档题目.25.(1)1a b +=;-1;(2)45︒.【分析】(1)根据平面向量数量积的运算律求出||a b +,再根据平面向量的几何意义求出b 在a 方向上的投影;(2)根据向量垂直,则数量积为零,即可得到1a b ⋅=,再根据夹角公式计算可得;【详解】 解:(1)由已知得2222()2121()212a b a b a a b b +=+=+⋅+=+⨯-+=,∴1a b +=; b 在a 方向上的投影为||cos1352(12b =-=- (2)由已知得()0a b a -⋅=,即20a a b -⋅=∴1a b ⋅=,∴[]2cos ,,0,212a b a b a b a b π⋅===∈⨯,, ∴向量a 与b 的夹角为45︒.【点睛】本题考查平面向量的数量积及夹角的计算,属于中档题.26.(1)()0,6(2)5,98.9m n ⎧=⎪⎪⎨⎪=⎪⎩【分析】(1)根据向量(3,2),(1,2),(4,1)a b c ==-=,利用平面向量的加法和减法运算求解. (2)根据a mb nc =+,有()()()()3,21,24,14,2.m n m n m n =-+=-++再利用平面向量相等求解.【详解】(1)()()()3233,21,224,1a b c +-=+--,()()()()9,61,28,20,6=+--=,(2) a mb nc =+,()()()()3,21,24,14,2.m n m n m n ∴=-+=-++4322m n m n -+=⎧∴⎨+=⎩ ,解之得5989 mn⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查平面向量的坐标运算,还考查了运算求解的能力,属于中档题.。

北师大数学必修四第二章平面向量单元测试题

北师大数学必修四第二章平面向量单元测试题
A、当表示两个向量的有向线段的起点和终点完全重合时,这两个向量才能称为相等向量;
B、大小为5m,方向指向东南的位移记作 ,大小为5N,方向也指向东南的力记作 ,则 , 可视为两个相等的向量;
C、 ;
D、
4、已知向量 是两个不共线的单位向量,夹角为30o则下列向量共线的一组是()
A、
B、
C、
D、
5、设 为两不共线的向量,则 与 共线的充要条件是()
A. , B. ,
C. , D. ,
8、在 中,有命题
① ;② ;③若 ,则 为等腰三角形;④若 ,则 为锐角三角形.
上述命题正确的是()
A.①②B.①④C.②③D.②③④
9、已知向量 、 满足:| |=1,| |=2,| -2 |=2,则|2 + |=()
A.21B. C. D.
10、已知 且点 在线段 延长线上,使 ,则点 坐标是()
4、用向量法证明梯形的中位线平行于底边,长度为两底和的一半。
5、已知 顶点A(-1,-1),B(-1,3),C(2,-1),试求 外接圆方程。
单元测试题答案
一、DADCC CACBD;
二、1、 2、-25;3、(-3,-4);4、120°;
三、1、6或10;
2、x=2,y=3;
3、
4、
5、设BC中点为P,则P( ,1)。
(A) (B) (C) (D)
6、下列说法中正确的序号是()
①平面内只有互相垂直的单位向量可作为基底;
②两个非零向量平行,则他们所在直线平行;
③零向量不能作为基底中的向量;
④两个基底向量的数量积等于零.
(A)①③ (B)②④ (C)③ (D)②③
7、(03辽宁)已知四边形 是菱形,点 在对角线 上(不包括端点 、 ),则 ()

数学北师大版高中必修4北师大版—高中数学必修4第二章平面向量单元测试(含答案)

数学北师大版高中必修4北师大版—高中数学必修4第二章平面向量单元测试(含答案)

数学必修4第二章平面向量单元测试一、选择题:共10小题,每小题5分,总共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法中错误的是( )A .零向量没有方向B .零向量与任何向量平行C .零向量的长度为零D .零向量的方向是任意的 2. 下列命题正确的是( )A.向量与是两平行向量 C.若=,则A 、B 、C 、D 四点构成平行四边形 B .若→a 、→b 都是单位向量则→a =→b D.两向量相等的充要条件是它们的始点、终点相同 3. 在平行四边形ABCD 中, BC +DC +BA 等于( ) A. BC B . C.D.AC4. 已知A (m ,-n ),B (―m ,n ),点C 分所成的比为―2,那么点C 的坐标为( ) A .(m ,n ) B.(-3m ,3n ) C.(3m ,-3n ) D.(-m ,n )5. 已知OA =(2,8), OB =(-7,2),则31AB 等于( ) A.(3,2)B .(310,35--) C.(-3,-2)D.(-35,4) 6. 已知单位向量→a 、→b ,则下面正确的式子是( )A. →a ·→b =1 B. →a 2=→b 2 C. →a =→b D. |→a |-|→b |=→0 7. 下列命题正确的是( )A 、向量AB 的长度与向量BA 的长度相等。

B 、两个有共同起点且相等的向量,其终点可能不同。

C 、若非零向量AB 与是共线向量,则A 、B 、C 、D 四点共线。

D 、若→a 平行→b 且→b 平行→c ,则→a 平行→c 。

8. 已知非零向量→a 、→b ,则|→a +→b |= |→a |+|→b | 的充分必要条件是( ) A 、→a 与→b 同向 B 、→a =→b C 、→a 与→b 平行 D 、 →a 与→b 反向 9. 已知||=5,||=8,则||的取值范围为 ( )A 、(3,8)B 、[3,8]C 、 (3,13)D 、[3,13]10.F(x)=x 2+6x+11的图象按向量→a 平移得到y= x 2的图象,则向量→a =( ) A 、(-3,2) B 、[3,2] C 、 (3,-2) D 、(-3,-2) 二、填空题:共5小题,每小题5分,总共25分,把答案填在题中横线上. 11. +BC +CA =0为“A 、B 、C 是三角形三个顶点”的 条件. 12. 已知P 点的内分点,且:=:=a,则a= 。

专题05:北师大版必修四第二章平面向量综合提升检测题

专题05:北师大版必修四第二章平面向量综合提升检测题

专题05:北师大版必修四第二章平面向量综合提升检测题一、单选题1.已知向量a =(3,4),b =(k ,2-k ),且a ∥b ,则实数k =( ) A .8B .-6C .67D .-432.已知a ,b 均为单位向量,它们的夹角为60︒,那么3a b +=( )ABC D .133.若向量(3,0),(2,2)a b ==,则a 与b 夹角的大小是( )A .0B .4π C .2π D .34π 4.已知点()2,2A ,()6,1B -,则与向量AB 同向的单位向量为( ) A .43,55⎛⎫-⎪⎝⎭B .34,55⎛⎫-⎪⎝⎭C .43,55⎛⎫-⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭5.a →,b →为非零向量,且|a →+b →|=|a →|+|b →|,则( ) A .a →∥b →,且a →与b →方向相同 B .a →,b →是共线向量且方向相反 C .a →=b →D .a →,b →无论什么关系均可6.在ABC 所在的平面上有一点P ,满足PA PB PC AB ++=,设BA a =,BC b =,则BP =( ) A .1233a b +B .1233a b -C .2133a b + D .2133a b - 7.已知向量(1,2),(3,1)a b =-=-,则( ) A .//a bB .a b ⊥C .)a a /b /-(D .()a a b ⊥-8.如图,在平行四边形ABCD 中,π3BAD ∠=,2AB =,1AD =,若M 、N 分别是边BC 、CD 上的点,且满足BM NCBC DCλ==,其中[]0,1λ∈,则AM AN ⋅的取值范围是A .[]0,3B .[]1,4 C .[]2,5D .[]1,79.在△ABC 中,N 是AC 边上一点,且AN =12NC ,P 是BN 上的一点,若AP =m AB +29AC ,则实数m 的值为( ) A .19 B .13C .1D .310.已知向量(2,1)a =--,),2(b λ=,若a 与b 的夹角为钝角,则λ的取值范围是( ).A .(1,4)(4,)-⋃+∞B .(2,)+∞C .(1,)-+∞D .(,1)-∞-11.已知向量()34OA =-,,()15O B A O +=-,,则向量OA 在向量OB 上的投影是( ) A .25B 25C .25-D .2512.面积为16的正方形ABCD 中,M 为平面上任意一点,若()()MA MB MC MD m +⋅+≥,则实数m 的取值范围为( )A .(],8-∞-B .(],6-∞-C .(],16-∞-D .(],2-∞-二、填空题13.已知()2,3A ,()5,1B -,则与AB 方向相同的单位向量0a =___________. 14.若两个向量a 与b 的夹角为3π,且a 是单位向量,向量||2b =,2c a b =+,则向量c 与b 的夹角为__________.15.在平行四边形ABCD 中,26AD AB ==,60DAB ∠=,12DE EC →→=,12BF FC →→=.若2FG GE →→=,则AG BD →→⋅=_____________.16.已知向量a ,b 满足1a =,3b =,且a b ⊥,若向量c 满足2c a b a b --=-,则c 的最大值是______.三、解答题17.设向量13(cos ,sin )(02),,22a b αααπ⎛⎫=<=- ⎪ ⎪⎝⎭,且a 与b 不共线.(1)求证:()()a b a b +⊥-;(23a b +与3a b -的模相等,求α. 18.已知向量a 与向量b 的夹角为3π,且1a =,27a b -=. (1)求b ;(2)若()a ab λ⊥-,求λ.19.已知向量a ,b 满足||||1a b ==,|3(0,)ka b a kb k k R +=-∈. (1)求a b ⋅关于k 的解析式f(k). (2)若//a b ,求实数k 的值. (3)求向量a 与b 夹角的最大值.20.已知向量()cos ,sin a αα=,()cos ,sin b ββ=,()2,0c =. (1)求向量b c +的长度的最大值; (2)设3πα=,且()a b c ⊥+,求cos β的值.21.已知向量a 与b 的夹角为120︒,2a =,1b =. (1)若2a b -;(2)若()()2a tb a b +⊥-,求实数t 的值.22.已知向量()cos ,sin a θθ=,[]0,πθ∈,向量()3,1b =-.(1)若a b ⊥,求θ的值;.(2)若2a b m -<对任意[]0,πθ∈恒成立,求实数m 的取值范围.1【答案】C 【分析】根据两平行向量坐标之间的关系,得到方程,求解方程即可. 【详解】因为a ∥b ,所以有:63(2)47k k k -=⇒=. 故选:C 【点睛】本题考查了已知平行向量求参数问题,属于基础题. 2【答案】C 【分析】先由题意,求出a b ⋅,再由向量模的计算公式,即可求出结果. 【详解】因为a ,b 均为单位向量,它们的夹角为60︒, 所以1cos602a b a b ⋅=⨯⨯=,因此22396931a b a a b b +=+⋅+=++=故选:C. 【点睛】本题主要考查求向量的模,熟记向量模的计算公式即可,属于基础题型. 3【答案】B 【分析】先由数量积的坐标运算,求出两向量的数量积,再由向量夹角公式,即可得出结果. 【详解】因为向量(3,0),(2,2)a b ==,所以326a b ⋅=⨯=,3a =,44b =+=因此6cos ,322a b a b a b⋅<>===⨯所以,4a b π<>=.故选:B.【点睛】本题主要考查求向量的夹角,熟记向量的夹角公式,以及向量数量积的坐标运算即可,属于基础题型. 4【答案】A 【分析】根据与向量AB 同向的单位向量为AB AB得出结果.【详解】由题意可得()4,3AB =-,()2435AB ∴=+-=,因此,与向量AB 同向的单位向量为143,555AB AB AB⎛⎫==- ⎪⎝⎭. 故选:A. 【点睛】本题考查同向的单位向量的求解,熟悉结论“与非零向量a 同向的单位向量为a a”的应用是解题的关键,考查计算能力,属于基础题. 5【答案】A 【分析】根据向量模的不等式等号成立的条件即可求解. 【详解】||||||a b a b →→→→+≤+等号成立的条件a →,b →共线且同向, ||||||a b a b →→→→∴+=+可得//a b →→,且a →与b →方向相同,故选:A 6【答案】C 【分析】由向量加减的三角形法则结合相反向量的定义,可得P 为线段AC 的一个三等分点,再根据向量的加减的几何意义即可求出答案. 【详解】解:∵PA PB PC AB ++=,∴2PC PA AB PB AP AB BP AP =-+-=++=;即2PC AP =;故点P 是CA 边上的第二个三等分点;()112121333333BP BA AP BA AC BA BC BA BA BC a b =+=+=+-=+=+;故选:C. 【点睛】本题考查向量的线性运算,掌握向量的加减法和数乘法则是解题基础. 7【答案】D 【分析】根据平面向量加法、减法的坐标运算和向量平行与垂直的坐标表示逐一判断选项,得到答案. 【详解】对A ,由1(1)(2)30⨯---⨯≠,故a 与b 不平行,A 错误; 对B ,由13(2)(1)0⨯+-⨯-≠,故a 与b 不垂直,B 错误;对C ,由()a b -(2,1)=--,则1(1)(2)(2)0⨯---⨯-≠,故a 与()a b -不平行,C 错误;对D ,由1(2)(2)(1)0⨯-+-⨯-=,则()a a b ⊥-,D 正确. 故选:D. 【点睛】本题考查了平面向量加法、减法的坐标运算和向量平行与垂直的坐标表示,属于基础题. 8【答案】C 【解析】 因为BM NCBC DCλ==,所以BM BC λ=,NC DC λ=, 所以AM AN ⋅=()()AB BC AD DN λ+⋅+=()()AB BC AD AB DC λλ+⋅+-=()()1AB AD AD AB λλ⎡⎤+⋅+-⎣⎦=()()411AB AD AB AD λλλλ⋅+-++-⋅=()()1411λλλλ+-++-=225λλ--+. 当0λ=时,AM AN ⋅取得最大值5; 当1λ=时,AM AN ⋅取得最小值2,AM AN ⋅的取值范围是[]2,5.本题选择C 选项. 9【答案】B 【分析】根据向量的线性表示逐步代换掉不需要的向量求解. 【详解】 设NP NB λ= ,AP AN NP =+13AC NB λ=+=1()3AC NA AB λ++ 11()33AC AB λλ=-+ 所以112,339λ-= 所以1.3λ=故选B. 【点睛】本题考查向量的线性运算,属于基础题. 【答案】A 【分析】根据题意可知,0a b ⋅<且,a b 不共线,列式即可解出. 【详解】依题可得,0a b ⋅<且,a b 不共线,即()2202210λλ--<⎧⎨-⨯--⨯≠⎩,解得1λ>-且4λ≠.故选:A . 【点睛】本题主要考查向量的数量积的定义的理解和应用,数量积的坐标表示以及向量不共线的坐标表示,属于基础题. 10【答案】A 【分析】先求出OB ,再由向量OA 在向量OB 上的投影为||OA OB OB ⋅计算得到.【详解】由向量()34OA =-,,()15O B A O +=-,,得(2,1)OB =,则向量OA 在向量OB 上的投影为||OA OB OB ⋅==. 故选:A.【点睛】本题考查了向量投影的理解与计算,属于基础题. 11【答案】C 【分析】以A 为原点建立平面直角坐标系,转化为向量数量积的坐标运算即可. 【详解】以A 为原点建立平面直角坐标系如下所示,则4AB =,()0,0A ,()4,0B ,()4,4C ,()0,4D ,(),M x y , 则(),MA x y =--,()4,MB x y =--,()4,4MC x y =--,(),4MD x y =--,故MA +()42,2MB x y =--,()42,82MC MD x y +=--, 故()()()(24222MA MB MC MD x y y +⋅+=-+)8-()()2242421616x y =-+--≥-,故实数m 的取值范围为(],16-∞-,故选:C. 【点睛】本题考查了向量数量积的坐标运算,考查了基本运算能力,属于基础题.12【答案】34,55⎛⎫- ⎪⎝⎭【分析】AB 方向相同的单位向量为||ABAB . 【详解】(2,3),(5,1)A B -(3,4)AB ∴=-,5AB =034,55||AB a AB ⎛⎫∴==- ⎪⎝⎭故答案为:34,55⎛⎫- ⎪⎝⎭13【答案】6π 【分析】求出c b ⋅及c ,然后由数量积定义可得夹角. 【详解】由已知12cos13a b π⋅=⨯⨯=, 所以22(2)22126c b a b b a b b ⋅=+⋅=⋅+=⨯+=,22222(2)4441c a b a b a a b b =+=+=+⋅+=⨯设c 与b 的夹角为θ,则cos 23c b c bθ⋅===⨯[0,]θπ∈,所以6πθ=.故答案为:6π. 14【答案】21 【分析】利用平面向量的线性运算可将所求数量积转化为7599AD AB AD AB →→→→⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭,根据平面向量数量积的定义和运算律可求得结果. 【详解】12DE EC →→=,12BF FC →→=,23EF BD ∴=,13AG BD AE EG AD AB AD DE EF AD AB →→→→→→→→→→→⎛⎫⎛⎫⎛⎫⎛⎫∴⋅=+⋅-=++⋅- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭1212239399AD DC DB AD AB AD AB AB AD AD AB →→→→→→→→→→→⎛⎫⎛⎫⎛⎫⎛⎫=++⋅-=++-⋅- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭227572599999AD AB AD AB AD AD AB AB→→→→→→→→⎛⎫⎛⎫=+⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭7215366392825219929=⨯-⨯⨯⨯-⨯=--= 故答案为:21.15【分析】设OA =a ,OB =b ,OC c =,OD a b =+,根据条件,借助平面图形得到点C 的轨迹,即可得到结果.【详解】如图,设OA a =,OB b =,OC c =,OD a b =+,连接AD ,BD ,则由a b ⊥可知四边形OADB 为矩形,则2a b a b +=-=.由2c a b a b --=-,可得2c a b a b --=-,连接CD ,则4DC =,所以点C 在以点D 为圆心,4为半径的圆上,所以OC 的最大值为246OD DC +=+=.故答案为:6.16【答案】(1)证明见解析;(2)6π或76π. 【分析】(1)先求出,a b a b +-,再计算()()a b a b +⋅-的值,发现()()0a b a b +⋅-=, 得()()a b a b +⊥-。

高一数学必修4平面向量测试题(含答案)

高一数学必修4平面向量测试题(含答案)

必修4 第二章平面向量教学质量检测姓名: 班级: 学号: 得分:一.选择题(5分×12=60分):1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513 D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ))(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a6.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC (D )−→−AD =-2−→−BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4) 10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅ (A) 0 (B) 1 (C) 2 (D) 3二. 填空题(5分×5=25分):13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 . 14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是_________________。

北师大版必修四第二章平面向量综合检测题及答案解析

北师大版必修四第二章平面向量综合检测题及答案解析

综合检测(二)(时间120分钟,满分150分)、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四 个选项中,只有一项是符合题目要求的)a ,b ,c 满足 a / b ,且 a 丄c ,贝U c (a + 2b )=( )C. 2•.a 丄c ,-'a c = 0.又•••a//b ,二可设b = a 则 c (a + 2b ) = c(1 + 2 ?)a2.已知向量a = (1,0)与向量b = (—1,^/3),则向量a 与b 的夹角是( )nA -6C.2n【答案】A. 2C-6'•'1= (1 + x,3), u= (1 — x,1), 1/u•••(1+ X)x 1-3X (1 — X) — 0,.・.x=2第二章平面向量1.若向量【解析】【答案】 D x k B1 . c o mn B.3【解析】cos〈a ,b 〉=器=T^•••0,b 〉 2n=3 .3.已知 a = (1,2), b —(X ,1),11= a + b, u= a — b,且1/ u 则x 的值为()【解析】【答案】A4.已知|a| = 2|b|, |b|M 0,且关于x的方程x2+ |a|x + ab= 0有实根,则a与b的夹角的取值范围是()n A. [0,6】n , B. [3, n> 0. C. [5,劭n ,D. [6, n【解析】|a|2— 4a b=a f — 4|a||b|cos〈a, b〉= 4|b|2— 8|b|2 cos〈a,b〉-cos a, b〉1W2,〈a, b〉€ [0, n .a,b〉【答案】5.已知|a| = 1, |b| = 6, a (b—a) = 2,则向量a与b的夹角是( )nA.6nB.4nC.nnD-22 2【解析】--a (b—a) = a b— a = 2,.・.|a||b|cos B—|a| = 2,1 n•••1x 6x cos — 1 = 2,.・.cos = 2,又0W 0W n 二=3,故选 C.【答案】 C6.已知OA= (2,2), 5B= (4,1),在x轴上一点P使A P B P有最小值,则P点的坐标是( )A. (—3,0)B. (3,0)C. (2,0)D. (4,0)【解析】设P(x,0),.・.AP= (x—2,—2), BP= (x —4,— 1),A AP BP= (x—2)(x —4)+ 22 2=x —6x+ 10= (x—3) +1,当x= 3时,AP BP取最小值,此时P(3,0).【答案】 B7•若a,b是非零向量,且a丄b,|a|M |b|,则函数f(x)= (x a+ b) (x b—a)是( )A .一次函数且是奇函数B.一次函数但不是奇函数C•二次函数且是偶函数D.二次函数但不是偶函数【解析】..a丄b,.・.a b= 0,•••f(x) = (x a + b) (x b—a) = x2(a b)+ (|b|2—|a|2)x—a b= (|bf—a|2)x,又|a|M|b|.•••f(x )是一次函数且为奇函数,故选A.【答案】 A> —> AB AC —> AB AC 18 已知非零向量AB与AC满足(=+=) BC = 0且===2则^ ABC |AB| AC| |AB| |AC|A .等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形【解析】AB和钥分别是与AB, AC同向的两个单位向量.|AB| AC|AB AC AB AC f兰+号是/BAC角平分线上的一个向量,由+弋)BC = 0知该向|AB| |AC| |AB| |AC|AB AC 1量与边BC垂直,.・.ZABC是等腰三角形.由 f f = 2知/BAC= 60 : •••ZABC是|AB|| AC|等边三角形.【答案】 A9. (2013 湖北高考)已知点 A(— 1,1), B(1,2), C(-2,— 1), D(3,4),则向量 AB 在CD 方向上的投影为()A鉅C .-寥【解析】 由已知得AB = (2,1), CD = (5,5),因此AB 在CD 方向上的投影为AB CD _ _鉅|CD| 5©2【答案】 A10•在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点'则-()D. 10【解析】--PA ^ CA — CP ,7 2 7 2 7 7 7 2 IPAl = CA — 2CP CA+CP .—7 —7 —7 —7 少 7 少 —7 —7 —7 Q •.•PB _ CB — CP ,・.|PB| _ CB — 2CP CB +CP .—7 2 —7 2 —7 2 —7 2 —7 —7 —7 —7 2 —7 2 —7 —7 —7 •••|PAr + |PBr_ (CA + CB ) — 2CP (CA + CB) + 2CP _ AB — 2CP 2CD + 2CP又AB 2= 16CP 2, CD = 2CP ,代入上式整理得 |FA|2+ |PB|2= 10|CPf ,故所求 值为10.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横 线上)C. 5 ,211.已知向量a= (2,1), ab= 10, l a + b| = 5 迄,则|b| 等于【解析】••l a+ b|a5 72,A(a + b)2a50,即a2+ b2+ 2a b a50, 又a|=V5, a b= 10,••5+|bf+ 2X 10a 50.解得|b| = 5.【答案】 5」「4si n a— 2cos a12•已知a a g), b a(sin a, cos a,且a// b•则5^5 + 3前 a【解析】••a//b,.・.3cos aa sin a,4sin a— 2cos a 4tan a— 2 4 X 3— 2 55cos a+ 3sin a 5+ 3tan a 5+ 3X 3 75【答案】513.(2013课标全国卷n )已知正方形ABCD的边长为2, E为CD的中点,贝UAE BDa【解析】如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y 轴,建立平面直角坐标系,则A(0,0), B(2,0), D(0,2), E(1,2),••AE= (1,2), BDa (-2,2),••AE BD a 1X (-2) + 2X 2a2.【答案】 22 n14.已知e1, e2是夹角为~的两个单位向量,a a& —2e2, b a k e1 + e2,若a b a 0,则实数k的值为【解析】 由题意a b = 0,即有(81 — 2e 2) (*01 + e 2)= 0•••k e 1+ (1 — 2k) 81 82— 2e 2= 0.又•••|e i |= |e 2|= 1,〈e i ,e 2>2 n•'•k— 2+ (1 — 2k) cos -3 = 0, 1 — 2k 5 • k — 2= ~2~,•-k =4.【答案】515. (2012 安徽高考)设向量 a = (1,2m), b = (m + 1,1), c = (2, m).若(a + c ) 丄 b,则 a i = .【解析】 a + c = (1,2m) + (2, m) = (3,3m).••(a + c)丄 b,•••(a + c ) b = (3,3m) (m + 1,1)= 6m + 3= 0,••a = (1,— 1), la , 12 + (-1丫【答案】迈三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或 演算步骤)16.(本小题满分12分)(2013江苏高考)已知a = (cos a, sin a, b = (cos B, sin 9, 0< 3<a<n.(1)若 |a — b | = 72,求证:a 丄 b ;⑵设c = (0,1),若a + b = c ,求a 9的值. 【解】(1)证明由题意得a — b l 2 = 2, 即(a — b )2= a 2 — 2a b + b 2 = 2. 又因为 a 2= b 2= laj |b |2 = 1,2n ~3所以 2-2a b = 2, 即卩 a b = 0,故 a 丄b.⑵因为 a + b = (cos a+ cos B, sin 计 sin f) = (0,1),Icos a+ cos 3= 0, 所以1 Isin a+ sin 3= 1,由此得,cos a= cos( — 3),由 0v 3< n 得 0v n — 3^ n. a= n — 3代入 sin a+ sin 3= 1, 得 sin a= sin十“ 5 n n 所以 a=E, 3=6.【解】AC = OC — OA = (7,— 1 — m),BC = OC - 0B = (5- n ,— 2). ••A 、B 、C 三点共线,••• AC//BC ,•••—14+ (m + 1)(5 — n) = 0. 又OA 丄OB.--—■2n + m = 0.3由①②解得 m = 6, n = 3或m = 3, n =q.18.(本小题满分12分)已知a , b 是两个非零向量,当a +t b (t € R )的模取最 小值时.(1)求t 的值; ⑵求证:b 丄(a + t b ).【解】 (1)(a + t b )2= a + kb |2+ 2a t b,|a + t b |最小,即 |a |2+ |t b |2+ 2a t b 最小,又0V a< n 故 17.(本小题满分 12分)平面内三点A 、B 、C 在一条直线上,0A =(— 2, m),0B = (n,1), 0C = (5, —1),且OA 丄OB ,求实数m 、n 的值.即 t 2|b |2 + [af + 2t|a ||b |cos 〈a , b 〉最小.|a |cos 〈 a , b 〉故当t =— 石 时, |b||a +t b | 最小.2|a |cos 〈 a , b 〉 2(2)证明:b (a +1b ) = ab + t|b | ------------------ = ------ |a ||b |cos 〈 a,b 〉— |b|b | = |a ||b |cos |b|a ,b 〉一 |a ||b |cos 〈a , b 〉= 0,故 b 丄(a +1b ).19.(本小题满分13分)△ ABC 内接于以O 为圆心,1为半径的圆,且3OA +4OB + 5OC = 0. (1)求数量积 O A O B , O B OC , OC OA ; (2)求^ ABC 的面积.xKb 1. Com【解】 (1)V3OA + 4OB + 5OC = 0,••3OA + 4OB = 0-5OC , -— -—2 -— 2 即(3OA + 4OB) = (0- 5OC).—7 2 —7 —z —z 2 —7 2可得 9OA + 24OA OB + 16OB = 25OC . 又•••|OA|=|OB|=|OC| = 1,•••OA OB = 0.同理 OB OC =-5,OCOA =- 5.1 —— —— 1 —— —— (2)S Z ABC = S A OAB + Sz oBc + S ZOAC = 2|OA| | OB|sin ZAOB + 2|OB| |OC|sin /BOC + 2|OC| |OA|sin HOC. 又 |O A|= |OB|= |OC|=1.•'S^ABC^ 2(sin ZAOB+sin /BOC + sin ZAOC).由(1)OAOB= |0A| |OB|cos /AOB= cos ZAOB= 0得sin ZAOB= 1.T T T T 4OB OC= |OB| |OC| cos /BOC = cos /BOC=- 5,./ 3-sin /BOC=5,同理sin /AOC=5.5-S/yxBC = 5.20.(本小题满分13分)在平面直角坐标系xOy中,已知点A(- 1,-2),B(2,3), C( - 2,- 1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB-tOC) 0C= 0,求t的值.【解】(1 )由题设知AB= (3,5), AC= (—1,1),则AB + AC= (2,6), AB- AC= (4,4).所以AB+ AC| = 2^10, AB-AC匸4寸2.故所求的两条对角线长分别为4迈,2>/10.X K b心m⑵由题设知OC= (-2,- 1), AB-tOC = (3+ 2t,5 +1).由(AB-tOC) OC= 0,得(3 + 2t,5 +1) (—2,- 1)= 0,从而5t=—11,所以t115.图121.(本小题满分13分)如图1,平面内有三个向量OA, OB, OC,其中O A与OB的夹角为120°, OA与OC的夹角为30°且|5A|=|OB匸1,|oC| = 2 羽若oC = QA+ QB(入空R),求H卩的值.【解】法一:作CD //OB交直线OA于点D,作CE //OA交直线OB于点E,贝U OC = OD+ OE,由已知/OCD = /COE= 120 —30 = 90 ° 在Rt△)CD 中,OD = ^3。

高中数学北师大版必修4《第二章平面向量》章末测试卷含试卷分析详解

高中数学北师大版必修4《第二章平面向量》章末测试卷含试卷分析详解

A.1327B.132C.133D.727 答案:D解析:a +x b =(2,1)+(-3x,4x )=(2-3x,1+4x ),a -b =(2,1)-(-3,4)=(5,-3),∵(a +x b )⊥(a -b ),∴(2-3x )·5+(1+4x )·(-3)=0,∴x =727.8.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角为( )A .30°B .60°C .120°D .150° 答案:C解析:由条件知|a |=5,|b |=25,a +b =(-1,-2),∴|a +b |=5,∵(a +b )·c =52,∴5×5·cos θ=52,其中θ为a +b 与c 的夹角,∴θ=60°,∵a +b =-a ,∴a +b 与a 方向相反,∴a 与c 的夹角为120°.9.在边长为1的正方形ABCD 中,设AB →=a ,BC →=b ,AC →=c ,则|a -b +c |等于( )A .1 B.32C .2 D.52答案:C解析:先求模的平方. 10.将一圆的六个等分点分成两组相间的三点,它们所构成的两个正三角形扣除内部六条线段后可以形成一个正六角星,如图所示的正六角星是以原点O 为中心,其中x →,y →,分别为原点O 到两个顶点的向量.若将原点O 到正六角星12个顶点的向量,都写成为a x →+b y →的形式,则a +b 的最大值为( )A .2B .3C .4D .5 答案:D解析:要求a +b 的最大值,只需考虑右图中6个顶点的向量即可,讨论如下:(1)∵OA →=x →,∴(a ,b )=(1,0);(2)∵OB →=OF →+FB →=y →+3x →,∴(a ,b )=(3,1);(3)∵OC →=OF →+FC →=y →+2x →,∴(a ,b )=(1,2);(4)∵OD →=OF →+FE →+ED →=y →+x →+OC →=y →+x →+(y →+2x → )=2y →+3x →,∴(a ,b )=(3,2);(5)∵OE →=OF →+FE →=y →+x →,∴(a ,b )=(1,1);(6)∵OF →=y →,∴(a ,b )=(0,1). ∴a +b 的最大值为3+2=5.二、填空题:本大题共3小题,每小题4分,共12分.把答案填入题中横线上.11.已知向量a ,b 满足|a |=2011,|b |=4,且a ·b =4022,则a 与b 的夹角为________.答案:π3解析:设a 与b 的夹角为θ,由夹角余弦公式cos θ=a ·b |a ||b |=40222011×4=12,解得θ=π3.12.已知向量a =(1,t ),b =(-1,t ).2a -b 与b 垂直,则|a |=________. 答案:2解析:由(2a -b )·b =0,可得t =±3,所以|a |=12+(±3)2=2.13.如右图,在△ABC 中,∠BAC =135° ,AB =2,AC =1,D 是边BC 上一点,DC=2BD ,则AD →·BC →=________.答案:-43解析:根据向量的加减法法则有:BC →=AC →-AB →, AD →=AB →+BD →=AB →+13 (AC →-AB → )=13AC →+23AB →,此时AD → ·BC →=(13AC →+23AB → )(AC →-AB → )=13|AC →|2+13AC →·AB →-23|AB →|2=13-13×1×2×22-23×2=-43. 三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.14.已知点A 、B 、C 的坐标分别为A (6,2)、B (0,3)、C (-32,sin α),α∈(π2,3π2).若AB →|=|BC →|,求角α的值.解:∵AB →=(-6,1),BC →=(-32,sin α-3)∴|AB →|=7,|BC →|=34+(sin α-3)2由|BC →|=|AB →|得sin α=12.又∵α∈(π2,3π2),∴α=5π6.15.已知|a |=4,|b |=8,a 与b 的夹角是150°,计算: (1)(a +2b )(2a -b ); (2)|4a -2b |.解:(1)(a +2b )·(2a -b ) =2a 2+3a ·b -2b 2=2|a |2+3|a |·|b |·cos150°-2|b |2=242+348·(-32)-282=-96-48 3.(2)|4a -2b |=(4a -2b )2 =16a 2-16a ·b +4b 2=16|a |2-16|a |·|b |·cos150°+4|b |2 =1642-1648(-32)+482=8(2+6).16.已知向量a 与b 的夹角为23π,|a |=2,|b |=3,记m =3a -2b ,n =2a +k b .(1)若m ⊥n ,求实数k 的值;(2)是否存在实数k ,使得m ∥n ?说明理由.解:(1)由m ⊥n 得m ·n =0,即(3a -2b )·(2a +k b )=0, 整理得:6|a |2-(4-3k )a ·b -2k |b |2=0,∴27k =36,∴k =43,∴当k =43时,m ⊥n .(2)若存在实数k ,使m ∥n ,则有m =λn , 即3a -2b =λ(2a +k b ),∴(3-2λ)a =(2+kλ)b .∵由题意可知向量a 与b 不共线,∴⎩⎪⎨⎪⎧3-2λ=0,2+kλ=0⇒⎩⎨⎧λ=32,k =-43,即存在实数k =-43,使得m ∥n .17.如图所示,现有一小船位于d =60m 宽的河边P 处,从这里起,在下游l =80m 的L 处河流变成“飞流直下三千尺”的瀑布.若河水流速的方向为上游指向下游(与河岸平行),水速大小为5m/s ,为了使小船能安全渡河,船的划速不能小于多少?解:船速最小时,船应在到达瀑布的那一刻到达对岸,如图所示,船的临界合速度应沿PQ →方向.设P A →=v 水,从A 向PQ →作垂线,垂足为B ,有向线段AB →即表示最小划速的大小和方向.|v 划|min =|v 水|sin θ=|v 水|·d |PQ →|=5×60602+802=5×0.6=3(m/s),所以划速最小为3m/s.18.已知点A (1,-2),B (2,1),C (3,2).(1)已知点D (-2,3),以AB →、AC →为一组基底来表示AD →+BD →+CD →;(2)若AP →=AB →+λAC →(λ∈R ),且点P 在第四象限,求λ的取值范围.解:如图,∵AB →⊥AC →,∴AB →·AC →=0. ∵AP →=-AQ →,BP →=AP →-AB →,CQ →=AQ →-AC →, ∴BP →·CQ →=(AP →-AB →)·(AQ →-AC →) =AP →·AQ →-AP →·AC →-AB →·AQ →+AB →·AC →=-a 2-AP →·AC →+AB →·AP →=-a 2+AP →·(AB →-AC →)=-a 2+12PQ →·BC →=-a 2+a 2cos θ.故当cos θ=1,即0=0(PQ →与BC →方向相同)时,BP →·CQ →最大,其最大值为0.。

北师大版高中数学必修四第二章《平面向量》检测卷(有答案解析)(1)

北师大版高中数学必修四第二章《平面向量》检测卷(有答案解析)(1)

一、选择题1.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行 B .垂直 C .夹角是锐角 D .夹角是钝角 2.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .312+B .312-C .3D .13.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .925.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .43 6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭ B .[)2,0- C .2,03⎡⎫-⎪⎢⎣⎭ D .[)1,0-7.已知O 是三角形ABC 内部一点,且20OA OB OC ++=,则OAB ∆的面积与OAC ∆的面积之比为( )A .12B .1C .32D .28.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .420B .4,42C .16,0D .4,09.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅- 10.已知ABC ∆为等边三角形,则cos ,AB BC =( )A .32-B .12-C .12D .3211.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定 12.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.14.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.15.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论: ①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.16.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________. 17.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.18.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________. 19.下面六个句子中,错误的题号是________.①周期函数必有最小正周期;②若0a b ⋅=则a ,b 至少有一个为0;③α为第三象限角,则()cos sin 0a <;④若向量a 与b 的夹角为锐角,则0a b ⋅>;⑤存在α,R β∈,使()sin sin sin a a ββ+=+成立;⑥在ABC 中,O 为ABC 内一点,且0OA OB OC ++=,则O 为ABC 的重心. 20.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.22.如图所示,在ABC 中,AB a =,BC b =,D ,F 分别为线段BC ,AC 上一点,且2BD DC =,3CF FA =,BF 和AD 相交于点E .(1)用向量a ,b 表示BF ;(2)假设()1BE BA BD BF λλμ=+-=,用向量a ,b 表示BE 并求出μ的值. 23.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点.(1)若AB AC ⊥求实数m 的值;(2)在(1)的条件下,求△ABC 的面积.24.已知,,a b c 是同一平面内的三个向量,其中()1,2a =.(1)若35b =,且//a b ,求b 的坐标; (2)若2c =,且()()2a c a c +⊥-,求a 与c 的夹角θ的余弦值.25.已知向量()()()2,2,2,1,2,1,a b c t R =-==-∈.(1)若()//ta b c +,求t 的值;(2)若3a tb -=,求t 的值.26.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式;(2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴; (3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角.【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角,故选:D.【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目. 2.B解析:B【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛-+= ⎝⎭,表示以⎫⎪⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅--=⎪⎪⎪⎪⎝⎭⎝⎭,化简得2214x y ⎛-+= ⎝⎭,表示以3,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为32,所以圆上的点到原点的距离的最小值为3122-, 故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.C解析:C【分析】设H是BC上除E点外的令一个三等分点,判断出G是三角形CFH的重心,得出,CG CO的比例,由此得出λ的值.【详解】设H是BC上除E点外的令一个三等分点,连接FH,连接BD交AC于O,则//BD FH.在三角形CFH中,,CG FG是两条中线的交点,故G是三角形CFH的重心,结合23CH CFBH DF==可知24.5CGCO=,由于O是AC中点,故224.529CGAC==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题. 5.B解析:B【分析】根据已知找到相似三角形,用向量AB、AD线性表示向量AM.【详解】如图,平行四边形ABCD中,3DE CE=,ABM EDM,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.6.C解析:C【分析】 对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b <⋅,再结合平面向量数量积即可得解.【详解】因为2a b -=,所以 2224a a b b -⋅+=, 所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a b a b +⋅, 403a b ∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C .【点睛】 本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可. 7.A解析:A【解析】由题意,O 是'AB C ∆的重心,'2OB OB =,所以OAB ∆的面积与OAC ∆的面积之比为12.故选A . 点睛:本题考查平面向量的应用.由重心的结论:若0OA OB OC ++=,则O 是ABC ∆的重心,本题中构造'AB C ∆,O 是'AB C ∆的重心,根据重心的一些几何性质,求出面积比值.8.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ3-2sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3=8﹣8sin (3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.9.D 解析:D 【分析】 以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+- 113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE 113(33)(32)44+-∴++=++n n n n a a BE a BC BA 因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a , 即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a ,故选:D .【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.10.B解析:B【分析】判断,AB BC 两向量夹角容易出错,是23π,而不是3π 【详解】由图发现,AB BC 的夹角不是B 而是其补角23π,21cos ,cos 32AB BC π<>==- 【点睛】 本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图. 11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-,故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值. 【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.15.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得()22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以122F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确. 综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题16.【分析】易得结合可得又可得即可求解【详解】则则又故答案为:【点睛】本题考查向量模的取值范围的计算考查了向量模的三角不等式的应用考查计算能力属于中等题解析:⎡⎣【分析】 易得()2225a b+=,结合()()22225a ba b+≤+=,可得5a b +≤.又a b a b +≥±,可得2a b ±≥,即可求解.【详解】1a b +=,2a b -=,2221a a b b ∴+⋅+=,2224a a b b -⋅+=,()2225a b∴+=,则()()22225a b a b +≤+=,则5a b +≤.又a b a b +≥±,2a b ∴+≥,25a b ∴≤+≤.故答案为:⎡⎣.【点睛】本题考查向量模的取值范围的计算,考查了向量模的三角不等式的应用,考查计算能力,属于中等题.17.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++, 所以113519k k λλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.18.【分析】根据数量积公式得出的值再由得出答案【详解】故答案为:【点睛】本题主要考查了由数量积求模长属于中档题 3【分析】根据数量积公式得出a b ⋅的值,再由2||()a b a b -=-得出答案.【详解】111cos1202a b ⋅=⨯⨯︒=-22222||()2||2||1113a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=++=故答案为:3 【点睛】本题主要考查了由数量积求模长,属于中档题.19.①②③【分析】①常函数没有最小正周期;②是非零向量时代表的是两向量垂直;③可采用赋值法令判断正误;④由数量积公式即可判断;⑤令即可判断;⑥结合平面向量加法法则和重心特征即可求解;【详解】①常函数没有解析:①②③ 【分析】①常函数没有最小正周期;②,a b 是非零向量时,0a b ⋅=代表的是两向量垂直; ③可采用赋值法,令76πα=判断正误; ④由数量积公式即可判断; ⑤令0αβ==即可判断;⑥结合平面向量加法法则和重心特征即可求解; 【详解】①常函数没有最小正周期,故判断错误;②,a b 是非零向量时,0a b a b ⋅=⇔⊥,判断错误; ③令76πα=,则()1cos sin 0cos 02a ⎛⎫<⇔-< ⎪⎝⎭,即1cos 02<,显然错误; ④若向量a 与b 的夹角为锐角,则cos 0a b a b θ⋅=⋅>,判断正确; ⑤当0αβ==,()sin sin sin a a ββ+=+,判断正确; ⑥若OA OB OC O ++=,如图:设D 为AC 中点,则2OA OC OD OE +==,则20OD OB +=,所以,,D O B 三点共线,且2OD OD =,故O 为ABC 的重心,判断正确; 故答案为:①②③【点睛】本题主要考查平面向量和三角函数的基础知识,属于基础题20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题. 22.(1)3144BF a b =-+;(2)2239BE a b =-+,89μ=. 【分析】(1)把BF 放在ABF 中,利用向量加法的三角形法则即可; (2)把a ,b 作为基底,表示出 BE ,利用BE BF μ=求出 μ. 【详解】解:由题意得3CF FA =,2BD DC =,所以14AF AC =,23BD BC = (1)因为BF BA AF =+,AB a =,BC b =所以()1144BF BA AC BA BC BA =+=+- 31314444BA BC a b =+=-+. (2)由(1)知3144BF a b =-+,而3223BD BC b == 而()()23111344BE BA BD BF BE a a b b λλμλλμ⎛⎫=+-=⇒=-+-=-+⎪⎝⎭ 因为a 与b 不共线,由平面向量基本定理得()342134λμμλ⎧-=-⎪⎪⎨⎪-=⎪⎩ 解得89μ=所以2239BE a b =-+,89μ=即为所求. 【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则; (2)树立“基底”意识,利用基向量进行线性运算. 23.(1)1;(2). 【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABCS AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC , 所以向量(1,4),(4,1)AB m AC =--=--, 又因为AB AC ⊥, 所以4(1)40m --+=, 解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==,所以11422ABCSAB AC =⨯⨯=⨯=【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题.24.(1)(3,6)b =或(3,6)b =--;(2). 【分析】(1)设(,)b x y =,由//a b ,和35b =,列出方程组,求得,x y 的值,即可求解; (2)由()()2a c a c +⊥-,求得3a c ⋅=-,结合夹角公式,即可求解. 【详解】(1)设(,)b x y =,因为//a b ,所以2y x =, ① 又因为35b =,所以2245x y +=, ② 由①②联立,解得(3,6)b =或(3,6)b =--.(2)由已知()()2a c a c +⊥-,可得()()22220a c a c a c a c +⋅-=--⋅=, 又由5a =,2c =,解得3a c ⋅=-,所以35cos 10a c a cθ⋅==-. 【点睛】本题主要考查了平面向量的坐标运算,以及平面向量的数量积的坐标运算的应用,意在考查运算与求解能力,属于基础题. 25.(1)2t =-;(2)1t =-或15t =. 【分析】(1)利用向量平行的坐标表示列方程,解方程求得t 的值. (2)利用向量模的坐标运算列方程,解方程求得t 的值. 【详解】(1)()22,21ta b t t +=-++,由于()//ta b c +,所以()()()221212t t -+⨯-=+⨯,即22422t t t -=+⇒=-.(2)()()()2,22,22,2a tb t t t t -=--=---,依题意3a tb -=,所以3=,解得1t =-或15t =. 【点睛】本小题主要考查向量线性运算的坐标表示,考查向量平行的坐标表示,考查向量模的坐标表示,属于中档题. 26.(1)()26f x sin x π⎛⎫=-⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】(1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=+-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1,故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.。

新北师大版高中数学必修四第二章《平面向量》测试(答案解析)(6)

新北师大版高中数学必修四第二章《平面向量》测试(答案解析)(6)

一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1B .2C .3D .42.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .123.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A .10B .210C .10D .20 4.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .5.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒6.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C 3D .27.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23B .32C .34 D .43 8.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-9.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==10.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,42C .16,0D .4,011.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( ) A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 12.在ABC 中,D 是BC 边上的一点,F 是AD 上的一点,且满足2AD AB AC =+和20FD FA +=,连接CF 并延长交AB 于E ,若AE EB λ=,则λ的值为( ) A .12B .13C .14 D .15二、填空题13.已知平面向量a ,b ,c 满足45a b ⋅=,4a b -=,1c a -=,则c 的取值范围为________.14.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 15.已知(2,3),(4,7)a b ==-,则向量b 在a 方向上的投影为_________.16.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.17.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.18.向量a ,b ,c 在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量a b λ+与c 共线,则||a b λ-=________.19.如图,在四边形ABCD 中,60B ∠=︒,2AB =,6BC =,1AD =,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的取值范围为_________.20.在ABC 中,2AB =,32AC =,135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.三、解答题21.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.22.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小. 23.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.24.已知平行四边形ABCD 中,2AB =,4BC =,60DAB ∠=,点E 是线段BC 的中点.(1)求AC AE ⋅的值;(2)若AF AE AD λ=+,且BD AF ⊥,求λ的值. 25.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-.(1)求b ;(2)若27a mb -=,求m . 26.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值; (2)若a b ⊥,求||a .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.3.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点, 且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.4.C解析:C 【解析】,,又,,则,故选5.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3|122e e -+3 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.6.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π,由2213a b -=,则222222444442cos523a b a b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.7.B解析:B 【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM . 【详解】如图,平行四边形ABCD 中,3DE CE =,ABMEDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B 【点睛】此题考查平面向量的线性运算,属于中档题.8.B解析:B 【分析】 求出2a b -()3,2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-, 得2a b -()3,2=,若(2)c a b -⊥,则(2)?0a b c -=,3230,2k k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答. 9.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.10.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.11.C解析:C 【分析】先根据题意得1AD =,CD =,进而得2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =,所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.12.C解析:C 【分析】首先过D 做//DG CE ,交AB 于G ,根据向量加法的几何意义得到D 为BC 的中点,从而得到G 为BE 的中点,再利用相似三角形的性质即可得到答案. 【详解】如图所示,过D 做//DG CE ,交AB 于G .因为2AD AB AC =+,所以D 为BC 的中点. 因为//DG CE ,所以G 为BE 的中点, 因为20FD FA +=,所以:1:2AF FD =.因为//DG CE ,所以::1:2AE EG AF FD ==,即12AE EG =. 又因为EG BG =,所以14AE EB =, 故14AE EB =. 故选:C 【点睛】本题主要考查了向量加法运行的几何意义,同时考查了相似三角形的性质,属于中档题.二、填空题13.【分析】结合已知条件画出图象由的几何意义求得的取值范围【详解】如图所示设设是线段的中点依题意可知由于所以即解得所以即所以根据向量模的几何意义可知点在以为圆心为半径的圆上所以所以即的取值范围为故答案为 解析:[]4,10【分析】结合已知条件画出图象,由c 的几何意义求得c 的取值范围. 【详解】如图所示,设,,OA a OB b OC c ===,设D 是线段AB 的中点.依题意可知4,1,2AB AC AD BD ====, 由于45a b ⋅=所以45OA OB ⋅=,即()()()()222224544OA OB OA OB OD BA +---==222441644OD BAOD --==,解得7OD =.所以59OD AD OA OD AD =-≤≤+=, 即59OA ≤≤,所以418,6110OA OA ≤-≤≤+≤根据向量模的几何意义可知,点C 在以A 为圆心,1为半径的圆上, 所以()()minmax11OA OC OA -≤≤+,所以410OC ≤≤,即c 的取值范围为[]4,10. 故答案为:[]4,10【点睛】本小题主要考查向量数量积的运算,考查向量模的几何意义,属于中档题.14.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题 解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =, ∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.15.【分析】根据向量的数量积的坐标运算求得结合向量的投影的概念即可求解【详解】由向量可得所以向量在方向上的投影数列为故答案为:【点睛】本题主要考查了向量的数量积的坐标运算以及向量的投影的概念其中解答中熟【分析】根据向量的数量积的坐标运算,求得13,13a b a ⋅==,结合向量的投影的概念,即可求解. 【详解】由向量(2,3),(4,7)a b ==-,可得222(4)3713,23a b a ⋅=⨯-+⨯==+=所以向量b 在a 方向上的投影数列为cos ,13a b b a b a⋅===【点睛】本题主要考查了向量的数量积的坐标运算,以及向量的投影的概念,其中解答中熟记向量的投影的概念,以及向量的数量积的坐标运算公式是解答的关键,着重考查运算与求解能力.16.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC ∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.17.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函解析:[2,6]【分析】先将圆的方程化为参数方程,4x R y θθθ⎧=⎪∈⎨=⎪⎩,设,4)P θθ,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:,4x R y θθθ⎧=⎪∈⎨=⎪⎩,设,4)P θθ,所以2cos (4)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ .故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.18.【分析】建立平面直角坐标系从而得到的坐标这样即可得出的坐标根据与共线可求出从而求出的坐标即得解【详解】建立如图所示平面直角坐标系则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表 【分析】建立平面直角坐标系,从而得到,,a b c 的坐标,这样即可得出a b λ+的坐标,根据a b λ+与c 共线,可求出λ,从而求出a b λ-的坐标,即得解. 【详解】建立如图所示平面直角坐标系,则:(1,1),(0,1),(2,1)a b c ==-= ;(,1)a b λλλ∴+=-a b λ+与c 共线2(1)02λλλ∴--=∴= (2,3)a b λ∴-=22||2313a b λ∴-=+=13【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.19.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15, 所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.20.【分析】以A 为原点AC 所在直线为x 轴建系如图所示根据题意可得ABC 坐标设可得的坐标根据数量积公式可得的表达式即可求得答案【详解】以A 为原点AC 所在直线为x 轴建立坐标系如图所示:因为所以设则所以=当时 解析:283-【分析】以A 为原点,AC 所在直线为x 轴,建系,如图所示,根据题意,可得A 、B 、C 坐标,设(,)M x y ,可得,,MA MB MC 的坐标,根据数量积公式,可得w 的表达式,即可求得答案.【详解】以A 为原点,AC 所在直线为x 轴,建立坐标系,如图所示:因为2AB =,32AC =135BAC ∠=︒, 所以(0,0),(2,2),(32,0)A B C -,设(,)M x y ,则(,),(2,2),(32,)MA x y MB x y MC x y =--=---=--, 所以(2)(2)w MA MB MB MC MC MA x x y y =⋅+⋅+⋅=++2(2)(32)(2)(32)x x y y x x y -++-+=22222222834232263()3()333x x y x y -+--=-+--,当33x y ==时,w 有最小值,且为283-, 故答案为:283- 【点睛】解题的关键是建立适当的坐标系,求得点坐标,利用数量积公式的坐标公式求解,考查分析理解,计算化简的能力,属基础题.三、解答题21.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b -⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+ =42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =1432⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 22.(1)1k =±;(2)3π. 【分析】(1)本题首先可以根据12ke e +和12e ke +共线得出()1212ke e e ke λ+=+,然后通过计算即可得出结果;(2)本题首先可根据()()23a b a b +⊥-得出()()230a b a b +⋅-=,然后根据1a =以及2b =求出1cos 2θ=,最后根据[]0,θπ∈即可得出结果. 【详解】(1)因为12ke e +和12e ke +共线,非零向量1e 、2e 不共线,所以存在唯一实数λ使()1212ke e e ke λ+=+,即1212ke e e ke λλ+=+,则1k kλλ=⎧⎨=⎩,即21k =,1k =±, 故当1k =±时,12ke e +和12e ke +共线.(2)因为()()23a b a b +⊥-,所以()()22233520a b a b a a b b+⋅-=+⋅-=,令a 与b 夹角为θ, 因为1a =,2b =,所以2235231512cos 240a a b b θ+⋅-=⨯+⨯⨯⨯-⨯=,解得1cos 2θ=, 因为[]0,θπ∈,所以a 与b 的夹角3πθ=.【点睛】本题考查向量共线以及向量垂直的相关性质,若非零向量a 、b 共线,则存在唯一实数λ使λab ,若非零向量a 、b 垂直,则0a b ⋅=,考查计算能力,是中档题.23.(1)1;(2). 【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABCS AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC , 所以向量(1,4),(4,1)AB m AC =--=--, 又因为AB AC ⊥, 所以4(1)40m --+=, 解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==, 所以1141721722ABCSAB AC =⨯⨯=⨯⨯=. 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 24.(1)18;(2)12λ=-. 【分析】(1)根据条件,可以点A 为原点,AB 所在的直线为x 轴,建立平面直角坐标系,从而可得出AC AE ,的坐标,然后进行向量数量积的坐标运算即可;(2)可以得出(023),BD =,(32323),AF =++λλ,然后根据BD AF ⊥,即可得出0BD AF ⋅=,进行向量数量积的坐标运算,即可求出λ的值. 【详解】(1)以A 点为坐标原点,AB 所在直线为x 轴建立如图所示的平面直角坐标系,则(0,0)A ,(2,0)B ,(4,23)C ,3)E ,(2,23)D , 所以(423),AC =,(33),AE =,所以432318AC AE ⋅=⨯+⨯=;(2)(0BD =,(32)AF =+λ, 因为BD AF ⊥,所以23)0BD AF ⋅==, 解得12λ=-. 【点睛】本题主要考查向量的数量积的坐标运算,选择恰当的点作为坐标原点建系及正确的写出各点坐标是关键,属于中档题.本题也可以AB ,AD 作为基底,利用基底法求解. 25.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m . 【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=, ∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=, 解得:13m =-或1m =. 【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.26.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =. 【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.。

北师大版高中数学必修四章末综合测评(二) 平面向量.docx

北师大版高中数学必修四章末综合测评(二) 平面向量.docx

章末综合测评(二) 平面向量(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简AC →-BD →+CD →-AB →得( )A .AB → B .DA →C .BC→ D .0【解析】 AC→-BD →+CD →-AB →=AC →+CD →-(AB →+BD →)=AD →-AD →=0. 【答案】 D2.已知a ,b 都是单位向量,则下列结论正确的是( ) A .a·b =1 B .a 2=b 2 C .a ∥b ⇒a =bD .a·b =0 【解析】 因为a ,b 都是单位向量,所以|a |=|b |=1,所以|a |2=|b |2,即a 2=b 2.【答案】 B3.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC→等于( ) A .-2B .2C .0D .2或-2【解析】 因为n ·AB →=n ·(AC →-BC →)=n ·AC →-n ·BC→. 又n ·AB →=(1,-1)·(1,1)=1-1=0, 所以n ·BC →=n ·AC →=2. 【答案】 B4.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD→=-13AB →+43AC → B.AD→=13AB →-43AC →C .AD→=43AB →+13AC →D.AD→=43AB →-13AC →【解析】 AD→=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB→+43AC →.故选A .【答案】 A5.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为( )A .3B .-3C .0D .2【解析】 由原式可得⎩⎨⎧ 3x -4y =6,2x -3y =3,解得⎩⎨⎧x =6,y =3,∴x -y =3. 【答案】 A6.设向量a =(-1,2),b =(1,-1),c =(3,-2),用a ,b 作基底可将c 表示为c =p a +q b ,则实数p ,q 的值为( )A .p =4,q =1B .p =1,q =4C .p =0,q =4D .p =1,q =-4【解析】 ∵c =(3,-2)=p a +q b =(-p +q,2p -q ), ∴⎩⎨⎧ -p +q =3,2p -q =-2,解得⎩⎨⎧p =1,q =4. 【答案】 B7.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2 B .-34a 2 C .34a 2D .32a 2【解析】 由已知条件得BD →·CD →=BD →·BA →=3a ·a cos 30°=32a 2,故选D. 【答案】 D8.若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为( )【导学号:66470061】A .30°B .60°C .120°D .150°【解析】 因为c ⊥a ,所以c ·a =0,即(a +b )·a =0, 所以a ·b =-a 2=-1.设a ·b 的夹角为θ, 所以cos θ=a ·b |a |·|b |=-11×2=-12. 又θ∈[0,π], 所以θ=120°. 【答案】 C9.数轴上点A ,B ,C 的坐标分别为-1,1,5,则下列结论错误的是( ) A .AB→的坐标是2B .CA →=-3AB →C .CB→的坐标是4 D .BC→=2AB → 【解析】 答案C 不正确.故选C . 【答案】 C10.设0≤θ<2π,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cosθ),则向量P 1P 2→长度的最大值为( )A . 2B . 3C .3 2D .2 3【解析】 因为P 1P 2→=OP 2→-OP 1→=(2+sin θ-cos θ,2-cos θ-sin θ),所以|P 1P 2→|=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cos θ≤3 2. 【答案】 C11.如图1所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC →上的动点,则(P A →+PB →)·PC→的最小值为( )图1A .2B .0C .-1D . -2【解析】 由平行四边形法则得P A →+PB →=2PO →,故(P A →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →| 且PO →·PC →反向,设|PO →|=t (0≤t ≤2), 则(P A →+PB →)·PC →=2PO →·PC →=-2t (2-t ) =2(t 2-2t )=2[(t -1)2-1]. ∵0≤t ≤2,∴当t =1时,(P A →+PB →)·PC →的最小值为-2. 【答案】 D12.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2等于( )A .2B .4C .5D .10【解析】 ∵P A →=CA →-CP →, ∴|P A →|2=CA →2-2CP →·CA→+CP →2. ∵PB →=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB→+CP →2, ∴|P A →|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD→+2CP →2.又AB →2=16CP →2,CD →=2CP →,代入上式整理得|P A →|2+|PB→|2=10|CP →|2,故所求值为10.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知向量O A →⊥A B →,|O A →|=3,则O A →·O B →= .【解析】 因为OA →⊥AB →,所以OA →·AB →=OA →·(OB →-OA →)=OA →·OB →-OA 2→=0,所以OA →·OB →=OA 2→=|OA →|2=9,即OA →·OB→=9. 【答案】 914.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝与水速成 角的方向行驶.【解析】 如图,OA→为水速,OC →是船行驶路程最短的情形,OB →是船行驶的速度,不难知道∠AOB =135°.【答案】 135°15.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|P A →+PB→+PC →|的最大值为 . 【解析】 法一:AC 为Rt △ABC 的斜边,则AC 为圆x 2+y 2=1的一条直径,故AC 必经过原点,如图,则P A →+PC →=2PO →,|P A →+PB →+PC →|=|2PO →+PB →|≤2|PO →|+|PB →|,当P ,O ,B 三点共线时取等号,即当B 落在点(-1,0)处时|P A →+PB →+PC →|取得最大值,此时,PO →=(-2,0),PB →=(-3,0),2|PO →|+|PB →|=2×2+3=7,故|P A →+PB→+PC →|的最大值为7.法二:同法一,得|P A →+PB →+PC →|=|2PO →+PB →|.又PB→=OB →-OP →, ∴|P A →+PB →+PC →|=|2PO →+OB →-OP →|=|OB →-3OP →| =OB →2+9OP →2-6OB →·OP→=12+9×22-6×1×2cos ∠POB =37-12cos ∠POB ≤37+12=7,当且仅当∠POB =180°时取“等号”,故|P A →+PB →+PC →|的最大值为7. 法三:同法一,得|P A →+PB →+PC →|=|2PO →+PB →|.设B (cos α,sin α),则|2 PO →+PB→|=|2(-2,0)+(cos α-2,sin α)|=|(-6+cos α,sin α)| =(-6+cos α)2+sin 2α=37-12cos α≤37+12=7(当cos α=-1,即B 落在点(-1,0)处时取等号).故|P A →+PB →+PC →|的最大值为7. 【答案】 716.如图2,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD→的值是 .图2【导学号:69992032】【解析】 由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP→·BP →=2,所以⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫AD →-34AB →=2,即AD →2-12AD →·AB →-316AB 2→=2.又因为AD2→=25,AB 2→=64,所以AB →·AD →=22.【答案】 22三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB .求证:AC ⊥BC .【导学号:66470062】【证明】 以A 为原点,AB 所在直线为x 轴,建立直角坐标系如图,设AD =1,则A (0,0),B (2,0),C (1,1),D (0,1),所以BC →=(-1,1),AC →=(1,1),BC →·AC →=-1×1+1×1=0,所以AC →⊥BC →,即AC ⊥BC .18.(本小题满分12分)设OA→=(2,-1),OB →=(3,0),OC →=(m,3).(1)当m =8时,将OC→用OA →和OB →表示;(2)若A ,B ,C 三点能构成三角形,求实数m 应满足的条件. 【解】 (1)当m =8时,OC→=(8,3),设OC →=xOA →+yOB →,则(8,3)=x (2,-1)+y (3,0)=(2x +3y ,-x ), 所以⎩⎨⎧2x +3y =8,-x =3,所以⎩⎪⎨⎪⎧x =-3,y =143,所以OC→=-3OA →+143OB →.(2)因为A ,B ,C 三点能构成三角形, 所以AB→,AC →不共线, AB→=(1,1),AC →=(m -2,4), 所以1×4-1×(m -2)≠0,所以m ≠6.19.(本小题满分12分)平面内有四边形ABCD ,BC →=2AD →,且AB =CD =DA =2,AD→=a ,BA →=b ,M 是CD 的中点.(1)试用a ,b 表示BM→;(2)AB 上有点P ,PC 和BM 的交点Q ,PQ ∶QC =1∶2,求AP ∶PB 和BQ ∶QM . 【解】 (1)BM→=12(BD →+BC →) =12(BA →+AD →+2AD→)=32a +12b . (2)设BP→=tBA →,则BQ→=BC →+CQ →=BC →+23CP →=2AD →+23(CB →+BP →)=23tBA →+23AD →=23(a +t b ). 设BQ→=λBM →=3λ2a +λ2b ,由于BA →,AD →不共线,则有⎩⎪⎨⎪⎧3λ2=23,λ2=23t ,解方程组,得λ=49,t =13.故AP ∶PB =2∶1,BQ ∶QM =4∶5.20.(本小题满分12分)如图3,平行四边形ABCD 中,AB →=a ,AD →=b ,CE →=13CB →,CF →=23CD →.图3(1)用a ,b 表示EF→;(2)若|a |=1,|b |=4,∠DAB =60°,分别求|EF →|和AC →·FE →的值.【解】 (1)EF→=CF →-CE →=23CD →-13CB → =-23AB →+13AD → =-23a +13b .(2)∵|a |=1,|b |=4,a 与b 夹角∠DAB =60°, ∴a ·b =1×4×cos 60°=2, ∴|EF |=⎝ ⎛⎭⎪⎫-23a +13b 2 =49a 2-49a ·b +19b 2=49-49×2+19×16 =233. ∵AC→=a +b . ∴AC →·FE →=(a +b )·⎝ ⎛⎭⎪⎫23a -13b =23|a |2+13a ·b -13|b |2 =23×1+13×2-13×16 =-4.21.(本小题满分12分)已知a =(1,cos x ),b =⎝ ⎛⎭⎪⎫13,sin x ,x ∈(0,π).(1)若a ∥b ,求sin x +cos xsin x -cos x 的值;(2)若a ⊥b ,求sin x -cos x 的值. 【解】 (1)因为a ∥b , 所以sin x =13cos x ⇒tan x =13,所以sin x +cos x sin x -cos x =tan x +1tan x -1=13+113-1=-2.(2)因为a ⊥b ,所以13+sin x cos x =0⇒sin x cos x =-13, 所以(sin x -cos x )2=1-2sin x cos x =53. 又因为x ∈(0,π)且sin x cos x <0, 所以x ∈⎝ ⎛⎭⎪⎫π2,π⇒sin x -cos x >0,所以sin x -cos x =153. 22. (本小题满分12分)如图4,AB→=(6,1),BC →=(x ,y ),CD →=(-2,-3).图4(1)若BC→∥DA →,求x 与y 之间的关系式; (2)若在(1)的条件下,又有AC →⊥BD →,求x ,y 的值及四边形ABCD 的面积.【解】 (1)∵AD→=AB →+BC →+CD →=(6,1)+(x ,y )+(-2,-3)=(x +4,y -2), ∴DA→=-AD →=(-x -4,2-y ). 又∵BC→∥DA →,BC →=(x ,y ), ∴x (2-y )-y (-x -4)=0,即x +2y =0.(2)∵AC→=AB →+BC →=(6,1)+(x ,y )=(x +6,y +1), BD→=BC →+CD →=(x ,y )+(-2,-3)=(x -2,y -3), 且AC →⊥BD →,∴AC →·BD →=0, 即(x +6)(x -2)+(y +1)(y -3)=0. 又由(1)的结论x +2y =0,∴(6-2y )(-2y -2)+(y +1)(y -3)=0, 化简,得y 2-2y -3=0,∴y =3或y =-1.—————————— 新学期 新成绩 新目标 新方向 ——————————桑水 当y =3时,x =-6.于是有BC→=(-6,3),AC →=(0,4),BD →=(-8,0), ∴|AC→|=4,|BD →|=8, ∴S 四边形ABCD =12|AC →||BD →|=16;当y =-1时,x =2.于是有BC→=(2,-1),AC →=(8,0),BD →=(0,-4), ∴|AC→|=8,|BD →|=4, ∴S 四边形ABCD =12|AC →||BD →|=16,∴⎩⎨⎧ x =-6,y =3,或⎩⎨⎧x =2,y =-1,S 四边形ABCD =16.。

高中数学 第二章 平面向量章末测评 北师大版必修4

高中数学 第二章 平面向量章末测评 北师大版必修4

第二章测评(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.以下说法中不正确的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量解析:只有C是错误的,平行向量有方向相同与相反两种情况.答案:C2.已知向量a=(4,x),b=(-4,4),若a∥b,则x的值为()A.0B.4C.-4D.±4解析:依题意,得4×4=(-4)×x,所以x=-4.答案:C3.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于()A.-a+bB.a-bC.a-bD.-a+b解析:设c=x a+y b,因此,解得因此,c=a-b.答案:B4.若a=(2,3),b=(-4,7),则a在b方向上的射影为()A. B. C. D.解析:设a,b的夹角为θ,则a在b方向上的射影为|a|cos θ=.答案:A5.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=()A. B. C.2 D.10解析:由a⊥c得a·c=2x-4=0,所以x=2,由b∥c得1×(-4)=2y,所以y=-2,于是a=(2,1),b=(1,-2),a+b=(3,-1),从而|a+b|=.答案:B6.在△ABC中,已知D是AB边上一点,若=2+λ,则λ=()A.B.C.-D.-解析:∵=2,∴=2=2(),即得,由已知条件+λ可得λ=.答案:A7.已知平面上不共线的四点O,A,B,C.若向量+2=3,则的值为()A. B. C. D.解析:+2=3=2-2=2,所以的值为.答案:A8.在△ABC中,∠ACB=90°,且CA=CB=3,点M满足=2,则=()A.2B.3C.4D.6解析:如图,∵=)=,∴|2=×0+×32=3.答案:B9.(2015重庆高考)若非零向量a,b满足|a|=|b|,且(a-b)⊥(3a+2b),则a与b的夹角为()A.B.C.D.π解析:由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a·b-2|b|2=0.设a与b的夹角为θ,所以3|a|2-|a||b|cos θ-2|b|2=0,即3·|b|2cos θ-2|b|2=0,整理,得cos θ=,故θ=.答案:A10.在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第二象限内,∠AOC=,且||=2,若=λ+μ,则λ,μ的值是()A.,1B.1,C.-1,D.-,1解析:根据平面向量的基本定理并结合图形求出分量即可.答案:D11.若点O为平面内任意一点,且(-2)·()=0,则△ABC是()A.直角三角形或等腰三角形B.等腰直角三角形C.等腰三角形但不一定是直角三角形D.直角三角形但不一定是等腰三角形解析:由(-2)·()=0得()·()=0,∴=0,即||=||.∴AB=AC,∴△ABC是等腰三角形.由题意不能判定△ABC为直角三角形.答案:C12.导学号03070121在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||==2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是()A.2B.2C.4D.4解析:以为邻边作一个平行四边形,将其放置在如图平面直角坐标系中,使A,B两点关于x轴对称,由已知||=||==2,可得出∠AOB=60°,点A(,1),点B(,-1),点D(2,0).现设P(x,y),则由=λ+μ得(x,y)=λ(,1)+μ(,-1),即由于|λ|+|μ|≤1,λ,μ∈R,可得画出动点P(x,y)满足的区域为如图阴影部分,故所求区域的面积为2×2=4.答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a=(2,3),b=(-1,2),若m a+n b与a-2b共线,则等于.解析:m a+n b=m(2,3)+n(-1,2)=(2m-n,3m+2n),a-2b=(2,3)-2(-1,2)=(4,-1).由m a+n b与a-2b共线知,∴n-2m=12m+8n.∴=-.答案:-14.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|=.解析:由|2a-b|=可得,4|a|2-4a·b+|b|2=10,所以4-4×1×|b|×cos 45°+|b|2=10,即|b|2-2|b|-6=0,解得|b|=3.答案:315.(2016陕西宝鸡高三模拟)函数y=tan的部分图像如下图所示,则()·=.解析:依题意知A(2,0),B(3,1),∴=(3,1),=(2,0),=(1,1),∴()·=4.答案:416.如图,在△ABC中,O为中线AM上的一个动点,若AM=2,则·()的最小值是. 解析:如题中图,设=a,则|a|=2.因为O为中线AM上的动点,所以=t=t a(0≤t≤1),故=(1-t)a.因为M是BC的中点,所以=2=-2t a.所以·()=(1-t)a·(-2t a)=-2t(1-t)|a|2=8t2-8t=8-2.所以,当t=∈[0,1]时,最小值为-2.答案:-2三、解答题(本大题共6小题,共70分)17.(10分)如图,在平行四边形OADB中,设=a,=b,.试用a,b表示.解:由题意知,在平行四边形OADB中,)=(a-b)=a-b,则=b+a-b=a+b.)=(a+b),则(a+b)-a-b=a-b.18.(12分)已知非零向量a,b满足|a|=1,且(a-b)·(a+b)=.(1)求|b|;(2)当a·b=时,求向量a与b的夹角θ的值.解:(1)因为(a-b)·(a+b)=,即a2-b2=.所以|b|2=|a|2-=1-,故|b|=.(2)因为cos θ=,又0°≤θ≤180°,故θ=45°.19.(12分)已知向量a,b不共线.(1)若=a+b,=2a+8b,=3(a-b),求证:A,B,D三点共线.(2)求实数k,使k a+b与2a+k b共线.解:(1)因为=a+b,=2a+8b,=3(a-b),所以=5a+5b=5,因此共线.又点B为的公共点,所以A,B,D三点共线.(2)因为k a+b与2a+k b共线,则存在实数λ使k a+b=λ(2a+k b),所以所以k=±.20.(12分)以某市人民广场的中心为原点建立平面直角坐标系,x轴指向东,y轴指向北.一个单位长度表示实际路程100米,一人步行从广场入口处A(2,0)出发,始终沿一个方向匀速前进,6分钟时路过少年宫C,10分钟后到达科技馆B(-3,5).(1)求此人的位移(说明此人行走的距离和方向)及此人行走的速度(用坐标表示).(2)求少年宫C点相对于广场中心所在的位置.解:(1)依题意知=(-3,5)-(2,0)=(-5,5).||==5,∠xAB=135°.所以此人沿北偏西45°方向走了500米.因为t=小时,所走的实际距离s=||×100=500(米),所以|v|==3 000(米/时)=30(百米/时), 所以|v|cos 135°=-30,|v|sin 135°=30,所以v=(-30,30).(2)因为,=(2,0)+(-5,5)=(-1,3),所以||=,又tan∠COy=,所以∠COy=18°26',即少年宫C位于距离广场中心100米,且在北偏西18°26'处.21.(12分)已知向量a,b满足|a|=|b|=1,|k a+b|=|a-k b|(k>0,k∈R).(1)求a·b关于k的解析式f(k);(2)若a∥b,求实数k的值;(3)求向量a与b夹角的最大值.解:(1)由已知|k a+b|=|a-k b|,有|k a+b|2=(|a-k b|)2,k2a2+2k a·b+b2=3a2-6k a·b+3k2b2.又因为|a|=|b|=1,得8k a·b=2k2+2,所以a·b=,即f(k)=(k>0).(2)因为a∥b,k>0,所以a·b=>0,则a与b同向.因为|a|=|b|=1,所以a·b=1,即=1,整理得k2-4k+1=0,所以k=2±,所以当k=2±时,a∥b.(3)设a,b的夹角为θ,则cos θ==a·b=.当,即k=1时,cos θ取最小值,又0≤θ≤π,所以θ=,即向量a与b夹角的最大值为.22.(12分)导学号03070122设△ABC,P0是边AB上一定点,满足P0B=AB,且对于边AB上任一点P,恒有,求证:AC=BC.证明:设=t(0≤t≤1),∴=t,∴=(t)·(t)=t2+t.由题意,即t2+t=,即当t=取得最小值.由二次函数的性质可知-,即-,∴=0.取AB中点M,则,∴=0,即AB⊥MC.∴AC=BC.。

高中数学北师大版必修4习题:第二章平面向量检测

高中数学北师大版必修4习题:第二章平面向量检测

第二章检测
(时间:120分钟满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列等式成立的是()
A
B.a·0=0
C.(a·b)c=a(b·c)
D.|a+b|≤|a|+|b|
答案:D
2.设P是△ABC所在平面内的一点则
A0B0
C0D0
解析:由可得P是边AC的中点,从而0.
答案:B
3.已知非零向量a,b满足向量a+b与向量a-b的夹角为则下列结论中一定成立的是
A.a=b
B.|a|=|b|
C.a⊥b
D.a∥b
解析:因为向量a+b与向量a-b的夹角为
所以(a+b)⊥(a-b),
即(a+b)·(a-b)=0,
所以|a|2-|b|2=0,即|a|=|b|.
答案:B
4.已知点A(1,2),B(2,-1),C(2,2),若则
A.5
B.-5
C.3
D.-3
解析:由已知,得
答案:C
5.设O,A,M,B为平面上四点且∈(1,2),则()
A.点M在线段AB上
B.点B在线段AM上
C.点A在线段BM上
D.O,A,M,B四点共线
解析:由题意可知

∴A,M,B三点共线.
又λ∈(1,2),
∴点B在线段AM上.
答案:B
6.已知△ABC满足则△ABC是()。

(好题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(2)

(好题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(2)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知a 与b 的夹角为60,4a =,则a b λ-(R λ∈)的最小值为( ) A .23B .72C .103D .4333.已知向量()2,3a =,()4,2b =,那么向量a b -与a 的位置关系是( ) A .平行B .垂直C .夹角是锐角D .夹角是钝角4.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .35.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( ) A .4B .5C .35D .456.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A 21B 2C 21D .22+7.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53C .523+D .58.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==9.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43,则AC 的长为( ) A .43B .433C .3D .2310.设O 为ABC 内一点,已知2332OA OB OC AB BC CA ++=++,则::AOB BOC COA S S S ∆∆∆= ( )A .1:2:3B .2:3:1C .3:1:2D .3:2:111.设O 是△ABC 的外接圆圆心、且720OA OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π 12.在ABC 中,2BAC π∠=,2AB AC ==,P 为ABC 所在平面上任意一点,则()PA PB PC ⋅+的最小值为( )A .1B .12-C .-1D .-2二、填空题13.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AM MB=__________.14.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 16.如图,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =,则AF ·BE =_____.17.已知平面非零向量,,a b c ,满足a b ⊥且||1c =,已知22150,||||a a c a c b c -⋅-=-=-,则||a b +的取值范围是________18.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.19.已知P 为圆22(4)2x y +-=上一动点,点()1,1Q ,O 为坐标原点,那么OP OQ ⋅的取值范围为________.20.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE .(2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小; (2)若3c =,求2a b +的取值范围.23.对于任意实数a,b ,c ,d ,表达式ad bc -称为二阶行列式(determinant ),记作a b c d,(1)求下列行列式的值: ①1001;②1326;③251025--; (2)求证:向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=;(3)讨论关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解的条件,并求出解.(结果用二阶行列式的记号表示). 24.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是310的直线方程. 25.如图,在OAB 中,P 为边AB 上的一点2BP PA =,6OA =,2OB =且OA 与OB 的夹角为60︒.(1)设OP xOA yOB =+,求x ,y 的值; (2)求OP AB ⋅的值.26.已知||2,||3,a b a ==与b 的夹角为120°. (1)求(2)(3)a b a b -⋅+与||a b +的值; (2)x 为何值时,xa b -与3ab 垂直?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113,22222ya y b y x ⎛⎫⎛⎛⎫+-=+-=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR ==故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、3,22Q ⎛⎫⎪ ⎪⎝⎭两点间的距离,考查了运算求解能力.2.A解析:A 【分析】根据向量的模的表示方法得22222a b a a b b λλλ-=-⋅+,再配方即可得答案. 【详解】解:根据向量模的计算公式得:()()222222216421212a b a a b b b bb λλλλλλ-=-⋅+=-+=-+≥,当且仅当2b λ=时等号成立;所以23a b λ-≥,当且仅当2b λ=时等号成立; 故选:A. 【点睛】方法点睛:向量模的计算公式:22a a a a =⋅=3.D解析:D 【分析】首先根据题中所给的向量的坐标,结合向量数量积运算法则,求得其数量积为负数,从而得到其交集为钝角. 【详解】因为()2,3a =,()4,2b =,222()23(2432)131410a b a a a b -⋅=-⋅=+-⨯+⨯=-=-<,所以向量a b -与a 的位置关系是夹角为钝角, 故选:D. 【点睛】该题考查的是有挂向量的问题,涉及到的知识点有向量数量积的运算律,数量积坐标公式,根据数量积的符号判断其交集,属于简单题目.4.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 5.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2224845a b ∴-=+=,故选D.【点睛】本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴(1)(x -+x ﹣1)2+(y ﹣1)2=1.∴c 的最大值11==.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.7.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ONOM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.8.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.9.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长. 【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以AC = 故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.10.B解析:B 【分析】根据23OA OB OC ++=32AB BC CA ++,化简得到12033OA OB OC ++=,设12,33OB OD OC OE ==,则O 为ADE 的重心,有AODAOEDOES SS==,则93,,232AOB BOC AOC S S S S S S ∆∆∆===求解. 【详解】由23OA OB OC ++=32AB BC CA ++,得233322OAOA OB OC OB OA OC OB OA OC ++=-+-+-, 整理得:320OA OB OC ++=,12033OA OB OC ∴++=,设12,33OB OD OC OE ==,则0OA OD OE ++=,即O 为ADE 的重心,AODAOEDOESSSS ∴===,则93,,232AOB BOC AOC S S S S S S ∆∆∆===, 93::3::2:3:122AOB BOC AOC S S S ∆∆∆∴==,故选:B. 【点睛】本题主要考查平面向量的平面几何中的应用,属于中档题.11.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2273cos sin 21777∠==∠=⨯⨯EOC EOC , 2222713cos sin 2272727+-∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.12.C解析:C 【分析】以,AB AC 为,x y 建立平面直角坐标系,设(,)P x y ,把向量的数量积用坐标表示后可得最小值. 【详解】如图,以,AB AC 为,x y 建立平面直角坐标系,则(0,0),(2,0),(0,2)A B C ,设(,)P x y ,(,)PA x y =--,(2,)PB x y =--,(,2)PC x y =--,(22,22)PB PC x y +=--,∴()22(22)(22)2222PA PB PC x x y y x x y y⋅+=----=-+-22112()2()122x y =-+--,∴当11,22x y ==时,()PA PB PC ⋅+取得最小值1-.故选:C .【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示.二、填空题13.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.14.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而min7MN==故答案为 【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①2=,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.【分析】通过建立直角坐标系利用向量的坐标运算转化求解即可【详解】以为坐标原点建立直角坐标系如图:因为直角梯形ABCD 中AB ∥CDAB ⊥ADAB=AD=4CD=8若所以所以则故答案为:【点睛】本题考查 解析:11-【分析】通过建立直角坐标系,利用向量的坐标运算转化求解即可. 【详解】以A 为坐标原点,建立直角坐标系如图:因为直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8,若7CE DE =-,3BF FC =所以(0,0)A ,(4,0)B ,(1,4)E ,(5,1)F , 所以(5,1)AF =,(3,4)BE =-, 则15411AF BE ⋅=-+=-. 故答案为:11-【点睛】本题考查向量的坐标运算,向量的数量积的应用,是基本知识的考查.17.【分析】设设则由得到再利用得到再设得到根据可解得结果【详解】因为所以可设设则由得所以由得化简得所以所以由得所以设则所以所以由得解得所以所以所以故答案为:【点睛】本题考查了向量的数量积的坐标运算考查了 解析:31311]【分析】设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150,||||a a c a c b c -⋅-=-=-,得到00152x x x =-,00152y y y =-,再利用221x y +=,得到222200002200225()604x y x y x y +++-=,再设2200x y t +=,得到2220225()2464t t t x t -=--,根据22250464t tt-≥-,可解得结果.【详解】因为a b ⊥,所以可设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150a a c -⋅-=,得200215x x x -=,所以0152x x x =-, 由||||a c b c -=-222200()()x x y x y y -+=+-200215y y y -=,所以00152y y y =-, 所以由221x y +=,得2200001515()()4x y x y -+-=, 所以22220002200225()604x y x y x y +++-=, 设2200x y t +=(0)t >,则220022564()t t x t x +=-,所以4200225064t x tx t-+=-,所以2220225()2464t t tx t-=--,由22250464t t t-≥-,得2649000t t -+≤,解得3232t -≤≤+所以221)1)t ≤≤,11t ≤≤,所以00|||(,)|1a b x y ⎤+===⎦,故答案为:1]. 【点睛】本题考查了向量的数量积的坐标运算,考查了向量的模长公式,属于中档题.18.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=, 所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.19.【分析】先将圆的方程化为参数方程设利用数量积运算结合三角函数的性质求解【详解】因为圆的方程所以其参数方程为:设所以因为所以故答案为:【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函 解析:[2,6]【分析】先将圆的方程化为参数方程2,42x cos R y θθθ⎧=⎪∈⎨=+⎪⎩,设(2,42)P θθ+,利用数量积运算结合三角函数的性质求解. 【详解】因为圆的方程22(4)2x y +-=,所以其参数方程为:2,42x cos R y θθθ⎧=⎪∈⎨=⎪⎩, 设(2,42)P θθ,所以2cos (42)2sin()44πθθθ⋅=++=++OP OQ ,因为[]sin()1,14πθ+∈-,所以[2,6]⋅∈OP OQ . 故答案为:[2,6] 【点睛】本题主要考查圆的方程的应用以及平面向量的数量积运算和三角函数的性质,还考查了运算求解的能力,属于中档题.20.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=. (2)∵23C π=,c =∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭ ∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b +的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题.23.(1)1,0,0;(2)证明见解析;(3)当11220a b a b ≠时,有唯一解,11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【分析】(1)利用行列式的定义可以直接求出行列式的值.(2)若向量(),p a b =与向量(),q c d =共线,由0q ≠和0q =时,分别推导出0a b c d=;反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,不妨设0c ≠,则ad b c =,,ab p a c ⎛⎫= ⎪⎝⎭,推导出a p q c =⋅,//p q ,当0c 且0d =时,0q =,(),p a b =与0q =共线,由此能证明向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)求出()12211221a b a b x c b c b -=-,()12211221a b a b x a c a c -=-,由此能求出当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,并能求出解. 【详解】 解:(1)解:①10101=②131623026=⨯-⨯=; ③()()2522551001025-=-⨯--⨯=-.(2)证明:若向量(),p a b =与向量(),q c d =共线,则: 当0q ≠时,有0ad bc -=,即0a b c d=,当0q =时,有0c d ==,即0a b ad bc c d=-=,∴必要性得证. 反之,若0a b c d=,即0ad bc -=,当c ,d 不全为0时,即0q ≠时, 不妨设0c ≠,则ad b c =,∴,ab p a c ⎛⎫= ⎪⎝⎭, ∵(),q c d =,∴ap q c=⋅,∴//p q ,∴(),p a b =与(),q c d =共线, 当0c且0d =时,0q =,∴(),p a b =与0q =共线,充分性得证.综上,向量(),p a b =与向量(),q c d =共线的充要条件是0a b c d=.(3)用2b 和1b 分别乘上面两个方程的两端,然后两个方程相减,消去y 得:()12211221a b a b x c b c b -=-,①同理,消去x ,得:()12211221a b a b x a c a c -=-,②∴当12210a b a b -≠时,即11220a b a b ≠时,由①②得: 1122121*********c b c b x a b a b a b c b c b a b -==-,1122122111122122a c a c a c a cy a b a b a b a b -==-, ∴当11220a b a b ≠时,关于x ,y 的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩(12120a a b b ≠)有唯一解,且11221122c b c b x a b a b =,11221122a c a c y ab a b =. 【点睛】此题考查行列式求值,考查向量共线的充要条件的证明,考查二元一次方程有解的条件及解的求法,考查运算求解能力,属于中档题24.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0 【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解. 试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P,即d ==,∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系25.(1)23x =,13y =;(2)623-. 【分析】(1)由向量的加减运算,可得()2233=+=+=+-OP OB BP OB BA OB OA OB ,进而可得答案.(2)用OAOB ,表示OP AB ⋅,利用向量数量积公式,即可求得结果. 【详解】(1)因为2BP PA =,所以23BP BA =. ()22213333OP OB BP OB BA OB OA OB OA OB =+=+=+-=+.又OP xOA xOB =-,又因为OA 、OB 不共线,所以,23x =,13y =(2)结合(1)可得:()2133OP AB OA OB OB OA ⎛⎫⋅=+⋅- ⎪⎝⎭.2222113333=⋅-+-⋅OA OB OA OB OA OB 22121333=⋅-+OA OB OA OB , 因为6OA =,2OB =,且OA 与OB 的夹角为60︒. 所以22112162626232333OP AB ⋅=⨯⨯⨯-⨯+⨯=-. 【点睛】本题考查了向量的加减运算、平面向量基本定理、向量的数量积运算等基本数学知识,考查了运算求解能力和转化的数学思想,属于基础题目.26.(1)34-2)当245x =-时,xa b -与3a b 垂直.【分析】(1)先由数量积的定义求出3a b ⋅=-,由数量积的运算性质可得22(2)(3)253a b a b a a b b -⋅+=+⋅-,222||||2a b a b a a b b +=+=+⋅+,将条件及a b ⋅的值代入,可得答案. (2)由xa b -与3a b 垂直,可得22()(3)(31)30xa b a b xa x a b b -⋅+=+-⋅-=,将条件代入可求出x 的值.【详解】(1)||||cos ,23cos1203a b a b a b ︒⋅=〈〉=⨯⨯=-.22(2)(3)25324153934a b a b a a b b -⋅+=+⋅-=⨯--⨯=-.222||||2469a b a b a a b b +=+=+⋅+=-+=(2)因为()(3)xa b a b -⊥+,所以22()(3)(31)3493270xa b a b xa x a b b x x -⋅+=+-⋅-=-+-=,即245x =-. 所以当245x =-时,xa b -与3a b 垂直.【点睛】本题考查向量数量积的定义和运算性质,求模长,根据向量垂直其数量积为零求参数的值,属于中档题.。

第二章平面向量单元综合考试题(带答案北师大版必修4)

第二章平面向量单元综合考试题(带答案北师大版必修4)

第二章平面向量单元综合考试题(带答案北师大版必修4)第二章平面向量单元综合考试题(带答案北师大版必修4) (120分钟150分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2011•慈溪高一检测)已知 =(3,0),则| |等于( ) (A)2 (B)3 (C)4 (D)5 2.(2011•天津高一检测)若向量的坐标满足 =(-2,-1), =(4,-3),则• =( ) (A)-5 (B)-4 (C)-3 (D)-2 3.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则 =( ) (A) (B) (C) (D) 4.已知=(2,1), • =10,| |=5 ,则| |=( ) (A) (B) (C)5 ( D)25 5.已知 =(-1,x)与 =(-x,2)共线且方向相同,则x等于( ) (A) (B)- (C)1 (D)± 6.(2011•黑龙江高一检测)已知△ABC的三个顶点A、B、C及平面内一点P满足:,若实数λ满足: ,则λ的值为( ) (A) (B) (C)2 (D)3 7.① ;② ;③若,则△ABC为等腰三角形;④若,则△ABC为锐角三角形.上述命题正确的是( ) (A)①② (B)①④ (C)②③ (D)②③④ 8.已知O为坐标原点,向量 =(1,1), =(3,1),在x轴上有一点P使• 取最小值,则点P的坐标是( ) (A)(2,0) (B)(4,0) (C)(3,0) (D)(-3,0) 9.对于向量和实数λ,下列命题中正确的是( ) (A)若• =0, 则 = 或= (B)若λ = ,则 = 或λ=0 (C)若 2= 2,则 = 或 =- (D)若• = • ,则 = 10.设 =(m,n), =(s,t),定义两个向量 , 之间的运算“ ”为(ms,nt),若向量 =(1,2), =(-3,-4),则等于( ) (A)(-3,-2) (B)(3,-2) (C)(-2,-3) (D)(-3,2) 11.点P在平面上做匀速直线运动,速度向量 =(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为| |个单位),设开始时点P的坐标为(-10,10),则5秒后点P的坐标为( ) (A)(-2,4) (B)(10,-5) (C)(-30,25) (D)(5,-10) 12.(2011•海淀高一检测)若点M是△ABC所在平面内一点,且满足 ,则△ABM与△ABC的面积之比等于( ) (A) (B) (C) (D) 二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上) 13.(2011•江苏高考)已知 , 是夹角为π的两个单位向量, , ,若• =0,则k的值为______. 14.在静水中划船的速度是40 km/小时,水流的速度是20 km/小时,如果船从岸边出发,径直沿垂直于水流的航线到达对岸,那么船行进的方向应该与河岸垂直方向成__________.15.(2011•江西高考文科)已知两个单位向量的夹角为 ,若向量 , ,则• =_______. 16.O是平面上一点,A,B,C是平面上不共线三点,动点P满足,λ= 时,则•( )的值为________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2011•吉林高一检测)已知向量 =(3,-4),求:(1)与平行的单位向量; (2)与垂直的单位向量; (3)将绕原点逆时针方向旋转45°得到的向量的坐标. 18.(12分)设向量 , 的夹角为60°且����=����=1,如果,, . (1)证明:A、B、D三点共线; (2)试确定实数k的值,使k的取值满足向量与向量垂直. 19.(12分)求证:平行四边形两条对角线平方和等于四条边的平方和. 20.(12分)(2011•吉安高一检测)已知 =(1,0), =(2,1)求: (1)| +3 |; (2)当k为何值时,k - 与 +3 平行. 21.(12分)(2011•唐山高一检测)在平面直角坐标系中,点A(7,1),B(-3,-4),O为坐标原点.求: (1) • ; (2)若点P在直线AB上,且OP⊥AB,求的坐标.22.(12分)(2011•深圳高一检测)设是平面直角坐标系中x轴和y轴正方向上的单位向量, =4 -2 , =7 +4 , =3 +6 ,求四边形ABCD的面积.答案解析 1.【解析】选B.∵ =(3,0),∴| |=3. 2.【解析】选A.∵ =(-2,-1), =(4,-3), ∴ =(1,-2), =(-3,1). ∴ • =-3-2=-5. 3.【解析】选C.设 ,利用平行四边形法则作出向量,再平移即发现 . 4.【解析】选C.∵ =(2,1),∴| |= . 又• =10,| |=5 , ∴| |2= 2+2 • + 2=50,∴| |=5. 5.【解析】选A.由题意可知 (λ>0),∴ ,解得x= 或x=- (舍去). 6.【解析】选D .由可知点P是△ABC的重心,设BC的中点为D,则又结合重心的性质可知∴ . 7.【解析】选C.∵ ,故①错;结合向量的三角形法则可知,故②正确;设BC的中点为D,则, ∴ , ∴△ABC为等腰三角形,故③正确;>0只能说明A是锐角,无法判断△ABC的形状. 独具【误区警示】本题在求解中常因>0,而直接下结论△ABC为锐角三角形. 8.【解析】选A.设点P(x,0),则• =(x-1,-1)•(x-3,-1) =(x-1)(x-3)+1=x2-4x+4=(x-2)2,当x=2时,• 取最小值.此时,P(2,0). 9.【解析】选B.A不正确,• =0,可能情况有或至少有一个为 ;C不正确, 2= 2只能说明| |=| |,但方向不一定相同;D不正确,• = • 只能说明 , 在上的射影相同,但不一定有 = . 独具【易错提醒】实数的运算同向量的运算有相似之处,但由于向量的运算都有明确的几何定义;因此应用向量的运算法则解题时,务必分析其几何意义. 10.【解析】选A.设 =(x,y),由 =(1,2), 且 =(-3,-4) 可知(x,2y)=(-3,-4) ∴x=-3,y=-2∴=(-3,-2) 11.【解析】选B.5秒后点P的坐标为(-10,10)+5(4,-3)= (10,-5). 12.独具【解题提示】先判断点M的位置,然后借助三角形的面积公式求解. 【解析】选B.由可知,点M在线段BC上.设,则 , ∴λ= . 又△ABM与△ABC的高相等, ∴△ABM与△ABC的面积之比等于BM∶BC=1∶4. 13.独具【解题提示】本题考查的是平面向量的运算,解题的关键是表示出• =0,然后找到关于k的等式进行求解. 【解析】由题, , • •( ) =k+cos -2kcos -2=0,可以解得k= . 答案: 14.【解析】如图所示:在Rt△ACD中,CD=20,AD=40, ∴ ,∠CAD=30°, 船航行的方向应与河岸垂直方向成30°夹角. 答案:30° 15.独具【解题提示】首先根据数量积的定义,将 , 用表示出来,再结合都是单位向量,且夹角为可得. 【解析】又∵〈〉= ,| |=1,| |=1, ∴ . 答案:-6 16.【解析】当λ= 时,,∴P为BC的中点,∴ .∴ •( )=0. 答案:0 17.【解析】(1)设,则| |=1,或 . (2)由, =(3,-4),可设 =λ(4, 3),∵| |=1,求得或 . (3)设 =(x,y),则x2+y2=25. 又,即,由上面关系求得或,而向量由绕原点逆时针方向旋转45°得到,故 . 18.【解析】(1)∵ ∴ ,即 , 共线,∴A,B,D 三点共线. (2)∵ ∴ • =0 ∴ 即 , 解得 . 19.【解析】如图: ABCD 中:,,. ∴ . 又∴ ∴ 独具【方法技巧】用向量方法解平面几何问题的一般步骤 1.建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; 2.通过向量运算研究几何运算之间的关系,如距离、夹角等; 3.把运算结果“翻译”成几何关系. 20.【解析】(1)∵ =(1,0), =(2,1),∴ +3 =(7,3), ∴| +3 | . (2)∵ =(1,0), =(2,1), ∴k - =(k-2,-1), +3 =(7,3), 若k - 与 +3 平行,则3k-6=-7, 21.【解析】(1) •=7×(-3)+1×(-4)=-25, (2)设P(m,n),∵P在AB上,∴ 与共线,=(10,5), =(7-m,1-n), ∴10(1-n)-5(7-m)=0, 即2n-m+5=0. ① 又∵ ,∴(m,n)•(-10,-5)=0, 即2m+n=0. ② 由①②得m=1,n=-2,即=(1,-2) . 22.独具【解题提示】先判断四边形的形状,再求面积. 【解析】∵ • =(4 -2 )•(3 +6 ) =3×4-2×6=0, ∴ .又∵ , ∴四边形ABCD为平行四边形,又,∴四边形ABCD为矩形. ∴S四边形ABCD .。

新北师大版高中数学必修四第二章《平面向量》检测卷(答案解析)(1)

新北师大版高中数学必修四第二章《平面向量》检测卷(答案解析)(1)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知向量,a b ,满足||1,||2a b ==,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤,则向量,a b 的夹角的取值范围是( )A .0,3π⎡⎤⎢⎥⎣⎦B .,3ππ⎡⎤⎢⎥⎣⎦C .2,63ππ⎡⎤⎢⎥⎣⎦ D .20,3π⎡⎤⎢⎥⎣⎦3.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .22B .2C 3D .27.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23B .32C .34D .438.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .39.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b 方向上的投影是255,则实数m =( ) A .2±B .2C .5±D .510.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==11.如图,已知点D 为ABC 的边BC 上一点,3BD DC =,*()∈n E n N 为AC 边的一列点,满足11(32)4n n n n n E A a E B a E D +=-+,其中实数列{}n a 中,10,1n a a >=,,则{}n a 的通项公式为( )A .1321n -⋅-B .21n -C .32n -D .1231n -⋅-12.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .0,3⎡⎤⎣⎦B .3,3⎡⎤⎢⎥⎣ C .3,3⎡⎤⎣⎦D .[]0,3二、填空题13.已知向量a ,b 及实数t 满足|(1)(1)|1t a t b ++-=,若22||||1a b -=,则t 的最大值是________.14.如图,已知ABC 为边长为2的等边三角形,动点P 在以BC 为直径的半圆上,若AP AB AC λμ=+,则2λμ+的最小值为_______.15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为_____.18.若点O 和点F 分别为椭圆24x +23y =1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP 的最大值为________.19.已知向量()()2,3,1,2==-a b ,若ma b +与2a b -平行,则实数m 等于______. 20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____. 三、解答题21.如图,在菱形ABCD 中,1,22BE BC CF FD ==.(1)若EF xAB yAD =+,求32x y +的值; (2)若||6,60AB BAD =∠=︒,求AC EF ⋅.22.在直角坐标系xoy 中,单位圆O 的圆周上两动点A B 、满足60AOB ∠=︒(如图),C 坐标为()1,0,记COA α∠=(1)求点A 与点B 纵坐标差A B y y -的取值范围; (2)求AO CB ⋅的取值范围;23.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围. 24.已知()()1,,3,2a m b ==-. (1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影. 25.ABC 中,点()2,1A 、()1,3B 、()5,5C . (1)若D 为BC 中点,求直线AD 所在直线方程; (2)若D 在线段BC 上,且2ABDACDS S=,求AD .26.已知椭圆22:24C x y += (1)求椭圆C 的标准方程和离心率;(2)是否存在过点()0,3P 的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.若存在,求出直线l 的方程;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以12ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、3,22Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力.2.B解析:B 【分析】根据向量不等式得到7a b +≤,平方得到1a b ⋅≤,代入数据计算得到1cos 2α≤得到答案. 【详解】由||1a =,||2b =,若对任意模为2的向量c ,均有||||27a c b c ⋅+⋅≤ 可得:()()27a b c a b c a c b c +⋅≤+⋅≤⋅+⋅≤ 可得:()227a b +⋅≤,7a b +≤平方得到2227a b a b ++⋅≤,即1a b ⋅≤1cos 1,cos ,23a b a b παααπ⋅=⋅≤∴≤∴≤≤故选:B 【点睛】本题考查了向量夹角的计算,利用向量三角不等式的关系进行求解是解题的关键.3.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而30a <<或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.4.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=, 联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.5.C解析:C 【解析】,,又,,则,故选6.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=,2422||cos||44b b π→→∴-⨯+=,解得:||22b →=, 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.7.B解析:B 【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM . 【详解】如图,平行四边形ABCD 中,3DE CE =,ABMEDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B 【点睛】此题考查平面向量的线性运算,属于中档题.8.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值.【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==, 所以32cos63()34AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.9.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合25||cos a θ=可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=, 所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m+-=,解得2m =±.故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 10.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.11.D解析:D 【分析】以BA 和BC 为基底,表示n BE ,根据n E ,A ,C 三点共线,可得1193331442+-++=++n n n a a a ,构造等比数列,即可求出通项公式. 【详解】113(32),44+=-+=-=-n n n n n n n n E A a E B a E D E D BD BE BC BE , 113(32)()44n n n n n E A a E B a BC BE +∴=-+- 113(32)(32)44n n n n a a E B a BC +=---+ 又=-n n E A BA BE113(32)(32=)44+∴---+-n n n n n a a E B a BC BA BE113(33)(32)44+-∴++=++n n n n a a BE a BC BA因为n E ,A ,C 三点共线113(33)1(32)44+-++=++∴n n n a a a , 即1=32++n n a a ,即1+1=3(1)++n n a a ,所以数列{1}n a +是等比数列,首项为2,公比为3.1+1=23-∴⋅n n a ,即1=23-1-⋅n n a ,故选:D .【点睛】本题考查了平面向量基本定理和等比数列的通项公式,考查了运算求解能力和逻辑推理能力,属于中档题.12.D解析:D【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围.【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤.故选:D.【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC =(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.二、填空题13.【分析】根据整理为再两边平方结合得到然后利用基本不等式求解【详解】因为所以两边平方得因为即所以而所以解得当且仅当时等号成立所以的最大值是故答案为:【点睛】关键点点睛:本题关键是由这一信息将转化为再遇 解析:14【分析】根据|(1)(1)|1t a t b ++-=,整理为()()||1t a b a b ++-=,再两边平方结合22||||1a b -=,得到()()22212t a ba b t ++-=-,然后利用基本不等式求解.【详解】因为|(1)(1)|1t a t b ++-=, 所以()()||1t a b a b ++-=, 两边平方得()()()()22221t a b t a b a b a b +++-+-=,因为22||||1a b -=,即()()1a b a b +-=,所以()()22212t a b a b t ++-=-,而()()()()22222t a b a b t a b a b t ++-≥+⋅-=, 所以122t t -≥,解得14t ≤,当且仅当()()t a b a b +=-时等号成立, 所以t 的最大值是14 故答案为:14【点睛】 关键点点睛:本题关键是由22||||1a b -=这一信息,将|(1)(1)|1t a t b ++-=,转化为()()||1t a b a b ++-=,再遇模平方,利用基本不等式从而得解. 14.1【分析】如图建系设P 点坐标则可得的坐标根据题意可得的表达式代入所求根据的范围利用三角函数求最值即可得答案【详解】取BC 中点O 以O 为原点OCOA 方向为x 轴y 轴正方向建系如图所示由题意得:所以如图以B 解析:1【分析】如图建系,设P 点坐标(cos ,sin )θθ,则可得,,AP AB AC 的坐标,根据题意,可得,λμ的表达式,代入所求,根据θ的范围,利用三角函数求最值,即可得答案.【详解】取BC 中点O ,以O 为原点,OC ,OA 方向为x 轴y 轴正方向建系,如图所示由题意得:2sin 603OA =︒=3),(1,0),(1,0)A B C -,如图以BC 为直径的半圆方程为:221(0)x y y +=≤,设(cos ,sin )P θθ,因为sin 0θ≤,所以[,2]θππ∈, 则(cos ,sin 3)AP θθ=,(1,3),(1,3)AB AC =--=-,因为AP AB AC λμ=+,所以cos sin 333θλμθλμ=-+⎧⎪⎨--⎪⎩, 整理可得113cos sin 226131cos 22μθθλθθ⎧=+-⎪⎪⎨⎪=-⎪⎩, 所以131113322(cos )cos sin()222226πλμθθθθθ+=-++=-+, 因为[,2]θππ∈,所以713[,]666πππθ+∈, 当1366ππθ+=时,sin()6πθ+取最大值12, 所以2λμ+的最小值为31122-=, 故答案为:1【点睛】解题的关键是在适当位置建系,进而可得点的坐标及向量坐标,利用向量的坐标运算,即可求得2λμ+的表达式,再利用三角函数图像与性质求解,综合性较强,考查分析理解,计算求值的能力,属中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求解析:209- 【解析】 分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果. 详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()23,0C , 由中心坐标公式可得:0023200,3G ⎛⎫++++ ⎪⎪⎝⎭,即223,33G ⎛⎫ ⎪⎝⎭, 据此有:223,33GB ⎛⎫=-- ⎪⎝⎭,423,33GC ⎛⎫=- ⎪⎝⎭, 结合平面向量数量积的坐标运算法则可得:2422203333339GB GC ⎛⎫⎛⎫⎛⎫⋅=-⨯+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积 解析:6【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解.【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P , 所以()()3,1,3,3PA PB =-=--,所以()()()33136PA PB ⋅=-⨯-+⨯-=,故答案为:6.【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题. 17.【分析】利用平面向量数量积的运算律可求得的值利用平面向量数量积的定义可求得与的夹角的余弦值由此可求得与的夹角【详解】设与的夹角为则所以故答案为:【点睛】本题考查利用平面向量数量积的运算律与定义求向量 解析:3π【分析】利用平面向量数量积的运算律可求得a b ⋅的值,利用平面向量数量积的定义可求得a 与b 的夹角的余弦值,由此可求得a 与b 的夹角.【详解】 3a =,2b =,()()2223618a b a b a a b b +⋅-=-⋅-=-, 2222618362183a b a b ∴⋅=-+=-⨯+=,设a 与b 的夹角为θ,则1cos 2a b a b θ⋅==⋅,0θπ≤≤,所以,3πθ=. 故答案为:3π. 【点睛】本题考查利用平面向量数量积的运算律与定义求向量的夹角,考查计算能力,属于中等题. 18.6【分析】由椭圆方程得到FO 的坐标设P(xy)(-2≤x≤2)利用数量积的坐标运算将·转化为二次函数最值求解【详解】由椭圆+=1可得F(-10)点O(00)设P(xy)(-2≤x≤2)则·=x2+x解析:6【分析】由椭圆方程得到F ,O 的坐标,设P (x ,y )(-2≤x ≤2),利用数量积的坐标运算将OP ·FP 转化为二次函数最值求解.【详解】 由椭圆24x +23y =1,可得F (-1,0),点O (0,0), 设P (x ,y )(-2≤x ≤2),则OP ·FP =x 2+x +y 2=x 2+x +321-4x ⎛⎫ ⎪⎝⎭=14x 2+x +3 =14(x +2)2+2,-2≤x ≤2, 当x =2时, OP ·FP 取得最大值6.故答案为:6【点睛】本题主要考查平面向量的数量积及应用以及椭圆的几何性质和二次函数求最值,还考查了运算求解的能力,属于中档题.19.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题 解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解.【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+, ()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-.故答案为:12-. 【点睛】 本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭, 解得2CB =则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6【点睛】 此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)1-;(2)9-.【分析】(1)利用平面向量基本定理,取AB AD 、为基底,利用向量加减法可解;(2)把所有的向量用基底AB AD 、表示后,计算AC EF ⋅.【详解】解:(1)因为1,22BE BC CF FD ==, 所以12122323EF EC CF BC DC AD AB =+=-=-, 所以21,32x y =-=, 故213232132x y ⎛⎫+=⨯-+⨯=- ⎪⎝⎭. (2)∵AC AB AD =+, ∴2212121()23236AC EF AB AD AD AB AD AB AB AD ⎛⎫⋅=+⋅-=--⋅ ⎪⎝⎭ ∵ABCD 为菱形∴||=||6AD AB = ∴2211||||cos 66AC EF AB AB BAD ⋅=--∠. 11136369662=-⨯-⨯⨯=-, 即9AC EF ⋅=-.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.22.(1)[1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()13sin sin 60sin sin cos 2ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭13sin cos sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭, ∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键. 23.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】(1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围.【详解】(1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点,所以54M ⎛ ⎝⎭,12N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以12t M ⎛⎫+ ⎪ ⎪⎝⎭,(1N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1; 当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.24.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ; (2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b ⋅=⋅求b 在向量a 方向上的投影. 【详解】 ()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,5a b b a b b a b ⋅=⋅== 【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.25.(1)35y x =-;(2)55 3AD =.【分析】(1)求出线段BC 中点D 的坐标,利用斜率公式求得直线AD 的斜率,然后利用点斜式可得出直线AD 所在直线的方程;(2)由2ABD ACD S S =可得2BD DC =,可得23AD AB BC =+,可计算出平面向量AD 的坐标,进而可求得AD 的值.【详解】(1)D 为BC 中点,()3,4D ∴,直线AD 的斜率14323k -==-, 所以直线AD 所在的直线方程为:()433y x -=-,即AD 直线方程为35y x =-; (2)因为2ABD ACD S S =,所以2BD DC =,则23BD BC =, 又由()()225101,24,2,3333A B D D A AB B B C =+⎪⎛⎫==-+=+⎝⎭,所以5 333AD ⎛== ⎭⎝⎭. 【点睛】 本题考查直线方程的求解,同时也考查了利用三角形面积的倍数关系求向量的模,考查计算能力,属于中等题.26.(1)22142x y +=,2e =2)存在,7x 0或7x ﹣【分析】(1)将椭圆方程化为标准方程,可得a ,b ,c ,由离心率公式可得所求值;(2)假设存在过点P (0,3)的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =,可设直线l 的方程为x =m (y ﹣3),联立椭圆方程,消去x 可得y 的二次方程,运用韦达定理和判别式大于0,再由向量共线的坐标表示,化简整理解方程,即可判断是否存在这样的直线.【详解】(1)由22142x y +=,得2,a b ==c =2c e a ==; (2)假设存在过点P (0,3)的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =, 可设直线l 的方程为x =m (y ﹣3),联立椭圆方程x 2+2y 2=4,可得(2+m 2)y 2﹣6m 2y +9m 2﹣4=0,△=36m 4﹣4(2+m 2)(9m 2﹣4)>0,即m 2<47, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=2262m m +,y 1y 2=22942m m-+,①由2PB PA=,可得(x2,y2﹣3)=2(x1,y1﹣3),即y2﹣3=2(y1﹣3),即y2=2y1﹣3,②将②代入①可得3y1﹣3=2262mm+,y1(2y1﹣3)=22942mm-+,消去y1,可得22232mm++•22322mm-+=22942mm-+,解得m2=2747<,所以m=故存在这样的直线l,且方程为7x y0或7x y﹣0.【点睛】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,运用韦达定理,同时考查向量共线的坐标表示,考查化简运算能力和推理能力,属于中档题.。

北师大版高中数学必修四第二章《平面向量》测试题(有答案解析)

北师大版高中数学必修四第二章《平面向量》测试题(有答案解析)

一、选择题1.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .122.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB+AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点 B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为3 4.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .3(1,)⎛⋃+∞ ⎝⎭C .3⎫⎪⎪⎝⎭D .(1,)+∞5.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C 3D .26.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A .21-B .2C .21+D .22+7.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-8.如图,在平面直角坐标系xOy 中,原点O 为正八边形12345678PP P P P P P P 的中心,18PP x ⊥轴,若坐标轴上的点M (异于点O )满足0i j OM OP OP ++=(其中1,8i j ≤≤,且i 、j N *∈),则满足以上条件的点M 的个数为( )A .2B .4C .6D .89.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-10.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos 2A 的最小值为( )A 26B .27-C .17-D .149-11.直线0ax by c 与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.已知正项等比数列{}n a ,若向量()28,a a =,()8,2b a =,//a b ,则212229log log log (a a a ++⋯+= )A .12B .28log 5+C .5D .18二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知平面向量a ,b 夹角为30,若2=a ,则12b a b +-的最小值为______. 15.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.16.已知平面非零向量,,a b c ,满足a b ⊥且||1c =,已知22150,||||a a c a c b c -⋅-=-=-,则||a b +的取值范围是________17.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________. 18.已知(2,1)a =,(3,4)b =,则a 在b 的方向上的投影为________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.若平面向量a ,b 为单位向量,12a b ⋅=,空间向量c 满足||8c =,4a c ⋅=,5b c ⋅=,则对任意的实数12,t t ,12c t a t b --的最小值是___________. 三、解答题21.在平面直角坐标系xOy 中,已知(1,2)A --,()2,3B ,(2,1)C --.(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长; (2)若存在y 轴上一点P 满足BC AP ⊥,求BPC ∠.22.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题:(1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ;(2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.23.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.24.如图所示,在ABC 中,AB a =,BC b =,D ,F 分别为线段BC ,AC 上一点,且2BD DC =,3CF FA =,BF 和AD 相交于点E .(1)用向量a ,b 表示BF ;(2)假设()1BE BA BD BF λλμ=+-=,用向量a ,b 表示BE 并求出μ的值. 25.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.26.已知4a =,3b =,()()23261a b a b -⋅+=, (1)求a 与b 的夹角θ; (2)求2a b +;(3)若2AB a b =+,BC b =,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ.【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.2.A解析:A 【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB+AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.4.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a 所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而30a <<或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.5.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π,由2213a b -=,则222222444442cos523a b a b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.6.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出. 【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=. 故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.7.B解析:B 【分析】 求出2a b -()3,2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-, 得2a b -)3,2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答. 8.D解析:D 【分析】分点M 在x 、y 轴进行分类讨论,可得出点i P 、j P 关于坐标轴对称,由此可得出点M 的个数. 【详解】分以下两种情况讨论:①若点M 在x 轴上,则i P 、()1,8,,j P i j i j N *≤≤∈关于x 轴对称,由图可知,1P 与8P 、2P 与7P 、3P 与6P 、4P 与5P 关于x 轴对称,此时,符合条件的点M 有4个;②若点M 在y 轴上,则i P 、()1,8,,j P i j i j N *≤≤∈关于y 轴对称,由图可知,1P 与4P 、2P 与3P 、5P 与8P 、6P 与7P 关于y 轴对称,此时,符合条件的点M 有4个.综上所述,满足题中条件的点M 的个数为8. 故选:D. 【点睛】本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.9.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴== 21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.10.D解析:D 【分析】作出图形,用AB 、AC 表示向量BE 、CD ,由BE CD ⋅可得出2232cos 7c b A bc+=,利用基本不等式求得cos A 的最小值,结合二倍角的余弦公式可求得cos 2A 的最小值.【详解】 如下图所示:13BE AE AB AC AB =-=-,12CD AD AC AB AC =-=-, BE CD ⊥,则2211711032623BE CD AC AB AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-=⋅--= ⎪ ⎪⎝⎭⎝⎭,即22711cos 0623cb A c b --=,可得22322626cos 7c b bc A bc +=≥=, 当且仅当6b =时,等号成立,所以,22261cos 22cos 121749A A ⎛⎫=-≥⨯-=- ⎪ ⎪⎝⎭. 故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-, ()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.D解析:D 【分析】本题先根据平行向量的坐标运算可得2816a a =,再根据等比中项的知识,可计算出54a =,在求和时根据对数的运算及等比中项的性质可得到正确选项.【详解】解:由题意,向量()28,a a =,()8,2b a =,//a b 则28820a a ⨯-⨯=,即2816a a =,根据等比中项的知识,可得228516a a a ==, 50a >,54a ∴=,212229log log log a a a ∴++⋯+ 2129log ()a a a =⋯2192837465log [()()()()]a a a a a a a a a =925log a =29log 4=18=.故选:D . 【点睛】本题主要考查等比数列的性质应用,以及数列与向量的综合问题.考查了转化与化归思想,平行向量的运算,对数的计算,逻辑思维能力和数学运算能力.属于中档题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:0,53⎡⎤+⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值. 【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.【分析】首先设则结合向量夹角为利用对称关系求得其最小值也可以建系利用向量的坐标去求解【详解】解析1:(对称)设则过作于点由于向量夹角为则故所以最小值为到的距离为即的最小值为故答案为:解法2:(建系) 3【分析】首先设a OA =,b OB =,则a b BA -=,结合向量a ,b 夹角为30,利用对称关系,求得其最小值,也可以建系,利用向量的坐标去求解.【详解】解析1:(对称)设a OA=,b OB=,则a b BA-=,过B作BH OA⊥于点H.由于向量a,b夹角为30,则12 BH OB=,故12b a b BH AB BH A B'+-=+=+,所以最小值为A'到OA的距离为3,即12b a b+-的最小值为3.3解法2:(建系)设()2,0a=,则3,b m⎛⎫= ⎪⎝⎭,不妨设0m>,则()22213134244 23333mb a b m m m m+-=+-+=+-+令()2344433xf x x x=-+则()242334443xf xx x-'=+-+()0f x'=,解得1x=,即当1x=时,()min3f x=所以12b a b+-的最小值为33【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量模的和的最小值的求解,在解题的过程中,可以利用图形,从对称角度去分析,也可以建系,将其坐标化求解,属于中档题目.15.【分析】利用表示向量再由可求得实数的值【详解】所以则为线段的中点则因此故答案为:【点睛】本题考查利用平面向量的基底表示求参数考查计算能力属于中等题 解析:14-【分析】利用AB 、AC 表示向量AD ,再由12AE AD =可求得实数λ的值. 【详解】()22BC CD BD BC ==-,所以,32BD BC =, 则()33132222AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+, E 为线段AD 的中点,则11332444AE AD AB AC AB AC λ==-+=+,因此,14λ=-.故答案为:14-. 【点睛】本题考查利用平面向量的基底表示求参数,考查计算能力,属于中等题.16.【分析】设设则由得到再利用得到再设得到根据可解得结果【详解】因为所以可设设则由得所以由得化简得所以所以由得所以设则所以所以由得解得所以所以所以故答案为:【点睛】本题考查了向量的数量积的坐标运算考查了解析:11]【分析】设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠,设(,)c x y =,则221x y +=,由22150,||||a a c a c b c -⋅-=-=-,得到00152x x x =-,00152y y y =-,再利用221x y +=,得到22220002200225()604x y x y x y +++-=,再设2200x y t +=,得到2220225()2464t t t x t -=--,根据22250464t tt -≥-,可解得结果.【详解】因为a b ⊥,所以可设00(,0)(0)a x x =≠,00(0,)(0)b y y =≠, 设(,)c x y =,则221x y +=,由22150a a c -⋅-=,得200215x x x -=,所以00152x x x=-,由||||a c b c -=-=200215y y y -=,所以00152y y y =-, 所以由221x y +=,得2200001515()()4x y x y -+-=, 所以22220002200225()604x y x y x y +++-=, 设2200x y t +=(0)t >,则220022564()t t x t x +=-,所以4200225064t x tx t-+=-, 所以2220225()2464t t tx t-=--,由22250464t t t-≥-,得2649000t t -+≤,解得3232t -≤+所以221)1)t ≤≤,11t ≤≤,所以00|||(,)|1a b x y ⎤+===⎦,故答案为:11]. 【点睛】本题考查了向量的数量积的坐标运算,考查了向量的模长公式,属于中档题.17.【分析】根据数量积公式得出的值再由得出答案【详解】故答案为:【点睛】本题主要考查了由数量积求模长属于中档题 【分析】根据数量积公式得出a b ⋅的值,再由2||()a b a b -=-得出答案.【详解】111cos1202a b ⋅=⨯⨯︒=-22222||()2||2||111a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=++=【点睛】本题主要考查了由数量积求模长,属于中档题.18.2【分析】根据向量在的方向上的投影为结合向量的数量积的坐标运算和模的计算公式即可求解【详解】由题意向量可得则在的方向上的投影为故答案为:【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应解析:2 【分析】根据向量a 在b 的方向上的投影为a b b⋅,结合向量的数量积的坐标运算和模的计算公式,即可求解. 【详解】由题意,向量(2,1)a =,(3,4)b =,可得231410a b ⋅=⨯+⨯=,2345b =+=, 则a 在b 的方向上的投影为1025a b b⋅==. 故答案为:2. 【点睛】本题主要考查了平面向量数量积的坐标运算和模计算公式的应用,以及向量的投影的概念与计算,其中解答熟记平面向量的数量积、模及投影的计算公式是解答的关键,着重考查推理与运算能力.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件,对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.6【分析】根据题意将其代入并且结合化简整理进而可求得最小值【详解】解:由题得将条件代入可得上式当且仅当取等号故的最小值是故答案为:【点睛】本题主要考查平面向量的数量积及其运算性质以及二次式的最值问题解析:6 【分析】根据题意,221a b ==,将其代入212|()|c t a t b -+,并且结合||8c =,4a c ⋅=,5b c ⋅=,化简整理2222121283|()|(4)363624t c t a t b t t -⎛⎫-+=++-+ ⎪⎝⎭,进而可求得最小值【详解】解:22222212121212()222c t a t b c t a t b t c a t c b t t a b -+=++--+, 由题得221a b ==,||8c =,4a c ⋅=,5b c ⋅=,12a b ⋅=将条件代入可得上式22222212121212()222c t a t b c t a t b t c a t c b t t a b -+=++--+ 22121212164242522t t t t t t =++-⨯-⨯+⨯22222121212128364810(4)363624t t t t t t t t t -⎛⎫=++--+=++-+ ⎪⎝⎭, 当且仅当12t =,24t =取等号, 故12||c t a t b --的最小值是6, 故答案为:6 【点睛】本题主要考查平面向量的数量积及其运算性质以及二次式的最值问题,还考查了运算求解的能力.三、解答题21.(1);(2) 【分析】(1)计算AB AC +和AB AC -可得;(2)先求出P 点坐标,再求PB 和PC 的夹角即得. 【详解】(1)由题意(3,5)AB =,(1,1)AC =-,(2,6)AB AC +==,(4,4)AB AC -==所以所求对角线长为和 (2)设(0,)P y ,则由BC AP ⊥得3(1)(2)12(2)0(1)y ----⨯=-----,3y =-,即(0,3)P -,(2,6)PB =,(2,2)PC =-,cos 2PB PC BPC PB PC⋅∠===所以BPC ∠= 【点睛】关键点点睛:根据向量加减法的几何意义,以线段AB 、AC 为邻边的平行四边形的对角线长就是,AB AC 和与差的模.而求BPC ∠,可以算作是,PB PC 的夹角,也可以用两直线的夹角公式求解. 22.(1)1122AD a b =+;(2)证明过程见详解. 【分析】(1)根据题干中所给的方法,结合向量的线性运算,可分别求解;(2)根据题干中所给的方法,由向量的线性运算,用a ,b 表示出AD ,即可得出结论成立. 【详解】(1)因为D 为BC 的中点, 方法一:12AD AB BD AB BC =+=+,∵BC AC AB =-, ∴11221)22(221AD AB AC AB AB AC a b =+-=+=+; 方法二:21AC CD AC AD CB =+=+,∵CB AB AC =-,∴111221)2(221AD AC AB AC AB AC a b =+-=+=+; 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且BD DC =,∴21FD CD AB CB ==,21FD AE AB ==. ∵//ED AC ,BD DC =.∴12ED BD AC BC ==,得12ED AF AC ==. ∴11212212AD AE ED AE AF AB AC a b =+=+=+=+; (2)因为D 为直线BC 上任意一点(除B 、C 两点),BD kDC =,显然1k ≠-; 所以1k BD BC k =+,11CB k CD =+, 方法一:1AD AB BD AB BC kk =+++=,∵BC AC AB =-, ∴1111111()k k k AD AB AC AB AB AC a b k k k k k +++++=+-=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法二:11A AC CD AC CB D k =++=+,∵CB AB AC =-, ∴11111111()k k k k AD AC AB AC A k k B AC a b k ++=+-=+++=++; 即存在唯一实数对11k λ=+,1kk μ=+,使得:AD a b λμ=+,且1λμ+=; 方法三:若点D 位于点B 左侧,如图,过点D 作//DM AB ,过点A 作//AM BC ,交DM 于点M ,则AMDB 为平行四边形,1kAM BD BC k ==+,所以11()AD AB AM AB BC AB k k k k AC AB =++=-+++=111111k k AB AC a b k k k k ++++=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于点C 右侧,如图,过点D 作//DN AC ,过点A 作//AN BC ,交DN 于点N ,则ANDC 为平行四边形, 11AN CD BC k ==+,因此11A AC AN AC CB D k =++=+111111(1)k k k AB AC AB AB AC a b k k k k k +++=+++-+=+=, 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于BC 之间,则0k >;如图所示,过点D 作AC 的平行线,交AB 于点P ,过点D 作AB 的平行线,交AC 于点Q ,则四边形APDQ 为平行四边形.∵//DQ AB 且BD DC =,∴11QD CD AB C k B =+=,11Q k D AP AB =+=, ∵//PD AC ,BD DC =.∴1PD BD AC BC k k =+=,得1k k PD AQ AC =+=. ∴111111AD AP AQ AB AC k k a b k k k k =+=++=++++; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 综上,存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=. 【点睛】思路点睛:利用平面向量的一组基底表示向量时,只需根据向量的线性运算法则,结合平面向量基本定理,逐步求解即可.23.(1)52x =;(2)()2,1或2211,55⎛⎫ ⎪⎝⎭. 【分析】 (1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值. (2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标.【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=-∵A 、B 、C 共线,∴//AB BC∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ==∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--=即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫= ⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题.24.(1)3144BF a b =-+;(2)2239BE a b =-+,89μ=. 【分析】(1)把BF 放在ABF 中,利用向量加法的三角形法则即可;(2)把a ,b 作为基底,表示出 BE ,利用BE BF μ=求出 μ.【详解】解:由题意得3CF FA =,2BD DC =,所以14AF AC =,23BD BC = (1)因为BF BA AF =+,AB a =,BC b =所以()1144BF BA AC BA BC BA =+=+- 31314444BA BC a b =+=-+. (2)由(1)知3144BF a b =-+,而3223BD BC b == 而()()23111344BE BA BD BF BE a a b b λλμλλμ⎛⎫=+-=⇒=-+-=-+ ⎪⎝⎭ 因为a 与b 不共线,由平面向量基本定理得 ()342134λμμλ⎧-=-⎪⎪⎨⎪-=⎪⎩ 解得89μ= 所以2239BE a b =-+,89μ=即为所求. 【点睛】 在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.25.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】(1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围.【详解】(1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点,所以54M ⎛ ⎝⎭,12N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以12t M ⎛⎫+ ⎪ ⎪⎝⎭,(1N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1; 当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.26.(1)2π3;(2)3) 【分析】(1)将等式展开得到6a b ⋅=-,再利用向量夹角公式得到答案.(2)计算22a b +,展开得到答案.(3)计算12BA BC ⋅=-得到cosB =,故sin B =案.【详解】(1)∵()()23261a b a b -⋅+=,∴2244361a a b b -⋅-=.又4a =,3b =,∴6442761a b -⋅-=,∴6a b ⋅=-.∴61cos 432a b a b θ⋅-===-⨯,又0πθ≤≤,∴2π3θ=. (2)()22222244a b a ba ab b +=+=+⋅+()224464328=+⨯-+⨯=,∴227a b +=.(3)BA 与BC 的夹角B ,则()22261812BA BC a b b a b b ⋅=-+⋅=-⋅-=-=-,故cos2BA BCBA BC B ⋅⋅===,∴sin B =,27AB =,3BC =,∴11sin 322ABC S AB BC B ==⨯=△ 【点睛】 本题考查了向量的夹角,向量的模,三角形的面积,意在考查学生的计算能力和转化能力.。

(常考题)北师大版高中数学必修四第二章《平面向量》测试(含答案解析)

(常考题)北师大版高中数学必修四第二章《平面向量》测试(含答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)3.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .124.点M ,N ,P 在ABC 所在平面内,满足MA MB MC ++=0,|NA NB NC ==∣,且PA PB ⋅=PB PC PC PA ⋅=⋅,则M 、N 、P 依次是ABC 的( ) A .重心,外心,内心 B .重心,外心,垂心 C .外心,重心,内心D .外心,重心,垂心5.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C .3D .26.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A .2B .1C .2D .227.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .08.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( ) A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .412.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-二、填空题13.在矩形ABCD 中,已知E 、F 分别是BC 、CD 上的点,且满足2BE EC =,3CFFD .若(),AC AE AF R λμλμ=+∈,则λμ+的值为______.14.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.15.已知平面向量a ,b ,c 满足45a b ⋅=,4a b -=,1c a -=,则c 的取值范围为________.16.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.17.已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________. 18.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 19.在梯形ABCD 中,AB //CD ,90DAB ∠=,2AB =,1CD AD ==,若点M 在线段BD 上,则AM CM ⋅的最小值为______________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值.22.已知a ,b ,c 是同一平面内的三个向量,其中()1,2a =,()3,b k =-,()2,4c =-.(1)若()//(2)ma c a c +-,求m ; (2)若()a a b ⊥+,c a b λμ=+,求λμ+.23.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值.24.已知平行四边形ABCD 中,2AB =,4BC =,60DAB ∠=,点E 是线段BC 的中点.(1)求AC AE ⋅的值;(2)若AF AE AD λ=+,且BD AF ⊥,求λ的值. 25.已知(1,3),(3,),(1,),//AB BC m CD n AD BC =-==. (1)求实数n 的值;(2)若AC BD ⊥,求实数m 的值. 26.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-.(1)求b ;(2)若27a mb -=,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以12ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()1B -,)1C-,设(),P x y ,因为点P 是其内一点,所以x <10y -<<,计算3AP AB y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303=,2sin301,所以()3,1B -- ,)3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y -<<-<<,()(),3,13AP AB x y x y ⋅=⋅-=--,当3x =-1y =-时AP AB ⋅最大为((()3314-⨯---=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-, 故选:C 【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 3.C解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示.(1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.4.B解析:B 【分析】由三角形五心的性质即可判断出答案. 【详解】 解:0MA MB MC ++=,∴MA MB MC +=-,设AB 的中点D ,则2MA MB MD +=,C ∴,M ,D 三点共线,即M 为ABC ∆的中线CD 上的点,且2MC MD =.M ∴为ABC 的重心.||||||NA NB NC ==, ||||||NA NB NC ∴==,N ∴为ABC 的外心;PA PB PB PC =,∴()0PB PA PC -=,即0PB CA =,PB AC ∴⊥, 同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心;故选:B .【点睛】本题考查了三角形五心的性质,平面向量的线性运算的几何意义,属于中档题.5.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π, 由2213a b -=,则222222444442cos523a b a b a b b b π-=+-⋅=+-⨯=,整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.6.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.7.B解析:B 【分析】建立坐标系,逐段分析·PE PF 的取值范围及对应的解. 【详解】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+,[0,6],716x PE PF ∈∴≤⋅≤, ∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B. 【点睛】本题主要考查平面向量数量积的运算,二次函数的根的个数判断,属于中档题.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴== 21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ3-2sinθ+1),所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度 v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.6 60.1y v ==,在Rt ABC 中,221060.8BC -=.. ∵80.1x x BC v v v v +=+==水水,∴826x v =-= ∴2262x y v v v 静=+=设v v 静水<,>=θ,则tan 1y x v v θ==,∴2cos 2θ=. 此时222272242410102v v v v v v v +=+⋅+=+⨯+≤静水静静水水= ,满足条件,故选A. 11.C解析:C 【解析】在ABC ∆中,060BAC ∠=,5,6AB AC ==,D 是AB 是上一点,且5AB CD ⋅=-, 如图所示,设AD k AB =,所以CD AD AC k AB AC =-=-,所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-, 解得25k =,所以2(1)35BD AB =-=,故选C .12.A解析:A【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-, ()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OP OP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解.【详解】 解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b ==+, 在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅- 2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-;当OP ,OA 反向时,取得最大值,为246+=.∴PM PN ⋅的取值范围为[]2,6-.故选:A.【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.二、填空题13.【分析】本题首先可根据题意得出然后将转化为再然后根据列出算式最后通过计算即可得出结果【详解】如图结合题意绘出图像:因为所以则故因为所以解得故答案为:【点睛】关键点点睛:本题考查向量的相关运算主要考查 解析:1310 【分析】本题首先可根据题意得出23BE AD 、14DF AB =,然后将AC AE AF λμ=+转化为2314AB AD λμλμ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,再然后根据AC AB AD =+列出算式,最后通过计算即可得出结果. 【详解】 如图,结合题意绘出图像:因为2BE EC =,3CF FD , 所以2233BEBC AD ,1144DF DC AB , 则23AE AB BE AB AD ,14AF AD DF AD AB , 故3142AB AD AC AE AF AD AB λμλμ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭+4231AB AD λμλμ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭, 因为AC AB AD =+, 所以114213λμλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得910λ=,25μ=,1310λμ+=, 故答案为:1310. 【点睛】关键点点睛:本题考查向量的相关运算,主要考查向量的三角形法则以及平行四边形法则的应用,考查计算能力,考查数形结合思想,是中档题. 14.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案 【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c ==所以|2||||2|||4a xc xc a xc x ++=++=,所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+,化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-, 所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--, 因为(0,)θπ∈,所以20cos 1θ≤<,所以234cos 4θ<-≤,所以212344cos θ≤<-,所以(,)S a c 的取值范围为[3,4)【点睛】 关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想15.【分析】结合已知条件画出图象由的几何意义求得的取值范围【详解】如图所示设设是线段的中点依题意可知由于所以即解得所以即所以根据向量模的几何意义可知点在以为圆心为半径的圆上所以所以即的取值范围为故答案为 解析:[]4,10【分析】 结合已知条件画出图象,由c 的几何意义求得c 的取值范围.【详解】如图所示,设,,OA a OB b OC c ===,设D 是线段AB 的中点. 依题意可知4,1,2AB AC AD BD ====,由于45a b ⋅=所以45OA OB ⋅=,即()()()()222224544OA OB OA OB OD BA +---==222441644OD BA OD --==,解得7OD =. 所以59OD AD OA OD AD =-≤≤+=, 即59OA ≤≤, 所以418,6110OA OA ≤-≤≤+≤ 根据向量模的几何意义可知,点C 在以A 为圆心,1为半径的圆上, 所以()()min max 11OA OC OA -≤≤+,所以410OC ≤≤,即c 的取值范围为[]4,10.故答案为:[]4,10【点睛】本小题主要考查向量数量积的运算,考查向量模的几何意义,属于中档题.16.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-【分析】延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可.【详解】如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小;设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形;设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-,故答案为:2-.【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.17.【分析】易得结合可得又可得即可求解【详解】则则又故答案为:【点睛】本题考查向量模的取值范围的计算考查了向量模的三角不等式的应用考查计算能力属于中等题解析:⎡⎣【分析】易得()2225a b +=,结合()()22225a b a b +≤+=,可得5a b +≤.又a b a b +≥±,可得2a b ±≥,即可求解. 【详解】1a b +=,2a b -=,2221a a b b ∴+⋅+=,2224a a b b -⋅+=,()2225a b ∴+=,则()()22225a b a b +≤+=,则5a b +≤.又a b a b +≥±,2a b ∴+≥,25a b ∴≤+≤.故答案为:⎡⎣. 【点睛】本题考查向量模的取值范围的计算,考查了向量模的三角不等式的应用,考查计算能力,属于中等题.18.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3 解析:【详解】方法一:3cos 2OA OC AOC OA OC ⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ② 22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①=,所以229m n =, 点C 在AOB ∠内, 所以3m n=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=, 得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m n λλ⎧⎪⎪⎨⎪=⎪⎩, 解得3m n=. 故答案为:3.19.【分析】根据建立平面直角坐标系设得到再求得的坐标利用数量积的坐标运算求解【详解】建立如图所示平面直角坐标系:因为所以设所以所以所以所以当时的最小值为故答案为:【点睛】本题主要考查平面向量的数量积运算 解析:920-【分析】根据AB //CD ,90DAB ∠=,2AB =,1CD AD ==,建立平面直角坐标系,设,01λλ=≤≤BM BD ,得到()22,λλ-M ,再求得,AM CM 的坐标,利用数量积的坐标运算求解.【详解】建立如图所示平面直角坐标系:因为AB //CD ,90DAB ∠=,2AB =,1CD AD ==,所以()2,0B ,()0,1D ,()1,1C ,设,01BM BD λλ=≤≤,所以()()2,2,1λ-=-x y所以()22,λλ-M ,所以()()22,,12,1λλλλ---==AM CM ,所以()()22,12,1λλλλ⋅=-⋅--AM CM ,227957251020λλλ⎛⎫=-+=-- ⎪⎝⎭, 当710λ=时,AM CM ⋅的最小值为920-. 故答案为:920-【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题. 20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量 解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论.【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴222(3)45a b -=-+=, 又234,552a ba b -⎛⎫=- ⎪⎝⎭-,∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 【点睛】 易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:a a ±.只写出一个向量a a 是错误的.三、解答题21.(1)2;(2 【分析】(1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos 19BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以332AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM =⨯-⨯-+⨯=,从而3194BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以27cos819BM ADBM AD θ⋅===解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,AD ⎛= ⎝⎭,所以33AD =(2)因为M 为中线AD 的中点,由(1)知,M ⎛ ⎝⎭,所以BM ⎛=- ⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)2-;(2)225. 【分析】(1)可以求出(2,24)ma c m m +=-+,2(4,0)a c -=,根据()//(2)ma c a c +-即可得出m 的值;(2)可以求出(2,2)a b k +=-+,根据()a a b ⊥+即可求出k 的值,进而可得出(3λμ-,2)(2λμ-=-,4),从而可得出λ,μ的值. 【详解】 (1)(2,24)ma c m m +=-+,2(4,0)a c -=,()//(2)ma c a c +-,240m ∴+=,解得2m =-;(2)(2,2)a b k +=-+,且()a a b ⊥+,∴()22(2)0a a b k +=-++=,解得1k =-,∴(3,2)(2,4)c a b λμλμλμ=+=--=-,∴3224λμλμ-=-⎧⎨-=⎩,解得14585λμ⎧=⎪⎪⎨⎪=⎪⎩, ∴225λμ+=. 【点睛】 本题考查了向量坐标的加法、减法和数乘运算,向量垂直的充要条件,平行向量的坐标关系,考查了计算能力,属于基础题.23.(1)223-;(2)2-.【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解.【详解】 (1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒,在POB 中,由余弦定理,得 222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=- ∴84362PB =-=,又222PA OA ==∴()1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-⨯-=- ⎪⎝⎭ (2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 23sin 4sin αααα=--+-+ 2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.24.(1)18;(2)12λ=-. 【分析】(1)根据条件,可以点A 为原点,AB 所在的直线为x 轴,建立平面直角坐标系,从而可得出AC AE ,的坐标,然后进行向量数量积的坐标运算即可;(2)可以得出(023),BD =,(32323),AF =+λλ,然后根据BD AF ⊥,即可得出0BD AF ⋅=,进行向量数量积的坐标运算,即可求出λ的值.【详解】(1)以A 点为坐标原点,AB 所在直线为x 轴建立如图所示的平面直角坐标系,则(0,0)A ,(2,0)B ,(4,23)C ,3)E ,(2,23)D ,所以(423),AC =,(33),AE =, 所以4323318AC AE ⋅=⨯+⨯=; (2)(023),BD =,(32323),AF =+λλ,因为BD AF ⊥, 所以23(323)0BD AF ⋅==λ,解得12λ=-. 【点睛】 本题主要考查向量的数量积的坐标运算,选择恰当的点作为坐标原点建系及正确的写出各点坐标是关键,属于中档题.本题也可以AB ,AD 作为基底,利用基底法求解. 25.(1)3n =-;(2)1m =±.【解析】试题分析:(1)利用向量//AD BC ,建立关于n 的方程,即可求解n 的值;(2)写出向量,AC BD 的坐标,利用AC BD ⊥得出关于m 的方程,即可求解实数m 的值. 试题(1)(1,3),(3,),(1,),AB BC m CD n =-==(3,3),//3(3)303AD AB BC CD m n AD BCm n m n∴=++=++∴++-=∴=-(2)由(1)得 (1,-3),CD =(2,3),(4,3)AC AB BC m BD BC CD m =+=+=+=-AC BD ⊥ 所以 8(3)(3)0,1m m m ++-=∴=±考点:向量的坐标运算.26.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m .【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=,∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=,∴()222227244469a mb a ma b m b m m =-=-⋅+=-+, 整理得:23210m m --=,解得:13m =-或1m =. 【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大必修4《平面向量》测试题及答案
一、选择题
1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1
B.x=3
C.x=
2
9
D.x=51
2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k )
B.(-
k 5,-k
4) C.(-10,2)
D.(5k,4k)
3.若点P 分AB 所成的比为43
,则A 分BP 所成的比是( ) A.
7
3
B. 37
C.- 37
D.-7
3
4.已知向量a 、b ,a ·a =-40,|a |=10,|b |=8,则向量a 与b 的夹角为
( )
A.60°
B.-60°
C.120°
D.-120°
5.若|a-b|=32041-,|a |=4,|b |=5,则向量a ·b =( ) A.103
B.-103
C.102
D.10
6.已知a =(3,0),b =(-5,5),则a 与b 的夹角为( ) A.
4
π
B.
4
3π C.
3
π
D.32π
7.已知向量a =(3,4),b =(2,-1),如果向量a +x ·b 与b 垂直,则x 的值
为( )
A.
3
23 B.
23
3
C.2
D.-
5
2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( )
A.(-∞,-1)
B.(-1,0)
C.(-∞,0)
D.(-∞,-
2
1) 9.设四边形ABCD 中,有DC =2
1
AB ,且|AD |=|BC |,则这个四边形是( ) A.平行四边形
B.矩形
C.等腰梯形
D.菱形
10.将y=x+2的图像C按a=(6,-2)平移后得C′的解析式为()
A.y=x+10
B.y=x-6
C.y=x+6
D.y=x-10
11.将函数y=x2+4x+5的图像按向量a经过一次平移后,得到y=x2的图像,则a等于()
A.(2,-1)
B.(-2,1)
C.(-2,-1)
D.(2,1)
12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是()
A.(2a,b)
B.(a-b,a+b)
C.(a+b,b-a)
D.(a-b,b-a)
二、填空题
13.设向量a=(2,-1),向量b与a共线且b与a同向,b的模为25,则b= 。

14.已知:|a|=2,|b|=2,a与b的夹角为45°,要使λb-a垂直,则λ= 。

15.已知|a|=3,|b|=5,如果a∥b,则a·b= 。

16.在菱形ABCD中,(AB+AD)·(AB-AD)= 。

三、解答题
17.如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB 的中点,已知AB=a,AD=b,试用a、b分别表示DC、BC、MN。

18.已知非零向量,a b 满足||||a b a b +=-,求证: a b ⊥
19.设e 1与e 2是两个单位向量,其夹角为60°,试求向量a =2e 1+e 2,b =-3e 1+2e 2的夹角θ。

20.以原点O 和A (4,2)为两个顶点作等腰直角三角形OAB ,∠B=90°,求点B 的坐标和AB 。

21. 已知||2a = ||3b =,a b 与的夹角为60o
, 53c a b =+,
3d a kb =+,当当实数k 为何值时,⑴c ∥d ⑵c d ⊥
22.已知△ABC 顶点A (0,0),B (4,8),C (6,-4),点M 内分AB 所成的比为3,N 是AC 边上的一点,且△AMN 的面积等于△ABC 面积的一半,求N 点的坐标。

参考答案
1.B
2.A
3.C
4.C
5.A
6.B
7.D
8.A
9.C 10.B 11.A 12.C 13.(4,-2) 14.2 15.±15 16.0 17.[解] 连结AC
DC =
21AB =2
1
a ,…… AC =AD +DC =
b +21
a ,……
BC =AC -AB = b +21a -a = b-2
1
a ,……
NM =ND +DM =NA +AD +DM = b-4
1
a ,……
MN =-NM =4
1
a -
b 。

……
18. 证:
()()2
2
22
a b a b a b a b a b
a b +=-⇒+=+⇒+=-
2
2
2
2
220a a b b a a b b a b ⇒+⋅+=-⋅+⇒⋅= 又,a b 为非零向量
a b ⇒⊥
19.[解] ∵a =2e 1+e 2,∴|a |2
=a 2
=(2e 1+e 2)2
=4e 12
+4e 1·e 2+e 22
=7,∴|a |=7。

同理得|b|=7。

又a ·b ==(2e 1+e 2)·(-3e 1+2e 2,)=-6e 12+ e 1·e 2+2e 22
=-2
7
, ∴ cos θ=||·||·b a b a =7727
⨯-
=-2
1,∴θ=120°. 20.[解] 如图8,设B(x,y),
则OB =(x,y), AB =(x-4,y-2)。

∵∠B=90°,∴OB ⊥AB ,∴x(x-4)+y(y-2)=0,即x 2
+y 2
=4x+2y 。


设OA 的中点为C ,则C(2,1), OC =(2,1),CB =(x-2,y-1) ∵△ABO 为等腰直角三角形,∴OC ⊥CB ,∴2(x-2)+y-1=0,即2x+y=5。


解得①、②得⎩⎨⎧==311
1y x 或⎩⎨⎧-==1322y x
∴B(1,3)或B(3,-1),从而AB =(-3,1)或AB =(-1,-3) 21. ⑴若c ∥d 得59=k ⑵若d c ⊥得14
29-=k
22.[解] 如图10,
ABC
AMN S S △△=BAC AC AB BAC
AN AM ∠∠sin ·||·||2
1
sin ·||·||21
||·||AC AB AN AM 。

∵M 分AB 的比为3||AB =4
3
,则由题设条件得 21=34||AC AN ||AC AN =32||AC AN =2。

由定比分点公式得⎪⎪⎩
⎪⎪⎨⎧
-=+-⨯+==+⨯+=.3821)4(20,42
1620N N y x
∴N(4,-3
8
)。

相关文档
最新文档